WO2012081208A1 - 車両の走行支援装置 - Google Patents

車両の走行支援装置 Download PDF

Info

Publication number
WO2012081208A1
WO2012081208A1 PCT/JP2011/006878 JP2011006878W WO2012081208A1 WO 2012081208 A1 WO2012081208 A1 WO 2012081208A1 JP 2011006878 W JP2011006878 W JP 2011006878W WO 2012081208 A1 WO2012081208 A1 WO 2012081208A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
travel
state
travel control
control means
Prior art date
Application number
PCT/JP2011/006878
Other languages
English (en)
French (fr)
Inventor
越膳 孝方
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to BR112013014736A priority Critical patent/BR112013014736A2/pt
Priority to CN201180058985.8A priority patent/CN103249627B/zh
Priority to JP2012548636A priority patent/JP5511984B2/ja
Priority to US13/993,607 priority patent/US9031761B2/en
Publication of WO2012081208A1 publication Critical patent/WO2012081208A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle travel support device, and more specifically, determines the state of traffic flow from the acceleration of the host vehicle and the inter-vehicle distance from another vehicle, and performs vehicle travel control according to the determination result.
  • the present invention relates to a vehicle travel support device having a switching function.
  • Patent Document 1 acquires a traffic state including a vehicle density of a road on which the vehicle travels, and performs vehicle travel control so that the inter-vehicle distance is less likely to decrease as the vehicle density of the road approaches a critical density. Describes that the traffic flow is suppressed or avoided from becoming a traffic jam flow.
  • an object of the present invention is to provide a vehicle travel support device capable of appropriately improving the traffic flow determination (estimation) accuracy and capable of travel control effective for avoiding or eliminating traffic congestion. .
  • the present invention relates to determination means for determining a traffic flow state in a lane on which the host vehicle travels based on the acceleration of the host vehicle and an inter-vehicle distance from other vehicles in the vicinity, and travel for controlling the travel of the host vehicle.
  • a travel control means that can switch the travel control according to a determination result by the determination means, and the travel control means is capable of causing a traffic jam in the determination result and a traffic flow state.
  • Vehicle driving support that switches driving control when it indicates that the vehicle is in a critical region that exists during the transition from a free flow state to a mixed flow state where the braking state and acceleration state of the vehicle are mixed Device.
  • the traffic flow is in a critical region that exists during the transition from the free flow to the mixed flow.
  • the information processing device further includes notification control means for controlling the notification means mounted on the host vehicle, and the notification control means switches notification contents by the notification means in accordance with switching of travel control by the travel control means. .
  • the driver when the traffic flow is in the critical region, the driver is notified of the switching of the traveling control, so that if the driver progresses to the mixed flow, the traffic flow becomes congested. It is possible to make it known that traveling control is necessary to prevent the progress of the vehicle.
  • the traveling control means includes an automatic constant speed traveling function, and switching of the traveling control includes turning on or off the automatic constant speed traveling function.
  • the travel control when the traffic flow is in a critical region, the travel control is more suitable for preventing the advance to a traffic jam by turning on or off the automatic constant speed travel function. Can be performed.
  • the determination means includes a logarithm of a maximum slope value calculated from a single regression line of a power spectrum obtained from the acceleration of the host vehicle, and a logarithm of a minimum covariance value calculated from a distribution of inter-vehicle distances.
  • the traffic flow state is determined from the correlation map.
  • FIG. 4 shows an acceleration spectrum according to one embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a probability density distribution according to an embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing a covariance value ⁇ k according to an embodiment of the present invention. It is an image (concept) figure of the correlation map of inclination maximum value and covariance minimum value according to one Example of this invention. It is a figure which shows the relationship between traffic density and traffic volume.
  • FIG. 6 is a correlation map between the logarithm of the minimum covariance value for the inter-vehicle distance distribution and the logarithm of the slope maximum value for the acceleration spectrum according to one embodiment of the present invention. It is a figure which shows the structure of the traveling control means (function) according to one Example of this invention. It is a figure which shows the example of a display by a display according to one Example of this invention. 4 is a flowchart of vehicle travel control according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a vehicle travel support apparatus 100 according to an embodiment of the present invention.
  • the driving support device 100 is mounted on a vehicle.
  • the driving support device 100 can be mounted on a vehicle as one device or as a part of another device.
  • the driving support device 100 includes a yaw rate sensor 10, a vehicle speed sensor 11, a radar device 12, a navigation device 13, a processing device 14, a switch 15, various actuators 16, a speaker 17, a display 18, and a communication device 19.
  • the processing device 14 may be incorporated in the navigation device 13.
  • the speaker 17 and the display 18 may use corresponding functions provided in the navigation device 13.
  • the yaw rate sensor 10 detects the yaw rate of the host vehicle and sends a detection signal to the processing device 14.
  • the vehicle speed sensor 11 detects the acceleration of the host vehicle and sends a detection signal to the processing device 14.
  • the radar device 12 divides a predetermined detection target region set around the host vehicle into a plurality of angle regions, and transmits an electromagnetic wave such as an infrared laser or millimeter wave while scanning each angle region. .
  • the radar device 12 receives a reflection signal (electromagnetic wave) from an object in the detection target region and sends the reflection signal to the processing device 14.
  • the navigation device 13 receives a positioning signal such as a GPS signal, and calculates the current position of the host vehicle from the positioning signal.
  • the navigation device 13 can also calculate the current position of the host vehicle from the acceleration and yaw rate detected by the vehicle speed sensor 11 and the yaw rate sensor (not shown) using autonomous navigation.
  • the navigation device 13 includes map data and has a function of outputting the current position of the host vehicle, route information to a destination, traffic jam information, and the like on a map to be displayed.
  • the processing device 14 includes a frequency analysis unit 31, a single regression line calculation unit 32, a slope maximum value calculation unit 33, a reflection point detection unit 34, another vehicle detection unit 35, an inter-vehicle distance detection unit 36, an inter-vehicle distance distribution estimation unit 37, A minimum variance calculation unit 38, a correlation map creation unit 40, a traffic flow determination unit 41, a travel control unit 42, a notification control unit 43, and a communication control unit 44 are provided.
  • the function of each block is realized by a computer (CPU) included in the processing device 14. Details of the function of each block will be described later.
  • the processing device 14 has, for example, an A / D conversion circuit that converts an input analog signal into a digital signal, a central processing unit (CPU) that performs various arithmetic processing, and a CPU that stores data when performing arithmetic operations. It includes a RAM to be used, a ROM for storing programs to be executed by the CPU and data to be used (including tables and maps), an output circuit for outputting a drive signal for the speaker 17, a display signal for the display 18, and the like.
  • CPU central processing unit
  • the switch 15 outputs various signals related to the traveling control of the host vehicle to the processing device 14.
  • the various signals may include, for example, accelerator pedal and brake pedal operation (position) signals, various signals related to automatic constant speed running control (ACC) (control start, control stop, target vehicle speed, inter-vehicle distance, etc.) and the like. .
  • ACC automatic constant speed running control
  • the various actuators 16 are used as a general term for a plurality of actuators, and include, for example, an acceleration actuator (such as a throttle actuator), a deceleration actuator (such as a brake actuator), and a steering actuator.
  • an acceleration actuator such as a throttle actuator
  • a deceleration actuator such as a brake actuator
  • a steering actuator such as a steering actuator
  • the display 18 includes a display such as an LCD, and can be a display having a touch panel function.
  • the display device 16 may be configured to include an audio output unit and an audio input unit.
  • the indicator 18 notifies the driver by displaying predetermined alarm information or blinking or lighting a predetermined warning light in response to a control signal from the notification control unit 43.
  • the speaker 17 notifies the driver by outputting a predetermined alarm sound or sound according to a control signal from the notification control unit 43.
  • the communication device 19 communicates with another vehicle or a server device (not shown) or a relay station (not shown) by wireless communication under the control of the communication control unit 44, and the traffic jam prediction result output from the traffic jam prediction unit 41 Position information is transmitted in association with each other, or correspondence information between a traffic jam prediction result and position information is received from another vehicle or the like. The acquired information is sent to the notification control unit 43 or the travel control unit 42 via the communication control unit 44.
  • the frequency analysis unit 31 performs frequency analysis on the acceleration of the host vehicle detected by the vehicle speed sensor 11 and calculates a power spectrum.
  • FIG. 2 shows examples of power spectra in two different traveling states (a) and (b). In FIG. 2, acceleration spectra 51 and 53 corresponding to frequencies are illustrated as power spectra.
  • the single regression line calculation unit 32 performs a single regression analysis on the obtained power spectrum and calculates a single regression line.
  • the straight lines indicated by reference numerals 52 and 54 are simple regression lines obtained for the acceleration spectra 51 and 53, respectively.
  • the slope maximum value calculation unit 33 calculates the slope maximum value from the obtained single regression line.
  • the inclinations ⁇ 1 and ⁇ 2 at (a) and (b) are obtained.
  • , etc.) obtained from the difference ⁇ is obtained.
  • the obtained maximum value is stored in a memory (RAM or the like) in the processing device 14 as a tilt maximum value.
  • the reflection point detector 34 detects the position of the reflection point (object) from the reflection signal detected by the radar device 12.
  • the other vehicle detection unit 35 is based on the position information of the reflection point output from the reflection point detection unit 34, and is at least one or more units present in the vicinity of the host vehicle from the distance between adjacent reflection points, the distribution state of the reflection points, and the like. Detect other vehicles.
  • the inter-vehicle distance detection unit 36 detects the inter-vehicle distance between the host vehicle and the other vehicle from the other vehicle information detected by the reflection point detection unit 34, and outputs the result together with the detected number of other vehicles.
  • the inter-vehicle distance distribution estimation unit 37 estimates the inter-vehicle distance distribution from the information on the inter-vehicle distance and the number of vehicles output from the inter-vehicle distance detection unit 36.
  • the inter-vehicle distance distribution estimation will be described with reference to FIGS. 3 and 4.
  • FIG. 3 shows a probability density distribution.
  • a Gaussian distribution Apply probability density distribution. For example, when there are two vehicle groups, the vehicle group can be regarded as a distribution obtained by linearly combining two Gaussian distributions.
  • a probability function P (X) representing the entire distribution can be obtained as the sum (superposition) of the probability functions P1 (X) and P2 (X) representing the two Gaussian distributions. .
  • ⁇ k is an expected value (average value) and represents a position having the highest density.
  • ⁇ k is a covariance value (matrix), and represents distortion of the distribution, that is, how the density decreases in which direction away from the expected value.
  • ⁇ k is a mixing coefficient (mixing ratio) of the Gaussian distribution, and represents a ratio (0 ⁇ ⁇ k ⁇ 1) of how much each Gaussian distribution contributes.
  • the mixing coefficient ⁇ k can be regarded as one probability.
  • the covariance minimum value calculation unit 38 calculates the corresponding covariance value ⁇ k for the obtained Gaussian distribution P (X) using, for example, the maximum likelihood method. At this time, for example, in order to obtain a parameter (covariance) that maximizes the likelihood function obtained from the above-described P (X), calculation is performed using an EM algorithm or the like.
  • a covariance value ⁇ k is calculated for each Gaussian distribution.
  • the covariance minimum value calculation unit 38 calculates the minimum value of the covariance values ⁇ k obtained for each Gaussian distribution P (X).
  • Figure 4 is a diagram schematically representing the covariance value sigma k.
  • the graph 56 representing the covariance value ⁇ k is a sharp graph at delta ( ⁇ ) 0, and there is no variation in the vehicle group, that is, the vehicle is in a traveling state in which the inter-vehicle distance is substantially constant. It suggests.
  • FIG. 4B two graphs are obtained, a graph 57 having a peak at ⁇ 1 in a region where delta ( ⁇ ) is negative and a graph 58 having a peak at ⁇ 2 in a positive region.
  • Both the graphs 57 and 58 have a predetermined fluctuation range ( ⁇ ), which indicates that there are fluctuations in the vehicle group, in other words, that there are a plurality of sets of cars having different inter-vehicle distances.
  • the minimum value of the covariance value sigma k is approximately zero (0) (a), the a ⁇ 1 the smaller the (b).
  • FIG. 6 is an image (concept) diagram of a correlation map between the maximum slope value and the minimum covariance value.
  • the horizontal (X) axis is the covariance minimum value X
  • the vertical (Y) axis is the slope maximum value Y
  • the correlation of the variables (X, Y) is mapped.
  • Two areas indicated by reference numerals 59 and 60 are shown, and there is a boundary area 61 where these two areas overlap.
  • the region 59 corresponds to a state where the covariance minimum value is relatively small and the variation of the vehicle group is small, in other words, a state where the inter-vehicle distance is relatively constant.
  • the region 60 corresponds to a state where the covariance minimum value is relatively large and the variation of the vehicle group is large, in other words, a state where there are a plurality of sets of vehicles having different inter-vehicle distances.
  • the boundary region 61 is a region where the variation of the vehicle group changes from a small state to a large state, and the present invention is characterized in that the state of the vehicle group corresponding to the boundary region 61 is quantitatively found and a traffic jam is predicted. There is.
  • FIG. 6 is a diagram showing the relationship between traffic density and traffic volume.
  • the horizontal (X) axis of the graph is a traffic density that means the number of vehicles existing within a predetermined distance from the host vehicle. The reciprocal of this traffic density corresponds to the inter-vehicle distance.
  • the vertical (Y) axis is a traffic volume that means the number of vehicles passing through a predetermined position. It can be understood that FIG. 6 represents a traffic flow that means the flow of a vehicle.
  • the traffic flow illustrated in FIG. 6 can be roughly divided into four states (areas).
  • the first is a free flow state in which the possibility of traffic congestion is low, and here, a vehicle speed and an inter-vehicle distance above a certain level can be secured.
  • the second is a mixed flow state in which the braking state and the acceleration state of the vehicle are mixed.
  • This mixed flow state is the state before the transition to the congestion flow, and the degree of freedom of driving by the driver is reduced, and the traffic flow is reduced and the traffic density is increased (reduction of the inter-vehicle distance). It is in a state where the probability of transition is high.
  • the third is a traffic flow state indicating a traffic jam.
  • the fourth is a critical region state which is a transition state existing during the transition from the free flow state to the mixed flow state.
  • This state is a state in which the traffic volume and the traffic density are higher than those in the free stream, and the state is shifted to a mixed stream due to a decrease in the traffic volume and an increase in the traffic density (a reduction in the inter-vehicle distance).
  • the critical region is sometimes called metastable flow or metastable flow.
  • the region 59 in FIG. 5 includes the free flow and critical region states in FIG. 6, and the region 60 in FIG. 5 includes the mixed flow and jammed flow states in FIG. It will be. Therefore, the boundary region in FIG. 5 is a boundary state including both the critical region state and the mixed flow state in FIG. 6, and is referred to as a critical region boundary as shown in FIG. In the present invention, it is an object to quantitatively grasp the state of the critical region including the boundary of the critical region and to control the lane change or the like to prevent the occurrence of the traffic jam or to avoid the traffic jam.
  • FIG. 7 is a diagram showing a correlation map between the logarithm of the minimum covariance value for the inter-vehicle distance distribution and the logarithm of the maximum slope value for the acceleration spectrum.
  • FIG. 7A is a simplified drawing of the traffic flow map of FIG. 6, and
  • FIG. 7B shows a correlation map between the logarithm of the minimum covariance value and the logarithm of the slope maximum value.
  • the logarithm of the covariance minimum value and the logarithm of the slope maximum value in (b) is the difference between the slope maximum value calculated by the slope maximum value calculation unit 33 and the covariance minimum value calculated by the covariance minimum value calculation unit 38. Calculated as a logarithmic value.
  • the region indicated by reference numeral 62 includes the critical region (a), and the region indicated by reference numeral 63 includes the state of the mixed flow (a).
  • a line indicated by reference numeral 64 is a critical line, and means a critical point where traffic congestion occurs when the line is moved to a mixed flow state.
  • the boundary region 65 between the regions 62 and 63 corresponds to the boundary of the critical region immediately before the criticality 64.
  • the correlation map illustrated in FIG. 7B is stored in a memory (RAM or the like) in the processing device 14.
  • the traffic flow determination unit 41 in FIG. 1 determines the type of traffic flow in the correlation map created by the correlation map creation unit 40, more specifically, whether or not a critical region state exists as a traffic flow. judge. Then, a control signal including the determination result is sent to the travel control unit 42, the notification control unit 43, and the communication control unit 44 in order to prevent the shift to the traffic jam. As a result, it is possible to execute various controls, which will be described later, to prevent the transition to the mixed flow illustrated in FIG. 7, and as a result, it is possible to predict traffic jams that are useful not only for traffic jam avoidance but also for eliminating traffic jams. .
  • the traffic flow determination unit 41 outputs the traffic jam prediction result to the navigation device 13.
  • the navigation device 13 avoids traffic jam based on the traffic flow judgment result received from the traffic flow judgment unit 41 and the traffic flow judgment result or the traffic jam prediction result predicted by the other vehicle output from the communication control unit 41. Thus, route search and route guidance of the host vehicle can be performed.
  • the travel control unit 42 includes a traffic flow determination result output from the traffic flow determination unit 41, traffic jam related information from other vehicles output from the communication control unit 44, various signals output from the switch 15, and a vehicle speed sensor. 11 is controlled by controlling various actuators based on the detection result of the acceleration of the host vehicle output from No. 11 and the detection result of the inter-vehicle distance output from the inter-vehicle distance detection unit 36.
  • FIG. 8 is a block diagram showing a configuration of the traveling control unit 42 according to one embodiment of the present invention.
  • the traveling control unit 42 maintains a preset target inter-vehicle distance when a preceding vehicle is detected in front of the vehicle and travels following the preceding vehicle, and is set in advance when no preceding vehicle is detected.
  • An automatic constant speed running (ACC: Adaptive Cruise Control) system that runs at a constant speed at the target vehicle speed is realized.
  • ACC Adaptive Cruise Control
  • the traveling control unit 42 is configured to turn on or off the ACC control according to the traffic flow determination result output from the traffic flow determination unit 41. For example, when the traffic flow determination result is “with critical region”, the ACC control is turned off so that the driver performs a driving operation in which the inter-vehicle distance is long and the number of times of braking is small. When the traffic flow determination result is “no critical region” or “mixed flow is present”, the ACC control is turned on so that the vehicle can run at a constant distance or a constant speed by automatic constant speed running. To.
  • the traveling locus estimation unit 421 estimates the future traveling locus of the host vehicle based on the yaw rate detected by the yaw rate sensor 10 and the acceleration detected by the vehicle speed sensor 11. Specifically, the travel trajectory estimation unit 421 calculates the turning radius of the vehicle from the detected yaw rate and acceleration, and connects the arc of the calculated turning radius to the current traveling direction of the own vehicle. It is possible to estimate the future travel locus of the vehicle.
  • Arbitrary methods can be used for estimating the travel locus, and information from other sensors or the like may be used additionally or alternatively. For example, you may use the steering angle of the steering wheel detected from the sensor using the steering angle sensor.
  • the detection area setting unit 422 sets a detection area having a predetermined width along the center line with the estimated traveling locus as the center line.
  • the preceding vehicle extraction unit 423 extracts a vehicle existing in the detection area among the objects detected by the radar device 12 as a preceding vehicle to be followed (target).
  • determination of a target may be referred to as “lock on”, and release of the determined target may be referred to as “lock off”.
  • the control target value determination unit 424 determines a control target value including a target vehicle speed and a target inter-vehicle distance for causing the host vehicle to follow the extracted target. . Any appropriate method can be used for determining these target values. For example, the current vehicle speed of the host vehicle and the target arrival time to the preceding vehicle (for example, can be selected by a passenger via a switch or the like provided according to a desired size of the inter-vehicle distance) The target vehicle speed of each control cycle can be determined so as to reach the target inter-vehicle distance calculated by multiplication.
  • the control target value determination unit 424 determines the control target value including the target vehicle speed for realizing constant speed traveling.
  • the control target value can also be determined by any appropriate method. For example, the vehicle speed set by the occupant via a predetermined switch or the like can be set as the target vehicle speed.
  • the vehicle control unit 425 drives the acceleration actuator 161 and the deceleration actuator 162 of the vehicle based on the determined control target value.
  • the acceleration actuator 161 include an actuator that controls the opening degree of the throttle valve and an actuator that controls the lift amount of the intake valve.
  • the deceleration actuator 162 there is a brake device that controls the operation of the brake.
  • the vehicle control unit 425 controls the vehicle so as to realize the determined target vehicle speed and target inter-vehicle distance via driving of these actuators.
  • the vehicle control unit 425 receives the control signal including the traffic flow determination result from the traffic flow determination unit 41 and switches the ACC control on or off as described above. Specifically, for example, when the traffic flow determination result is “no critical region” or “mixed flow is present”, the ACC control is turned on and the vehicle follows the target extracted by the preceding vehicle extraction unit 423. Let it run. When the traffic flow determination result is “with critical region”, the ACC control is turned off or “lock on” by the preceding vehicle extraction unit 23 is released (locked off).
  • the notification control unit 43 is based on the traffic flow determination result output from the traffic flow determination unit 41 and the traffic jam generation prediction result or the traffic flow determination result predicted in another vehicle output from the communication control unit 44. In addition, notification control by the speaker 17 is performed. For example, the notification control unit 43 transmits a control signal for causing the display 18 to display “Decelerate and take the distance between the vehicles” or the like and to transmit the sound from the speaker 17 by voice.
  • the notification control unit 43 controls the display 18 and the speaker 17 to notify the driver of the switching.
  • FIG. 9 is a diagram showing a display example of turning on or off the ACC control by the display according to one embodiment of the present invention.
  • Fig.9 (a) is a figure which shows the position of the display part 73 in a vehicle interior.
  • FIG. 9A illustrates a case where the display unit 73 is installed below the room mirror 72 located on the center line C of the passenger compartment and a case where the display unit 73 is installed on the front cover unit 70.
  • the display unit 73 may be incorporated as a part of the display unit 71 of the navigation device 13 or may be disposed on the upper part thereof.
  • the display unit 73 is preferably located near the center of the passenger compartment. This is because the display unit 73 is positioned near the center of the passenger compartment, so that the display unit 73 can be placed in the driver's field of view regardless of whether the driver's line-of-sight direction is right or left. .
  • FIG. 9B is an enlarged view of the display unit 73.
  • the display unit 73 includes two lighting units 731 and 732. Depending on whether the ACC control is on or off, the lighting forms of the lighting units 731 and 732 change. For example, the lighting unit 731 lights or blinks red when the ACC control is on, and the lighting unit 732 lights or blinks green when the ACC control is off. This lighting mode (color, lighting (flashing) time, etc.) can be arbitrarily set.
  • the speaker 17 may notify the ACC control on or off by voice. Accordingly, it is possible to prompt the driver to quickly turn on or off the ACC control according to the traffic flow determination result, and to prompt the driver to shift to driving for avoiding or eliminating traffic congestion.
  • FIG. 10 is a flowchart of traffic jam prediction according to one embodiment of the present invention. The details of each step are as described above.
  • the vehicle speed sensor 11 detects the acceleration of the host vehicle.
  • an inter-vehicle distance from vehicles around the own vehicle is detected based on an output signal from the radar device 12 (blocks 34 to 36 in FIG. 1).
  • step S12 acceleration spectrum single regression maximization is performed. Specifically, the above-described inclination maximum value is calculated (blocks 31 to 33 in FIG. 1).
  • the covariance value is specified. Specifically, the above-described minimum covariance is calculated (blocks 37 and 38 in FIG. 1).
  • step S14 the critical region is modeled. Specifically, a correlation map as illustrated in FIG. 8B is created (block 40 in FIG. 1).
  • step S15 it is determined whether or not a critical region exists. The critical region is the state of the critical region illustrated in FIGS. 7 and 8A described above. If this determination is Yes, the ACC control is switched off in the next step S16. The ACC control is stopped.
  • step S15 determines whether a mixed flow exists. If this determination is Yes, the ACC control is turned on in the next step S18. The ACC control already described is performed. If this determination is No, the process returns to steps S12 and S13 and the subsequent flow is repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 自車両の加速度と、周辺の他車両との車間距離とに基づいて、自車両が走行する車線での交通流の状態を判定する判定手段と、自車両の走行を制御する走行制御手段であって、判定手段による判定結果に応じて、走行制御を切り替えることができる、走行制御手段とを備え、走行制御手段は、判定結果において、交通流の状態が、渋滞が発生する可能性が低い自由流の状態から車両の制動状態と加速状態が混合する混合流の状態へ移行する間に存在する臨界領域の状態であることを示す場合に、走行制御を切り替える、車両の走行支援装置である。

Description

車両の走行支援装置
 本発明は、車両の走行支援装置に関し、より具体的には、自車両の加速度と他の車両との車間距離とから交通流の状態を判定し、その判定結果に応じて車両の走行制御を切り替える機能を備える車両の走行支援装置に関する。
 従来から、渋滞抑制または回避のための走行制御装置が提案されている。例えば、特許文献1には、車両が走行する道路の車両密度を含む交通状態を取得し、道路の車両密度が臨界密度に近づくほど車間距離が短くなりにくくなるように車両の走行制御を行うことにより、交通流が渋滞流となることを抑制又は回避することが記載されている。
特開2009-262862号公報
 しかし、特許文献1を含む従来の方法では、車両密度を用いた渋滞予測の判定精度が必ずしも高いとは言えず、渋滞の回避あるいは解消のためにはさらなる改善の余地がある。
 したがって、本発明の目的は、交通流の判定(推定)精度を適切に向上させて、渋滞の回避あるいは解消のために有効となる走行制御が可能な車両の走行支援装置を提供することである。
 本発明は、自車両の加速度と、周辺の他車両との車間距離とに基づいて、自車両が走行する車線での交通流の状態を判定する判定手段と、自車両の走行を制御する走行制御手段であって、判定手段による判定結果に応じて、走行制御を切り替えることができる、走行制御手段とを備え、走行制御手段は、判定結果において、交通流の状態が、渋滞が発生する可能性が低い自由流の状態から車両の制動状態と加速状態が混合する混合流の状態へ移行する間に存在する臨界領域の状態であることを示す場合に、走行制御を切り替える、車両の走行支援装置である。
 本発明によれば、自車両の加速度と、周辺の他車両との車間距離とに基づいて、交通流の状態が、自由流から混合流への移行する間に存在する臨界領域の状態にあると判定できる場合に、走行制御を切り替えるので、混合流への進行しいては渋滞への進行を未然に防ぐことが可能になる。
 本発明の一形態によると、さらに、自車両に搭載された報知手段を制御する報知制御手段を備え、報知制御手段は、走行制御手段による走行制御の切り替えに応じて報知手段による報知内容を切り替える。
 本発明の一形態によれば、交通流の状態が臨界領域の状態である場合に、運転者に走行制御の切り替えの報知をおこなうことにより、運転者に混合流への進行しいては渋滞への進行を防ぐための走行制御が必要であることを知らしめることができる。
 本発明の一形態によると、走行制御手段は、自動定速走行機能を備え、走行制御の切り替えは自動定速走行機能をオンまたはオフすることを含む。
 本発明の一形態によれば、交通流の状態が臨界領域の状態である場合に、自動定速走行機能のオンまたはオフすることにより、渋滞への進行を未然に防ぐためにより適した走行制御をおこなうことが可能となる。
 本発明の一形態によると、判定手段は、自車両の加速度から得られるパワースペクトルの単回帰直線から算出した傾き極大値の対数と、車間距離の分布から算出した共分散の最小値の対数との相関マップから交通流の状態を判定する。
 本発明の一形態によれば、共分散値の最小値の対数と傾き極大値の対数との相関マップを得ることにより、車群分布における臨界領域の有無の判定をより精度良くおこなうことが可能になる。
本発明の一実施例に従う、車両の走行支援装置の構成を示す図である。 本発明の一実施例に従う、加速度スペクトルを示す図である。 本発明の一実施例に従う、確率密度分布を示す図である。 本発明の一実施例に従う、共分散値Σを模式的に表わした図である。 本発明の一実施例に従う、傾き極大値と共分散最小値との相関マップのイメージ(概念)図である。 交通密度と交通量の関係を示す図である。 本発明の一実施例に従う、車間距離分布についての共分散最小値の対数と加速度スペクトルについての傾き極大値の対数との相関マップである。 本発明の一実施例に従う、走行制御手段(機能)の構成を示す図である。 本発明の一実施例に従う、表示器による表示例を示す図である。 本発明の一実施例に従う、車両の走行制御のフローチャートである。
 図面を参照しながら本発明の実施の形態を説明する。図1は、本発明の一実施形態に従う、車両の走行支援装置100の構成を示すブロック図である。走行支援装置100は車両に搭載される。走行支援装置100は、1つの装置としてあるいは他の装置の一部として車両に搭載することができる。
 走行支援装置100は、ヨーレートセンサ10、車速センサ11、レーダ装置12、ナビゲーション装置13、処理装置14、スイッチ15、各種アクチュエータ16、スピーカー17、表示器18、および通信装置19を備える形で構成される。なお、処理装置14は、ナビゲーション装置13の中に組み込んでもよい。また、スピーカー17および表示器18は、ナビゲーション装置13が備える該当機能を利用してもよい。
 ヨーレートセンサ10は、自車両のヨーレートを検出し、その検出信号を処理装置14へ送る。車速センサ11は、自車両の加速度を検出し、その検出信号を処理装置14へ送る。レーダ装置12は、自車両の周辺に設定される所定の検出対象領域を複数の角度領域に分割し、各角度領域を走査(スキャン)しながら赤外光レーザやミリ波等の電磁波を発信する。レーダ装置12は、検出対象領域における物体からの反射信号(電磁波)を受信し、その反射信号を処理装置14へ送る。
 ナビゲーション装置13は、GPS信号等の測位信号を受信して、その測位信号から自車両の現在位置を算出する。また、ナビゲーション装置13は、車速センサ11およびヨーレートセンサ(図示なし)等が検出した加速度およびヨーレートから自律航法を用いて自車両の現在位置を算出することもできる。ナビゲーション装置13は、地図データを備え、表示する地図上に自車両の現在位置、目的地までの経路情報や渋滞情報等を出力する機能を有する。
 処理装置14は、周波数分析部31、単回帰直線算出部32、傾き極大値算出部33、反射点検出部34、他車両検出部35、車間距離検出部36、車間距離分布推定部37、共分散最小値算出部38、相関マップ作成部40、交通流判定部41、走行制御部42、報知制御部43、および通信制御部44を備える。各ブロックの機能は、処理装置14が有するコンピュータ(CPU)によって実現される。各ブロックの機能の詳細は後述する。
 処理装置14は、ハードウエア構成として、例えば、入力アナログ信号をデジタル信号に変換するA/D変換回路、各種演算処理を行う中央演算処理装置(CPU)、CPUが演算に際してデータを記憶するのに使用するRAM、CPUが実行するプログラムおよび用いるデータ(テーブル、マップを含む)を記憶するROM、スピーカー17に対する駆動信号および表示器18に対する表示信号などを出力する出力回路を備えている。
 スイッチ15は、自車両の走行制御に係る各種信号を処理装置14へ出力する。各種信号には、例えばアクセルペダルやブレーキペダルの操作(位置)信号、自動定速走行制御(ACC)に係る各種信号(制御開始、制御停止、目標車速、車間距離等)などを含むことができる。
 各種アクチュエータ16は、複数のアクチュエータの総称として用いており、例えば、加速アクチュエータ(スロットルアクチュエータ等)、減速アクチュエータ(ブレーキアクチュエータ等)、ステアリングアクチュエータ等が含まれる。
 表示器18は、LCD等のディスプレイを含み、タッチパネル機能を有するディスプレイとすることができる。表示装置16は、音声出力部および音声入力部を備える構成でもよい。表示器18は、報知制御部43からの制御信号に応じて、所定の警報情報を表示したり、所定の警告灯を点滅ないし点灯させることによって、運転者に報知する。スピーカー17は、報知制御部43からの制御信号に応じて所定の警報音や音声を出力することによって、運転者に報知する。
 通信装置19は、通信制御部44による制御下で、無線通信によって他車両あるいはサーバ装置(図示なし)や中継局(図示なし)と通信を行い、渋滞予測部41から出力される渋滞予測結果と位置情報を対応付けて送信したり、他車両等から渋滞予測結果と位置情報との対応情報を受信する。取得された情報は、通信制御部44を介して報知制御部43あるいは走行制御部42に送られる。
 次に処理装置14の各ブロックの機能について説明する。周波数分析部31は、車速センサ11が検出した自車両の加速度について周波数分析を行い、パワースペクトルを算出する。図2に2つの異なる走行状態(a)、(b)におけるパワースペクトルの例を示す。図2では、パワースペクトルとして周波数に対応した加速度スペクトル51、53が例示されている。
 単回帰直線算出部32は、得られたパワースペクトルに対して単回帰分析をおこない単回帰直線を算出する。図2の例では、符号52、54で指示される直線がそれぞれ加速度スペクトル51、53に対して得られる単回帰直線である。
 傾き極大値算出部33は、得られた単回帰直線から傾き極大値を算出する。図2の例では、最初に単回帰直線52、54の傾きを算出する。すなわち、図2において、所定の周波数範囲Y(例えば、数秒から数分の時間範囲に対応する周波数範囲、0~0.5Hz等)でのスペクトル値の変化Xに基づき傾きα(=Y/X)を算出する。図2では(a)と(b)での傾きα1、α2が得られる。
 次に、得られた傾きαの差分、すなわち所定の時間間隔での傾きαとαk-1との差分Δα(=α―αk-1)を算出する。得られた差分Δαの時間変化、あるいは差分Δαから得られるパラメータ(例えば、2乗値(Δα)、絶対値|Δα|等)の時間変化の極大値を求める。得られた極大値を傾き極大値として処理装置14内のメモリ(RAM等)に格納する。
 反射点検出部34は、レーダ装置12が検出した反射信号から反射点(物体)の位置を検出する。他車両検出部35は、反射点検出部34から出力される反射点の位置情報に基づき、隣り合う反射点間の距離、反射点の分布状態等から自車両の周辺に存在する少なくとも1台以上の他車両を検出する。車間距離検出部36は、反射点検出部34が検出した他車両情報から自車両と他車両との間の車間距離を検出し、その結果を他車両の検出台数と共に出力する。
 車間距離分布推定部37は、車間距離検出部36から出力される車間距離と車両台数の情報から車間距離分布を推定する。図3と図4を参照しながら車間距離分布推定について説明する。図3は確率密度分布を示す図である。
 車間距離と車両台数の情報から前方での車群、すなわち車間距離が比較的緻密な車の集合が観測できる場合、変分ベイズなどの分布推定法を用いて各車群に対してガウス分布(確率密度分布)を適用する。例えば2つの車群があるとした場合は、車群を2つのガウス分布を線形結合した分布として捉えることができる。
すなわち、図3に示すように、この2つのガウス分布を表わす確率関数P1(X)、P2(X)の和(重ね合わせ)として全体の分布を表す確率関数P(X)を得ることができる。
 ガウス分布(確率関数)をN(X|μ、Σ)で表すと、図3に例示されるような複数のガウス分布の重ね合わせは、次式で得ることができる。
Figure JPOXMLDOC01-appb-M000001
ここで、μは期待値(平均値)であって密度が最も高い位置を表す。Σは共分散値(行列)であって、分布のゆがみ、すなわち期待値からどの方向に離れると密度がどのように減るかを表す。πはガウス分布の混合係数(混合比)であって、各ガウス分布がどれだけ寄与しているかの割合(0≦π≦1)を表す。混合係数πは1つの確率として捉えることができる。
 共分散最小値算出部38は、得られたガウス分布P(X)について、例えば最尤法を用いて、対応する共分散値Σを算出する。その際、例えば上記したP(X)から得られる尤度関数が最大となるパラメータ(共分散)を求めるためにEMアルゴリズム等を用いて計算をおこなう。ガウス分布P(X)が図4で例示されるような複数のガウス分布の重ね合わせとして得られる場合は、個々のガウス分布に対して共分散値Σを算出する。
 共分散最小値算出部38は、各ガウス分布P(X)に対して得られた共分散値Σの最小値を算出する。図4は共分散値Σを模式的に表わした図である。図4(a)では、共分散値Σを表わすグラフ56がデルタ(δ)0においてシャープなグラフとなっており、車群の変動が無い、すなわち車間距離がほぼ一定の走行状態にあることを示唆している。一方、図4(b)では、デルタ(δ)が負の領域のδ1でピークを持つグラフ57と正の領域のδ2でピークを持つグラフ58の2つのグラフが得られている。グラフ57、58ともに所定の変動幅(δ)を有しており、車群の変動が有る、言い換えれば車間距離が異なる車の集合が複数存在することを示唆している。図4において、共分散値Σの最小値は(a)ではほぼゼロ(0)、(b)では小さいほうのδ1となる。
 図1の相関マップ作成部40は、傾き極大値算出部33により算出された傾き極大値と、共分散最小値算出部38によって算出された共分散最小値との相関マップを作成する。図6は、傾き極大値と共分散最小値との相関マップのイメージ(概念)図である。図6では、横(X)軸を共分散最小値Xとし、縦(Y)軸を傾き極大値Yとして、変数(X、Y)の相関をマッピングしている。符号59と60で指示される2つの領域が示されており、この2つの領域が重なっている境界領域61が存在している。領域59は比較的共分散最小値が小さく、車群の変動が小さい状態、言い換えれば車間距離が比較的一定しているような状態に相当する。逆に領域60は比較的共分散最小値が大きく、車群の変動が大きい状態、言い換えれば車間距離が異なる車の集合が複数存在する状態に相当する。境界領域61は、車群の変動が小さい状態から大きい状態へ遷移する領域であり、本発明はこの境界領域61に相当する車群の状態を定量的に見出して、渋滞予測をおこなうところに特徴がある。
 ここで図6を参照しながら、図5に例示した各領域についてさらに説明する。図6は、交通密度と交通量の関係を示す図である。グラフの横(X)軸は、自車両から所定距離内に存在する車両の台数を意味する交通密度である。この交通密度の逆数が車間距離に相当する。縦(Y)軸は、所定位置を通過する車両数を意味する交通量である。図6は、いわば車両の流れを意味する交通流を表わしていると捉える事ができる。
 図6で例示される交通流は、大きく4つの状態(領域)に区分けできる。1つめは、渋滞が発生する可能性が低い自由流の状態であって、ここでは一定以上の車速度および車間距離が確保可能である。2つめは車両の制動状態と加速状態が混合する混合流の状態である。この混合流の状態は、渋滞流に移行する前の状態であって、運転者による運転の自由度が低下して、交通流の低下と交通密度の増大(車間距離の縮小)によって渋滞流へと移行する確率が高い状態である。3つめは渋滞を示す渋滞流の状態である。4つめは自由流の状態から混合流の状態へ移行する間に存在する遷移状態である臨界領域の状態である。この状態は、自由流に比べて交通量および交通密度が高い状態であって、交通量の低下と交通密度の増大(車間距離の縮小)によって混合流へと移行する状態である。なお、臨界領域は、準安定流、メタ安定流と呼ばれることもある。
 図5と図6との関係から、図5の領域59は図6の自由流および臨界領域の状態を含むことになり、図5の領域60は図6の混合流および渋滞流の状態を含むことになる。したがって、図5の境界領域は図6の臨界領域の状態と混合流の状態との双方を含む境界状態であり、ここでは図6に示すように臨界領域の境界と呼ぶ。本発明ではこの臨界領域の境界を含む臨界領域の状態を定量的に把握して、車線変更等の走行制御をおこなって渋滞の発生を防ぐあるいは渋滞を回避することが狙いである。
 図7を参照しながら臨界領域の状態の定量化について説明する。図7は、車間距離分布についての共分散最小値の対数と加速度スペクトルについての傾き極大値の対数との相関マップを示す図である。図7(a)は図6の交通流マップを簡略化して描いた図であり、(b)は共分散最小値の対数と傾き極大値の対数との相関マップを示す。(b)の共分散最小値の対数と傾き極大値の対数は、傾き極大値算出部33により算出された傾き極大値と、共分散最小値算出部38によって算出された共分散最小値との対数値として算出される。
 図7(b)において、符号62で指示される領域は(a)の臨界領域を含み、符号63で指示される領域は(a)の混合流の状態を含む。符号64で指示される線は臨界線であり、これを越えて混合流の状態へ移行すると渋滞に至ってしまう臨界点を意味する。領域62、63の境界領域65は臨界64直前の臨界領域の境界に相当する。図7(b)に例示される相関マップは処理装置14内のメモリ(RAM等)に格納される。
 図1の交通流判定部41は、相関マップ作成部40によって作成された相関マップにおいて、交通流の種類を判定し、より具体的には交通流として臨界領域の状態が存在するか否かを判定する。そして、渋滞への移行を阻止すべく、走行制御部42、報知制御部43、および通信制御部44にその判定結果を含む制御信号を送る。これにより、後述する各種制御を実行して、図7に例示される混合流への移行を未然に阻止することが可能となり、その結果渋滞回避のみならず渋滞解消に役立つ渋滞予測が可能となる。
 また、交通流判定部41は、渋滞予測結果をナビゲーション装置13に出力する。ナビゲーション装置13は、交通流判定部41から受信した交通流の判定結果と、通信制御部41から出力される他車両において予測された交通流の判定結果あるいは渋滞予測結果とに基づき、渋滞を回避するように自車両の経路探索や経路誘導を行うことができる。
 走行制御部42は、交通流判定部41から出力される交通流判定結果と通信制御部44から出力される他車両等からの渋滞関連情報と、スイッチ15から出力される各種信号と、車速センサ11から出力される自車両の加速度の検出結果と、車間距離検出部36から出力される車間距離の検出結果とに基づき、各種アクチュエータを制御することにより、自車両の走行を制御する。
 図8は、本発明の一実施形態に従う、走行制御部42の構成を示すブロック図である。走行制御部42は、基本構成として、車両の前方に先行車が検知されたときには、予め設定した目標車間距離を維持して該先行車に追従走行し、先行車が検知されないときには、予め設定された目標車速で定速走行する自動定速走行(ACC:アダプティブ・クルーズ・コントロール)システムを実現するよう構成されている。
 また、走行制御部42は、交通流判定部41から出力される交通流判定結果に応じて、ACC制御をオンまたはオフするように構成される。例えば、交通流判定結果が「臨界領域あり」の場合はACC制御をオフして、運転者の手動操作により車間距離が長くかつ制動回数が少なくなるような運転が行われるようにする。交通流判定結果が「臨界領域なし」あるいは「混合流の状態あり」の場合はACC制御をオンして、自動定速走行により所定の車間距離が維持可能な走行あるいは定速走行が行われるようにする。
 走行軌跡推定部421は、ヨーレートセンサ10によって検出されたヨーレートと、車速センサ11によって検出された加速度とに基づいて、自車両の将来の走行軌跡を推定する。具体的には、走行軌跡推定部421は、検出されたヨーレートおよび加速度から、車両の旋回半径を算出し、自車両の現在の進行方向に、算出した旋回半径の円弧を連ねることにより、自車両の将来の走行軌跡を推定することができる。
 走行軌跡の推定には任意の手法を用いることができ、付加的に、または代替的に、他のセンサ等からの情報を用いてもよい。例えば、舵角センサを用いて、センサから検出されたステアリングホイールの舵角を用いてもよい。
 検知エリア設定部422は、推定された走行軌跡を中心線として、中心線に沿う所定幅の検知エリアを設定する。
 先行車抽出部423は、レーダ装置12によって検知された物体のうち、検知エリア内に存在する車両を、追従対象(ターゲット)となる先行車として抽出する。なお、以下の説明において、ターゲットの決定を「ロックオン」と呼び、決定されたターゲットの解除を「ロックオフ」と呼ぶことがある。
 制御目標値決定部424は、先行車抽出部423によってターゲットが抽出された場合には、抽出されたターゲットに自車両を追従走行させるための目標車速および目標車間距離を含む制御目標値を決定する。これらの目標値の決定手法には、任意の適切な手法を用いることができる。例えば、自車両の現在の車速と、先行車への目標到達時間(例えば、乗員により、車間距離の所望の大きさに応じて設けられたスイッチ等を介して選択されることができる)とを乗算することにより算出した目標車間距離に到達するように、各制御サイクルの目標車速を決定することができる。
 他方、制御目標値決定部424は、先行車抽出部423によってターゲットが抽出されない場合には、定速走行を実現するための目標車速を含む制御目標値を決定する。制御目標値についても、任意の適切な手法で決定されることができ、例えば、所定のスイッチ等を介して乗員により設定された車速を目標車速とすることができる。
 車両制御部425は、決定された制御目標値に基づいて、車両の加速アクチュエータ161および減速アクチュエータ162を駆動する。加速アクチュエータ161として、例えば、スロットルバルブの開度を制御するアクチュエータや、吸気バルブのリフト量を制御するアクチュエータがある。また、減速アクチュエータ162として、ブレーキの作動を制御するブレーキ装置がある。車両制御部425は、これらのアクチュエータの駆動を介して、決定された目標車速および目標車間距離を実現するように車両を制御する。
 車両制御部425は、その制御の際に、既に上述したように、交通流判定部41からの交通流判定結果を含む制御信号を受けて、ACC制御をオンまたはオフに切り替える。具体的には、例えば、交通流判定結果が「臨界領域なし」あるいは「混合流の状態あり」の場合はACC制御をオンして、先行車抽出部423によって抽出されたターゲットに自車両を追従走行させる。交通流判定結果が「臨界領域あり」の場合はACC制御をオフに、あるいは先行車抽出部23による「ロックオン」を解除(ロックオフ)する。
 報知制御部43は、交通流判定部41から出力される交通流判定結果と通信制御部44から出力される他車両において予測された渋滞発生予測結果あるいは交通流判定結果とに基づき、表示器18およびスピーカー17による報知制御をおこなう。報知制御部43は、例えば、「減速して車間距離を取ること」等を表示器18に表示させたり、スピーカー17から音声で伝えたりするための制御信号を送る。
 報知制御部43は、また走行制御部42においてACC制御をオンまたはオフに切り替えた場合に、その切り替えを運転者に報知させるべく表示器18およびスピーカー17の報知制御をおこなう。
 図9は、本発明の一実施例に従う、表示器によるACC制御をオンまたはオフの表示例を示す図である。図9(a)は、車室内での表示部73の位置を示す図である。図9(a)では、表示部73を、車室の中心線C上に位置するルームミラー72の下部に設置する場合と、フロントカバー部70の上に設置する場合を例示している。表示部73は、ナビゲーション装置13の表示部71の一部として組み込むあるいはその上部等に配置してもよい。なお、表示部73は、車室の中心付近に位置することが望ましい。その理由は、表示部73が車室の中心付近に位置することにより、運転者の視線方向が左右いずれに向かっていても、表示部73を運転者の視野内に入れることができるからである。
 図9(b)は、表示部73の拡大図である。表示部73は2つの点灯部731、732を有する。ACC制御のオンまたはオフに応じて、点灯部731、732の点灯形態が変化する。例えば、ACC制御オンで点灯部731が赤色に点灯あるいは点滅し、ACC制御オフで点灯部732が緑色に点灯あるいは点滅する、といった表示をおこなう。この点灯形態(色、点灯(点滅)時間等)は任意に設定することができる。同時に、スピーカー17からACC制御のオンまたはオフを音声によって報知してもよい。これにより、運転者に交通流判定結果に応じたACC制御のオンまたはオフを素早く知らしめることができ、運転者による渋滞回避あるいは解消のための運転への移行を促すことができる。
 図10は、本発明の一実施例に従う、渋滞予測のフローチャートである。なお、各ステップの詳細は既に説明した通りである。ステップS10において、車速センサ11によって自車両の加速度を検出する。並行して、ステップS11において、レーダ装置12からの出力信号に基づき自車両の周辺の車両との車間距離を検出する(図1のブロック34~36)。ステップS12において、加速度スペクトル単回帰極大化をおこなう。具体的には、上述した傾き極大値を算出する(図1のブロック31~33)。並行して、ステップS13において、共分散値特異化をおこなう。具体的には、上述した共分散最小値を算出する(図1のブロック37、38)。
 ステップS14において、臨界領域のモデリングをおこなう。具体的には、上述した図8(b)で例示されるような相関マップを作成する(図1のブロック40)。ステップS15において、臨界領域が存在するか否かを判定する。臨界領域とは、上述した図7、図8(a)に例示される臨界領域の状態である。この判定がYesの場合、次のステップS16においてACC制御をオフに切り替える。ACC制御は停止される。
 ステップS15の判定がNoの場合、ステップS17において混合流が存在するか否かを判定する。この判定がYesの場合、次のステップS18においてACC制御をオンに切り替える。既に述べたACC制御が行われる。この判定がNoの場合はステップS12、S13に戻り以降のフローを繰り返す。
 以上、本発明の実施の形態について説明したが、本発明はこのような実施形態に限定されることはなく、本発明の趣旨を逸脱しない範囲において改変して用いることができる。
14 処理装置
51、53 加速度(パワー)スペクトル
52、54 単回帰直線
100 走行支援装置

Claims (4)

  1.  自車両の加速度と、周辺の他車両との車間距離とに基づいて、自車両が走行する車線での交通流の状態を判定する判定手段と、
     自車両の走行を制御する走行制御手段であって、前記判定手段による判定結果に応じて、走行制御を切り替えることができる、走行制御手段とを備え、
     前記走行制御手段は、前記判定結果において、交通流の状態が、渋滞が発生する可能性が低い自由流の状態から車両の制動状態と加速状態が混合する混合流の状態へ移行する間に存在する臨界領域の状態であることを示す場合に、走行制御を切り替える、車両の走行支援装置。
  2.  さらに、自車両に搭載された報知手段を制御する報知制御手段を備え、当該報知制御手段は、前記走行制御手段による前記走行制御の切り替えに応じて前記報知手段による報知内容を切り替える、請求項1に記載の車両の走行支援装置。
  3.  前記走行制御手段は、自動定速走行機能を備え、前記走行制御の切り替えは当該自動定速走行機能をオンまたはオフすることを含む、請求項1または2に記載の車両の走行支援装置。
  4.  前記判定手段は、前記自車両の加速度から得られるパワースペクトルの単回帰直線から算出した傾き極大値の対数と、前記車間距離の分布から算出した共分散の最小値の対数との相関マップから前記交通流の状態を判定する、請求項1~3のいずれかに記載の車両の走行支援装置。
PCT/JP2011/006878 2010-12-15 2011-12-09 車両の走行支援装置 WO2012081208A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112013014736A BR112013014736A2 (pt) 2010-12-15 2011-12-09 aparelho de auxílio de condução para um veículo
CN201180058985.8A CN103249627B (zh) 2010-12-15 2011-12-09 车辆的行驶辅助装置
JP2012548636A JP5511984B2 (ja) 2010-12-15 2011-12-09 車両の走行支援装置
US13/993,607 US9031761B2 (en) 2010-12-15 2011-12-09 Driving assist apparatus for a vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-278752 2010-12-15
JP2010278752 2010-12-15

Publications (1)

Publication Number Publication Date
WO2012081208A1 true WO2012081208A1 (ja) 2012-06-21

Family

ID=46244327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006878 WO2012081208A1 (ja) 2010-12-15 2011-12-09 車両の走行支援装置

Country Status (5)

Country Link
US (1) US9031761B2 (ja)
JP (1) JP5511984B2 (ja)
CN (1) CN103249627B (ja)
BR (1) BR112013014736A2 (ja)
WO (1) WO2012081208A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128612A (ja) * 2010-12-15 2012-07-05 Honda Motor Co Ltd 運転支援方法
CN108327723A (zh) * 2017-01-18 2018-07-27 福特全球技术公司 通过无监督学习的对象跟踪
US10540891B2 (en) 2015-08-27 2020-01-21 Nec Corporation Traffic-congestion prevention system, traffic-congestion prevention method, and recording medium
WO2021149846A1 (ko) * 2020-01-22 2021-07-29 엘지전자 주식회사 경로 제공 장치 및 그것의 경로 제공 방법

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667944B2 (ja) * 2011-08-11 2015-02-12 本田技研工業株式会社 サーバ側渋滞解消走行支援方法
US9862382B2 (en) * 2014-08-11 2018-01-09 Nissan Motor Co., Ltd. Travel control device and method for vehicle
CN104494597A (zh) * 2014-12-10 2015-04-08 浙江吉利汽车研究院有限公司 自适应巡航控制系统
JP6202537B2 (ja) * 2015-04-14 2017-09-27 本田技研工業株式会社 走行支援方法、プログラム、および走行支援装置
US10093304B2 (en) * 2015-09-11 2018-10-09 Ford Global Technologies, Llc Enhanced electric drive mode having predicted destinations to reduce engine starts
JP6365481B2 (ja) * 2015-09-23 2018-08-01 トヨタ自動車株式会社 車両走行制御装置
US10532736B2 (en) * 2015-11-06 2020-01-14 Honda Motor Co., Ltd. Vehicle travel control device
US10037696B2 (en) * 2016-03-31 2018-07-31 Delphi Technologies, Inc. Cooperative automated vehicle system
US9701307B1 (en) 2016-04-11 2017-07-11 David E. Newman Systems and methods for hazard mitigation
US10062288B2 (en) * 2016-07-29 2018-08-28 GM Global Technology Operations LLC Systems and methods for autonomous driving merging management
US10163339B2 (en) * 2016-12-13 2018-12-25 Sap Se Monitoring traffic congestion
US10908607B2 (en) * 2017-11-30 2021-02-02 Ford Global Technologies, Llc Enhanced traffic jam assist
CN108510776A (zh) * 2018-05-24 2018-09-07 深圳市华慧品牌管理有限公司 基于行车记录仪的道路堵塞预测方法及装置
US10745007B2 (en) * 2018-06-08 2020-08-18 Denso International America, Inc. Collision avoidance systems and methods
US10820349B2 (en) 2018-12-20 2020-10-27 Autonomous Roadway Intelligence, Llc Wireless message collision avoidance with high throughput
US10816635B1 (en) 2018-12-20 2020-10-27 Autonomous Roadway Intelligence, Llc Autonomous vehicle localization system
JP6859374B2 (ja) * 2019-01-11 2021-04-14 本田技研工業株式会社 予測装置、予測方法、およびプログラム
JP7268464B2 (ja) * 2019-04-23 2023-05-08 株式会社デンソー 車両制御装置
US10820182B1 (en) 2019-06-13 2020-10-27 David E. Newman Wireless protocols for emergency message transmission
US10939471B2 (en) 2019-06-13 2021-03-02 David E. Newman Managed transmission of wireless DAT messages
US10713950B1 (en) 2019-06-13 2020-07-14 Autonomous Roadway Intelligence, Llc Rapid wireless communication for vehicle collision mitigation
KR20190103093A (ko) * 2019-08-16 2019-09-04 엘지전자 주식회사 자율주행 차량의 차선 변경 장치 및 방법
EP3790295B1 (en) * 2019-09-09 2024-05-29 Volkswagen AG Method, computer program, and apparatus for determining a minimum inter-vehicular distance for a platoon, vehicle, traffic control entity
US11206092B1 (en) 2020-11-13 2021-12-21 Ultralogic 5G, Llc Artificial intelligence for predicting 5G network performance
US11202198B1 (en) 2020-12-04 2021-12-14 Ultralogic 5G, Llc Managed database of recipient addresses for fast 5G message delivery
CN113401123B (zh) * 2021-05-24 2022-04-01 吉林大学 融合驾驶模式信息的汽车预测巡航参数自整定控制系统
CN113920727B (zh) * 2021-10-08 2023-11-07 温州大学 一种由施工引发道路拥堵的预测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233191A (ja) * 2003-01-30 2004-08-19 Mazda Motor Corp 車両用ナビゲーション・システム、車両用ナビゲーションのためのコンピュータ・プログラム、及び車両用ナビゲーション装置
JP2007219743A (ja) * 2006-02-15 2007-08-30 Denso Corp 自動車用走行制御システム
JP2009262862A (ja) * 2008-04-28 2009-11-12 Toyota Motor Corp 走行制御装置及び走行制御方法
JP2010036862A (ja) * 2008-08-08 2010-02-18 Toyota Motor Corp 走行制御装置及び走行制御システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10218017A1 (de) * 2002-04-23 2003-11-06 Bosch Gmbh Robert Verfahren zur Geschwindigkeits- und Abstandsregelung bei Kraftfahrzeugen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233191A (ja) * 2003-01-30 2004-08-19 Mazda Motor Corp 車両用ナビゲーション・システム、車両用ナビゲーションのためのコンピュータ・プログラム、及び車両用ナビゲーション装置
JP2007219743A (ja) * 2006-02-15 2007-08-30 Denso Corp 自動車用走行制御システム
JP2009262862A (ja) * 2008-04-28 2009-11-12 Toyota Motor Corp 走行制御装置及び走行制御方法
JP2010036862A (ja) * 2008-08-08 2010-02-18 Toyota Motor Corp 走行制御装置及び走行制御システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128612A (ja) * 2010-12-15 2012-07-05 Honda Motor Co Ltd 運転支援方法
US10540891B2 (en) 2015-08-27 2020-01-21 Nec Corporation Traffic-congestion prevention system, traffic-congestion prevention method, and recording medium
CN108327723A (zh) * 2017-01-18 2018-07-27 福特全球技术公司 通过无监督学习的对象跟踪
WO2021149846A1 (ko) * 2020-01-22 2021-07-29 엘지전자 주식회사 경로 제공 장치 및 그것의 경로 제공 방법

Also Published As

Publication number Publication date
BR112013014736A2 (pt) 2016-10-04
US20130268174A1 (en) 2013-10-10
JP5511984B2 (ja) 2014-06-04
CN103249627B (zh) 2016-02-24
US9031761B2 (en) 2015-05-12
JPWO2012081208A1 (ja) 2014-05-22
CN103249627A (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5511984B2 (ja) 車両の走行支援装置
JP5555778B2 (ja) 渋滞予測方法
US10737667B2 (en) System and method for vehicle control in tailgating situations
US10625742B2 (en) System and method for vehicle control in tailgating situations
US11731632B2 (en) Vehicle travel control method and travel control device
JP6614777B2 (ja) 予測的レーン変更支援のための方法及びシステム、プログラムソフトウェア製品、並びに乗り物
JP6318864B2 (ja) 運転支援装置
JP5501209B2 (ja) 車両の走行支援装置
CN112638749A (zh) 车辆的行驶控制方法及行驶控制装置
WO2012002098A1 (ja) 渋滞予測表示方法
JP5570961B2 (ja) 渋滞予兆表示方法
JP6711329B2 (ja) 走行支援装置
JPWO2012002097A1 (ja) 渋滞予測方法
US20200298885A1 (en) Vehicle control apparatus, vehicle control method, vehicle, and storage medium
JP2006290149A (ja) 車両用走行制御装置
JP5909144B2 (ja) 車群解消システム
JP2012117938A (ja) 車両用情報処理装置
JP2019108020A (ja) 自動運転車両に搭載される制御装置および方法
JP5501208B2 (ja) 運転支援方法
JP7447870B2 (ja) 情報処理サーバ、情報処理サーバの処理方法、プログラム
JP5450365B2 (ja) 走行支援システム
JP2008150001A (ja) 追従走行装置
JP6728673B2 (ja) 信号通過支援装置
JP4483527B2 (ja) 走行支援装置
JP2013104815A (ja) ナビゲーション装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180058985.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548636

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13993607

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848820

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013014736

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013014736

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130612