WO2012077733A1 - 大気接合用ろう材、接合体、および、集電材料 - Google Patents

大気接合用ろう材、接合体、および、集電材料 Download PDF

Info

Publication number
WO2012077733A1
WO2012077733A1 PCT/JP2011/078360 JP2011078360W WO2012077733A1 WO 2012077733 A1 WO2012077733 A1 WO 2012077733A1 JP 2011078360 W JP2011078360 W JP 2011078360W WO 2012077733 A1 WO2012077733 A1 WO 2012077733A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
brazing material
constituent elements
brazing
air
Prior art date
Application number
PCT/JP2011/078360
Other languages
English (en)
French (fr)
Inventor
雄一郎 山内
慎二 斎藤
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to EP11846727.3A priority Critical patent/EP2650077A4/en
Priority to KR1020137017785A priority patent/KR20130136505A/ko
Priority to US13/991,504 priority patent/US20130260285A1/en
Priority to CN201180058996.6A priority patent/CN103249520B/zh
Publication of WO2012077733A1 publication Critical patent/WO2012077733A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a brazing material for air bonding, and a joined body and a current collecting material that are bonded by using the brazing material, and particularly relates to lowering the melting point and improving high-temperature durability of a brazing material for air bonding.
  • a joined body of metal members, a joined body of ceramic members, and a joined body of a ceramic member and a metal member are obtained by brazing.
  • the joining method is actively researched.
  • a flux brazing method which is a general method for brazing in the air.
  • a good bonded body is obtained by applying a flux to the bonding surface of the base material to obtain a reducing atmosphere at the bonded portion by the flux and blocking oxygen entry.
  • a flux having a melting point lower than 780 ° C. which is the melting point of BAg-8 is used as the brazing material, and the flux is melted before the brazing material.
  • a good joined body is obtained by activating the joint surface and preventing oxidation of the brazing material.
  • bonding is usually performed by local heating using a torch or the like, and this method is effective for point bonding and line bonding, but is not suitable for surface bonding.
  • the ceramic member may be broken by a thermal stress generated by local heating, which is not suitable for manufacturing a bonded body having a ceramic member.
  • many fluxes themselves and their residues have the effect of corroding metals, and in this case, a separate flux residue removal step is required after joining.
  • Patent Documents 1 and 2 it is conceivable to use a reactive air brazing method as an air brazing technique that does not require flux (for example, Patent Documents 1 and 2).
  • a reactive atmosphere using an Ag—Cu brazing material in which CuO is added to Ag using a ceramic member and a heat-resistant metal member that forms an Al oxide layer in the atmosphere as a base material.
  • the base materials are joined to the atmosphere by brazing.
  • the main component of the brazing material is a noble metal component such as Ag, the flux is not necessary for brazing, and as a result, the above-mentioned problem due to the flux can be solved.
  • Patent Document 3 proposes a brazing material made of an Ag—Ge—Si based alloy.
  • the Ag—Ge—Si brazing material of Patent Document 3 does not melt at a temperature lower than the melting point of Ag, the above-described problem caused by the reactive atmospheric brazing method cannot be solved.
  • the joined body using the low melting point air-bonding brazing material is inferior in high-temperature durability.
  • a brazing material for low-melting-point air bonding a bonded body obtained by bonding in the air at a heating temperature of 850 ° C. for 1 hour is subjected to a leak test after being held in the air at a heating temperature of 800 ° C. for 100 hours. And a leak will arise from a junction part. In this case, the cause of leakage may be volatilization of the low melting point oxide.
  • an object of the present invention is to provide a brazing material for atmospheric bonding that can be melted at a melting point of Ag or lower and can improve the high-temperature durability of the joined body.
  • Another object of the present invention is to provide a joined body and a current collecting material obtained by joining using such a brazing material and having high-temperature durability.
  • the brazing material for air bonding according to the present invention contains Ag (silver), Ge (germanium), B (boron), and Si (silicon) as essential components, and the total volume ratio of constituent elements other than Ag is 50%. It is set to be over 90% and the proportion of Si in the content of constituent elements other than Ag is set to more than 22% by volume, and the proportion of B in the content of constituent elements other than Ag is The volume ratio is set to more than 14%.
  • the brazing material for air bonding of the present invention is an Ag—B—Si brazing material containing Ag, B, and Si as essential components.
  • Ag is a material that is not easily oxidized even when melted in the atmosphere
  • B is a low-melting-point material that is oxidized at about 300 ° C. or higher
  • the melting point of the oxide is relatively low (about 577 ° C.). It is.
  • the brazing material can be melted at a melting point of Ag (about 961 ° C.) or less by containing B, which is a low melting point material, as an essential component.
  • the bonding temperature is lower than that of the conventional Ag-based air bonding brazing material, so when using a metal member as the base material, it is possible to suppress oxidation of the base material and prevent deterioration of the metal member side. can do.
  • the joining temperature is low as described above, it is possible to reduce thermal stress due to a difference in thermal expansion coefficient between the two members.
  • the brazing material for air bonding according to the present invention contains Ag, B, and Si as essential components, and the content of each constituent element other than Ag is set as described above. Improvements can be made. For example, even if a leak test is performed after holding the bonded body at a heating temperature of 800 ° C. for 100 hours in the atmosphere, no leakage from the bonded portion occurs and good airtightness can be maintained. Therefore, long-term reliability can be ensured.
  • the air brazing filler metal of the present invention can have various configurations. For example, at least one of Ge (germanium), Ti (titanium), Zr (zirconium), Hf (hafnium), Cr (chromium), and Al (aluminum) is added as an additive component, and a configuration other than Ag A mode in which the proportion of the additive component in the content of the element is set to be less than 64% by volume can be used.
  • a ceramic member is used as the base material, the reactivity with ceramics can be improved when Ge, Ti, Zr, or Hf is added.
  • Ge oxide can be deposited on the ceramic by adding Ge, and Ge has an action as an active metal, so that the wettability can be improved. it can.
  • Cr and Al when Cr and Al are added, an effect of suppressing diffusion of oxygen in the brazing material at the time of air bonding or holding at a high temperature can be obtained, so that the oxidation resistance can be improved.
  • brazing material for air bonding according to the present invention when the brazing material for air bonding according to the present invention is applied to bonding between members, an aspect in which an oxide containing at least one of the constituent elements is formed by the bonding can be used. Moreover, when the brazing material for air bonding according to the present invention is applied to bonding of members, a mode in which a composite oxide containing at least two of the constituent elements is formed by the bonding can be used.
  • the brazing filler metal for air bonding of the present invention can have a low melting point as described above, and can have a melting point of 650 ° C. or higher and 850 ° C. or lower, for example, in the air.
  • the joined body of the present invention can be obtained by joining using the above brazing material for atmospheric joining. That is, the joined body of the present invention is composed of metal members joined using the above brazing material for atmospheric joining, ceramic members, or a metal member and a ceramic member, and has gas sealing properties. .
  • the joined body can be used for a fuel cell or a solid oxide fuel cell.
  • the current collecting material of the present invention is characterized in that it is composed of metal members joined together using the above-mentioned brazing filler for atmospheric bonding, ceramic members, or a metal member and a ceramic member, and has electrical conductivity.
  • the current collecting material can be used for a fuel cell or a solid oxide fuel cell.
  • the brazing material for air bonding of the present invention it is possible to obtain effects such as melting at a melting point of Ag or less and improving the high temperature durability of the bonded body.
  • the joined body or current collecting material of the present invention it can be obtained by using the brazing material for air bonding of the present invention, and has high-temperature durability as well as good airtightness and bonding strength. it can.
  • FIG. 1 It is a perspective view showing schematic structure of the joining test piece produced in the Example of this invention. It is a figure showing the side cross-section structure in the arrow direction 1A of FIG. 1 showing the joining test piece for cross-sectional observation used in the Example of this invention. It is a cross-sectional electron micrograph (* 500 time) of the joining test piece after joining of the sample 4 of this invention. It is a cross-sectional electron microscope figure (x500 times) of the joining test piece after the high temperature holding of the sample 4 of this invention. 2 is a cross-sectional electron micrograph ( ⁇ 500 times) of a bonded test piece after bonding of a comparative sample 2. FIG. It is a cross-sectional electron microscope figure (x500 times) of the joining test piece after the high temperature holding of the comparative sample 2.
  • a bonded specimen was prepared as a sample according to the present invention using a brazing material for atmospheric bonding within the scope of the present invention.
  • the joining body test piece was produced as a comparative sample using the brazing material for atmospheric joining outside the scope of the present invention.
  • a leak test was performed on all the specimens, and a joint portion was observed on some of the specimens.
  • sample and comparative sample As the form of the brazing material for air bonding that can be used in the preparation of the sample of the present invention, for example, a form in which a metal mixed powder is pasted with an organic solvent, an organic binder or the like, or an alloy powder paste
  • various forms such as a foil and a sol-gel are exemplified, and the present invention is not particularly limited.
  • Examples of the metal member material that can be used in the sample preparation of the present invention include ferritic stainless steel, stainless steel, heat resistant stainless steel, FeCrAl alloy, FeCrSi alloy, Ni-based heat resistant alloy, and the like. Absent.
  • Examples of the material of the ceramic member used in the sample preparation of the present invention include yttria-stabilized zirconia and oxide ceramics such as zirconia, alumina, magnesia, steatite, mullite, titania, silica, and sialon, and are particularly limited. It is not something.
  • the brazing material for air bonding As the brazing material for air bonding according to each sample of the present invention, a paste obtained by mixing a mixed metal powder having a composition within the scope of the present invention shown in Table 1 with an organic binder was used.
  • sample 1 uses the air bonding brazing material (Ag-B-Si brazing material) within the scope of the present invention containing only the essential components, and samples 2 and 4 have the essential components.
  • an air bonding brazing material (Ag—B—Si—Ge based brazing material) containing Ge as an additive element within the scope of the present invention was used.
  • Ge and Cr were added as additive elements in addition to the essential components.
  • the brazing material for air bonding (Ag-B-Si-Ge-Cr-based brazing material) within the scope of the present invention containing selenium was used.
  • the total volume ratio of the constituent elements other than Ag is expressed as the content ratio X.
  • the B content in the content ratio X is the ratio of B to the content of the constituent elements other than Ag. Is shown. Numerical values shown in Table 1 are expressed in volume ratio (unit:%).
  • a stabilized zirconia plate made of yttria stabilized zirconia (3YSZ) was used as the ceramic member according to each sample of the present invention. The size of the plate was set to 20 mm ⁇ 20 mm.
  • a mixed metal powder having a composition outside the range of the present invention shown in Table 1 and mixed with an organic binder to form a paste is used.
  • a stabilized zirconia plate was used as the ceramic member.
  • the comparative sample 1 uses an air bonding brazing material whose content X is outside the range of the present invention (50% or less), and the comparative sample 2 has a Si content of X in the content X.
  • An air bonding brazing material outside the scope of the invention (22% or less) was used, and the comparative sample 3 uses a brazing material for air bonding whose B content is outside the scope of the present invention (14% or less). It was.
  • a paste-like air bonding brazing material is applied to one end surface of a metal member, a ceramic member is placed on the applied surface, the heating temperature is set to 850 ° C. in the air, and bonding is performed for 1 hour.
  • FIG. 1 is a schematic diagram showing the configuration of the produced joint test piece 10.
  • Reference numeral 11 denotes a metal member that is a cylindrical member
  • reference numeral 11A denotes an opening of the metal member
  • reference numeral 12 denotes a ceramic member that is a plate member
  • reference numeral 13 denotes a bonding layer.
  • FIG. 2 is a schematic diagram of an observation cross section of a bonding portion including the bonding layer 13 (a perspective view illustrating a side cross sectional configuration in the arrow direction 1A of FIG. 1).
  • Comparative Sample 2 using the brazing material for air bonding helium was detected after holding at a high temperature, and leakage occurred.
  • Comparative Sample 3 using the brazing material for atmospheric bonding whose B content in the content ratio X is outside the range of the present invention helium was detected in the case after bonding, and leakage occurred.
  • Comparative Sample 2 in the bonded test piece after bonding in which no leakage occurred, as can be seen from FIG. 5, Ag rich portion 14 and composite oxide 15 were observed, and no void was observed. As can be seen from FIG. 6, the composite oxide 15 was not observed and the pores 16 were observed in the bonding test piece after holding at high temperature where leakage occurred. On the other hand, in sample 4, the Ag rich portion 14 and the composite oxide 15 are observed in the bonding test pieces after the bonding where no leakage occurred and after the high temperature holding, as can be seen from FIGS. Not observed.
  • the brazing material for air bonding contains Ag, B, and Si as essential components in order to have good airtightness and high temperature durability, It was confirmed that the total volume ratio of the constituent elements other than Ag was required to be set in the range of more than 50% and 90% or less. In this case, from the comparison between sample 1 and comparative sample 2, the proportion of Si in the content of constituent elements other than Ag is set to a volume ratio exceeding 22%. It was confirmed that the proportion of B in the constituent elements other than Ag was required to be set to more than 14% by volume.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)
  • Fuel Cell (AREA)

Abstract

 Agの融点以下で溶融することができるとともに、接合体の高温耐久性の向上を図ることができる大気接合用ろう材、ならびに、高温耐久性を有する接合体および集電材料を提供する。 大気接合用ろう材は、Ag、B、および、Siを必須成分として含有し、Ag以外の構成元素の体積比の合計が50%超90%以下に設定され、Ag以外の構成元素の含有量のなかにSiが占める割合が体積比で22%超に設定され、Ag以外の構成元の含有量のなかにBが占める割合が体積比で14%超に設定されている。たとえば図4から判るように、本発明試料の高温保持後の接合試験片の接合層13 では、比較試料の高温保持後の接合試験片で観察された空孔16(図6)が観察されず、ろう材が十分に溶融しており、長時間の高温保持後でも良好な気密性が維持されていることを確認した。

Description

大気接合用ろう材、接合体、および、集電材料
 本発明は、大気接合用ろう材、ならびに、そのろう材を用いることにより接合される接合体および集電材料に係り、特に、大気接合用ろう材の低融点化および高温耐久性向上に関する。
 金属部材同士の接合体、セラミックス部材同士の接合体、および、セラミックス部材と金属部材の接合体は、ろう付により得られる。近年、製品の高精度化や、高信頼化、高機能化等の要求が強くなっており、その要求に応える接合体としてセラミックスと金属の接合体が利用されており、その接合体を得るための接合方法が盛んに研究されている。
 セラミックス部材と金属部材の接合方法として、製造コストの低減を図ることができるのはもちろんのこと、大気雰囲気中でも、比較的低温領域で良好な接合体を得ることができる大気ろう付技術の確立が要求されている。
 大気ろう付技術としては、大気中でろう付を行う一般的な手法であるフラックスろう付法が挙げられる。この手法では、母材の接合面にフラックスを塗布し、フラックスにより接合部での還元雰囲気を得るとともに、酸素進入を遮断することにより、良好な接合体を得る。たとえばろう材としてAg系ろう材であるBAg−8を用いる場合、BAg−8の融点である780℃よりも低い融点を有するフラックスを用い、ろう材よりも先にフラックスを溶融させる。これにより、接合面の活性化およびろう材の酸化防止を図ることにより、良好な接合体を得る。
 ところが、フラックスろう付法では、通常、トーチ等を用いた局所加熱により接合が行われ、その手法は、点接合や線接合には有効であるが、面接合には適さない。また、セラミックス部材同士あるいはセラミックス部材と金属部材の接合に適用する場合、局所加熱で発生する熱応力によってセラミックス部材の破壊が生じる虞があり、セラミックス部材を有する接合体の作製にも適さない。さらに、フラックスの中にはそれ自体およびその残留物が金属を腐食させる作用を有するものが多く、この場合、接合後にフラックス残留物の除去工程が別途必要となる。
 そこで、フラックスを必要としない大気ろう付技術として、反応性大気ろう付法(Reactiver Air Brazing)を用いることが考えられる(たとえば特許文献1,2)。たとえば特許文献1の技術では、セラミックス部材と、大気中でAl酸化物層を形成する耐熱金属部材とを母材として用い、AgにCuOを添加したAg−Cu系ろう材を用いた反応性大気ろう付法によりそれら母材の大気接合を行う。この場合、ろう材の主成分がAg等の貴金属成分であるから、ろう付ではフラックスが不要となり、その結果、フラックスによる上記問題を解消することができる。
 ところが、特許文献1,2の技術では、接合温度がAgの融点(約961℃)より高温である必要があるため、母材である金属部材に著しい酸化が生じる虞がある。また、金属部材とセラミックス部材の接合では、接合温度が高くなるに従い、両部材の熱膨張係数差により生じる熱応力も増大してしまう。
 そこで、反応性大気ろう付法での接合温度を低くするために、Ag系ろう材の低融点化を図るために種々の材料が提案されている。たとえば特許文献3の技術は、Ag−Ge−Si系合金からなるろう材を提案している。
特許第4486820号 特表2010−531232号公報 特開2008−202097号公報
 しかしながら、特許文献3のAg−Ge−Si系ろう材は、Agの融点以下の温度で溶融しないため、反応性大気ろう付法で生じる上記問題を解消することができない。また、低融点大気接合用ろう材を用いた接合体は、高温耐久性に劣る。たとえば低融点大気接合用ろう材を用い、大気中において加熱温度850℃で1時間接合を行って得られた接合体は、大気中において800℃の加熱温度で100時間保持した後にリーク試験を行うと、接合部からリークが生じてしまう。この場合、リークの原因としては、低融点酸化物の揮発が考えられる。
 したがって、本発明は、Agの融点以下で溶融することができるとともに、接合体の高温耐久性の向上を図ることができる大気接合用ろう材を提供することを目的としている。また、本発明は、そのようなろう材を用いた接合により得られ、高温耐久性を有する接合体および集電材料を提供することを目的としている。
 本発明の大気接合用ろう材は Ag(銀)、Ge(ゲルマニウム)、B(ホウ素)、および、Si(ケイ素)を必須成分として含有し、Ag以外の構成元素の体積比の合計が50%超90%以下に設定され、Ag以外の構成元素の含有量のなかにSiが占める割合が体積比で22%超に設定され、Ag以外の構成元素の含有量のなかにBが占める割合が体積比で14%超に設定されていることを特徴とする。
 本発明の大気接合用ろう材では、Ag、B、および、Siを必須成分として含有しているAg−B−Si系ろう材である。そのなかのAgは、大気中で溶融した場合でも酸化されにくい材料であり、Bは約300℃以上で酸化し、その酸化物の融点も比較的低い温度(約577℃)である低融点材料である。部材同士のろう付に上記大気接合用ろう材を適用する場合、ろう付を大気中で行うときでも、低融点酸化物が溶融し母材にぬれ広がることによって母材の酸化を抑制することができるから、フラックスが不要となる。
 また、低融点材料であるBを必須成分として含有することにより、ろう材はAgの融点(約961℃)以下で溶融することができる。これにより、従来のAg系大気接合用ろう材と比較して接合温度が低いから、母材として金属部材を用いる場合、母材の酸化抑制等を図ることができ、金属部材側の変質を防止することができる。また、母材として金属部材とセラミックス部材を用いる場合、上記のように接合温度が低いから、両部材の熱膨張率差による熱応力を低減することができる。
 しかも、本発明の大気接合用ろう材では、Ag、B、および、Siを必須成分として含有し、Ag以外の各構成元素の含有率を上記のように設定しているから、高温耐久性の向上を図ることができる。たとえば接合体を大気中において800℃の加熱温度で100時間保持した後にリーク試験を行っても、接合部からのリークが発生しなく、良好な気密性を維持することができる。よって、長期信頼性を確保することができる。
 以上のことから、大気中でもフラックスを用いないろう付により、良好な気密性や接合強度を有するのはもちろんのこと、高温耐久性を有する接合体を得ることができる。
 本発明の大気接合用ろう材は種々の構成を用いることができる。たとえば、Ge(ゲルマニウム)、Ti(チタン)、Zr(ジルコニウム)、Hf(ハフニウム)、Cr(クロム)、および、Al(アルミニウム)のうちの少なくとも1種が添加成分として添加され、Ag以外の構成元素の含有量のなかに添加成分が占める割合が体積比で64%未満に設定されている態様を用いることができる。母材としてセラミックス部材を用いる場合、Ge、Ti、Zr、Hfを添加した場合、セラミックスとの反応性の向上を図ることができる。たとえば金属部材とセラミックス部材の接合体において、Geを添加することにより、セラミックス上にGe酸化物を析出させることができ、Geは活性金属としての作用を有するから、ぬれ性の向上を図ることができる。また、Cr、Alを添加した場合、大気接合時あるいは高温保持時のろう材中の酸素の拡散を抑制する効果が得られるから、耐酸化性の向上を図ることができる。
 また、本発明の大気接合用ろう材を部材同士の接合に適用した場合、その接合で構成元素のうちの少なくとも1種を含む酸化物が形成される態様を用いることができる。また、本発明の大気接合用ろう材を部材同士の接合に適用した場合、その接合で構成元素のうちの少なくとも2種を含む複合酸化物が形成される態様を用いることができる。
 本発明の大気接合用ろう材は、上記のように低融点化を図ることができ、たとえば大気中において650℃以上850℃以下の融点を有することができる。
 本発明の接合体は、上記大気接合用ろう材を用いた接合により得られる。すなわち、本発明の接合体は、上記大気接合用ろう材を用いて接合された金属部材同士、セラミックス部材同士、あるいは、金属部材とセラミックス部材からなるとともに、ガスシール性を有することを特徴とする。たとえば接合体は、燃料電池用あるいは固体酸化物型燃料電池用として使用することができる。
 本発明の集電材料は、上記大気接合用ろう材を用いて接合された金属部材同士、セラミックス部材同士、あるいは、金属部材とセラミックス部材からなるとともに、電気伝導性を有することを特徴とする。たとえば集電材料は、燃料電池用あるいは固体酸化物型燃料電池用として使用することができる。
 本発明の大気接合用ろう材によれば、Agの融点以下で溶融することができるとともに、接合体の高温耐久性の向上を図ることができる等の効果を得ることができる。本発明の接合体あるいは集電材料によれば、本発明の大気接合用ろう材を用いることにより得られ、良好な気密性や接合強度を有するのはもちろんのこと、高温耐久性を有することができる。
本発明の実施例で作製した接合試験片の概略構成を表す斜視図である。 本発明の実施例で用いた断面観察用接合試験片を表し、図1の矢印方向1Aでの側断面構成を表す図である。 本発明の試料4の接合後の接合試験片の断面電子顕微鏡図(×500倍)である。 本発明の試料4の高温保持後の接合試験片の断面電子顕微鏡図(×500倍)である。 比較試料2の接合後の接合試験片の断面電子顕微鏡図(×500倍)である。 比較試料2の高温保持後の接合試験片の断面電子顕微鏡図(×500倍)である。
 10…接合試験片、11…金属部材、12…セラミックス部材、13…接合層、14…Agリッチ部、15…複合酸化物、16…空孔
 以下、本発明について実施例を用いて説明する。実施例では、本発明範囲内の大気接合用ろう材を用いて、本発明に係る試料として接合体試験片を作製した。また、本発明範囲外の大気接合用ろう材を用いて、比較試料として接合体試験片を作製した。試料および比較試料の接合体試験片の評価では、全ての試験片についてリーク試験を行い、そのうちの一部の試験片について接合部観察を行った。
(1)試料および比較試料の作製
 本発明の試料作製で用いることができる大気接合用ろう材の形態としては、たとえば金属混合粉末を有機溶剤や有機バインダー等によりペーストとした形態や、合金粉末ペーストや、箔、ゾルゲル等の各種形態が挙げられ、特に限定されるものではない。
 本発明の試料作製で用いることができる金属部材の材料としては、たとえばフェライト系ステンレスや、ステンレス、耐熱性ステンレス、FeCrAl合金、FeCrSi合金、Ni基耐熱合金等が挙げられ、特に限定されるものではない。本発明の試料作製で用いたセラミックス部材の材料としては、たとえばイットリア安定化ジルコニアや、ジルコニア、アルミナ、マグネシア、ステアタイト、ムライト、チタニア、シリカ、サイアロン等の酸化物セラミックスが挙げられ、特に限定されるものではない。
 本発明の各試料に係る大気接合用ろう材としては、表1に示す本発明範囲内の組成を有する混合金属粉末を有機バインダーと混合してペースト状としたものを用いた。大気接合用ろう材について、試料1では、必須成分のみを含有する本発明の範囲内の大気接合用ろう材(Ag−B−Si系ろう材)を用い、試料2,4では、必須成分に加えて添加元素としてGeを含有する本発明の範囲内の大気接合用ろう材(Ag−B−Si−Ge系ろう材)を用い、試料3では、必須成分に加えて添加元素としてGeおよびCrを含有する本発明の範囲内の大気接合用ろう材(Ag−B−Si−Ge−Cr系ろう材)を用いた。
 なお、表1では、Ag以外の構成元素の体積比の合計を含有率Xと表記し、たとえば含有率XにおけるBの含有率は、Ag以外の構成元素の含有量のなかにBが占める割合を示している。表1に示す数値は体積比(単位:%)で表したものである。
 本発明の各試料に係る金属部材としては、フェライト系合金であるZMG232L(日立金属社製)の外径14mm、内径8mmの円筒部材を用いた。本発明の各試料に係るセラミック部材としては、イットリア安定化ジルコニア(3YSZ)からなる安定化ジルコニア板を用いた。板のサイズは、20mm×20mmに設定した。
 各比較試料に係る大気接合用ろう材としては、表1に示す本発明範囲外の組成を有する混合金属粉末を有機バインダーと混合してペースト状としたものを用い、金属部材としては、本発明の各試料と同様な円筒部材を用い、セラミック部材としては、表1に示すように、安定化ジルコニア板を用いた。大気接合用ろう材について、比較試料1では、含有率Xが本発明の範囲外(50%以下)の大気接合用ろう材を用い、比較試料2では、含有率XにおけるSiの含有率が本発明の範囲外(22%以下)の大気接合用ろう材を用い、比較試料3では、含有率XにおけるBの含有率が本発明の範囲外(14%以下)の大気接合用ろう材を用いた。
 実施例では、ペースト状の大気接合用ろう材を金属部材の一方の端面に塗布し、その塗布面にセラミック部材を載置し、大気中において加熱温度を850℃に設定し、1時間接合を行うことにより、各試料および比較試料に係る接合試験片を作製した。
 図1は、作製した接合試験片10の構成を表す模式図である。符号11は円筒部材である金属部材、符号11Aは金属部材の開口部、符号12は板材であるセラミックス部材、符号13は接合層である。図2は、接合層13を含む接合部の観察断面の模式図である(図1の矢印方向1Aでの側断面構成を表す斜視図である)。
Figure JPOXMLDOC01-appb-T000001
(2)試料および比較試料の評価
 まず、接合後の接合試験片10について、金属部材11の開口面11Aを閉塞し、金属部材11内部を真空排気して、ヘリウムリーク試験を行った。次いで、大気中において、加熱温度を800℃に設定し、接合試験片10を100時間保持した後に、そのような高温保持後の接合試験片10について、上記と同様にヘリウムリーク試験を行った。その結果を表1に示す。試験結果について、表1では、ヘリウムが検出されなかったものを“○”、ヘリウムが検出されたものを“×”と表記している。接合後の接合試験片10の試験でヘリウムが検出されたものは、高温保持後の接合試験片10について試験を行わなかった。また、試料4および比較試料2については、接合試験片10を中央部で切断し、接合層13を含む接合部を観察した。
 ヘリウムリーク試験について、表1から判るように、含有率Xが本発明の範囲外の大気接合用ろう材を用いた比較試料1、および、含有率XにおけるSiの含有率が本発明の範囲外の大気接合用ろう材を用いた比較試料2では、高温保持後の場合にヘリウムが検出され、リークが生じた。含有率XにおけるBの含有率が本発明の範囲外の大気接合用ろう材を用いた比較試料3では、接合後の場合にヘリウムが検出され、リークが生じた。
 これに対して、本発明範囲内の組成を有する大気接合用ろう材を用いた試料1~4の接合試験片では、接合後および保持後のいずれの場合も、ヘリウムが検出されず、リークが生じなかった。
 断面観察について、比較試料2では、リークが生じなかった接合後の接合試験片において、図5から判るように、Agリッチ部14および複合酸化物15が観察され、空孔が観察されなかったが、リークが生じた高温保持後の接合試験片において、図6から判るように、複合酸化物15が観察されず、空孔16が観察された。これに対して試料4では、リークが生じなかった接合後および高温保持後の接合試験片において、図3,4から判るように、Agリッチ部14および複合酸化物15が観察され、空孔が観察されなかった。
 以上のように試料1~4では、高温保持後でも、複合酸化物が存在し、空孔が生じなかった。これにより試料1~4では、大気接合用ろう材が大気中850℃での加熱により十分に溶融することができ、かつ良好な気密性および高温耐久性を有する金属部材とセラミックス部材との接合体が得られることが判った。
 試料1~4と比較試料1~3との比較から、大気接合用ろう材では、良好な気密性および高温耐久性を有するためには、Ag、B、および、Siを必須成分として含有し、Ag以外の構成元素の体積比の合計が50%超90%以下の範囲内に設定されていることが必要であることを確認した。この場合、試料1と比較試料2との比較から、Ag以外の構成元素の含有量のなかにSiが占める割合が体積比で22%超に設定され、試料1と比較試料3との比較から、Ag以外の構成元素の含有量のなかにBが占める割合が体積比で14%超に設定されていることが必要であることを確認した。
 特に、試料2~4の結果から、Ge、Cr、Al、Ti、Zr、および、Hfのうちの少なくとも1種が添加成分として添加されている場合、Ag以外の構成元素の含有量のなかに添加成分が占める割合が体積比で64%未満に設定されていることが好適であることを確認した。

Claims (9)

  1.  Ag、B、および、Siを必須成分として含有し、
     Ag以外の構成元素の体積比の合計が50%超90%以下に設定され、
     Ag以外の前記構成元素の含有量のなかにSiが占める割合が体積比で22%超に設定され、
     Ag以外の前記構成元素の含有量のなかにBが占める割合が体積比で14%超に設定されていることを特徴とする大気接合用ろう材。
  2.  Ge、Cr、Al、Ti、Zr、および、Hfのうちの少なくとも一種が添加成分として添加され、
     Ag以外の構成元素の含有量のなかに前記添加成分が占める割合が体積比で64%未満に設定されていることを特徴とする請求項1に記載の大気接合用ろう材。
  3.  部材同士の接合に適用された場合、その接合で構成元素のうちの少なくとも1種を含む酸化物が形成されることを特徴とする請求項1または2に記載の大気接合用ろう材。
  4.  部材同士の接合に適用された場合、その接合で構成元素のうちの少なくとも2種を含む複合酸化物が形成されることを特徴とする請求項1~3のいずれかに記載の大気接合用ろう材。
  5.  大気中において650℃以上850℃以下の融点を有することを特徴とする請求項1~4のいずれかに記載の大気接合用ろう材。
  6.  請求項1~5のいずれかに記載の大気接合用ろう材を用いて接合された金属部材同士、セラミックス部材同士、あるいは、金属部材とセラミックス部材からなるとともに、ガスシール性を有することを特徴とする接合体。
  7.  燃料電池用あるいは固体酸化物型燃料電池用として使用されることを特徴とする請求項6に記載の接合体。
  8.  請求項1~5のいずれかに記載の大気接合用ろう材を用いて接合された金属部材同士、セラミックス部材同士、あるいは、金属部材とセラミックス部材からなるとともに、電気伝導性を有することを特徴とする集電材料。
  9.  燃料電池用あるいは固体酸化物型燃料電池用として使用されることを特徴とする請求項8に記載の集電材料。
PCT/JP2011/078360 2010-12-09 2011-12-01 大気接合用ろう材、接合体、および、集電材料 WO2012077733A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11846727.3A EP2650077A4 (en) 2010-12-09 2011-12-01 BRASURE MATERIAL FOR ATMOSPHERE BONDING, BRAZED OBJECT, AND CURRENT COLLECTOR MATERIAL
KR1020137017785A KR20130136505A (ko) 2010-12-09 2011-12-01 대기 접합용 납재, 접합체 및 집전 재료
US13/991,504 US20130260285A1 (en) 2010-12-09 2011-12-01 Brazing material for bonding in atmosphere, bonded article, and current collecting material
CN201180058996.6A CN103249520B (zh) 2010-12-09 2011-12-01 大气接合用钎料、接合体以及集电材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-274643 2010-12-09
JP2010274643A JP5645307B2 (ja) 2010-12-09 2010-12-09 大気接合用ろう材、接合体、および、集電材料

Publications (1)

Publication Number Publication Date
WO2012077733A1 true WO2012077733A1 (ja) 2012-06-14

Family

ID=46207218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078360 WO2012077733A1 (ja) 2010-12-09 2011-12-01 大気接合用ろう材、接合体、および、集電材料

Country Status (6)

Country Link
US (1) US20130260285A1 (ja)
EP (1) EP2650077A4 (ja)
JP (1) JP5645307B2 (ja)
KR (1) KR20130136505A (ja)
CN (1) CN103249520B (ja)
WO (1) WO2012077733A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI2644312T1 (sl) 2012-03-28 2019-01-31 Alfa Laval Corporate Ab Nov koncept trdega spajkanja
JP6396889B2 (ja) * 2013-03-19 2018-09-26 日本碍子株式会社 接合体及びその製造方法
US10293704B2 (en) 2014-04-08 2019-05-21 StoreDot Ltd. Electric vehicles with adaptive fast-charging, utilizing supercapacitor-emulating batteries
US10549650B2 (en) 2014-04-08 2020-02-04 StoreDot Ltd. Internally adjustable modular single battery systems for power systems
US10110036B2 (en) 2016-12-15 2018-10-23 StoreDot Ltd. Supercapacitor-emulating fast-charging batteries and devices
US11128152B2 (en) 2014-04-08 2021-09-21 StoreDot Ltd. Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection
US10199646B2 (en) 2014-07-30 2019-02-05 StoreDot Ltd. Anodes for lithium-ion devices
US9472804B2 (en) 2014-11-18 2016-10-18 StoreDot Ltd. Anodes comprising germanium for lithium-ion devices
US10916811B2 (en) 2016-04-07 2021-02-09 StoreDot Ltd. Semi-solid electrolytes with flexible particle coatings
US10367191B2 (en) 2016-04-07 2019-07-30 StoreDot Ltd. Tin silicon anode active material
US10818919B2 (en) 2016-04-07 2020-10-27 StoreDot Ltd. Polymer coatings and anode material pre-lithiation
US10367192B2 (en) 2016-04-07 2019-07-30 StoreDot Ltd. Aluminum anode active material
US11205796B2 (en) 2016-04-07 2021-12-21 StoreDot Ltd. Electrolyte additives in lithium-ion batteries
US10355271B2 (en) 2016-04-07 2019-07-16 StoreDot Ltd. Lithium borates and phosphates coatings
JP2019511103A (ja) 2016-04-07 2019-04-18 ストアドット リミテッド リチウムイオンセルおよびそのためのアノード
US10454101B2 (en) 2017-01-25 2019-10-22 StoreDot Ltd. Composite anode material made of core-shell particles
US11594757B2 (en) 2016-04-07 2023-02-28 StoreDot Ltd. Partly immobilized ionic liquid electrolyte additives for lithium ion batteries
US10680289B2 (en) 2016-04-07 2020-06-09 StoreDot Ltd. Buffering zone for preventing lithium metallization on the anode of lithium ion batteries
US10199677B2 (en) 2016-04-07 2019-02-05 StoreDot Ltd. Electrolytes for lithium ion batteries
CN109414777B (zh) * 2016-07-08 2022-04-01 Abb瑞士股份有限公司 合金作为硬焊合金的用途、电开关硬焊接头、电开关和制造电开关硬焊接头的方法
TWI634220B (zh) * 2017-08-15 2018-09-01 行政院原子能委員會核能硏究所 硬焊材料組成物及其製造方法
KR102144684B1 (ko) 2018-10-23 2020-08-14 이철규 브레이징용 납재 및 그 제조 방법과 이를 이용한 접합물 브레이징 방법
US10608463B1 (en) 2019-01-23 2020-03-31 StoreDot Ltd. Direct charging of battery cell stacks
US11831012B2 (en) 2019-04-25 2023-11-28 StoreDot Ltd. Passivated silicon-based anode material particles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865597A (ja) * 1981-10-15 1983-04-19 Mitsubishi Metal Corp ろう付け部表面性状のすぐれたAg合金ろう材
JPH04270094A (ja) * 1991-01-07 1992-09-25 Daido Steel Co Ltd ろう付用材料
JP2007331026A (ja) * 2006-06-19 2007-12-27 Nhk Spring Co Ltd 接合体及び接合用ろう材
JP2008202097A (ja) 2007-02-20 2008-09-04 Japan Fine Ceramics Center 導電性シール材料及びガスシール構造を有する構造体
JP4486820B2 (ja) 2002-01-11 2010-06-23 バッテル メモリアル インスティチュート セラミックおよび金属部材の接合方法
JP2010207863A (ja) * 2009-03-10 2010-09-24 Nhk Spring Co Ltd 大気接合用ろう材及び接合体
JP2010531232A (ja) 2007-06-11 2010-09-24 バッテル メモリアル インスティチュート 改質大気ろう材における拡散障壁
JP2010234401A (ja) * 2009-03-31 2010-10-21 Dowa Metaltech Kk ろう材、ろう材の接合方法及びろう材接合基板

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB534797A (en) * 1939-12-30 1941-03-18 Mallory & Co Inc P R Improvements in and to electrical make-and-break contacts
JPS4834495B1 (ja) * 1970-12-28 1973-10-22
JPS546586B2 (ja) * 1971-09-01 1979-03-29
JPS57171599A (en) * 1981-04-13 1982-10-22 Mitsubishi Metal Corp Low melting point cu-ag system alloy solder with excellent wetting property
JPS5918504A (ja) * 1982-07-22 1984-01-30 三菱電機株式会社 電気接点材料
US4447392A (en) * 1982-12-10 1984-05-08 Gte Products Corporation Ductile silver based brazing alloys containing a reactive metal and manganese or germanium or mixtures thereof
JPS60187647A (ja) * 1984-03-05 1985-09-25 Tanaka Kikinzoku Kogyo Kk 摺動接点材料
JPS6224983A (ja) * 1985-07-25 1987-02-02 松下電工株式会社 電動工具
JPS6224893A (ja) * 1986-04-03 1987-02-02 Mitsubishi Metal Corp ぬれ性の良好な低融点Cu−Ag系合金ろう材
JPS635895A (ja) * 1986-06-26 1988-01-11 Showa Denko Kk 接着ペ−スト
US5340658A (en) * 1991-08-21 1994-08-23 Ishihara Chemical Co., Ltd. Composites made of carbon-based and metallic materials
EP0752014B1 (en) * 1993-11-15 2001-11-21 Apecs Investment Castings Pty. ltd. Silver alloy compositions
US5976695A (en) * 1996-10-02 1999-11-02 Westaim Technologies, Inc. Thermally sprayable powder materials having an alloyed metal phase and a solid lubricant ceramic phase and abradable seal assemblies manufactured therefrom
US7074350B2 (en) * 2001-03-23 2006-07-11 Citizen Watch Co., Ltd. Brazing filler metal
GB2408269B (en) * 2003-11-19 2006-02-22 Paul Gilbert Cole Silver solder or brazing alloys and their use
JP2007518565A (ja) * 2004-11-18 2007-07-12 ミドルセックス シルバー カンパニー リミテッド 銀はんだ、あるいは鑞付け用合金とそれらの使用
JP5623783B2 (ja) * 2010-05-13 2014-11-12 日本発條株式会社 大気接合用ろう材、接合体、および、集電材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865597A (ja) * 1981-10-15 1983-04-19 Mitsubishi Metal Corp ろう付け部表面性状のすぐれたAg合金ろう材
JPH04270094A (ja) * 1991-01-07 1992-09-25 Daido Steel Co Ltd ろう付用材料
JP4486820B2 (ja) 2002-01-11 2010-06-23 バッテル メモリアル インスティチュート セラミックおよび金属部材の接合方法
JP2007331026A (ja) * 2006-06-19 2007-12-27 Nhk Spring Co Ltd 接合体及び接合用ろう材
JP2008202097A (ja) 2007-02-20 2008-09-04 Japan Fine Ceramics Center 導電性シール材料及びガスシール構造を有する構造体
JP2010531232A (ja) 2007-06-11 2010-09-24 バッテル メモリアル インスティチュート 改質大気ろう材における拡散障壁
JP2010207863A (ja) * 2009-03-10 2010-09-24 Nhk Spring Co Ltd 大気接合用ろう材及び接合体
JP2010234401A (ja) * 2009-03-31 2010-10-21 Dowa Metaltech Kk ろう材、ろう材の接合方法及びろう材接合基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650077A4 *

Also Published As

Publication number Publication date
JP2012121055A (ja) 2012-06-28
KR20130136505A (ko) 2013-12-12
EP2650077A4 (en) 2015-10-21
CN103249520A (zh) 2013-08-14
US20130260285A1 (en) 2013-10-03
JP5645307B2 (ja) 2014-12-24
CN103249520B (zh) 2016-01-20
EP2650077A1 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5645307B2 (ja) 大気接合用ろう材、接合体、および、集電材料
JP5623783B2 (ja) 大気接合用ろう材、接合体、および、集電材料
JP5204958B2 (ja) 接合体
EP2666581B1 (en) Braze compositions, and related devices
CA2679846C (en) Metal-ceramic composite air braze with ceramic particulate
JP5268717B2 (ja) 大気接合用ろう材及び接合体
Tucker et al. A braze system for sealing metal-supported solid oxide fuel cells
WO2009135387A1 (zh) 陶瓷颗粒增强复合钎料
Raju et al. Joining of metal-ceramic using reactive air brazing for oxygen transport membrane applications
US9112193B2 (en) Sealing arrangement for high-temperature fuel cell stack
US8511535B1 (en) Innovative braze and brazing process for hermetic sealing between ceramic and metal components in a high-temperature oxidizing or reducing atmosphere
JP2006327888A (ja) セラミックスと金属のろう付け構造体
Pönicke et al. Aging behavior of reactive air brazed seals for SOFC
US11724325B2 (en) Brazing methods using porous interlayers and related articles
Bobzin et al. Characterization of reactive air brazed ceramic/metal joints with unadapted thermal expansion behavior
Prevost et al. Microstructural Development and Mechanical Properties for Reactive Air Brazing of ZTA to Ni Alloys Using Ag CuO Braze Alloys
Darsell et al. High temperature strength of YSZ joints brazed with palladium silver copper oxide filler metals
EP3427889B1 (en) Air braze filler material for ceramic metallization and bonding, and method for metallization and bonding of ceramic surfaces
Poenicke et al. Mechanical properties of reactive air brazed ceramic-metal joints for SOFC
JP5449294B2 (ja) 大気接合用ろう材および接合体
Yoo et al. Microstructure and bond strength of Ni–Cr steel/Al2O3 joints brazed with Ag–Cu–Zr alloys containing Sn or Al
Kim et al. Wetting and mechanical characteristics of the reactive air braze for yttria‐stabilized zirconia (YSZ) joining
WO1993020017A1 (en) Jointed body of heat-resistant alloy and method of jointing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13991504

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011846727

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011846727

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137017785

Country of ref document: KR

Kind code of ref document: A