WO2012077457A1 - 板状物の搬送量検出装置及び板状物の切断装置並びに板状物の搬送量検出方法及び板状物の切線加工装置並びに板状物の切線加工方法 - Google Patents

板状物の搬送量検出装置及び板状物の切断装置並びに板状物の搬送量検出方法及び板状物の切線加工装置並びに板状物の切線加工方法 Download PDF

Info

Publication number
WO2012077457A1
WO2012077457A1 PCT/JP2011/075985 JP2011075985W WO2012077457A1 WO 2012077457 A1 WO2012077457 A1 WO 2012077457A1 JP 2011075985 W JP2011075985 W JP 2011075985W WO 2012077457 A1 WO2012077457 A1 WO 2012077457A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
cutting
roller
amount
cutting line
Prior art date
Application number
PCT/JP2011/075985
Other languages
English (en)
French (fr)
Inventor
稔 池野田
正直 中西
静則 金子
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN2011800588677A priority Critical patent/CN103249687A/zh
Priority to KR1020137014474A priority patent/KR20130126631A/ko
Priority to JP2012547753A priority patent/JPWO2012077457A1/ja
Publication of WO2012077457A1 publication Critical patent/WO2012077457A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/0235Ribbons
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/06Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness specially adapted for measuring length or width of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
    • G01B5/04Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving

Definitions

  • the present invention relates to a plate-shaped material conveyance amount detection device, a plate-shaped material cutting device, a plate-shaped material conveyance amount detection method, a plate-shaped material cutting device, and a plate-shaped material cutting method.
  • a manufacturing method called a float method disclosed in Patent Document 1 is known.
  • This float method is a manufacturing method in which molten glass is poured onto tin in a molten tin bath, the molten glass is spread on tin to form a glass ribbon, and finally formed into a strip-shaped plate glass having a predetermined plate thickness.
  • the strip-shaped plate glass formed in the molten tin bath is drawn out to a slow cooling unit installed on the downstream side of the molten tin bath, cooled to a predetermined temperature here, and then transferred to a folding device by a conveying means such as a roller conveyor. It is continuously conveyed and cut and folded into a glass plate of a desired size.
  • the cut and folded glass plates are conveyed to a predetermined storage unit by a roller conveyor, where they are stored one by one on a pallet or the like, and sampled as a product or an intermediate product.
  • the cutting and folding device is composed of a cutting device installed on the upstream side in the conveying direction of the belt-like plate glass and a folding device installed on the downstream side thereof.
  • the severing device is composed of a vertical slicing machine installed on the upstream side in the transport direction of the belt-shaped plate glass and a horizontal slicing machine installed on the downstream side in the transporting direction.
  • a longitudinal cut line parallel to the conveyance direction of the plate glass is processed into a strip-shaped plate glass
  • a transverse cut line perpendicular to the conveyance direction of the strip-shaped plate glass is processed into a strip-shaped plate glass on the downstream side by a cutter of a horizontal cutting line processing machine.
  • the slicing process is performed for the purpose of collecting a plurality of glass plates having different sizes from a strip-shaped plate glass that has been gradually cooled in a slow cooling section at a time without waste.
  • a plurality of vertical slicing machines are installed side by side, and a horizontal slicing machine is installed on the downstream side of the slicing machine, and the severing operation of the cutter of each severing machine is started / stopped.
  • a cutting line for picking a plurality of glass plates of a desired size from the belt-shaped plate glass being conveyed is processed into a belt-shaped plate glass.
  • a conveyance speed detection device there is known a conveyance amount detection device that detects a belt plate glass conveyance speed based on a rotation amount of the roller that contacts a belt plate glass being conveyed and rotates following the conveyance of the belt plate glass. It has been.
  • This transport amount detection device detects the rotation amount of a roller by an encoder, and counts the number of pulses output from the encoder by a pulse counter. Then, when the counted number of pulses reaches a predetermined number of pulses stored in advance as the cutting line processing start time, the control unit controls the cutter driving unit so as to start the cutting line processing by the cutter.
  • the roller is composed of a metal roller body and a rubber or resin sheet lining the outer peripheral surface of the roller body. This sheet serves as a cushioning material so that the surface of the belt-like plate glass is not damaged due to the contact of the roller.
  • Patent Document 2 discloses a film (plate-like) transport amount detection device that is not a belt-like plate glass.
  • This transport amount detection device is composed of a free roller that rotates following the transport of a film, and an encoder that detects the rotation of the free roller.
  • the roller thermally expands and contracts according to the change in the ambient temperature, and the roller diameter and angular velocity ⁇ change. For this reason, since the rotation amount of the roller fluctuates, there is a problem that it is impossible to accurately detect the conveyance amount of the plate-like object.
  • the present invention has been made in view of such circumstances, and a plate-shaped material conveyance amount detection device, a plate-shaped material cutting device, and a plate-shaped material conveyance that can cut a plate-shaped material with high dimensional accuracy. It is an object of the present invention to provide a quantity detection method, a plate-like material cutting device, and a plate-like material cutting method.
  • the present invention provides a roller that rotates in contact with a conveyed plate-like object, a signal generating means that generates a signal corresponding to the amount of rotation of the roller, and the above-described signal based on the signal.
  • Calculation means for calculating the transport amount of the plate-like object cutting line processing means for traveling along the guide frame to process a cut line on the plate-like object, and two adjacent cutting lines of the plate-like object subjected to the cut line processing
  • Measuring means for measuring an interval of the interval a reference interval of the interval is stored, the reference interval is compared with the interval measured by the measuring unit, and a change in the interval measured by the measuring unit with respect to the reference interval
  • a correction control unit that calculates a correction value corresponding to the amount of change and corrects the conveyance amount of the plate-like material by the calculation unit based on the correction value.
  • a quantity detection device is provided.
  • the present invention makes a roller contact with a plate-like object to be conveyed, rotates the roller, and conveys the plate-like object based on a signal generated according to the rotation amount of the roller. Detects the amount, measures the interval between two adjacent cut lines of the plate-like object whose cut line has been processed by the cutting line processing means, and calculates a correction value based on the measured change amount of the interval with respect to the reference interval And the conveyance amount detection method of the plate-shaped object which correct
  • the correction control unit when information indicating the interval between the two cut lines measured by the measuring means is output to the correction control unit, the correction control unit compares the interval with a pre-stored reference interval. Then, a change amount of the interval measured by the measuring unit with respect to the reference interval is obtained. Then, the correction control unit calculates a correction value corresponding to the change amount, and corrects the transport amount of the plate-like object by the calculation unit based on the correction value.
  • the present invention provides a roller that rotates in contact with a conveyed plate-like object, a signal generating means that generates a signal corresponding to the amount of rotation of the roller, and the above-described signal based on the signal.
  • An arithmetic means for calculating the transport amount of the plate-like object, a cutting line processing means for traveling along the guide frame and processing a cut line on the plate-like object, and a folding member for breaking the plate-like object along the cut line.
  • the length is compared to obtain a change amount of the length measured by the measuring means with respect to the reference length, a correction value corresponding to the change amount is calculated, and based on the correction value, the calculation means Correct the transport amount of the plate Providing the conveyance amount detecting apparatus of the platelet with a correction control unit.
  • the present invention makes a roller contact with a plate-like object to be conveyed, rotates the roller, and conveys the plate-like object based on a signal generated according to the rotation amount of the roller.
  • the amount is detected, the cutting line is processed into the plate-like object by the cutting line processing unit, the plate-like object is folded along the cutting line by the folding unit, and the cutting line of the folded plate-like object is
  • the length in the orthogonal direction is measured by the measuring means, a correction value is calculated based on the amount of change of the length measured by the measuring means with respect to the reference length of the length, and the plate is calculated based on the correction value.
  • a method for detecting a conveyance amount of a plate-like object that corrects the conveyance amount of the object.
  • the correction control unit when information indicating the length of the plate-like object measured in the direction orthogonal to the cutting line is output to the correction control unit, stores the length in advance. The amount of change in the length measured by the measuring unit with respect to the reference length is obtained by comparing with the reference length. Then, the correction control unit calculates a correction value corresponding to the change amount, and corrects the transport amount of the plate-like object by the calculation unit based on the correction value.
  • the present invention provides a plate-like material cutting device provided with the plate-shaped material conveyance amount detection device of the present invention.
  • the plate-like material cutting device of the present invention can cut a plate-like material with high dimensional accuracy.
  • the present invention travels along a guide frame, a roller that rotates in contact with a conveyed plate-like object, a signal generating means that generates a signal corresponding to the amount of rotation of the roller, and the like.
  • a cutting line processing means for processing a cutting line on the plate-like object, a control means for controlling a cutting line start time of the plate-like object by the cutting line processing means based on the signal, and the plate-like object subjected to the cutting process.
  • Measuring means for measuring an interval between two adjacent cut lines a reference interval of the interval is stored, the reference interval is compared with the interval measured by the measuring means, and the measuring means for the reference interval
  • a correction control unit that calculates a change amount of the interval measured by the step, calculates a correction value corresponding to the change amount, and corrects the severing start time by the control means based on the correction value.
  • Board Providing tangential machining device of the object.
  • the present invention makes a roller contact with a plate-like object to be conveyed and rotates the roller, and the plate-like material by the cutting line processing means based on a signal corresponding to the rotation amount of the roller. While controlling the cutting start timing of the object, the interval between the two adjacent cutting lines of the plate-shaped object that has been cut is measured by the measuring means, and the interval measured by the measuring means relative to the reference interval of the interval is measured.
  • a sheet cutting method for a plate-like object that obtains a change amount, calculates a correction value corresponding to the change amount, and corrects the cutting start timing based on the correction value.
  • the correction control unit when information indicating the interval between the two cut lines measured by the measuring means is output to the correction control unit, the correction control unit compares the interval with a pre-stored reference interval. Then, a change amount of the interval measured by the measuring unit with respect to the reference interval is obtained. Then, the correction control unit calculates a correction value corresponding to the amount of change, and corrects the slicing start time by the slicing means based on this correction value.
  • the present invention travels along a guide frame, a roller that rotates in contact with a conveyed plate-like object, a signal generating means that generates a signal corresponding to the amount of rotation of the roller, and the like.
  • Control means for controlling the processing start time, measuring means for measuring the length of the folded plate-like object in a direction perpendicular to the cut line, and a reference length of the length are stored, and the reference length and Comparing the length measured by the measuring means to obtain a change amount of the length measured by the measuring means with respect to the reference length, calculating a correction value corresponding to the change amount, the correction value Based on said control means
  • the present invention makes a roller contact with a plate-like object to be conveyed and rotates the roller, and the plate-like material by the cutting line processing means based on a signal corresponding to the rotation amount of the roller.
  • the cutting line processing start time of the object is controlled, and the length in the direction perpendicular to the cutting line of the plate-like object that is folded along the cutting line is measured by a measuring unit, and the length relative to the reference length is measured.
  • a cutting method for cutting a plate-like object by calculating a correction value based on a change amount of a length measured by a measuring unit and correcting the cutting line start time based on the correction value.
  • the correction control unit when information indicating the length of the plate-like object measured in the direction orthogonal to the cutting line is output to the correction control unit, stores the length in advance. The amount of change in the length measured by the measuring unit with respect to the reference length is obtained by comparing with the reference length. Then, the correction control unit calculates a correction value corresponding to the amount of change, and corrects the slicing start time by the slicing means based on this correction value.
  • the plate-shaped material conveyance amount detection device and the plate-shaped material conveyance amount detection method of the present invention the plate-shaped material conveyance amount can be accurately detected.
  • the plate-like material cutting device of the present invention can cut a plate-like material with high dimensional accuracy.
  • the plate-like material cutting device and the plate-like material cutting method of the present invention the plate-like material can be cut with high dimensional accuracy.
  • FIG. 1 is a perspective view of a slicing apparatus to which the conveyance amount detection apparatus according to the first embodiment is applied.
  • FIG. 2 is a plan view of the slicing apparatus shown in FIG.
  • FIG. 3 is a diagram used for explaining the cutting method by different size cutting.
  • FIG. 4 is a block diagram illustrating a configuration of the slicing apparatus according to the embodiment.
  • FIG. 5 is a block diagram illustrating a configuration of the transport amount detection device according to the first embodiment.
  • FIG. 6 is an explanatory diagram showing a cut line imaged by the electronic camera.
  • FIG. 7 is a perspective view of a slicing apparatus to which the transport amount detection device according to the second embodiment is applied.
  • FIG. 8 is a plan view of the slicing apparatus shown in FIG.
  • FIG. 9 is a perspective view of a slicing apparatus to which the conveyance amount detection apparatus according to the third embodiment is applied.
  • FIG. 10 is a perspective view of a slic
  • FIG. 1 is a perspective view of an apparatus 10 for cutting a strip-shaped glass sheet G according to an embodiment to which the transport amount detection device 100 for the strip-shaped glass sheet G according to the first embodiment is applied.
  • FIG. 2 is a plan view of the slicing apparatus 10 shown in FIG.
  • the cutting line processing apparatus 10 shown in FIGS. 1 and 2 is continuously transported by a roller conveyor 12 from a strip-shaped glass sheet manufacturing apparatus (not shown) by a float method installed on the upstream side in the transport direction of the strip-shaped glass sheet G. It is a slicing apparatus corresponding to a slicing method called so-called different size slicing, which processes a longitudinal slicing line and a horizontal slicing line on the belt-shaped plate glass G.
  • each cutter of the slicing device 10 is controlled based on the transport amount of the belt-shaped plate glass G detected by the transport amount detection device 100. This will be described later.
  • the main purpose of installing the transport amount detection device 100 is to improve the dimensional accuracy in the transport direction of the strip-shaped glass sheet G of one glass plate cut and folded from the strip-shaped glass sheet G. For this reason, the transport amount of the belt-shaped plate glass G is accurately detected by the transport amount detection device 100.
  • a glass folding device (not shown) is installed on the downstream side in the conveying direction of the strip-shaped plate glass G of the slicing apparatus 10, and the glass plate folded by the glass folding device is sized to the subsequent stage of the glass folding device.
  • a roller conveyor (not shown) for sorting and transporting and picking up a plate is provided in the corresponding storage section.
  • the cutting device 10 and the glass folding device constitute a plate-like body cutting device.
  • the slicing apparatus 10 the belt-shaped plate glass manufacturing device, the roller conveyor, the glass folding device, the roller conveyor that sorts and conveys the glass plate after the folding and splitting into a container, and the belt shape using them.
  • the manufacturing apparatus of plate glass is as the well-known technique.
  • the band-shaped plate glass G of the embodiment may be used for a glass substrate for FPD, and is used for a glass plate for solar cells, a glass plate for lighting, a glass plate for architecture, or a glass plate for automobile windows. It may be done.
  • the target plate-like object is not limited to the belt-like plate glass G, and may be a rectangular glass plate.
  • the material of the plate-like material is not limited, and the plate-like material conveyance amount detection device 100 according to the embodiment can be used as long as it is a plate-like material made of resin or metal and continuously conveyed. Can be applied.
  • the manufacturing apparatus of the strip-shaped plate glass G is not limited to the manufacturing apparatus by a float process, and other manufacturing apparatuses, such as a fusion method, may be sufficient.
  • the cutting apparatus 10 for cutting different sizes is not limited to cutting different sizes. That is, if it is a slicing apparatus capable of improving the dimensional accuracy of the glass plate in the conveyance direction of the strip glass G, a slicing apparatus that processes only the so-called horizontal slicing line into the strip slab glass G (in FIG. 1, the horizontal slicing machine 16 It is also applicable to a cutting line processing apparatus provided only with Therefore, the slicing apparatus 10 that performs different size cutting is merely an example.
  • the slicing device 10 is composed of a vertical slicing machine 14 installed on the upstream side in the transport direction of the belt-shaped plate glass G, and a horizontal slicing machine 16 installed on the downstream side thereof.
  • a vertical cutting line parallel to the transport direction of the strip glass sheet G is processed into the strip glass sheet G by the vertical cutting machine 14, and a horizontal cutting line 16 perpendicular to the transport direction of the strip glass sheet is processed downstream by the horizontal cutting machine 16. To be processed.
  • the vertical cutting line processing machine 14 includes a plurality of cutters 18, 18... Installed in the width direction of the belt-shaped plate glass G. These cutters 18, 18... Are moved forward and backward by a known forward / backward moving means with respect to the belt-like plate glass G being conveyed by the roller conveyor 12, and are pushed against the belt-like plate glass G by a predetermined pressing force. . Thereby, a longitudinal cut line parallel to the transport direction of the belt-shaped plate glass G is processed into the belt-shaped plate glass G.
  • the transverse line processing machine 16 includes a single cutter 20, and the cutter 20 is moved obliquely with respect to the transport direction of the strip glass sheet G in synchronization with the transport speed of the strip glass sheet G.
  • a transverse line in a direction orthogonal to the conveying direction of the belt-like plate glass G is processed into the belt-like plate glass G.
  • the arrow A in FIG. 1 and FIG. 2 has shown the conveyance direction of the strip
  • vertical cutting lines CV1 to CV5 and horizontal cutting lines CH6 to 11 for picking up two types of rectangular glass plates G1 and 2 having different sizes from the belt-shaped plate glass G being transported are strip-shaped in transport.
  • the size of the glass plate to plate is not limited to two types, Three or more types may be sufficient.
  • an arrow A in FIG. 3 indicates a transport direction of the belt-shaped plate glass G.
  • the vertical cutting lines CV1 and CV2 shown in FIG. 3 are processed in order to cut the edge glass G5 with which the edge roller abuts in the molten tin bath of the belt-shaped sheet glass manufacturing apparatus from the band-shaped sheet glass as a product. It is processed by two cutters 18, 18 arranged on both sides of the cutters 18, 18. The two cutters 18 and 18 are always brought into contact with the belt-like plate glass G in a state where a predetermined pressing force is applied, and thereby the cut-off depth favorable for folding is obtained on the belt-like plate glass G that is continuously conveyed.
  • the vertical cutting lines CV1 and CV2 are continuously processed.
  • the vertical cutting lines CV3, 4 are processed to plate the glass plates G1, G1,..., And the two cutters 18 arranged on the inner side among the cutters 18, 18. 18 is processed.
  • the two cutters 18 and 18 are moved forward and backward (up and down) with respect to the belt-like plate glass G being conveyed in synchronization with the conveyance speed of the belt-like plate glass G by the advancing / retreating movement means. That is, the two cutters 18 and 18 for processing the vertical cutting lines CV3 and 4 are moved forward toward the cutting line processing start points P1 and P1 and are brought into contact with the belt-like plate glass G, and then, the predetermined cutters are applied to the belt-like plate glass G.
  • the vertical cutting line CV5 is processed in order to sample a glass plate G2 having a size larger than the glass plate G1, and the cutter 18 disposed in the center of the cutters 18, 18. Processed. Similarly, the cutter 18 is also moved forward and backward (up and down) with respect to the belt-like plate glass G being conveyed in synchronization with the conveyance speed of the belt-like plate glass G by the advancing / retreating movement means. That is, the cutter 18 that processes the vertical cutting line CV5 is moved forward toward the cutting line starting point P3 and is brought into contact with the belt-like plate glass G, and then applied with a predetermined pressing force applied to the belt-like plate glass G.
  • the advancement start time (cut line processing start time) and retreat start time of the three cutters 18 for processing the vertical cutting lines CV3 to CV5 are controlled by the transport amount detection device 100 (see FIG. 1). This will be described later.
  • the horizontal cutting lines CH6 to 9 are processed to make the glass plate G1, and are sequentially processed one by one by the cutter 20 of the horizontal cutting line processing machine 16.
  • the motor 64 (see FIG. 4) that moves the cutter 20 in a skew manner is controlled in motion by the control device 56 in synchronization with the transport speed of the belt-like plate glass G, whereby the belt-like plate glass G is transported.
  • the transverse lines CH6 to 9 in the direction orthogonal to the direction are processed into the strip-shaped glass sheet G.
  • the cutter 20 is provided so as to be movable up and down with respect to the belt-like plate glass G by an actuator such as an air cylinder.
  • the cutter 20 starts to descend in advance at a position a predetermined amount before the cutting line processing start point P5 in order to process the horizontal cutting lines CH6 to 9 having a good cutting depth. Thereafter, the cutter 20 is moved obliquely on the belt-like plate glass G along the guide frame 21 by the driving force of the motor 64. As a result, the transverse lines CH6 to CH9 are processed. Thereafter, the cutter 20 is moved upward from the strip-shaped plate glass G by the actuator after passing through a predetermined amount of the cutting line finishing point P6, and then moved to the original cutting line standby position (the position indicated by the solid line in FIGS. 1 and 2). The motor 64 is moved back.
  • the horizontal cutting lines CH10 and 11 shown in FIG. 3 are processed to sample the glass plate G2, and are processed by the cutter 20 of the horizontal cutting line processing machine 16. Since the operation of the cutter 20 is the same as the operation for processing the horizontal cross lines CH6 to CH9, description thereof will be omitted.
  • the skew movement start time (cut line processing start time) of the cutter 20 for processing the horizontal cutting lines CH6 to 11 is controlled by the transport amount detection device 100 (see FIG. 1). This will be described later.
  • the vertical cutting line machine 14 In the cutting process for cutting different sizes, in order to sample as many different glass plates as possible from the strip-shaped glass sheet G without waste, the vertical cutting line machine 14 is used according to the sampling schedule of each specified size glass plate. It is desired to reduce the distance between the ends of the vertical cutting lines CV3 to 5 and the horizontal cutting lines CH6 to 11 by the horizontal cutting line machine 16 as much as possible. Therefore, in order to reduce the distance, the cutting line cutting operation of the cutter 18 of the vertical cutting line processing machine 14 that processes the vertical cutting lines CV3 to 5 and the cutter 20 of the horizontal cutting line processing machine 16 that processes the horizontal cutting lines CH6 to 11 is started.
  • the stop / control that is, the forward / backward movement control of the cutters 18 and 20 with respect to the belt-like plate glass G being transported, must be finely performed, which is executed by the transport amount detection device 100 (see FIG. 1).
  • the forward / backward moving means of the cutter 18 includes a servo motor 24 as shown in FIG. 4, and the servo motor 24 and the cutter 18 are moved to a beam portion (guide frame) 26 in FIG. It is attached with a predetermined interval.
  • the beam portion 26 is provided across the roller conveyor 12 and in a direction orthogonal to the conveying direction of the belt-like plate glass G.
  • the ball screw device as the feeding means is provided in the hollow beam portion 26, and when this ball screw device is driven, the cutter 18 advances and retreats in a horizontal slit 28 formed in the beam portion 26. It is slid through the moving means. Thereby, the position of the cutter 18 in the direction orthogonal to the conveyance direction of the strip-shaped plate glass G is adjusted.
  • Servo motor 24 causes cutter 18 to move downward to generate a pressing force on strip-shaped plate glass G in order to process a vertical cut line on strip-shaped plate glass G.
  • the torque of the servo motor 24 is controlled by a control device 56 via a servo amplifier 54 shown in FIG. Therefore, by controlling the torque of the servo motor 24 by the control device 56, the pressing force of the cutter 18 against the belt-like plate glass G is set.
  • the control device 56 also includes a signal indicating a current value applied to the servomotor 24 (a signal indicating the torque of the servomotor 24) together with data applied from the current detector 60, as well as the rotational position or rotational speed of the servomotor 24. Is added from a pulse generator (PG) 62 via a servo amplifier 54.
  • PG pulse generator
  • the control device 56 can detect the rotational position of the servo motor 24 by counting the pulse signal from the pulse generator (PG) 62, and can count the pulse signal applied within a predetermined time, The rotational speed of the servo motor 24 can be detected. Further, the control device 56 sends a torque command signal for controlling the torque of the servo motor 24 to the servo amplifier 54 based on the signal indicating the torque from the current detector 60 or the pulse signal from the pulse generator (PG) 62. Output. The servo amplifier 54 controls the torque of the servo motor 24 based on the torque command signal.
  • control device 56 controls the advance / retreat movement timing of the cutter 18 by the servo motor 24 based on the conveyance amount of the belt-like plate glass G obtained by the conveyance amount detection device 100, and the cutting line start timing of the cutter 20 by the motor 64. To control. As a result, the control device 56 causes the cutters 18 and 20 to perform cutting processing of different sizes.
  • the slicing device 10 is applied to the belt-like sheet glass G being conveyed by the roller conveyor 12, and the vertical slicing lines CV 3 to CV 3 to 5 parallel to the conveying direction of the belt-shaped slab glass G by the cutters 18, 18. Will be omitted). Then, as a means for moving the cutter 18 forward and backward with respect to the belt-shaped plate glass G, a servo motor 24 having high responsiveness is used as a means for moving the cutter 18 forward and backward with respect to the belt-shaped plate glass G. By controlling the torque of the servo motor 24 by the control device 56, the pressing force of the cutter 18 against the belt-shaped plate glass G can be reduced.
  • the vertical cut lines CV3 to CV5 are processed in the belt-like plate glass G by control.
  • the transport amount detection device 100 includes a roller 102 that rotates in contact with the belt-shaped plate glass G that is being transported.
  • electronic cameras (measurement means) 104A and 104B that individually image two adjacent cut lines 105A and 105B of the cut strip-shaped sheet glass G are provided.
  • an encoder (signal generating means) 106 that generates a pulse signal according to the rotation amount of the roller 102 is provided.
  • a pulse counter 112 that counts pulse signals generated from the encoder 106 and a control device (calculation means, correction control unit) 56 that calculates the transport amount of the belt-like sheet glass G based on the number of pulses counted by the pulse counter 112. It has.
  • the storage unit (not shown) of the control device 56 stores a reference interval (reference interval) that is a processing interval between the two cutting lines 105A and 105B.
  • This reference interval is equal to the length in the direction perpendicular to the cut lines 105A and 105B of one glass plate cut and folded from the belt-like plate glass G, and corresponds to a set value (Y) described later.
  • the electronic camera 104A is installed on the downstream side in the transport direction of the strip-shaped plate glass G
  • the electronic camera 104B is installed on the upstream side in the transport direction of the strip-shaped plate glass G.
  • the electronic cameras 104A and 104B are controlled by the control device 56 so that the two cut lines 105A and 105B are simultaneously imaged when the two adjacent cut lines 105A and 105B pass below the electronic cameras 104A and 104B. ing.
  • An image signal including two adjacent cut lines 105A and 105B captured by the electronic cameras 104A and 104B is binarized by the image processing unit 114 shown in FIG. 5, and two cut lines 105A and 105B of the entire image are displayed. Only images are extracted.
  • the electronic cameras 104A and 104B are installed so that the interval between the electronic cameras 104A and 104B is equal to the set value (Y) described above.
  • the image of the cut line 105A captured by the electronic camera 104A is displayed in the image area 116A of the electronic camera 104A. Further, an image of the cut line 105B captured by the electronic camera 104B is displayed in the image area 116B of the electronic camera 104B.
  • the electronic cameras 104A and 104B are set so that the distance (L) between the center lines 117A and 117B of the image areas 116A and 116B is equal to the set value (Y).
  • the electronic cameras 104A and 104B are supported by a support member 118 made of a low thermal expansion material such as invar, super invar, stainless invar, or aluminum, so that the environmental temperature changes. However, it is installed so that the distance (L) between the electronic cameras 104A and 104B does not fluctuate.
  • the image signals of the two cut lines 105A and 105B that have been binarized by the image processing unit 114 in FIG. 5 are output to the control device 56.
  • the control device 56 stores dimensions corresponding to one pixel of the electronic cameras 104A and 104B.
  • the control device 56 counts the pixels from the center line 117A of the image area 116A shown in FIG. 6 to the image of the cut line 105A, and counts the pixels from the center line 117B of the image area 116B to the image of the cut line 105B. Then, the interval between two adjacent cut lines 105A and 105B is calculated. This interval is an actual measurement value.
  • control device 56 compares the measured value with the set value (Y) described above to obtain a change amount of the actually measured value with respect to the set value (Y), and calculates a correction value corresponding to the change amount, Based on the correction value, the transport amount of the belt-shaped plate glass G is corrected.
  • the conveyance amount detection apparatus 100 even when the shape of the roller 102 changes, the conveyance amount of the strip
  • the traveling distance p of the strip glass G per pulse can be calculated.
  • cut-line processing command interval: P the number of pulses necessary for issuing a cut-line processing command for processing a horizontal cut line on the belt-like plate glass G being transported
  • the measured value of the diameter D of the roller 102 in operation and the design value of the diameter D ′ of the roller 102 do not completely coincide with each other. Therefore, it is necessary to multiply the correction coefficient C and issue a cutting line processing start command. It is necessary to correct the correct number of pulses P in advance.
  • the number of pulses P in this case is calculated as follows when the reference correction coefficient is C1 and the normal correction coefficient is C2.
  • the new normal correction coefficient C2 ′ is obtained from the conveyance amount setting value L1 (Y: target value) of the belt-like plate glass G and the actual measurement value L2 of the interval between the two adjacent cut lines 105A and 105B obtained by the electronic cameras 104A and 104B. It can be calculated as follows.
  • New normal correction coefficient C2 ′ normal correction coefficient C2 ⁇ (conveyance amount setting value L1 of strip-shaped plate glass G1 / measured value L2 of the interval between two adjacent cut lines)
  • the measured value L2 of the interval between two adjacent cut lines differs from the transport amount setting value L1 with respect to the transport amount setting value L1 of the belt-shaped plate glass G, it is recognized that the diameter of the roller 102 has changed, and is described above.
  • the normal correction coefficient C2 is corrected.
  • the transport amount detection device 100 accurately detects the transport amount of the belt-shaped plate glass G even when the roller 102 that is in contact with the belt-shaped plate glass G via the sheet 110 thermally expands and contracts and the angular velocity ⁇ varies. As a result, the dimensional accuracy in the direction perpendicular to the cut lines 105A and 105B of the cut glass sheet is improved. In addition, since the cutting process start time of the cutter 18 and the retracting movement time of the cutter 18 are also controlled based on a signal indicating an accurate conveyance amount output from the control device 56, the vertical cutting line CV3 with high accuracy is applied to the belt-shaped plate glass G. ⁇ 5 can be processed.
  • the glass folding time of the glass folding apparatus (not shown) installed in the downstream of the cutting line processing apparatus 10 based on the conveyance amount information of the strip
  • FIG. . the belt-like plate glass G can be accurately broken along the vertical cutting lines CV3 to CV5 and the horizontal cutting lines CH6 to 11.
  • strip-like plate glass G can be cut with high dimensional accuracy.
  • the roller 102 includes a metal roller body 108 and a rubber or resin sheet 110 lining the outer peripheral surface of the roller body 108.
  • This sheet 110 serves as a cushioning material so that the surface of the belt-like plate glass G is not damaged by the roller 102 coming into contact therewith.
  • seat 110 adheres to the surface of the strip
  • the above embodiment is an apparatus that detects the conveyance amount of the belt-like sheet glass G by actually measuring the interval between two adjacent cutting lines 105A and 105B, and controls the cutting line processing start timing.
  • glass folding device (bend-breaking means) of a strip-shaped sheet glass G by 120, cut line 105A, the glass plate G a of cut line 105A which is split folded along 105B shown in FIG. 2,
  • a length L A (see FIGS. 7 and 8) in a direction orthogonal to 105B is obtained by the two electronic cameras 104A and 104B, and the length L A is compared with a set value (Y) to compare the strip-shaped plate glass G. May be detected, and the cutting start timing may be controlled. Even in this case, the same effect can be obtained.
  • the electronic camera 104A captures an edge portion 107A of the glass plate G A
  • the electronic camera 104B captures a side portion 107B of the glass plate G A.
  • Side portions 107A, corresponding to 107B intervals, cut line 105A of the glass plate G A, the method for calculating the direction of the length L A perpendicular to 105B are cut line 105A, which is the same as the distance calculation method 105B.
  • the detection of the conveyance amount of the belt-like plate glass G and the control of the cutting line start timing based on the distance between the side portions 107A and 107B are the same as those by the control device 56 shown in FIG.
  • FIG. 9 is a perspective view of the slicing apparatus 10 to which the conveyance amount detection apparatus according to the third embodiment is applied.
  • the conveyance amount detection apparatus shown in FIG. 9 captures the corners C1 and C2 at both ends of the cutting line 105A with the two cameras 104A1 and 104A2, and the corners C3 and C4 at both ends of the cutting line 105B with the two cameras 104B1. Images are taken by 104B2. Then, based on the four coordinate position information of the corner portion C1 ⁇ C4 obtained from each image information of four cameras 104A1,104A2,104B1,104B2, in a direction perpendicular cut line 105A of the glass plate G A, and 105B length is L a measurement unit (not shown) is calculated. In addition, the detection of the conveyance amount of the strip-shaped glass sheet G and the control of the cutting line start timing based on the interval between the cutting lines 105A and 105B are the same as those by the control device 56 shown in FIG.
  • FIG. 10 is a perspective view of the slicing apparatus 10 to which the conveyance amount detection apparatus according to the fourth embodiment is applied.
  • Conveyance amount detecting device shown in FIG. 10 as well as imaging the corner C5, C6 of the ends of the side portions 107A of the bend-breaking the glass sheet G A by two cameras 104A3,104A4, corners at both ends of the side portions 107B
  • the parts C7 and C8 are imaged by the two cameras 104B3 and 104B4.
  • a measuring means length L a (not shown) is calculated.
  • the conveyance amount detection of the strip-shaped plate glass G and the control of the cutting line start timing based on the interval between the side portions 107A and 107B are the same as those by the control device 56 shown in FIG.
  • G strip-shaped plate glass, 10 ... cutting line processing device, 12 ... roller conveyor, 14 ... vertical cutting line processing machine, 16 ... horizontal cutting line processing machine, 18 ... cutter, 20 ... cutter, 21 ... guide frame, 24 ... servo motor, 26 ... Beam part, 28 ... slit, 54 ... servo amplifier, 56 ... control device, 60 ... current detector, 62 ... pulse generator (PG), 64 ... motor, 100 ... transport amount detection device, 102 ... roller, 104A, 104B ... Electronic camera, 104A1, 104A2, 104A3, 104A4 ... Electronic camera, 104B1, 104B2, 104B3, 104B4 ... Electronic camera, 105A, 105B ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 本発明は、搬送される板状物に当接して回転するローラと、前記ローラの回転量に応じた信号を発生する信号発生手段と、前記信号に基づいて前記板状物の搬送量を演算する演算手段と、ガイドフレームに沿って走行し、前記板状物に切線を加工する切線加工手段と、切線加工された前記板状物の隣接する2本の切線の間隔を計測する計測手段と、前記間隔の基準間隔が記憶され、該基準間隔と前記計測手段によって計測された間隔とを比較して、前記基準間隔に対する前記計測手段によって計測された間隔の変化量を求めるとともに、該変化量に対応した補正値を算出し、該補正値に基づいて前記演算手段による前記板状物の搬送量を補正する補正制御部と、を備えた板状物の搬送量検出装置に関する。

Description

板状物の搬送量検出装置及び板状物の切断装置並びに板状物の搬送量検出方法及び板状物の切線加工装置並びに板状物の切線加工方法
 本発明は、板状物の搬送量検出装置及び板状物の切断装置並びに板状物の搬送量検出方法及び板状物の切線加工装置並びに板状物の切線加工方法に関する。
 FPD(Flat Panel Display)用ガラス基板、建築用ガラス板等に用いられるガラス板の製造方法として、特許文献1等に開示されたフロート法と称される製法が知られている。このフロート法は、溶融錫浴内の錫上に溶融ガラスを流し込み、溶融ガラスを錫上で広げてガラスリボンをつくり、最終的に所定の板厚を有する帯状板ガラスに成形する製法である。溶融錫浴で成形された帯状板ガラスは、溶融錫浴の下流側に設置された徐冷部に引き出され、ここで所定の温度まで冷却された後、ローラコンベア等の搬送手段により切り折り装置に連続搬送されて所望サイズのガラス板に切り折りされる。切り折りされたガラス板は、ローラコンベアによって所定の収容部に搬送され、ここでパレット等に一枚ずつ収容され、製品として又は中間製品として採板される。
 前記切り折り装置は、帯状板ガラスの搬送方向上流側に設置された切線加工装置と、その下流側に設置された折り装置とから構成される。また、前記切線加工装置は、帯状板ガラスの搬送方向上流側に設置された縦切線加工機と、搬送方向下流側に設置された横切線加工機とから構成され、縦切線加工機のカッターによって帯状板ガラスの搬送方向に平行な縦切線を帯状板ガラスに加工し、その下流側で横切線加工機のカッターによって帯状板ガラスの搬送方向に直交する横切線を帯状板ガラスに加工する。
 切線加工は、異サイズ切りと称される方法で、徐冷部で徐冷された帯状板ガラスからサイズの異なる複数のガラス板を一度に無駄なく採板する目的で実施されている。この切線加工方法は、縦切線加工機を複数台並設し、更に縦切り線加工機の下流側に横切線加工機を設置し、各々の切線加工機のカッターの切線加工動作を開始/停止制御(例えば、帯状板ガラス搬送速度に同期したモーション制御)することにより、搬送中の帯状板ガラスから複数の所望サイズのガラス板を採板するための切線を帯状板ガラスに加工する方法である。
 この異サイズ切りの切線加工方法においては、カッターの切線加工開始時期を精細に制御する必要があり、そのために帯状板ガラスの搬送速度が検出されている。搬送速度の検出装置としては、搬送中の帯状板ガラスにローラを当接し、帯状板ガラスの搬送に追従して回転する前記ローラの回転量に基づいて帯状板ガラス搬送速度を検知する搬送量検出装置が知られている。この搬送量検出装置は、ローラの回転量をエンコーダによって検出し、エンコーダから出力されるパルス数をパルスカウンタによってカウントする。そして、カウントしたパルス数が、切線加工開始時期としてあらかじめ記憶された所定のパルス数となったときに、カッターによる切線加工を開始するように制御部がカッター駆動部を制御するものである。
 なお、前記ローラは、金属製のローラ本体と、このローラ本体の外周面にライニング加工されたゴム製又は樹脂製のシートとから構成される。このシートが緩衝材となり、帯状板ガラスの表面にローラが接触することによる傷が付かないようにしている。
 なお、特許文献2には、帯状板ガラスではないが、フィルム(板状物)の搬送量検出装置が開示されている。この搬送量検出装置は、フィルムの搬送に従動して回転するフリーローラと、このフリーローラの回転を検出するエンコーダとから構成されている。
日本国特開平8-277131号公報 日本国特開2007-130810号公報
 しかしながら、従来の搬送量検出装置は、雰囲気温度の変動に応じてローラが熱膨縮し、ローラの直径及び角速度ωが変化する。このため、ローラの回転量が変動するので、板状物の搬送量を正確に検出することができないという問題があった。
 特に、ローラ本体の外周面にゴム製又は樹脂製のシートを被覆した、帯状板ガラス用のローラの場合、前記シートが熱膨縮し易い材質のために前記問題が発生し易い。よって、この問題に起因してカッターの切線加工開始時期に誤差が発生するので、切り折りされたガラス板の寸法がばらついてしまうという問題があった。すなわち、帯状板ガラスの搬送方向におけるガラス板の寸法精度が落ちるという問題があった。
 本発明は、このような事情に鑑みてなされたもので、板状物を寸法精度よく切断加工することができる板状物の搬送量検出装置及び板状物の切断装置並びに板状物の搬送量検出方法及び板状物の切線加工装置並びに板状物の切線加工方法を提供することを目的とする。
 本発明は、前記目的を達成するために、搬送される板状物に当接して回転するローラと、前記ローラの回転量に応じた信号を発生する信号発生手段と、前記信号に基づいて前記板状物の搬送量を演算する演算手段と、ガイドフレームに沿って走行し、前記板状物に切線を加工する切線加工手段と、切線加工された前記板状物の隣接する2本の切線の間隔を計測する計測手段と、前記間隔の基準間隔が記憶され、該基準間隔と前記計測手段によって計測された間隔とを比較して、前記基準間隔に対する前記計測手段によって計測された間隔の変化量を求めるとともに、該変化量に対応した補正値を算出し、該補正値に基づいて前記演算手段による前記板状物の搬送量を補正する補正制御部と、を備えた板状物の搬送量検出装置を提供する。
 本発明は、前記目的を達成するために、搬送される板状物にローラを当接させて該ローラを回転させ、該ローラの回転量に応じて発生する信号に基づき前記板状物の搬送量を検出し、切線加工手段によって切線が加工された前記板状物の隣接する2本の切線間隔を計測し、該間隔の基準間隔に対する計測された間隔の変化量に基づいて補正値を算出し、該補正値に基づいて前記板状物の搬送量を補正する板状物の搬送量検出方法を提供する。
 本発明によれば、計測手段によって計測された2本の切線の間隔を示す情報が補正制御部に出力されると、補正制御部は、その間隔とあらかじめ記憶されている基準間隔とを比較して、前記基準間隔に対する前記計測手段によって計測された間隔の変化量を求める。そして、補正制御部は、その変化量に対応した補正値を算出し、この補正値に基づいて演算手段による板状物の搬送量を補正する。これにより、本発明によれば、ローラの形状が変化した場合でも、板状物の搬送量を正確に検出することができる。
 本発明は、前記目的を達成するために、搬送される板状物に当接して回転するローラと、前記ローラの回転量に応じた信号を発生する信号発生手段と、前記信号に基づいて前記板状物の搬送量を演算する演算手段と、ガイドフレームに沿って走行し、前記板状物に切線を加工する切線加工手段と、前記切線に沿って前記板状物を折り割りする折り割り手段と、折り割りされた前記板状物の前記切線と直交する方向の長さを計測する計測手段と、前記長さの基準長さが記憶され、該基準長さと前記計測手段によって計測された長さとを比較して、前記基準長さに対する前記計測手段によって計測された長さの変化量を求めるとともに、該変化量に対応した補正値を算出し、該補正値に基づいて前記演算手段による前記板状物の搬送量を補正する補正制御部と、を備えた板状物の搬送量検出装置を提供する。
 本発明は、前記目的を達成するために、搬送される板状物にローラを当接させて該ローラを回転させ、該ローラの回転量に応じて発生する信号に基づき前記板状物の搬送量を検出し、前記板状物に切線加工手段によって切線を加工するとともに、折り割り手段によって前記板状物を前記切線に沿って折り割りし、折り割りされた前記板状物の前記切線と直交する方向の長さを計測手段で計測し、該長さの基準長さに対する前記計測手段によって計測された長さの変化量に基づいて補正値を算出し、該補正値に基づいて前記板状物の搬送量を補正する板状物の搬送量検出方法を提供する。
 本発明によれば、計測手段によって計測された板状物の前記切線と直交する方向の長さを示す情報が補正制御部に出力されると、補正制御部は、その長さとあらかじめ記憶されている基準長さとを比較して、前記基準長さに対する前記計測手段によって計測された長さの変化量を求める。そして、補正制御部は、その変化量に対応した補正値を算出し、この補正値に基づいて演算手段による板状物の搬送量を補正する。これにより、本発明によれば、ローラの形状が変化した場合でも、板状物の搬送量を正確に検出することができる。
 本発明は、前記目的を達成するために、本発明の板状物の搬送量検出装置を備えた板状物の切断装置を提供する。
 本発明の板状物の切断装置によれば、板状物を寸法精度よく切断加工することができる。
 本発明は、前記目的を達成するために、搬送される板状物に当接して回転するローラと、前記ローラの回転量に応じた信号を発生する信号発生手段と、ガイドフレームに沿って走行し、前記板状物に切線を加工する切線加工手段と、前記信号に基づいて前記切線加工手段による前記板状物の切線加工開始時期を制御する制御手段と、切線加工された前記板状物の隣接する2本の切線の間隔を計測する計測手段と、前記間隔の基準間隔が記憶され、該基準間隔と前記計測手段によって計測された間隔とを比較して、前記基準間隔に対する前記計測手段によって計測された間隔の変化量を求めるとともに、該変化量に対応した補正値を算出し、該補正値に基づいて前記制御手段による前記切線加工開始時期を補正する補正制御部と、を備えた板状物の切線加工装置を提供する。
 本発明は、前記目的を達成するために、搬送される板状物にローラを当接させて該ローラを回転させ、該ローラの回転量に応じた信号に基づいて切線加工手段による前記板状物の切線加工開始時期を制御するとともに、切線加工された前記板状物の隣接する2本の切線の間隔を計測手段によって計測し、該間隔の基準間隔に対する前記計測手段によって計測された間隔の変化量を求めるとともに、該変化量に対応した補正値を算出し、該補正値に基づいて前記切線加工開始時期を補正する板状物の切線加工方法を提供する。
 本発明によれば、計測手段によって計測された2本の切線の間隔を示す情報が補正制御部に出力されると、補正制御部は、その間隔とあらかじめ記憶されている基準間隔とを比較して、前記基準間隔に対する前記計測手段によって計測された間隔の変化量を求める。そして、補正制御部は、その変化量に対応した補正値を算出し、この補正値に基づいて切線加工手段による切線加工開始時期を補正する。これにより、本発明によれば、ローラの径が変化した場合でも、板状物を寸法精度よく切線加工することができる。
 本発明は、前記目的を達成するために、搬送される板状物に当接して回転するローラと、前記ローラの回転量に応じた信号を発生する信号発生手段と、ガイドフレームに沿って走行し、前記板状物に切線を加工する切線加工手段と、前記切線に沿って前記板状物を折り割りする折り割り手段と、前記信号に基づいて前記切線加工手段による前記板状物の切線加工開始時期を制御する制御手段と、折り割りされた前記板状物の前記切線と直交する方向の長さを計測する計測手段と、前記長さの基準長さが記憶され、該基準長さと前記計測手段によって計測された長さとを比較して、前記基準長さに対する前記計測手段によって計測された長さの変化量を求めるとともに、該変化量に対応した補正値を算出し、該補正値に基づいて前記制御手段による前記板状物の切線加工開始時期を補正する補正制御部と、を備えた板状物の切線加工装置を提供する。
 本発明は、前記目的を達成するために、搬送される板状物にローラを当接させて該ローラを回転させ、該ローラの回転量に応じた信号に基づいて切線加工手段による前記板状物の切線加工開始時期を制御するとともに、前記切線に沿って折り割りされた前記板状物の前記切線と直交する方向の長さを計測手段で計測し、該長さの基準長さに対する前記計測手段によって計測された長さの変化量に基づいて補正値を算出し、該補正値に基づいて前記切線加工開始時期を補正する板状物の切線加工方法を提供する。
 本発明によれば、計測手段によって計測された板状物の前記切線と直交する方向の長さを示す情報が補正制御部に出力されると、補正制御部は、その長さとあらかじめ記憶されている基準長さとを比較して、前記基準長さに対する前記計測手段によって計測された長さの変化量を求める。そして、補正制御部は、その変化量に対応した補正値を算出し、この補正値に基づいて切線加工手段による切線加工開始時期を補正する。これにより、本発明によれば、ローラの径が変化した場合でも、板状物を寸法精度よく切線加工することができる。
 本発明の板状物の搬送量検出装置及び板状物の搬送量検出方法によれば、板状物の搬送量を正確に検出することができる。
 本発明の板状物の切断装置によれば、板状物を寸法精度よく切断加工することができる。
 本発明の板状物の切線加工装置及び板状物の切線加工方法によれば、板状物を寸法精度よく切線加工することができる。
図1は、第1の実施の形態の搬送量検出装置が適用された切線加工装置の斜視図である。 図2は、図1に示した切線加工装置の平面図である。 図3は、異サイズ切りによる切線加工方法を説明するために用いた図である。 図4は、実施の形態の切線加工装置の構成を示したブロック図である。 図5は、第1の実施の形態の搬送量検出装置の構成を示したブロック図である。 図6は、電子カメラで撮像された切線を示した説明図である。 図7は、第2の実施の形態の搬送量検出装置が適用された切線加工装置の斜視図である。 図8は、図7に示した切線加工装置の平面図である。 図9は、第3の実施の形態の搬送量検出装置が適用された切線加工装置の斜視図である。 図10は、第4の実施の形態の搬送量検出装置が適用された切線加工装置の斜視図である。
 以下、添付図面に従って本発明に係る板状物の搬送量検出装置、及び板状物の切断装置、並びに板状物の搬送量検出方法、及び板状物の切線加工装置、並びに板状物の切線加工方法の好ましい実施の形態を詳説する。
 図1は、第1の実施の形態に係る帯状板ガラスGの搬送量検出装置100が適用された、実施の形態の帯状板ガラスGの切線加工装置10の斜視図である。図2は、図1に示した切線加工装置10の平面図である。
 図1および図2に示す切線加工装置10は、帯状板ガラスGの搬送方向上流側に設置された、フロート法による帯状板ガラス製造装置(不図示)から、ローラコンベア12によって連続的に搬送されてくる帯状板ガラスGに縦切線、及び横切線を加工する、いわゆる異サイズ切りと称される切線加工方法に対応した切線加工装置である。
 この切線加工装置10の各カッターの動作が、搬送量検出装置100によって検出された帯状板ガラスGの搬送量に基づいて制御される。これについては後述する。なお、搬送量検出装置100を設置する主たる目的は、帯状板ガラスGから切り折りされた1枚のガラス板の、帯状板ガラスGの搬送方向における寸法精度を向上させる点にある。このために、帯状板ガラスGの搬送量が搬送量検出装置100によって正確に検出されている。
 切線加工装置10の帯状板ガラスGの搬送方向下流側には、ガラス折り装置(不図示)が設置され、このガラス折り装置の後段には、ガラス折り装置によって折り割りされたガラス板を、サイズに応じた収容部に振り分け搬送し採板するローラコンベア(不図示)が設置されている。切線加工装置10と前記ガラス折り装置とによって、板状体の切断装置が構成されている。
 なお、搬送量検出装置100の構成、及び搬送量検出装置100による帯状板ガラスGの搬送量検出方法については後述する。また、切線加工装置10、前記帯状板ガラス製造装置、前記ローラコンベア、前記ガラス折り装置、及び折り割りが終了したガラス板を収容部に振り分け搬送し採板する前記ローラコンベア、及びそれらを用いた帯状板ガラスの製造装置は、公知技術のとおりである。更に、実施の形態の帯状板ガラスGは、FPD用ガラス基板に使用されるものであってもよく、太陽電池用ガラス板、照明用ガラス板、建築用ガラス板、又は自動車窓用ガラス板に使用されるものであってもよい。また、対象とする板状物は帯状板ガラスGに限定されるものではなく、矩形状のガラス板であってもよい。板状物の材質も限定されず、樹脂製、又は金属製の板状物であって連続的に搬送される板状物であれば、実施の形態の板状物の搬送量検出装置100を適用することができる。更にまた、帯状板ガラスGの製造装置は、フロート法による製造装置に限定されるものではなく、フュージョン法等の他の製造装置であってもよい。
 以下、異サイズ切りを行う切線加工装置10について説明するが、切線加工装置10は異サイズ切りに限定されるものではない。すなわち、帯状板ガラスGの搬送方向におけるガラス板の寸法精度を向上させることができる切線加工装置であれば、いわゆる横切線のみ帯状板ガラスGに加工する切線加工装置(図1において、横切線加工機16のみ備えた切線加工装置)にも適用できる。よって、異サイズ切りを行う切線加工装置10は、あくまで一例である。
 切線加工装置10は、帯状板ガラスGの搬送方向上流側に設置された縦切線加工機14と、その下流側に設置された横切線加工機16とから構成される。この縦切線加工機14によって帯状板ガラスGの搬送方向に平行な縦切線が帯状板ガラスGに加工され、その下流側で横切線加工機16により帯状板ガラスの搬送方向に直交する横切線が帯状板ガラスGに加工される。
 縦切線加工機14は、帯状板ガラスGの幅方向に設置された複数台のカッター18、18…を備えている。これらのカッター18、18…は、ローラコンベア12によって搬送中の帯状板ガラスGに対し、周知の進退移動手段によって進退移動され、進出移動されることにより帯状板ガラスGに所定の押圧力で押圧される。これによって、帯状板ガラスGの搬送方向に平行な縦切線が帯状板ガラスGに加工される。
 一方、横切線加工機16は、一枚のカッター20を備えており、このカッター20が帯状板ガラスGの搬送速度に同期して帯状板ガラスGの搬送方向に対して斜行移動されることにより、帯状板ガラスGの搬送方向に直交する方向の横切線が帯状板ガラスGに加工される。なお、図1および図2中の矢印Aは、帯状板ガラスGの搬送方向を示している。
 ここで、図3を参照して異サイズ切りと称される切線加工方法について説明する。
 この切線加工方法は、搬送中の帯状板ガラスGから2種類のサイズの異なる矩形状ガラス板G1、2を採板するための縦切線CV1~5、及び横切線CH6~11を、搬送中の帯状板ガラスGに加工する方法である。なお、採板されるガラス板のサイズは2種類に限定されるものではなく、3種類以上であってもよい。また、図3中の矢印Aは、帯状板ガラスGの搬送方向を示している。
 図3に示す縦切線CV1、2は、前記帯状板ガラス製造装置の溶融錫浴において縁ローラが当接された縁ガラスG5を、製品となる帯状板ガラスから切除するために加工されたものであり、縦切線加工機14のカッター18、18…のうち両側に配置された2台のカッター18、18によって加工される。この2台のカッター18、18は、帯状板ガラスGに対し所定の押圧力がかけられた状態で常時当接され、これによって、連続搬送されてくる帯状板ガラスGに、折り割りに良好な切込み深さの縦切線CV1、2が連続的に加工される。
 縦切線CV3、4は、ガラス板G1、G1…を採板するために加工されたものであり、縦切線加工機14のカッター18、18…のうち内側に配置された2台のカッター18、18によって加工される。この2台のカッター18、18は、進退移動手段により帯状板ガラスGの搬送速度に同期して搬送中の帯状板ガラスGに対し進退(上下)移動される。すなわち、縦切線CV3、4を加工する2台のカッター18、18は、切線加工開始点P1、P1に向けて進出移動されて帯状板ガラスGに当接され、その後、帯状板ガラスGに対し所定の押圧力がかけられた状態で当接を継続し、切線加工終了点P2、P2に到達したところで帯状板ガラスGから退避移動される。これによって、連続搬送されてくる帯状板ガラスGに、折り割りに良好な切込み深さの縦切線CV3、4が加工される。
 縦切線CV5は、ガラス板G1よりも大きいサイズのガラス板G2を採板するために加工されたものであり、縦切線加工機14のカッター18、18…のうち中央に配置されたカッター18によって加工される。このカッター18も同様に、進退移動手段により帯状板ガラスGの搬送速度に同期して搬送中の帯状板ガラスGに対し進退(上下)移動される。すなわち、縦切線CV5を加工するカッター18は、切線加工開始点P3に向けて進出移動されて帯状板ガラスGに当接され、その後、帯状板ガラスGに対し所定の押圧力がかけられた状態で当接を継続し、切線加工終了点P4に到達したところで帯状板ガラスGから退避移動される。これによって、連続搬送されてくる帯状板ガラスGに、折り割りに良好な切込み深さの縦切線CV5が加工される。
 縦切線CV3~5を加工するための3台のカッター18の進出開始時期(切線加工開始時期)、及び退避開始時期が、搬送量検出装置100(図1参照)によって制御されている。これについては後述する。
 一方、横切線CH6~9は、ガラス板G1を採板するために加工されたものであり、横切線加工機16のカッター20によって順次1本ずつ加工される。カッター20を斜行移動させるモータ64(図4参照)は、帯状板ガラスGの搬送速度に同期してその斜行移動速度が制御装置56によってモーション制御されており、これによって、帯状板ガラスGの搬送方向に直交する方向の横切線CH6~9が帯状板ガラスGに加工される。また、カッター20は、エアシリンダ等のアクチュエータによって帯状板ガラスGに対し上下移動自在に設けられている。このアクチュエータによってカッター20は、良好な切込み深さの横切線CH6~9を加工するために、切線加工開始点P5の所定量手前位置においてあらかじめ下降が開始される。この後、カッター20はモータ64の駆動力により、ガイドフレーム21に沿って帯状板ガラスG上を斜行移動される。これによって、横切線CH6~9が加工される。この後、カッター20は、切線加工終了点P6を所定量通過後に前記アクチュエータによって帯状板ガラスGから上昇移動され、その後、元の切線待機位置(図1、図2の実線で示した位置)に前記モータ64によって復帰移動される。
 図3に示す横切線CH10、11は、ガラス板G2を採板するために加工されたものであり、横切線加工機16のカッター20によって加工される。このカッター20の動作は、横切線CH6~9を加工する動作と同様であるので説明は省略する。
 横切線CH6~11を加工するためのカッター20の斜行移動開始時期(切線加工開始時期)が、搬送量検出装置100(図1参照)によって制御されている。これについては後述する。
 このように縦切線を加工するカッター18、18…及び横切線を加工するカッター20の上記動作によって、搬送中の帯状板ガラスGから2種類のサイズの異なる矩形状のガラス板G1、2を採板するための縦切線CV1~5、及び横切線CH6~11が、搬送中の帯状板ガラスGに加工される。
 異サイズ切りの切線加工方法においては、帯状板ガラスGから可能な限り多くのサイズの異なるガラス板を無駄なく採板するために、指定の各サイズのガラス板の採板予定に従って縦切線加工機14による縦切線CV3~5の端部と横切線加工機16による横切線CH6~11との距離を可能な限り小さくすることが望まれている。よって、前記距離を小さくするためには、縦切線CV3~5を加工する縦切線加工機14のカッター18及び横切線CH6~11を加工する横切線加工機16のカッター20の切線加工動作の開始/停止制御を、すなわち、搬送中の帯状板ガラスGに対するカッター18、20の進退移動制御を、精細に行う必要があり、それが搬送量検出装置100(図1参照)によって実行されている。
 カッター18の進退移動手段は、図4に示すようにサーボモータ24を備えており、このサーボモータ24及びカッター18は、不図示の送り手段を介して図1の梁部(ガイドフレーム)26に所定の間隔をもって取り付けられている。この梁部26は、ローラコンベア12に跨設されるとともに帯状板ガラスGの搬送方向に直交する方向に設置されている。また、前記送り手段であるボールねじ装置は、中空の梁部26内に設けられ、このボールねじ装置が駆動されることにより、梁部26に形成された水平なスリット28内においてカッター18が進退移動手段を介してスライド移動される。これによって、帯状板ガラスGの搬送方向に直交する方向のカッター18の位置が調整される。
 サーボモータ24は、帯状板ガラスGに縦切線を加工するために、カッター18を下降移動させ、帯状板ガラスGに対する押圧力を発生させる。このサーボモータ24のトルクは、図4に示すサーボアンプ54を介して制御装置56により制御されている。したがって、サーボモータ24のトルクを、制御装置56によって制御することにより、帯状板ガラスGに対するカッター18の押圧力が設定される。
 また、制御装置56には、サーボモータ24に加えられる電流値を示す信号(サーボモータ24のトルクを示す信号)が電流検出器60から加えられるデータとともに、サーボモータ24の回転位置、又は回転速度を示すパルス信号がパルスジェネレータ(PG)62からサーボアンプ54を経由して加えられている。
 制御装置56は、パルスジェネレータ(PG)62からのパルス信号をカウントすることにより、サーボモータ24の回転位置を検出することができ、また、所定時間内に加えられるパルス信号をカウントすることにより、サーボモータ24の回転速度を検出することができる。更に、制御装置56は、電流検出器60からのトルクを示す信号、又はパルスジェネレータ(PG)62からのパルス信号に基づいて、サーボモータ24をトルク制御するためのトルク指令信号をサーボアンプ54に出力する。サーボアンプ54は、前記トルク指令信号に基づいてサーボモータ24をトルク制御する。
 更にまた制御装置56は、搬送量検出装置100によって得られた帯状板ガラスGの搬送量に基づき、サーボモータ24によるカッター18の進退移動時期を制御するとともに、モータ64によるカッター20の切線加工開始時期を制御する。これによって、制御装置56は、異サイズ切りの切線加工をカッター18、20によって実行させる。
 次に、前記の如く構成された帯状板ガラスGの切線加工装置10の動作について説明する。
 切線加工装置10は、ローラコンベア12によって搬送中の帯状板ガラスGに、カッター18、18…によって帯状板ガラスGの搬送方向に平行な縦切線CV3~5(図3参照:以降、縦切線CV1、2の説明は省略する)を加工する。そして、帯状板ガラスGに対するカッター18の進退移動手段として、応答性の高いサーボモータ24を使用し、このサーボモータ24を制御装置56によってトルク制御することにより、帯状板ガラスGに対するカッター18の押圧力を制御して帯状板ガラスGに縦切線CV3~5を加工する。
 次に、実施の形態の搬送量検出装置100について説明する。
 搬送量検出装置100は、図1、図2および図5に示すように、搬送中の帯状板ガラスGに当接して回転するローラ102を備えている。また、切線加工された帯状板ガラスGの隣接する2本の切線105A、105Bを個別に撮像する電子カメラ(計測手段)104A、104Bを備えている。更に、ローラ102の回転量に応じてパルス信号を発生するエンコーダ(信号発生手段)106を備えている。更にまた、エンコーダ106から発生したパルス信号を計数するパルスカウンタ112、及びパルスカウンタ112によって計数されたパルス数に基づき、帯状板ガラスGの搬送量を演算する制御装置(演算手段、補正制御部)56を備えている。
 制御装置56の不図示の記憶部には、2本の切線105A、105Bの加工間隔であって基準となる間隔(基準間隔)が記憶されている。この基準間隔とは、帯状板ガラスGから切り折りされる1枚のガラス板の切線105A、105Bと直交する方向の長さと等しく、後述する設定値(Y)に相当する。
 一方、電子カメラ104Aは、帯状板ガラスGの搬送方向の下流側に設置され、電子カメラ104Bは、帯状板ガラスGの搬送方向の上流側に設置されている。また、電子カメラ104A、104Bは、隣接する2本の切線105A、105Bが電子カメラ104A、104Bの下方を通過するタイミングで2本の切線105A、105Bを同時に撮像するように制御装置56によって制御されている。電子カメラ104A、104Bによって撮像された隣接する2本の切線105A、105Bを含む画像信号は、図5に示す画像処理部114によって二値化処理され、全体画像から2本の切線105A、105Bの画像のみが抽出される。
 この際、電子カメラ104A、104Bの間隔が、前述した設定値(Y)と等しくなるように、電子カメラ104A、104Bが設置されている。
 具体的に図6を参照して説明する。図6には、電子カメラ104Aで撮像された切線105Aの画像が電子カメラ104Aの画像エリア116Aに表示されている。また、電子カメラ104Bで撮像された切線105Bの画像が電子カメラ104Bの画像エリア116Bに表示されている。そして、各々の画像エリア116A、116Bの中心線117A、117B間の距離(L)が設定値(Y)と等しくなるように電子カメラ104A、104Bが設定されている。なお、電子カメラ104A、104Bは図1に示すように、インバー、スーパーインバー、ステンレスインバー、又はアルミニウム等の低熱膨張材料で製作された支持部材118によって支持されることにより、環境温度が変化した場合でも、電子カメラ104A、104B間の距離(L)が変動しないように設置されている。
 図5の画像処理部114によって二値化処理された2本の切線105A、105Bの画像信号は、制御装置56に出力される。制御装置56には、電子カメラ104A、104Bの一画素に対応する寸法が記憶されている。制御装置56は、図6に示した画像エリア116Aの中心線117Aから切線105Aの画像までの画素を計数するとともに、画像エリア116Bの中心線117Bから切線105Bの画像までの画素を計数することにより、隣接する2本の切線105A、105Bの間隔を演算する。この間隔が実測値である。
 そして、制御装置56は、前記実測値と前述した設定値(Y)とを比較して、設定値(Y)に対する実測値の変化量を求めるとともに、変化量に対応した補正値を算出し、補正値に基づいて帯状板ガラスGの搬送量を補正する。
 これにより、搬送量検出装置100によれば、ローラ102の形状が変化した場合でも、帯状板ガラスGの搬送量を正確に検出することができる。
 次に、搬送量検出装置100による帯状板ガラスGの搬送量検出方法、及び帯状板ガラスGの切線加工方法の具体例を説明する。なお、この具体例は、横切線を加工するカッター20を例示するが、縦切線を加工するカッター18についても同様である。
 (1)要件
 帯状板ガラスGの搬送量(切線加工間隔):Y(mm)
 ローラ102の径        :D(mm)
 エンコーダ106の分解能    :A(パルス)
 1パルス進行距離        :p(mm/パルス) p=πD/A
 補正係数            :C
 基準補正係数          :C1
 正規補正係数          :C2
 切線加工指令間隔        :P(パルス) P=Y/p×C2/C1
 (2)まず、補正係数Cの取得方法について説明する。
 ローラ102の外周長πDをエンコーダ106の分解能である1回転当たりのパルスAで除算すると、1パルス当たりの帯状板ガラスGの進行距離pを算出できる。
 帯状板ガラスGの搬送量を1パルス当たりの帯状板ガラスGの進行距離で除算すると、搬送中の帯状板ガラスGに横切線を加工する切線加工指令を出すために必要なパルス数(切線加工指令間隔:P)を算出できる。
 つまり、P=Y/pの式によってパルス数Pを算出できる。
 しかしながら実際には、動作中のローラ102の径Dの計測値とローラ102の径D′の設計値とは完全に一致しないため、補正係数Cを乗算して切線加工開始指令を出すための必要なパルス数Pをあらかじめ補正しておく必要がある。
 この場合のパルス数Pは、基準補正係数をC1、正規補正係数をC2とした場合、下記のように算出される。
 P=Y/p×C=Y/p×(C2/C1)
 ここで、基準補正係数C1は、定数である。
 つまり、正規補正係数C2をあらかじめ取得しておくことにより、P=Y/p×(C2/C1)で算出したパルス毎に、制御装置56から切線加工開始指令をモータ64に出力することによって、搬送中の帯状板ガラスGに正確な距離間隔の切線を加工することができる。ここで、取得した正規補正係数C2は、制御装置56に記憶されている。すなわち、ローラ102の径が変化した場合には、正規補正係数C2が再び制御装置56によって補正される。
 (3)次に、ローラ102の径が変化した場合の新正規補正係数C2′の取得方法について説明する。
 新正規補正係数C2′は、帯状板ガラスGの搬送量設定値L1(Y:目標値)と電子カメラ104A、104Bによって得られる隣接する2本の切線105A、105Bの間隔の実測値L2とから、下記のようにして算出できる。
 新正規補正係数C2′=正規補正係数C2×(帯状板ガラスGの搬送量設定値L1/隣接する2本の切線の間隔の実測値L2)
 帯状板ガラスGの搬送量設定値L1に対し、隣接する2本の切線の間隔の実測値L2が前記搬送量設定値L1と異なる場合には、ローラ102の径が変化したと認識し、前述した正規補正係数C2を補正する。
 この場合、
 C2′=C2×(L1/L2)
 となり、
 よって、P=L1/p×(C2′/C1)
 となる。したがって、帯状板ガラスGの搬送量の変化量、言い換えると、帯状板ガラスGの搬送量設定値L1に対する、該間隔の実測値L2の変化量に基づいて算出したパルスP毎に、制御装置56から切線加工開始指令をモータ64に出力するように、正規補正係数C2を新正規補正係数C2′に補正することによって、帯状板ガラスGに正確な距離間隔の横切線を加工することができる。
 したがって、搬送量検出装置100は、帯状板ガラスGにシート110を介して当接されるローラ102が熱膨縮して角速度ωが変動しても、帯状板ガラスGの搬送量を正確に検出することができ、結果的に、切線加工されたガラス板の切線105A、105Bと直交する方向における寸法精度が向上する。また、制御装置56から出力される正確な搬送量を示す信号に基づいて、カッター18の切線加工開始時期、及びカッター18の退避移動時期も制御するので、帯状板ガラスGに精度のよい縦切線CV3~5を加工することができる。
 なお、切線加工装置10の下流側に設置されているガラス折り装置(不図示)のガラス折り時期についても、搬送量検出装置100からの帯状板ガラスGの搬送量情報に基づいて制御することが好ましい。これにより、帯状板ガラスGを縦切線CV3~5と横切線CH6~11とに沿って正確に折り割りすることができる。これにより、実施の形態の切断装置によれば、帯状板ガラスGを寸法精度よく切断加工することができる。
 一方、ローラ102は、金属製のローラ本体108と、ローラ本体108の外周面にライニング加工されたゴム製又は樹脂製のシート110とから構成される。このシート110が緩衝材となり、帯状板ガラスGの表面にローラ102が接触することによる傷が付かないようにしている。また、シート110が帯状板ガラスGの表面に密着することから、帯状板ガラスGに対するローラ102の滑りが防止されるので、帯状板ガラスGの搬送量の検出精度が高められている。
 上記実施の形態は、隣接する2本の切線105A、105Bの間隔を実測することにより、帯状板ガラスGの搬送量を検出するとともに、切線加工開始時期を制御する装置であるが、図7および図8に示す第2の実施の形態の如く、ガラス折り装置(折り割り手段)120によって帯状板ガラスGから、図2に示す切線105A、105Bに沿って折り割りされたガラス板Gの切線105A、105Bと直交する方向の長さL(図7、図8参照)を2台の電子カメラ104A、104Bによって取得し、その長さLと設定値(Y)とを比較して帯状板ガラスGの搬送量を検出するとともに、切線加工開始時期を制御してもよい。この場合でも、同様の効果を得ることができる。
 すなわち、電子カメラ104Aは、ガラス板Gの辺部107Aを撮像し、電子カメラ104Bは、ガラス板Gの辺部107Bを撮像する。辺部107A、107Bの間隔に相当する、ガラス板Gの切線105A、105Bと直交する方向の長さLの算出方法は、切線105A、105Bの間隔算出方法と同じである。また、辺部107A、107Bの間隔に基づく、帯状板ガラスGの搬送量検出、及び切線加工開始時期の制御も図5に示した制御装置56によるものと同じである。
 したがって、図7および図8に示す装置によれば、電子カメラ104A、104Bによって取得したガラス板Gの切線105A、105Bと直交する方向の長さLを示す情報が制御装置(補正制御部)に出力されると、制御装置は、その長さLと設定値(Y:基準長さ)とを比較して、長さLの変化量を求める。そして、制御装置は、その変化量に対応した補正値を算出し、この補正値に基づいてカッター18、20による切線加工開始時期を補正する。これにより、本発明によれば、ローラ102の径が変化して帯状板ガラスGの搬送量が変化しても、帯状板ガラスGを寸法精度よく切線加工することができる。
 図7および図8では、ガラス折り装置120によって折り割りされたガラス板Gの搬送方向を変換することなく、電子カメラ104Aによってガラス板Gの辺部107Aを撮像し、電子カメラ104Bによってガラス板Gの辺部107Bを撮像したが、これに限定されるものではない。例えば、ガラス折り装置120によって折り割りされたガラス板Gの搬送方向を90度変換した後、別な位置に配置された電子カメラ104Aによってガラス板Gの辺部107Aを撮像し、電子カメラ104Bによってガラス板Gの辺部107Bを撮像してもよい。いずれにしても、ガラス板Gの切線105A、105Bと直交する方向の長さLを算出することができる。
 図9は、第3の実施の形態の搬送量検出装置が適用された切線加工装置10の斜視図である。
 図9に示す搬送量検出装置は、切線105Aの両端のコーナ部C1、C2を2台のカメラ104A1、104A2によって撮像するとともに、切線105Bの両端のコーナ部C3、C4を2台のカメラ104B1、104B2によって撮像している。そして、4台のカメラ104A1、104A2、104B1、104B2の各画像情報から得られる4つのコーナ部C1~C4の座標位置情報に基づいて、ガラス板Gの切線105A、105Bと直交する方向の長さLを計測手段(不図示)が算出する。なお、切線105A、105Bの間隔に基づく、帯状板ガラスGの搬送量検出、及び切線加工開始時期の制御は、図5に示した制御装置56によるものと同様である。
 図10は、第4の実施の形態の搬送量検出装置が適用された切線加工装置10の斜視図である。
 図10に示す搬送量検出装置は、折り割りされたガラス板Gの辺部107Aの両端のコーナ部C5、C6を2台のカメラ104A3、104A4によって撮像するとともに、辺部107Bの両端のコーナ部C7、C8を2台のカメラ104B3、104B4によって撮像している。そして、4台のカメラ104A3、104A4、104B3、104B4の各画像情報から得られる4つのコーナ部C5~C8の座標位置情報に基づいて、ガラス板Gの辺部107A、107Bと直交する方向の長さLを計測手段(不図示)が算出する。なお、辺部107A、107Bの間隔に基づく、帯状板ガラスGの搬送量検出、及び切線加工開始時期の制御は、図5に示した制御装置56によるものと同様である。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の範囲と精神を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2010年12月6日出願の日本特許出願2010-271821に基づくものであり、その内容はここに参照として取り込まれる。
 G…帯状板ガラス、10…切線加工装置、12…ローラコンベア、14…縦切線加工機、16…横切線加工機、18…カッター、20…カッター、21…ガイドフレーム、24…サーボモータ、26…梁部、28…スリット、54…サーボアンプ、56…制御装置、60…電流検出器、62…パルスジェネレータ(PG)、64…モータ、100…搬送量検出装置、102…ローラ、104A、104B…電子カメラ、104A1、104A2、104A3、104A4…電子カメラ、104B1、104B2、104B3、104B4…電子カメラ、105A、105B…切線、106…エンコーダ、107A、107B…辺部、108…ローラ本体、110…シート、112…パルスカウンタ、114…画像処理部、116A、116B…画像エリア、117A、117B…中心線、118…支持部材、120…ガラス折り装置

Claims (9)

  1.  搬送される板状物に当接して回転するローラと、
     前記ローラの回転量に応じた信号を発生する信号発生手段と、
     前記信号に基づいて前記板状物の搬送量を演算する演算手段と、
     ガイドフレームに沿って走行し、前記板状物に切線を加工する切線加工手段と、
     切線加工された前記板状物の隣接する2本の切線の間隔を計測する計測手段と、
     前記間隔の基準間隔が記憶され、該基準間隔と前記計測手段によって計測された間隔とを比較して、前記基準間隔に対する前記計測手段によって計測された間隔の変化量を求めるとともに、該変化量に対応した補正値を算出し、該補正値に基づいて前記演算手段による前記板状物の搬送量を補正する補正制御部と、
     を備えた板状物の搬送量検出装置。
  2.  搬送される板状物に当接して回転するローラと、
     前記ローラの回転量に応じた信号を発生する信号発生手段と、
     前記信号に基づいて前記板状物の搬送量を演算する演算手段と、
     ガイドフレームに沿って走行し、前記板状物に切線を加工する切線加工手段と、
     前記切線に沿って前記板状物を折り割りする折り割り手段と、
     折り割りされた前記板状物の前記切線と直交する方向の長さを計測する計測手段と、
     前記長さの基準長さが記憶され、該基準長さと前記計測手段によって計測された長さとを比較して、前記基準長さに対する前記計測手段によって計測された長さの変化量を求めるとともに、該変化量に対応した補正値を算出し、該補正値に基づいて前記演算手段による前記板状物の搬送量を補正する補正制御部と、
     を備えた板状物の搬送量検出装置。
  3.  請求項1又は2に記載の板状物の搬送量検出装置を備えた板状物の切断装置。
  4.  搬送される板状物にローラを当接させて該ローラを回転させ、該ローラの回転量に応じて発生する信号に基づき前記板状物の搬送量を検出し、
     切線加工手段によって切線が加工された前記板状物の隣接する2本の切線間隔を計測し、該間隔の基準間隔に対する計測された間隔の変化量に基づいて補正値を算出し、該補正値に基づいて前記板状物の搬送量を補正する板状物の搬送量検出方法。
  5.  搬送される板状物にローラを当接させて該ローラを回転させ、該ローラの回転量に応じて発生する信号に基づき前記板状物の搬送量を検出し、
     前記板状物に切線加工手段によって切線を加工するとともに、折り割り手段によって前記板状物を前記切線に沿って折り割りし、
     折り割りされた前記板状物の前記切線と直交する方向の長さを計測手段で計測し、該長さの基準長さに対する前記計測手段によって計測された長さの変化量に基づいて補正値を算出し、該補正値に基づいて前記板状物の搬送量を補正する板状物の搬送量検出方法。
  6.  搬送される板状物に当接して回転するローラと、
     前記ローラの回転量に応じた信号を発生する信号発生手段と、
     ガイドフレームに沿って走行し、前記板状物に切線を加工する切線加工手段と、
     前記信号に基づいて前記切線加工手段による前記板状物の切線加工開始時期を制御する制御手段と、
     切線加工された前記板状物の隣接する2本の切線の間隔を計測する計測手段と、
     前記間隔の基準間隔が記憶され、該基準間隔と前記計測手段によって計測された間隔とを比較して、前記基準間隔に対する前記計測手段によって計測された間隔の変化量を求めるとともに、該変化量に対応した補正値を算出し、該補正値に基づいて前記制御手段による前記切線加工開始時期を補正する補正制御部と、
     を備えた板状物の切線加工装置。
  7.  搬送される板状物に当接して回転するローラと、
     前記ローラの回転量に応じた信号を発生する信号発生手段と、
     ガイドフレームに沿って走行し、前記板状物に切線を加工する切線加工手段と、
     前記切線に沿って前記板状物を折り割りする折り割り手段と、
     前記信号に基づいて前記切線加工手段による前記板状物の切線加工開始時期を制御する制御手段と、
     折り割りされた前記板状物の前記切線と直交する方向の長さを計測する計測手段と、
     前記長さの基準長さが記憶され、該基準長さと前記計測手段によって計測された長さとを比較して、前記基準長さに対する前記計測手段によって計測された長さの変化量を求めるとともに、該変化量に対応した補正値を算出し、該補正値に基づいて前記制御手段による前記板状物の切線加工開始時期を補正する補正制御部と、
     を備えた板状物の切線加工装置。
  8.  搬送される板状物にローラを当接させて該ローラを回転させ、該ローラの回転量に応じた信号に基づいて切線加工手段による前記板状物の切線加工開始時期を制御するとともに、
     切線加工された前記板状物の隣接する2本の切線の間隔を計測手段によって計測し、該間隔の基準間隔に対する前記計測手段によって計測された間隔の変化量を求めるとともに、該変化量に対応した補正値を算出し、該補正値に基づいて前記切線加工開始時期を補正する板状物の切線加工方法。
  9.  搬送される板状物にローラを当接させて該ローラを回転させ、該ローラの回転量に応じた信号に基づいて切線加工手段による前記板状物の切線加工開始時期を制御するとともに、
     前記切線に沿って折り割りされた前記板状物の前記切線と直交する方向の長さを計測手段で計測し、該長さの基準長さに対する前記計測手段によって計測された長さの変化量に基づいて補正値を算出し、該補正値に基づいて前記切線加工開始時期を補正する板状物の切線加工方法。
PCT/JP2011/075985 2010-12-06 2011-11-10 板状物の搬送量検出装置及び板状物の切断装置並びに板状物の搬送量検出方法及び板状物の切線加工装置並びに板状物の切線加工方法 WO2012077457A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800588677A CN103249687A (zh) 2010-12-06 2011-11-10 板状物的搬运量检测装置、切断装置、搬运量检测方法、切割线加工装置及切割线加工方法
KR1020137014474A KR20130126631A (ko) 2010-12-06 2011-11-10 판상물의 반송량 검출 장치 및 판상물의 절단 장치 및 판상물의 반송량 검출 방법 및 판상물의 절선 가공 장치 및 판상물의 절선 가공 방법
JP2012547753A JPWO2012077457A1 (ja) 2010-12-06 2011-11-10 板状物の搬送量検出装置及び板状物の切断装置並びに板状物の搬送量検出方法及び板状物の切線加工装置並びに板状物の切線加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010271821 2010-12-06
JP2010-271821 2010-12-06

Publications (1)

Publication Number Publication Date
WO2012077457A1 true WO2012077457A1 (ja) 2012-06-14

Family

ID=46206957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075985 WO2012077457A1 (ja) 2010-12-06 2011-11-10 板状物の搬送量検出装置及び板状物の切断装置並びに板状物の搬送量検出方法及び板状物の切線加工装置並びに板状物の切線加工方法

Country Status (5)

Country Link
JP (1) JPWO2012077457A1 (ja)
KR (1) KR20130126631A (ja)
CN (1) CN103249687A (ja)
TW (1) TW201233647A (ja)
WO (1) WO2012077457A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745890A (zh) * 2012-07-16 2012-10-24 焦作市巡返特种玻璃厂 一种防弹玻璃切割台
US11635767B2 (en) * 2019-02-13 2023-04-25 Semyon Nisenzon System and method of using multi-resolution camera clusters input data for controlling autonomous vehicles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106829479B (zh) * 2017-03-25 2022-05-13 广东高力威机械科技有限公司 立式玻璃检测输送台及其检测方法
CN108745935B (zh) * 2018-05-07 2020-06-16 芜湖良匠机械制造有限公司 一种玻璃基板的长度偏差监测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113287A (ja) * 1973-03-03 1974-10-29
JPH04173638A (ja) * 1990-11-07 1992-06-22 Dainippon Screen Mfg Co Ltd シート材送り装置
JPH07328718A (ja) * 1994-06-06 1995-12-19 Nippon Steel Corp 巻取設備の鋼板速度検出方法
JPH0952726A (ja) * 1995-08-11 1997-02-25 Nippon Electric Glass Co Ltd 移動中の薄板ガラス用刻線付与装置
JPH1110591A (ja) * 1997-06-17 1999-01-19 Hoya Corp 切断装置
WO2008136239A1 (ja) * 2007-04-27 2008-11-13 Asahi Glass Company, Limited 帯状板ガラスの切線加工装置及び方法、並びに板ガラスの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277131A (ja) * 1995-04-05 1996-10-22 Asahi Glass Co Ltd フロートガラス製造用縁ロール装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113287A (ja) * 1973-03-03 1974-10-29
JPH04173638A (ja) * 1990-11-07 1992-06-22 Dainippon Screen Mfg Co Ltd シート材送り装置
JPH07328718A (ja) * 1994-06-06 1995-12-19 Nippon Steel Corp 巻取設備の鋼板速度検出方法
JPH0952726A (ja) * 1995-08-11 1997-02-25 Nippon Electric Glass Co Ltd 移動中の薄板ガラス用刻線付与装置
JPH1110591A (ja) * 1997-06-17 1999-01-19 Hoya Corp 切断装置
WO2008136239A1 (ja) * 2007-04-27 2008-11-13 Asahi Glass Company, Limited 帯状板ガラスの切線加工装置及び方法、並びに板ガラスの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745890A (zh) * 2012-07-16 2012-10-24 焦作市巡返特种玻璃厂 一种防弹玻璃切割台
CN102745890B (zh) * 2012-07-16 2014-08-20 焦作市巡返特种玻璃厂 一种防弹玻璃切割台
US11635767B2 (en) * 2019-02-13 2023-04-25 Semyon Nisenzon System and method of using multi-resolution camera clusters input data for controlling autonomous vehicles

Also Published As

Publication number Publication date
TW201233647A (en) 2012-08-16
CN103249687A (zh) 2013-08-14
KR20130126631A (ko) 2013-11-20
JPWO2012077457A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
KR101445890B1 (ko) 띠 형상 판유리의 절선 가공 장치 및 방법, 그리고 판유리의 제조 방법
CN103241933A (zh) 板状物的切割线加工装置及切割线加工方法
CN104551538B (zh) 一种差厚板定尺剪切制备方法
JP5168673B2 (ja) 板状物の搬送量検出装置及び搬送量検出方法並びに板状物の切線加工装置及び切線加工方法
TWI627143B (zh) Glass plate manufacturing device and method
WO2012077457A1 (ja) 板状物の搬送量検出装置及び板状物の切断装置並びに板状物の搬送量検出方法及び板状物の切線加工装置並びに板状物の切線加工方法
JP2012121741A (ja) 板状物の搬送量検出装置及び板状物の切断装置並びに搬送量検出方法及び板状物の切線加工装置並びに切線加工方法
JP5387915B2 (ja) カッタの走行制御方法および板ガラスの切断方法
US10184784B2 (en) Device and method for measuring the width and thickness of a flat object
JP2013184838A (ja) 板状物の切線加工装置及び板状物の切線加工方法、ならびにガラス板の製造装置及びガラス板の製造方法
TWI593647B (zh) Scoring device and marking method
JPH01152306A (ja) 形状測定方法およびその装置
TWM612706U (zh) 玻璃板之製造裝置
WO2017086106A1 (ja) ウェブ搬送装置
CN105666557A (zh) 切割线形成方法及切割线形成装置
US20110315735A1 (en) Unknown
WO2023026452A1 (ja) 3次元データ取得装置
US20240102785A1 (en) Apparatus for measuring sheet-like workpieces, in particular flat glass panes or insulating glass elements
JPS6330112A (ja) 板材冷却制御方法およびその装置
CN102167504B (zh) 刀具的行进控制方法和平板玻璃的切断方法
JPH05116021A (ja) 剪断シートの直角度制御方法
JP2016069025A (ja) 紙器カートン員数カウントマーキング装置およびマーキング方法
JPH059701U (ja) 長尺材切断装置
JP2014024304A (ja) スクライブ装置
JP2004120087A (ja) 画像計測方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012547753

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137014474

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846492

Country of ref document: EP

Kind code of ref document: A1