WO2012077801A1 - ボトリオコッカス・ブラウニー(Botryococcus braunii)属の新規株 - Google Patents

ボトリオコッカス・ブラウニー(Botryococcus braunii)属の新規株 Download PDF

Info

Publication number
WO2012077801A1
WO2012077801A1 PCT/JP2011/078606 JP2011078606W WO2012077801A1 WO 2012077801 A1 WO2012077801 A1 WO 2012077801A1 JP 2011078606 W JP2011078606 W JP 2011078606W WO 2012077801 A1 WO2012077801 A1 WO 2012077801A1
Authority
WO
WIPO (PCT)
Prior art keywords
botryococcus
strain
hydrocarbons
hydrocarbon
brownie
Prior art date
Application number
PCT/JP2011/078606
Other languages
English (en)
French (fr)
Inventor
信 渡邉
邦光 彼谷
孝子 田野井
正伸 河地
諒 志甫
Original Assignee
国立大学法人筑波大学
株式会社新産業創造研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人筑波大学, 株式会社新産業創造研究所 filed Critical 国立大学法人筑波大学
Priority to JP2012547930A priority Critical patent/JP5534267B2/ja
Priority to EP11846393.4A priority patent/EP2660312B1/en
Priority to US13/992,590 priority patent/US9284577B2/en
Publication of WO2012077801A1 publication Critical patent/WO2012077801A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a novel strain belonging to Botryococcus brownie that can grow under a wide range of culture conditions, has a high content of produced hydrocarbons, and has a high purity of the target hydrocarbon.
  • Algae are listed as photosynthetic organisms that are attracting attention as energy resources, among which green algae and diatoms are attracting attention. Ordinary green algae are composed of 15-17% of lipids, and this lipid is largely free of neutral lipids (30%), glycolipids (37%), phospholipids (26%) and fatty acids. Divided into lipids (7%).
  • Botryococcus braunii has recently attracted attention as an oil-producing green algae.
  • the main component of the lipid produced by Botryococcus brownie is a hydrocarbon composed of carbon and hydrogen, and is known to accumulate hydrocarbons such as linear alkenes and triterpenes inside and outside the cell.
  • Botryococcus brownies are classified into three categories: Race-A, Race-B, and Race-L.
  • Race-A is a group that produces hydrocarbons having an odd number of carbon atoms of 25 to 31 and having a straight chain and having 2 or 3 double bonds in the molecule.
  • Race-L produces a hydrocarbon having a tetraterpene lycopadiene (C 40 H 78 ) structure.
  • Race-A varies depending on the strain and is reported to be in the range of 0.4 to 61.0% (weight of hydrocarbon relative to dry alga body weight) (Non-patent Document 1). Race-B often produces 30-40% hydrocarbons by weight, but strains producing only about 9% have also been reported (Non-patent Document 2). Race-L is reported to be 0.1% for Indian stocks and 8.0% for Thai stocks (Non-Patent Document 3), which is known to be less than Race-B.
  • the composition of these hydrocarbons is a mixture of those having various carbon chain lengths and / or structures.
  • hydrocarbons can be used for production of thermal energy as solid fuel or heavy oil without any treatment, but when they are further processed and used, the hydrocarbons that are used as raw materials to obtain uniform compounds Is preferably a uniform composition.
  • a strain having a simple hydrocarbon synthesis route has been required as a physiological research model for the application and use of Botryococcus.
  • the establishment of a low-cost mass culture method can be raised, but in order to reduce the cost, it is necessary to carry out the culture outdoors using sunlight.
  • the most efficient method is to perform culture using a low water level pool or a thin bioreactor at a time or place where the amount of solar radiation is high. .
  • the water temperature rises, so that the optimum temperature for growth is 15 ° C. to 30 ° C., and the existing Botryococcus that stops the growth above 35 ° C. has the highest solar radiation amount. Proliferation stops at many times.
  • the present invention has been made in view of the above demands, and an object of the present invention is to provide a new strain of Botryococcus brownie that has high purity of produced hydrocarbons and can grow under a wide range of culture conditions.
  • the present inventors collected Botryococcus brownie from nature, found a strain that solves the above problems from among a genus having a large number of systematically different subgroups, isolated this, and completed the present invention I came to let you.
  • the present invention provides a strain belonging to Botryococcus brownie lace-B that produces 60% by mass or more of hydrocarbons having the molecular formula C 34 H 58 with respect to all the hydrocarbons produced.
  • the present invention provides a strain belonging to Botryococcus brownie lace-B according to (1), wherein the optimum culture temperature is 30 ° C. or higher.
  • the present invention provides Botryococcus brownie tsukuba-1 stock (reception number: FERM ABP-11441, trustee: National Institute of Advanced Industrial Science and Technology (AIST)).
  • the present invention provides a compound of formula (I) A strain belonging to Botryococcus brownie lace-B according to any one of (1) to (3), which produces a hydrocarbon having the molecular formula C 34 H 58 having the structure:
  • the present invention provides a method for producing hydrocarbons from the strain belonging to Botryococcus brownie lace-B described in any one of (1) to (4).
  • the new strain of Botryococcus brownie lace-B of the present invention can produce high-purity hydrocarbons and can grow under a wide range of culture conditions.
  • the Botryococcus brownie lace-B strain of the present invention can be directly used in ships and agricultural vehicles as oil equivalent to heavy oil in order to produce hydrocarbons having 34 carbon atoms with high purity. Furthermore, it can be converted directly to light oil, naphtha, kerosene, and gasoline by an existing catalyst cracking system.
  • the Botryococcus brownie lace-B strain of the present invention can be cultured at a culture temperature of about 10 ° C. to 45 ° C., preferably about 15 ° C. to 40 ° C., and particularly at about 39 ° C. .
  • the Botryococcus brownie lace-B strain of the present invention is selected by, for example, setting the culture temperature generally above about 35 ° C. Has the advantage that it can be obtained in an automated manner. In addition, there is an advantage that culture is possible even in a situation where temperature control outdoors is difficult, for example, when the culture temperature becomes high during the day when the amount of sunlight is large.
  • FIG. 1 shows a photomicrograph of squashed cells of Botryococcus brownie tsukuba-1 strain.
  • FIG. 2 shows a photomicrograph of cells of Botryococcus brownie tsukuba-1 strain.
  • FIG. 3 shows a comparison of the culture temperature of the Botryococcus brownie lace-B strain of the present invention and various algae (AG) of the genus Botryococcus.
  • FIG. 4 shows the specific growth rate of the Botryococcus brownie race-B strain of the present invention with respect to the culture temperature.
  • Novel strain of the present invention The new strain of Botryococcus brownie lace-B of the present invention has the following characteristics. Appearance features: Colonies that can be seen with the naked eye are spherical and yellow-green to green. When crushed under a microscope, it is observed as a tufted colony of grapes (FIG. 1). The average colony size is 30-100 ⁇ m, and the maximum reaches 500 ⁇ m.
  • Cell shape characteristics Shape; usually in the shape of a club, with a cell wall, but an outer shell called a socket wall can be formed around the cell wall (FIG. 2). Hydrocarbons secreted from the cell can accumulate between the cell and the outer shell. Size: The short axis is about 8 ⁇ m and the long axis is about 14 ⁇ m, and the ratio is about 1.8.
  • the Botryococcus brownie tsukuba-1 strain of the present invention is the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (1st, 1st East, Tsukuba City, Ibaraki, Japan, 6th Central (postal code 305-8586). )) was deposited in Japan on December 9, 2010, and the accession number FERM P-22046 was obtained. Later, on November 25, 2011, the institute transferred to an international deposit under the Budapest Treaty, and was given the receipt number FERM ABP-11441.
  • the microorganism used in the method for producing high-purity hydrocarbons of the present invention is not limited to the aforementioned Botryococcus brownie tsukuba-1 strain, but is substantially the same as the aforementioned strain of Botryococcus brownie lace-B. Any strain can be used as long as it has the same mycological properties.
  • the new strain of Botryococcus brownie lace-B of the present invention is isolated from samples containing Botryococcus algae collected from lakes and ponds using the following method. be able to.
  • the sample containing the algae belonging to the genus Botryococcus can be collected from a lake or pond using a plankton net having a mesh size of 30 to 100 ⁇ m.
  • ⁇ Effective chlorine is allowed to act on the sample containing the algae belonging to the genus Botryococcus to sterilize microorganisms other than the genus Botryococcus.
  • the sample to be treated may be cultured in advance in an appropriate medium to grow algae.
  • the medium include CHU medium, JM medium, MDM medium, AF-6 medium, and the like.
  • the medium is not particularly limited as long as it is suitable as a medium for Botryococcus algae.
  • colonies of the genus Botryococcus may be separated by means such as centrifugation, filtration, or using a micropipette under a microscope.
  • the sample After treating the sample with available chlorine as described above, the sample may be used as it is, but it is washed by repeating the operation of separating the algal bodies by filtration or centrifugation, etc., and suspending them in the culture solution. Is preferred.
  • the sample treated with the effective chlorine is applied to a medium suitable for culturing Botryococcus algae, for example, a plate medium such as CHU medium, JM medium, MDM medium, AF-6 medium, and the like.
  • a medium suitable for culturing Botryococcus algae for example, a plate medium such as CHU medium, JM medium, MDM medium, AF-6 medium, and the like.
  • the pH of the medium can be adjusted to pH 1 to 14, preferably pH 2 to 13, more preferably pH 3 to 11, and still more preferably pH 4 to 10.
  • the culture temperature can be generally 0 to 50 ° C., preferably 5 to 40 ° C., more preferably 10 to 30 ° C.
  • the culture is performed under light irradiation using a fluorescent lamp or the like. This light irradiation may be performed continuously or may be performed for a certain period of time at intervals.
  • the time interval can be selected from 1 to 72 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
  • the illuminance is usually 0 to 300 ⁇ E / m 2 / s, preferably 5 to 100 ⁇ E / m 2 / s.
  • the culture period is usually 1 to 60 days, preferably 1 to 30 days.
  • a single colony of Botryococcus algae is obtained by collecting a single colony of Botryococcus algae generated on the plate medium.
  • it may be performed under a microscope.
  • the strain isolated as described above is cultured in a liquid medium.
  • a liquid medium for example, CHU medium, JM medium, MDM medium, AF-6 medium, or a modified medium thereof can be used.
  • the pH of the medium can be adjusted to pH 1 to 14, preferably pH 2 to 13, more preferably pH 3 to 11, and still more preferably pH 4 to 10.
  • the culture temperature can be generally 0 to 60 ° C., preferably 5 to 50 ° C., more preferably 10 to 40 ° C.
  • the culture is performed under light irradiation using a fluorescent lamp or the like. This light irradiation may be performed continuously or may be performed for a certain period of time at intervals.
  • the time interval can be selected from 1 to 72 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours.
  • the illuminance is usually 0 to 300 ⁇ E / m 2 / s, preferably 5 to 100 ⁇ E / m 2 / s.
  • the culture period is usually 1 to 5 months, preferably 1 to 3 months. Further, during culturing, it may be left aerated or not aerated, but it is preferable to leave without aeration.
  • the optimum temperature for growth can be examined by changing the temperature and measuring the amount of chlorophyll.
  • the culture can be performed on a 48-well microplate or the like, and the amount of chlorophyll can be measured with a microplate reader.
  • hydrocarbons produced by Botryococcus algae can be extracted and analyzed by methods known to those skilled in the art.
  • algae of the genus Botryococcus is cultured and grown, and wet algal bodies recovered from the obtained culture solution by filtration or the like are dried by freeze drying or drying by heating. Thereafter, hydrocarbons can be extracted from the dried alga using an organic solvent. The extraction may be performed twice or more using different organic solvents.
  • the organic solvent n-hexane, chloroform: methanol mixture (for example, 1: 1, 1: 2) or the like can be used.
  • methanol mixture for example, it is concentrated to dryness under a stream of nitrogen and extracted again with n-hexane.
  • the obtained extract is analyzed by NMR, IR, gas chromatography, GC / MS and the like.
  • the hydrocarbons produced from Botryococcus obtained by the above procedure are analyzed by the above procedure, and 80% or more of hydrocarbons having the molecular formula C 34 H 58 (molecular weight 466) are produced with respect to all hydrocarbons.
  • the Botryococcus brownie lace-B strain of the present invention can be obtained by screening for Botryococcus.
  • the Botryococcus brownie lace-B strain of the present invention can be obtained by screening for Botryococcus having an optimum culture temperature of 30 ° C. or higher.
  • the culture temperature refers to the temperature of the liquid medium in liquid culture.
  • the optimum culture temperature means a culture temperature at which the specific growth rate is maximized when the specific growth rate is plotted against the culture temperature.
  • the specific growth rate is defined as an increase in the amount of cells per unit time, and can be determined by the following equation.
  • N 2 and N 1 are biomass at times t 2 and t 1 , respectively.
  • the hydrocarbon obtained from the Botryococcus brownie race-B strain of the present invention has the following characteristics.
  • the produced hydrocarbon is 20 to 70% by mass, preferably 25 to 65% by mass, more preferably 30 to 60% by mass, and even more preferably 30 to 50% by mass in dry weight with respect to algal cells. possible.
  • the proportion of the hydrocarbon with the highest content in the total hydrocarbons produced is 60% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, further preferably It is present at 95% by weight or more, most preferably at 100% by weight.
  • the hydrocarbon other than the hydrocarbon having the highest content may include isomers thereof, for example, geometric isomers.
  • the hydrocarbon with the highest content is a hydrocarbon of molecular formula C 34 H 58 (molecular weight 466).
  • the hydrocarbon may have a double bond at an arbitrary position, or may be cyclohexene.
  • the hydrocarbon has the following structural formula (I):
  • hydrocarbons obtained in the present invention can be used directly as fuel.
  • treatment such as thermal decomposition or cracking using a catalyst is required.
  • a method for producing an aromatic hydrocarbon by cyclization by catalytic cracking is known (Banerjee A., et al., Critical Reviews in Biotechnology (CRC Presss), 22).
  • a method in which the terminal vinyl group of the resulting hydrocarbon is selectively oxidized to be used as a methyl ketone derivative (C 34 H 56 O) is also known (Chisti, YJ Ramasay Society, 27-28, 24-26, 1980).
  • the obtained hydrocarbon may be polymerized by cationic polymerization, radical polymerization or ultraviolet light and used as a polymer material.
  • MS gravimetric analysis
  • ion source EI and CI, positive in the case of CI, gas: isobutene
  • ionization current 200 microA
  • ion source vacuum 4 ⁇ 10 ⁇ 4 Pa
  • ionization Energy 38 eV
  • analysis tube vacuum 1.0 ⁇ 10 ⁇ 5 Pa
  • acceleration voltage 8.0 kV
  • chamber temperature 200 ° C.
  • ion Multi The test was performed under the conditions of 1.0 kV and magnetic field: HS. Further, the exact m / z was measured by high resolution GC / EI-MS.
  • the characteristics of the Botryococcus brownie tsukuba-1 strain are as follows. -Optimum culture temperature is 30-36 ° C, and culture is possible at 15-40 ° C (Fig. 4). -It can be cultured in a wide pH range of pH 4-10. -Easy to adhere to stainless steel and ceramics. The cells are in the shape of clubs, the average length is about 14 ⁇ m, the average width is about 7.6 ⁇ m, and the ratio is about 1.8; -The colony is yellow-green to green and shows a shape in which the tip of the rod-shaped cell protrudes from the colony, and the size is usually 30 to 100 ⁇ m, and the maximum reaches 500 ⁇ m.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 幅広い培養条件で生育でき、且つ産生炭化水素含量が高く、目的の炭化水素の純度が高い、ボトリオコッカス・ブラウニーに属する新規株の提供。

Description

ボトリオコッカス・ブラウニー(Botryococcus braunii)属の新規株
 本発明は、幅広い培養条件で生育でき、且つ産生炭化水素含量が高く、目的の炭化水素の純度が高い、ボトリオコッカス・ブラウニーに属する新規株に関する。
 近年、地球温暖化対策として大気中の二酸化炭素削減技術の開発が盛んに進められている。また、化石燃料枯渇に対する危機感から、再生可能なエネルギーの開発も進められている。再生可能エネルギーには太陽光発電、風力発電が実用化されているが、光エネルギーにより水と二酸化炭素を炭化水素に変換する光合成生物の利用も関心が集まっている。
 エネルギー資源として注目されている光合成生物として藻類が挙げられ、中でも緑藻類及び珪藻類が注目されている。通常の緑藻類は、その構成成分中の15~17%が脂質であり、この脂質は、大きく中性脂質(30%)、糖脂質(37%)、リン脂質(26%)及び脂肪酸を含まない脂質(7%)に分けられる。
 特に近年、オイル生産緑藻として注目を集めているのが、ボトリオコッカス・ブラウニー(Botryococcus braunii)である。このボトリオコッカス・ブラウニーが産生する脂質の主成分は炭素と水素からなる炭化水素であり、細胞内及び細胞外に直鎖アルケンやトリテルペン等の炭化水素を蓄積することが知られている。
 産生する炭化水素の構造上の特徴を基に、ボトリオコッカス・ブラウニーはレース-A、レース-B及びレース-Lの3つに分類される。レース-Aは、25~31個の奇数の炭素数を有し、直鎖で、分子内に2又は3個の二重結合を有する炭化水素を産生する群、レース-Bは、Cn2n-10(n=30~37)で表されるトリテルペン構造を有する炭化水素を産生する群、レース-Lは、テトラテルペンのリコパジエン(lycopadiene)(C4078)構造を有する炭化水素を産生する群、と定義される。
 各々の群に属するボトリオコッカス・ブラウニーの炭化水素含有量については、既報の文献を参照できる。レース-Aでは、株によって変動があり、0.4~61.0%(乾燥藻体重量に対する炭化水素の重量)の範囲であると報告されている(非特許文献1)。レース-Bでは、重量当たり、30~40%の炭化水素を産生するものが多いが、9%程度しか産生しない株も報告されている(非特許文献2)。レース-Lでは、インドの株で0.1%、タイの株で8.0%と報告されており(非特許文献3)、レース-Bと比較すると少ないことがわかっている。また、これらの炭化水素の組成は様々な炭素鎖長及び/又は構造を有するものの混合物である。
 これらの炭化水素は、処理を行わずに固形燃料や重油として熱エネルギー生産に利用することも可能であるが、さらに加工して利用する場合は、均一の化合物を得るために原料となる炭化水素が均一の組成であることが好ましい。また、ボトリオコッカスの応用利用のための生理的な研究のモデルとしても、シンプルな炭化水素合成経路を有する株が必要とされていた。
 また、ボトリオコッカスの産業化実現のための課題として、低コストの大量培養方法の確立が上げられるが、コストを抑えるためには屋外で日光を利用して培養を行う必要がある。この場合、主に光量が増殖の制限要因となることから、日射量の多い時期又は場所で、低水位のプールや厚さの薄いバイオリアクターを使って培養を行う方法が、最も効率的である。しかし、そのような方法で培養を行うと、水温が上昇するため、増殖至適温度が15℃から30℃であり、35℃以上では増殖を停止する既存のボトリオコッカスは、最も日射量の多い時間に増殖が停止してしまう。実際に、2006年7月につくば市において、深さ10センチメートルの水位のリアクターで屋外培養を行ったところ、最高水温は37℃に達した。したがって、35℃以上の高温に増殖至適温度を持つ株が望まれていた。
特開平9-9953
Metzger, P., Berkaloff, C., Coute, A., Casadevall, E.(1985) Alakdiene- and botryococcene- producing races of wild strains of Botryococcus braunii. Phytochemistry 24, 2305-2312. Okada, S., Murakami, M., Yamaguchi, K.(1995) Hydrocarbon composition of newly isolated strains of green alga Botryococcus braunii. J. Appl. Phycol.7, 555-559. Metzger, P., Pouet, Y., Summons, S.(1997) Chemotaxonomic evidence for similarity between Botryococcus braunii L race and Botryococcus neglectus. Phytochemistry 24, 2305-2312.
 本発明は、上記要請に鑑み、産生される炭化水素の純度が高く、且つ幅広い培養条件で生育できる、ボトリオコッカス・ブラウニーの新規株を提供することを課題とする。
 本発明者等は、ボトリオコッカス・ブラウニーを自然界より採取し、多数の系統的に異なるサブグループを有する属の中から、上記課題を解決する株を見出し、これを単離し、本発明を完成させるに至った。
 (1)本発明は、産生される全炭化水素に対して分子式C3458を有する炭化水素を60質量%以上産生する、ボトリオコッカス・ブラウニー・レース-Bに属する株を提供する。
 (2)本発明は、培養至適温度が30℃以上である、(1)に記載のボトリオコッカス・ブラウニー・レース-Bに属する株を提供する。
 (3)本発明は、ボトリオコッカス・ブラウニー・tsukuba-1株(受領番号:FERM ABP-11441、受託機関:産業技術総合研究所 特許生物寄託センター)を提供する。
 (4)本発明は、式(I)
Figure JPOXMLDOC01-appb-C000002
の構造を有する分子式C3458を有する炭化水素を産生する、(1)~(3)のいずれかに記載のボトリオコッカス・ブラウニー・レース-Bに属する株を提供する。
 (5)本発明は、(1)~(4)のいずれかに記載のボトリオコッカス・ブラウニー・レース-Bに属する株から、炭化水素を製造する方法を提供する。
 本発明のボトリオコッカス・ブラウニー・レース-Bの新規株は、高純度の炭化水素を産生でき、且つ幅広い培養条件で生育できる。
 具体的には、本発明のボトリオコッカス・ブラウニー・レース-B株は、炭素数34の炭化水素を高純度に産生するために、重油相当のオイルとして船舶や農耕作業用車に直接利用でき、さらに既存の触媒クラッキングシステムにより、軽油、ナフサ、灯油、ガソリンに直接転換することができる。また、本発明のボトリオコッカス・ブラウニー・レース-B株は、培養温度が約10℃~45℃、好ましくは約15℃~40℃で培養可能であり、特に約39℃でも培養可能である。他のボトリオコッカス属の藻類は35℃以上では増殖しないため、例えば、培養温度を一般的に約35℃超に設定することにより、本発明のボトリオコッカス・ブラウニー・レース-B株を選択的に得ることができるという利点を有する。また、屋外での温度制御が困難な状況、例えば日照量の多い日中に培養温度が高温になった場合にも、培養が可能であるという利点を有する。
図1は、ボトリオコッカス・ブラウニー・tsukuba-1株の細胞を押し潰した顕微鏡写真を示す。 図2は、ボトリオコッカス・ブラウニー・tsukuba-1株の細胞の顕微鏡写真を示す。 図3は、本発明のボトリオコッカス・ブラウニー・レース-B株と、様々なボトリオコッカス属の藻類(A~G)の培養温度の比較を示す。 図4は、本発明のボトリオコッカス・ブラウニー・レース-B株の培養温度に対する比増殖速度を示す。
1.本発明の新規株
 本発明のボトリオコッカス・ブラウニー・レース-Bの新規株は、以下の特徴を有する。
外観的特徴:
 肉眼で見えるコロニーは球形で、黄緑色~緑色である。顕微鏡下で押し潰すとブドウの房状のコロニーとして観察される(図1)。コロニーのサイズは平均的には30-100μm、最大で500μmに達する。
細胞の形状的特徴:
 形状;通常はこん棒状で、細胞壁をもつが、細胞壁の周りにさらにソケットウオールと呼ばれる外殻を形成し得る(図2)。細胞から分泌された炭化水素は細胞と外殻に間に蓄積し得る。
 大きさ;短径約8μm、長径約14μm、でその比は1.8程度である。
 なお、本発明のボトリオコッカス・ブラウニー・tsukuba-1株は、独立行政法人産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1 中央第6(郵便番号 305-8566))に2010年12月9日付で国内寄託し、受託番号FERM P-22046を得ている。その後2011年11月25日付で同研究所においてブタペスト条約に基く国際寄託に移管されて、受領番号FERM ABP-11441が付与されている。
 また、本発明の高純度の炭化水素の製造方法に用いる微生物は、前記ボトリオコッカス・ブラウニー・tsukuba-1株に限らず、上述したボトリオコッカス・ブラウニー・レース-Bの株と実質的に同一の菌学的性質を有する菌株であればいずれの菌株も使用することができる。
2.ボトリオコッカス属藻類の分離
 本発明のボトリオコッカス・ブラウニー・レース-Bの新規株は、湖沼や池から採取した、ボトリオコッカス属の藻類を含むサンプルから、以下の方法を用いて分離することができる。
 上記のボトリオコッカス属の藻類を含むサンプルは、例えば、湖沼や池から、網目30~100μmのプランクトンネット等を用いて採取できる。
 上記のボトリオコッカス属の藻類を含むサンプルに、有効塩素を作用させ、ボトリオコッカス属以外の微生物を殺菌する。この場合、処理されるサンプルを、あらかじめ適当な培地で培養して藻類を増殖させておいてもよい。培地としては、CHU培地、JM培地、MDM培地、AF-6培地等が挙げられるが、ボトリオコッカス属の藻類の培地として適切なものであれば、特に制限されない。また、この有効塩素を作用させる前に、ボトリオコッカス属のコロニーを、例えば遠心分離、濾過、又は顕微鏡下でマイクロピペットを用いる等の手段により分離してもよい。
 上記の通りサンプルを有効塩素で処理した後に、当該サンプルをそのまま使用してもよいが、藻体を濾過又は遠心分離等により分離し、培養液に懸濁する操作を繰り返すことなどにより洗浄することが好ましい。
 続いて、上記有効塩素で処理したサンプルを、ボトリオコッカス属の藻類の培養に適した培地、例えば、CHU培地、JM培地、MDM培地、AF-6培地等のプレート培地に塗布して培養を行う。培地のpHは、pH1~14、好ましくは、pH2~13、より好ましくはpH3~11、さらにより好ましくは、pH4~10とすることができる。培養温度は、通常0~50℃、好ましくは5~40℃、より好ましくは10~30℃の範囲で行うことができる。また、培養は蛍光灯等を用いて光照射下で行う。この光照射は、連続で行っても、間隔を置いて一定時間照射してもよい。時間間隔としては、1~72時間、好ましくは1~24時間、より好ましくは1~12時間から選択できる。また、照度は、通常0~300μE/m2/s、好ましくは、5~100μE/m2/sで行う。培養期間は、通常、1~60日、好ましくは1~30日間行う。
 その後、プレート培地に生じたボトリオコッカス属の藻類の単一コロニーを採取することにより、ボトリオコッカス属藻類の単一株が得られる。単一コロニーを採取する際は、顕微鏡下で行ってもよい。
 次に、上記の通り分離した株を、液体培地で培養する。液体培地の種類としては、例えば、CHU培地、JM培地、MDM培地、AF-6培地、又はこれらの改変培地を用いて行うことができる。培地のpHは、pH1~14、好ましくは、pH2~13、より好ましくはpH3~11、さらにより好ましくは、pH4~10とすることができる。培養温度は、通常0~60℃、好ましくは5~50℃、より好ましくは10~40℃の範囲で行うことができる。また、培養は蛍光灯等を用いて光照射下で行う。この光照射は、連続で行っても、間隔を置いて一定時間照射してもよい。時間間隔としては、1~72時間、好ましくは1~24時間、より好ましくは1~12時間から選択できる。また、照度は、通常0~300μE/m2/s、好ましくは、5~100μE/m2/sで行う。培養期間は、通常、1~5ヶ月、好ましくは1~3ヶ月行う。また、培養の際には、通気を行っても、通気を行わずに静置してもよいが、通気を行わずに静置する方が好ましい。
3.至適培養条件の検討
 上記の液体培地での培養の際に、温度を変化させ、クロロフィル量を測定することにより、増殖至適温度を調べることができる。この場合、例えば、48穴マイクロプレート等で培養を行い、マイクロプレートリーダーでクロロフィル量を測定することができる。
4.ボトリオコッカス属の藻類が産生する炭化水素の抽出及び分析
 ボトリオコッカス属の藻類が産生する炭化水素は、当業者に既知の方法で抽出及び分析することができる。例えば、ボトリオコッカス属の藻類を培養して増殖させ、得られた培養液から濾過等により回収した湿藻体を、凍結乾燥又は加温による乾燥等により乾燥させる。その後、この藻体乾燥物から有機溶媒を用いて炭化水素を抽出することができる。抽出は、異なる有機溶媒を用いて2度以上行ってもよい。有機溶媒としては、n-ヘキサン、クロロホルム:メタノール混合物(例えば、1:1、1:2)等を用いることができる。好ましくは、クロロホルム:メタノール混合物で抽出後、例えば、窒素気流下で濃縮乾固し、再びn-ヘキサンで抽出する。得られた抽出液を、NMR,IR、ガスクロマトグラフィー、GC/MS等により分析する。
 上記の手順により得られたボトリオコッカスから産生された炭化水素を、上記の手順で分析し、全炭化水素に対して、分子式C3458(分子量466)を有する炭化水素を80%以上産生するボトリオコッカスをスクリーニングすることにより、本発明のボトリオコッカス・ブラウニー・レース-B株が得られる。
 さらに、至適培養温度が30℃以上であるボトリオコッカスをスクリーニングすることにより、本発明のボトリオコッカス・ブラウニー・レース-B株が得られる。
 ここで、培養温度とは液体培養における、液体培地の温度のことを言う。また、至適培養温度とは、培養温度に対する比増殖速度をプロットした場合、比増殖速度が極大となる培養温度のことを言う。ここで、比増殖速度とは、単位時間当たりの細胞量の増加と定義され、以下の式により求めることができる。
比増殖速度(μ)=ln (N2/N1) / (t2-t1
 ここでN2、N1はそれぞれ時間t2およびt1の時のバイオマスである。
5.炭化水素
 本願発明のボトリオコッカス・ブラウニー・レース-B株から得られる炭化水素は以下の特徴を有する。
 産生される炭化水素は、藻体に対して、乾燥重量で、20~70質量%、好ましくは25~65質量%、より好ましくは30~60質量%、さらにより好ましくは30~50質量%があり得る。
 産生される全炭化水素中、最も含有量が高い炭化水素の割合は、60質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、最も好ましくは100質量%で存在する。
 前記最も含有量が高い炭化水素以外の炭化水素としては、その異性体、例えば、幾何異性体が含まれてもよい。
 前記最も含有量が高い炭化水素は、分子式C3458(分子量466)の炭化水素である。当該炭化水素は、任意の位置に二重結合を有してよく、あるいはシクロヘキセンであってもよい。好ましくは、当該炭化水素は、以下の式(I)の構造式を有する。
Figure JPOXMLDOC01-appb-C000003
6.本発明で得られる炭化水素の利用
 本発明で得られる炭化水素は、直接燃料として使用することができる。一方、内燃機関の燃料として使用する場合は、熱分解や触媒を用いるクラッキング等の処理が必要になる。一例として、触媒クラッキングにより環化させ、芳香族炭化水素を生成する方法が知られている(Banerjee A., et al., Critical Reviews in Biotechnology (CRC Presss), 22)。得られる炭化水素の末端ビニル基を選択的に酸化して、メエチルケトン誘導体(C3456O)にして利用する方法も知られている(Chisti, Y. J. Ramasay Society, 27-28, 24-26, 1980)。また、得られる炭化水素をカチオン重合、ラジカル重合や紫外線によって重合させ、高分子材料として利用してもよい。
 以下に、本発明のボトリオコッカス・ブラウニー・レース-B株の分離及び産生される炭化水素の分析を実施例として示すが、本願発明の請求の範囲は、これらの実施例により制限されるものではない。
1.培養及び分離
 日本各地の湖沼や池から網目30~100μmのプランクトンネットを用いてボトリオコッカスを含むサンプルを採取した。このサンプルからボトリオコッカスのコロニーを顕微鏡下でマイクロピペットを用いて分離し、これを有効塩素濃度約0.1%になるように添加したAF-6培地に浸けてボトリオコッカス以外の微生物を殺菌した後、AF-6培地(表1)で3回洗浄し、22℃、12時間毎光照射下で培養を行った。その後、三角フラスコに200mlのChu改変培地(表2)と培養した株を加え、25℃、12時間毎光照射下で1~3ヶ月培養を行った。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
2.炭化水素の分析
 得られたボトリオコッカスの培養液を、5μm孔のフィルターで濃縮し、凍結乾燥し、クロロホルム・メタノール(2:1,V/V)を用いて総脂質を抽出し、濃縮乾固後、n-ヘキサンで再抽出した。この試料を以下に示す手順でGC/MSにより解析した。
 分析条件:GC(ガスクロマトグラフィー)条件は、カラム長:30m、内径:0.25φmm、Df:0.25μm、カラム:DB-5MS、スプリットレシオ:スプリットレス、キャリアガス:He、流速:1.0ml/分、注入温度:280℃、カラム温度:60℃(2分)→280℃(5℃/分、5分維持)の条件で行った。セパレーター温度:280℃であった。MS(重量分析)条件は、モデル:Mstation MS-700KII、イオン源(EI及びCI、CIの場合positive、ガス:イソブテン)イオン化電流:200マイクロA、イオン源真空:4×10-4Pa、イオン化エネルギー:38eV、分析管真空:1.0×10-5Pa、加速電圧:8.0kV、チャンバー温度:200℃、イオンMult.1.0kV、磁場:HS、の条件で行った。また高分解能GC/EI-MSからexact m/zを測定した。
3.至適培養温度の測定
 得られたボトリオコッカス株を、Chu改変培地をあらかじめ添加した48穴マイクロプレートに播種し、10~40℃の培養庫で培養し、クロロフィル量の増加速度をマイクロプレートリーダーで測定した。
4.結果
 以上の方法で多数の株について炭化水素構成成分と至適培養温度を調べたところ、沖縄本島漢那ダムから得られた株は単一の分子量の炭化水素のみ(92%が単一物質、8%はその幾何異性体)を生産するものであり、他の株は生育しない35℃付近で増殖が可能であることがわかった(図3)。
 この株をボトリオコッカス・ブラウニー・tsukuba-1株として受託機関:産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1 中央第6(郵便番号 305-8566))に国内寄託した(受託番号:FERM P-22046)。その後2011年11月25日付で同研究所においてブタペスト条約に基く国際寄託に移管されて、受領番号FERM ABP-11441が付与されている。
 ボトリオコッカス・ブラウニー・tsukuba-1株の特徴は、以下の通りである。
-培養至適温度が30~36℃であり、15~40℃で培養可能である(図4)。
-pH4~10の幅広いpH範囲で培養可能である。
-ステンレス、セラミック等に付着しやすい。
-細胞はこん棒状の形状であり、長さは平均で約14μm、幅は平均で約7.6μmで、その比は1.8程度である。
-コロニーは黄緑色~緑色で、こん棒状の細胞の先端がコロニーから突出している形状を示し、サイズは通常は30~100μm、最高で500μmに達する。
-産生した炭化水素を細胞外に分泌し、細胞と細胞を囲むソケットウォールと呼ばれる外殻の間に蓄積し、コロニー内に保持する。
-コロニー内に蓄積された炭化水素はガラスカバーを載せると簡単に外部に流出してくる。
-細胞内にも多数の炭化水素を含む顆粒状構造が観察される。
 特に、培養可能温度に着目すると、通常のボトリオコッカス属の藻類は35℃以上では増殖しないため、35℃以上で培養することにより本発明のボトリオコッカス・ブラウニー・tsukuba-1株のみを選択的に得ることができる。
 ボトリオコッカス・ブラウニー・tsukuba-1株の産生する炭化水素を、GC/MS、1H、及び13C-NMRにより構造確認し、以下に示す式(I)の構造を有する分子内にビニル基が5個存在する炭化水素であることを確認した。表3は、GS/MS測定の結果を示す。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-T000007
 Botryococcus tsukuba 1 FERM ABP-11441

Claims (5)

  1.  産生される全炭化水素に対して分子式C3458を有する炭化水素を60質量%以上産生する、ボトリオコッカス・ブラウニー・レース-Bに属する株。
  2.  培養至適温度が30℃以上である、請求項1に記載のボトリオコッカス・ブラウニー・レース-Bに属する株。
  3.  前記ボトリオコッカス・ブラウニー・レース-Bに属する株が、ボトリオコッカス・ブラウニー・tsukuba-1株(受領番号:FERM ABP-11441)である、請求項1又は2に記載の株。
  4.  前記分子式C3458を有する炭化水素が、式(I)
    Figure JPOXMLDOC01-appb-C000001
    の構造を有する、請求項1~3のいずれか1項に記載の株。
  5.  請求項1~4のいずれか1項に記載のボトリオコッカス・ブラウニー・レース-Bに属する株を用いる、炭化水素の製造方法。
PCT/JP2011/078606 2010-12-09 2011-12-09 ボトリオコッカス・ブラウニー(Botryococcus braunii)属の新規株 WO2012077801A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012547930A JP5534267B2 (ja) 2010-12-09 2011-12-09 ボトリオコッカス・ブラウニー(Botryococcusbraunii)属の新規株
EP11846393.4A EP2660312B1 (en) 2010-12-09 2011-12-09 Novel strain classified under botryococcus braunii
US13/992,590 US9284577B2 (en) 2010-12-09 2011-12-09 Strain classified under Botryococcus braunii

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-275105 2010-12-09
JP2010275105 2010-12-09

Publications (1)

Publication Number Publication Date
WO2012077801A1 true WO2012077801A1 (ja) 2012-06-14

Family

ID=46207283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078606 WO2012077801A1 (ja) 2010-12-09 2011-12-09 ボトリオコッカス・ブラウニー(Botryococcus braunii)属の新規株

Country Status (4)

Country Link
US (1) US9284577B2 (ja)
EP (1) EP2660312B1 (ja)
JP (1) JP5534267B2 (ja)
WO (1) WO2012077801A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035791A (ja) * 2011-08-09 2013-02-21 Denso Corp 保湿剤
JP2013170230A (ja) * 2012-02-21 2013-09-02 Kyodo Yushi Co Ltd 潤滑グリース組成物
CN103571753A (zh) * 2012-07-30 2014-02-12 新奥科技发展有限公司 布朗葡萄藻及其应用
CN103571752A (zh) * 2012-07-30 2014-02-12 新奥科技发展有限公司 布朗葡萄藻及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099953A (ja) 1995-06-29 1997-01-14 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko 新規なボツリオコッカス属に属する微細藻類

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173050A (ja) 1995-12-22 1997-07-08 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko 緑藻類に属する微細藻類の培養方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099953A (ja) 1995-06-29 1997-01-14 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko 新規なボツリオコッカス属に属する微細藻類

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BANERJEE A. ET AL.: "Critical Reviews in Biotechnology", vol. 22, CRC PRESS
CHISTI, Y. J., RAMASAY SOCIETY, vol. 27-28, 1980, pages 24 - 26
DAYANANDA,C. ET AL.: "Presence of methyl branched fatty acids and saturated hydrocarbons in botryococcene producing strain of Botryococcus braunii", ACTA PHYSIOLOGIAE PLANTARUM, vol. 28, no. 3, 2006, pages 251 - 256, XP055069499 *
METZGER, P.; BERKALOFF, C.; COUTE, A.; CASADEVALL, E.: "Alkadiene- and botryococcene-producing races of wild strains of . Botryococcus braunii", PHYTOCHEMISTRY, vol. 24, 1985, pages 2305 - 2312, XP026647161, DOI: doi:10.1016/S0031-9422(00)83032-0
METZGER, P.; POUET, Y.; SUMMONS, S.: "Chemotaxonomic evidence for similarity between Botryococcus braunii L race and Botryococcus neglectus", PHYTOCHEMISTRY, vol. 24, 1997, pages 2305 - 2312
METZGER,P. ET AL.: "Botryococcus braunii: a rich source for hydrocarbons and related ether lipids", APPL.MICROBIOL.BIOTECHNOL., vol. 66, no. 5, 2005, pages 486 - 496, XP019331745 *
OKADA, S.; MURAKAMI, M.; YAMAGUCHI, K.: "Hydrocarbon composition of newly isolated strains of green alga Botryococcus braunii", J. APPL. PHYCOL.7, 1995, pages 555 - 559
OKADA,S. ET AL.: "Hydrocarbon production by the yayoi, a new strain of the green microalga Botryococcus braunii", APPL.BIOCHEM.BIOTECH., vol. 67, no. 1-2, 1997, pages 79 - 86, XP055069502 *
See also references of EP2660312A4
WEISS,T.L. ET AL.: "Raman spectroscopy analysis of botryococcene hydrocarbons from the green microalga Botryococcus braunii", J.BIOL.CHEM., vol. 285, no. 42, 2010, pages 32458 - 32466, XP055069479 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035791A (ja) * 2011-08-09 2013-02-21 Denso Corp 保湿剤
JP2013170230A (ja) * 2012-02-21 2013-09-02 Kyodo Yushi Co Ltd 潤滑グリース組成物
CN103571753A (zh) * 2012-07-30 2014-02-12 新奥科技发展有限公司 布朗葡萄藻及其应用
CN103571752A (zh) * 2012-07-30 2014-02-12 新奥科技发展有限公司 布朗葡萄藻及其应用
CN103571752B (zh) * 2012-07-30 2016-01-13 新奥科技发展有限公司 布朗葡萄藻及其应用

Also Published As

Publication number Publication date
EP2660312A1 (en) 2013-11-06
US9284577B2 (en) 2016-03-15
US20130252304A1 (en) 2013-09-26
JP5534267B2 (ja) 2014-06-25
EP2660312A4 (en) 2014-06-18
EP2660312B1 (en) 2017-02-22
JPWO2012077801A1 (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
CN102154162B (zh) 一种解淀粉芽孢杆菌及其应用
CN109576314B (zh) 一种混合培养制备微藻油脂的方法
JP5534267B2 (ja) ボトリオコッカス・ブラウニー(Botryococcusbraunii)属の新規株
JP5777025B2 (ja) 緑藻イカダモ、該緑藻イカダモの培養工程を有する脂質の製造方法、及び該緑藻イカダモの乾燥藻体
KR101563148B1 (ko) 감마선 조사에 의해 바이오매스, 전분 및 지질 함량이 증진된 미세조류 클라미도모나스 레인하드티아이 변이체 및 이의 용도
Alrubaie et al. Microalgae Chlorella vulgaris harvesting via co-pelletization with filamentous fungus
Chai et al. Effect of carbon source on lipid accumulation and biodiesel production of Yarrowia lipolytica
KR101424852B1 (ko) 바이오디젤을 생산하는 클로렐라 불가리스 cv-16 및 이를 이용한 바이오디젤의 생산방법
May-Cua et al. A cylindrical-conical photobioreactor and a sludge drying bed as an efficient system for cultivation of the green microalgae Coelastrum sp. and dry biomass recovery
KR20190101623A (ko) 옥세노클로렐라 프로토테코이드 mm0011 균주 및 그 용도
KR101424853B1 (ko) 바이오디젤을 생산하는 클로렐라 불가리스 cv-18 및 이를 이용한 바이오디젤의 생산방법
CN105713951B (zh) 一种制备微藻油脂的方法
KR20120105705A (ko) 폐수 전처리를 이용한 고지질 함유 미세조류의 생산 방법
KR101446206B1 (ko) 맥주 산업폐수에 미세조류를 배양하여 바이오매스를 생산하는 방법
KR20170008353A (ko) 미세조류에서의 트리글리세라이드(tag) 또는 바이오디젤 제조방법
KR101244836B1 (ko) 신규한 니트치아 푸실라 균주 및 그 용도
KR101424316B1 (ko) 바이오디젤을 생산하는 세네데스무스 m003 및 이를 이용한 바이오디젤의 생산방법
KR101626394B1 (ko) 활동성 어류를 이용한 옥외 배양시 응집성 미세조류의 바이오매스 생산성을 증가시키는 방법
KR101692695B1 (ko) 고 함량의 다중불포화지방산을 함유하는 트라우스토키트리대 속 돌연변이 균주 ga 및 이의 용도
JP6222643B2 (ja) ボトリオコッカス・ブラウニー属の新規株
Lu et al. Research on biodiesel production catalyzed by immobilized lipase
Banerjee A Comparative study of cyanobacteria and microalgae for biofuel production
Wichanuchit et al. Wastewater Treatment in the Brewing Industry Using Chlorella vulgaris
KR101424315B1 (ko) 바이오디젤을 생산하는 세네데스무스 m001 및 이를 이용한 바이오디젤의 생산방법
KR101678076B1 (ko) 신규 패오닥틸럼 트리코누툼 균주 및 이를 이용한 바이오디젤의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13992590

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012547930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011846393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011846393

Country of ref document: EP