WO2012077176A1 - リチウムイオン二次電池及びリチウムイオン二次電池の製造方法 - Google Patents

リチウムイオン二次電池及びリチウムイオン二次電池の製造方法 Download PDF

Info

Publication number
WO2012077176A1
WO2012077176A1 PCT/JP2010/071844 JP2010071844W WO2012077176A1 WO 2012077176 A1 WO2012077176 A1 WO 2012077176A1 JP 2010071844 W JP2010071844 W JP 2010071844W WO 2012077176 A1 WO2012077176 A1 WO 2012077176A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
particles
layer
Prior art date
Application number
PCT/JP2010/071844
Other languages
English (en)
French (fr)
Inventor
浩二 高畑
佐野 秀樹
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/990,837 priority Critical patent/US9997768B2/en
Priority to PCT/JP2010/071844 priority patent/WO2012077176A1/ja
Priority to CN2010800705430A priority patent/CN103250279A/zh
Priority to JP2012547613A priority patent/JP5673690B2/ja
Publication of WO2012077176A1 publication Critical patent/WO2012077176A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a lithium ion secondary battery using a negative electrode active material layer including a plurality of types of negative electrode active material particles, and a method of manufacturing such a lithium ion secondary battery.
  • a chargeable / dischargeable lithium ion secondary battery (hereinafter also simply referred to as a battery) has been used as a power source for driving portable electronic devices such as hybrid cars, notebook computers, and video camcorders.
  • Patent Document 1 uses two types of carbonaceous materials (negative electrode active material particles) of graphite and low-temperature fired carbon as a negative electrode material (negative electrode active material layer) of a negative electrode (negative electrode plate).
  • a lithium ion secondary battery was disclosed.
  • the present inventors have a battery A (comparative battery C1 described later) using only graphite as the negative electrode active material particles of the negative electrode plate, and a battery B (described later) using only low-temperature fired coke as the negative electrode active material particles of the negative electrode plate.
  • the battery characteristics of the comparative battery C2) and the battery C (comparative battery C3 described later) using the negative electrode active material layer in which the low-temperature fired coke which is graphite and amorphous carbon are uniformly mixed were investigated.
  • the internal resistance of the battery in the initial stage decreases in the order of battery A, battery C, and battery B.
  • the low-temperature fired coke used for the negative electrode active material particles is amorphous and has lower electronic conductivity than graphite. Therefore, the battery A that does not use the low-temperature fired coke for the negative electrode active material particles has the lowest internal resistance among the batteries A to C, and the internal resistance of the battery B that uses only the low-temperature fired coke for the negative electrode active material particles is the highest. Probably higher.
  • Lithium deposition is likely to occur when discharged. Therefore, it is considered that the battery B that does not use graphite has the highest capacity maintenance rate among the batteries A to C, and the capacity maintenance rate of the battery A that uses only graphite as the negative electrode active material particles is the lowest.
  • the battery C in which graphite and low-temperature fired coke were uniformly mixed as the negative electrode active material particles showed intermediate characteristics between the battery A and the battery B in any of the internal resistance and capacity retention rate. That is, the internal resistance cannot be lowered as much as the battery using only the graphite for the negative electrode active material particles, while the capacity retention after the low-temperature pulse cycle test is as low as the battery using only the low-temperature fired coke for the negative electrode active material particles. Can't be high. That is, in the battery C in which the negative electrode active material layer is uniformly mixed with graphite and low-temperature fired coke, both of the advantages of the battery A (low internal resistance) and the advantages of the battery B (high capacity retention rate) are sufficiently obtained. I can't.
  • the present invention has been made in view of such knowledge, and in a battery using graphite and amorphous carbon as negative electrode active material particles, low internal resistance and high capacity maintenance ratio after a low-temperature pulse cycle test are obtained. Provide both batteries. Moreover, it aims at providing the manufacturing method of such a battery.
  • One embodiment of the present invention is a negative electrode plate having a negative electrode current collector plate and a negative electrode active material layer including negative electrode active material particles and formed on the negative electrode current collector plate, and a separator on the negative electrode plate.
  • a negative electrode active material particle comprising at least first particles made of graphite and second particles made of amorphous carbon, and The negative electrode active material layer is formed on the negative electrode current collector plate side in the layer thickness direction of the negative electrode active material layer as compared to the ratio of the first particles to the whole of the negative electrode active material particles contained in the negative electrode active material layer.
  • the ratio of the first particles occupying the whole of the negative electrode active material particles contained in this part is high, compared with the ratio of the second particles occupying the whole of the negative electrode active material particles contained in the negative electrode active material layer.
  • the layer thickness of the negative electrode active material layer At the site of direction surface side is the negative electrode active lithium ion secondary battery the ratio of the second particles to the total material particles formed by high contained in this site.
  • the battery described above has a low internal resistance and a capacity after a pulse cycle test at a low temperature as compared with a battery in which graphite and amorphous carbon are uniformly mixed in the entire negative electrode active material layer (the battery C described above).
  • the maintenance rate can be increased.
  • amorphous carbon is easier to exchange lithium ions than graphite, and can suppress the deposition of metallic lithium on its surface during charging and discharging. Therefore, by increasing the ratio of amorphous carbon (second particles) in the negative electrode active material particles at the portion of the negative electrode active material layer that faces the positive electrode plate at the surface, Even during high-rate charging, lithium ions can be easily taken into the negative electrode active material particles (amorphous carbon). Thus, it is considered that lithium deposition on the negative electrode active material layer can be suppressed and a decrease in capacity retention after a low-temperature pulse cycle test can be prevented.
  • graphite has higher electronic conductivity than amorphous carbon. For this reason, if the ratio of the graphite (first particles) in the negative electrode active material particles is increased in the portion of the negative electrode active material layer in contact with the negative electrode current collector plate, the first particles (graphite) and the negative electrode current collector plate are increased. It is considered that electrons can be easily exchanged between the two and the internal resistance can be lowered.
  • the graphite forming the first particles includes, for example, natural graphite such as flaky graphite, massive graphite, earthy graphite, and artificial graphite. Moreover, the spheroidized graphite which spheroidized natural graphite and artificial graphite is mentioned.
  • Examples of the amorphous carbon forming the second particles include low-temperature calcined coke and hard carbon (non-graphitizable carbon).
  • the negative electrode active material layer includes a plurality of layers stacked in the layer thickness direction, the first layer located closest to the negative electrode current collector plate, and The negative electrode active material particles in the first layer include the second particles, and the negative electrode active material particles in the second layer include the second particles.
  • a lithium ion secondary battery is preferable.
  • the negative electrode active material particles in the first layer described above consist of first particles
  • the negative electrode active material particles in the second layer consist of second particles.
  • the internal resistance of the battery can be made substantially the same as that of the battery using only graphite as the negative electrode active material particles of the negative electrode plate (the above-mentioned battery A), and the capacity retention rate is not as that of the negative electrode active material particles of the negative electrode plate. It can be made substantially the same as a battery using only crystalline carbon (the battery B described above).
  • the negative electrode active material layer may be a lithium ion secondary battery including the first layer and the second layer.
  • the negative electrode active material layer is composed of the first layer and the second layer, the negative electrode active material layer has a simple layer structure in which no other layer is interposed between the first layer and the second layer. Therefore, the battery can be easily manufactured.
  • any one of the lithium ion secondary batteries described above may be used, wherein the density of the first layer is 1.2 to 1.6 g / cm 3 .
  • the density of the first layer is 1.2 to 1.6 g / cm 3 . It has been found that a battery has a higher capacity retention rate after a constant current (2C) charge / discharge cycle test at 60 ° C., which will be described later, as compared with a battery in which the density of the first layer is outside the range.
  • the capacity retention rate after a constant current charge / discharge cycle test at 60 ° C. is considered to have increased.
  • the battery by suppressing the generation of SEI on the negative electrode active material particles, the battery can have a high capacity retention rate after the charge / discharge cycle test described above.
  • any one of the above-described lithium ion secondary batteries may be a lithium ion secondary battery in which the density of the second layer is 1.2 g / cm 3 or less.
  • a battery in which the density of the second layer is 1.2 g / cm 3 or less. It has been found that the capacity retention rate after a charge pulse cycle test at 0 ° C., which will be described later, is higher than that of a battery in which the density of the second layer is higher than 1.2 g / cm 3 .
  • the above-described battery can increase the capacity retention rate after the above-described charge pulse cycle test. Therefore, a battery that can be used for a long period of time can be obtained even when a large current is charged and discharged at a low temperature.
  • the vehicle described above is equipped with a battery that achieves both a low internal resistance and a high capacity retention rate after a low-temperature pulse cycle test, and thus can be a vehicle having stable battery performance.
  • a negative electrode active material particle comprising at least a first particle made of graphite and a second particle made of amorphous carbon, wherein the negative electrode active material layer comprises: The portion of the negative electrode active material layer on the negative electrode current collector plate side in the portion of the negative electrode active material layer compared to the ratio of the first particles in the negative electrode active material particles contained in the negative electrode active material layer.
  • the ratio of the first particles to the whole of the negative electrode active material particles contained in the negative electrode active material particles is high, and the ratio of the second particles to the whole of the negative electrode active material particles contained in the negative electrode active material layer is higher.
  • a method of manufacturing a lithium ion secondary battery in which the ratio of the second particles in the whole of the negative electrode active material particles contained in this part is increased, and the active material paste containing the negative electrode active material particles A laminate coating process for forming a multilayer coating film applied multiple times on the negative electrode current collector plate; and a drying process for drying the multilayer coating film, wherein the multilayer coating process includes the active material applied to the upper layer.
  • the active material paste applied to the upper layer in the above-described layer coating step has a higher or equal ratio of the second particles in the negative electrode active material particles contained therein, and the ratio of the first particles.
  • An active material paste with low or equal is used.
  • grain to the whole negative electrode active material particle is high in the site
  • a battery including a negative electrode plate in which the ratio of the second particles occupying the entire negative electrode active material particles at the site is increased can be easily and reliably manufactured. Therefore, it is possible to manufacture a battery that reliably achieves both a low internal resistance and a high capacity retention rate after a low-temperature pulse cycle test.
  • a negative electrode plate having a negative electrode current collector plate and a negative electrode active material layer formed on the negative electrode current collector plate, the negative electrode plate including negative electrode active material particles;
  • a negative electrode active material particle comprising at least a first particle made of graphite and a second particle made of amorphous carbon, wherein the negative electrode active material layer comprises: The portion of the negative electrode active material layer on the negative electrode current collector plate side in the portion of the negative electrode active material layer compared to the ratio of the first particles in the negative electrode active material particles contained in the negative electrode active material layer.
  • the ratio of the first particles to the whole of the negative electrode active material particles contained in the negative electrode active material particles is high, and the ratio of the second particles to the whole of the negative electrode active material particles contained in the negative electrode active material layer is higher.
  • a method of manufacturing a lithium ion secondary battery in which the ratio of the second particles in the whole of the negative electrode active material particles contained in this part is increased, and the active material paste containing the negative electrode active material particles On the negative electrode current collector plate or on the lower negative electrode active material layer on which the already applied active material paste has been dried, the application step and the drying step on which the applied active material paste is dried are repeated alternately.
  • the active material paste to be applied later has a higher or equal ratio of the second particles in the negative electrode active material particles contained in the active material paste, and an active material in which the ratio of the first particles is lower or equal. It is a manufacturing method of the lithium ion secondary battery using a paste.
  • the coating step and the drying step described above are alternately repeated, and the coating step of the second particles occupying the whole of the negative electrode active material particles contained in the active material paste applied later.
  • An active material paste having a high or equal ratio and a low or equal ratio of the first particles is used.
  • grain to the whole negative electrode active material particle is high in the site
  • a battery including a negative electrode plate in which the ratio of the second particles occupying the entire negative electrode active material particles at the site is increased can be easily and reliably manufactured. Therefore, it is possible to manufacture a battery that reliably achieves both a low internal resistance and a high capacity retention rate after a low-temperature pulse cycle test.
  • FIG. 1 It is a perspective view of the battery concerning Embodiment 1, Embodiment 2, and a modification. It is a perspective view of the negative electrode plate of Embodiment 1 and a modification. It is an expanded sectional view (A section of Drawing 3) of a negative electrode plate of Embodiment 1 and a modification. It is a graph which shows the relationship between the density of the 1st layer and the 2nd capacity maintenance rate of Embodiment 1 and a modification. It is a graph which shows the relationship between the density of the 2nd layer of Embodiment 1, and a modification, and the 3rd capacity maintenance rate. It is explanatory drawing which shows a lamination
  • Negative electrode Negative electrode active material layer 21F Surface 21PA First paste 21PB Second paste 22 Negative electrode active material particle 22A First particle 22B Second particle 28 Copper foil (negative electrode current collector plate) 30 Positive electrode plate 40 Separator DT Layer thickness direction L1 First layer (part on the negative electrode current collector plate side) L1B uncompressed first layer (lower negative electrode active material layer) L2 2nd layer (surface side part) PS Laminated coating film Ra first ratio (ratio of first particles in the whole negative electrode active material particles) Rb second ratio (ratio of second particles in the whole negative electrode active material particles)
  • the battery 1 includes a lithium ion including an electrode body 10 formed by winding a belt-like positive electrode plate 30, a belt-like negative electrode plate 20, and a belt-like separator 40 interposed between the positive electrode plate 30 and the negative electrode plate 20. It is a secondary battery (see FIG. 1).
  • the battery 1 includes an electrode body 10 accommodated in a battery case 80.
  • the battery case 80 has a battery case body 81 and a sealing lid 82 both made of aluminum.
  • the battery case main body 81 has a bottomed rectangular cylindrical shape, and an insulating film (not shown) made of resin and bent in a box shape is interposed between the battery case 80 and the electrode body 10.
  • the sealing lid 82 has a rectangular plate shape, closes the opening of the battery case body 81, and is welded to the battery case body 81.
  • the positive electrode terminal portion 91 ⁇ / b> A and the negative electrode terminal portion 92 ⁇ / b> A located on the distal end side penetrate the sealing lid 82, respectively, in FIG. 1.
  • An insulating member 95 made of an insulating resin is interposed between the positive terminal portion 91A and the negative terminal portion 92A and the sealing lid 82 to insulate them. Further, a rectangular plate-shaped safety valve 97 is also sealed on the sealing lid 82.
  • the electrode body 10 has a wound-type configuration in which the belt-like positive electrode plate 30 and the negative electrode plate 20 are wound into a flat shape via a belt-like separator 40 (see FIG. 1).
  • the positive electrode plate 30 and the negative electrode plate 20 face each other with the separator 40 interposed therebetween.
  • the positive electrode plate 30 and the negative electrode plate 20 of the electrode body 10 are respectively joined to a plate-like positive electrode current collector 91 or negative electrode current collector 92 bent in a crank shape (see FIG. 1).
  • a strip-shaped separator 40 in which polyethylene is sandwiched between two layers of polypropylene is interposed between the positive electrode plate 30 and the negative electrode plate 20 to separate them.
  • the separator 40 is entirely impregnated with an electrolytic solution (not shown).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the positive electrode plate 30 includes a strip-shaped aluminum foil (not shown) and two strip-shaped positive electrode active material layers (not shown) disposed on both main surfaces of the aluminum foil.
  • the positive electrode active material layer is made of a positive electrode active material particle made of LiNi 1/3 Co 1/3 Mn 1/3 O 2 , a conductive material made of carbon black, and a binder made of polyvinylidene fluoride (PVDF). Including.
  • the negative electrode plate 20 extends in a strip shape in the longitudinal direction DA, and is formed of a copper foil 28 made of copper and the strip-shaped 2 formed on both main surfaces 28A and 28A of the copper foil 28. Two negative electrode active material layers 21, 21.
  • the negative electrode plate 20 is opposed to the above-described positive electrode plate 30 with the separator 40 described above interposed therebetween.
  • the strip-shaped negative electrode active material layer 21 extending in the longitudinal direction DA includes negative electrode active material particles 22 (first particles 22A and second particles 22B described below) and a binder (not shown) made of PVDF.
  • the negative electrode active material layer 21 includes two layers (first layer L1 and second layer L2) stacked in the layer thickness direction DT.
  • the first layer L1 is a lower layer
  • the second layer L2 is an upper layer of the first layer L1, and the surface 21F side.
  • the densities of the first layer L1 and the second layer L2 are 1.2 and 1.0 g / cm 3 , respectively.
  • the first layer L1 includes first particles 22A made of natural graphite, and the second layer L2 contains second particles 22B made of low-temperature fired coke that is amorphous carbon. . That is, in the first layer L1, the ratio of the first particles 22A to the entire negative electrode active material particles 22 included in the first layer L1 (first ratio Ra) is 100%, and the first layer L1 occupies the entire negative electrode active material particles 22. The ratio of the two particles 22B (second ratio Rb) is 0%. In the second layer L2, the first ratio Ra is 0% and the second ratio Rb is 100%.
  • the first particles 22A made of natural graphite have an average particle diameter of 11.2 ⁇ m and a BET specific surface area of 4.6 m 2 / g.
  • the second particles 22B made of low-temperature calcined coke have an average particle size of 14.9 ⁇ m and a BET specific surface area of 5.8 m 2 / g.
  • the BET specific surface areas of the first particles 22A and the second particles 22B are values measured by the method described in JIS standard K6217-2.
  • the abundance ratio of the first particles 22A and the second particles 22B in the entire negative electrode active material layer 21 including the first layer L1 and the second layer L2 is 1: 1. That is, the ratio of the first particles 22A to the entire negative electrode active material particles 22 included in the negative electrode active material layer 21 is 50 wt%. Moreover, the ratio of the 2nd particle
  • the first ratio of the first particles 22A in the first layer L1 is higher than the ratio (50 wt%) of the first particles 22A in the entire negative electrode active material layer 21.
  • Ra (100%) is increased.
  • the second ratio Rb (100%) of the second particles 22B in the second layer L2 is higher than the ratio (50 wt%) of the second particles 22B in the entire negative electrode active material layer 21.
  • the inventors conducted the following investigation on the characteristics of the battery 1 according to the first embodiment described above.
  • the battery capacity of a new (initial) battery 1 shortly after manufacture was measured. Specifically, first, the battery 1 is charged at a current value of 1/3 C under a temperature environment of 25 ° C. until the voltage of the battery 1 (voltage between terminals) reaches 4.1 V, and then The battery was charged for 2.5 hours while maintaining the voltage (constant current-constant voltage charging). Furthermore, under the same temperature environment of 25 ° C., constant current discharge is performed at a constant current value of 1/3 C until the voltage of the battery 1 reaches 3.0 V, and then the voltage is maintained at 3.0 V. The battery was discharged for 0 hour, and the amount of electricity discharged (charge amount) was measured (hereinafter also referred to as “battery capacity measurement”). The amount of electricity at this time is referred to as “initial battery capacity BC0” of the battery 1.
  • the battery 1 was subjected to a test in which a constant current charge of 10 seconds at a current value of 30 C and a constant current discharge of 10 seconds at a current value of 30 C were alternately repeated 250 times in a temperature environment of 0 ° C. (Hereinafter also referred to as “0 ° C. pulse cycle test”).
  • the battery capacity at this time is defined as “battery capacity BC1 after first test” of battery 1.
  • capacitance maintenance factor) after a 0 degreeC pulse cycle test was computed (Table 1).
  • the first capacity maintenance ratio is a value (percentage) obtained by dividing “battery capacity BC1 after first test” by “initial battery capacity BC0” (BC1 / BC0 ⁇ 100 (%)).
  • comparative batteries C1, C2, C3, and C4 which are comparative examples of the battery 1, were prepared separately, and the battery characteristics of these batteries were measured in the same manner as the battery 1.
  • the comparative battery C1 differs from the battery 1 in that a negative electrode plate having a single-layer negative electrode active material layer containing only the first particles 22A (natural graphite) is used as the negative electrode active material particles.
  • Comparative battery C2 differs from battery 1 in that a negative electrode plate having a single-layer negative electrode active material layer containing only second particles 22B (low-temperature fired coke) as negative electrode active material particles was used.
  • the comparative battery C3 is different from the battery 1 in that a negative electrode plate having a single negative electrode active material layer in which the first particles 22A and the second particles 22B are uniformly mixed is used.
  • the comparative battery C4 includes a layer containing only the second particles 22B on the copper foil side of the negative electrode active material layer on the surface side in the layer thickness direction.
  • the negative electrode active material layer in which layers each including only one particle 22A are disposed is different from the battery 1 in that a negative electrode plate is used.
  • the value of the impedance of each battery was measured for the battery 1 and the comparative batteries C1, C2, C3, and C4.
  • the impedance value of each battery was measured by the AC impedance method (frequency is in the range of 10 ⁇ 1 to 10 5 MHz) using an electrochemical impedance measuring device manufactured by Solartron.
  • the impedance value of each battery was determined using the Cole-Cole plot arc obtained by the AC impedance method described above. That is, the distance (absolute value) from the origin of the complex plane where the Cole-Cole plot was performed to the intersection of the Cole-Cole plot and the x-axis (electric resistance) was taken as the impedance value.
  • Table 1 shows the impedance values of the batteries (battery 1 and comparative batteries C1, C2, C3, C4).
  • the battery 1 (98.2%) is next to the comparative battery C2 (98.4%), and the other batteries (comparative batteries C1, C3, C4). It can be seen that it is sufficiently high. Since natural graphite has anisotropy, the entrance and exit of lithium ions toward the outside is biased compared to isotropic low-temperature calcined coke. For this reason, low-temperature calcined coke is easier to exchange lithium ions than natural graphite, and can suppress the deposition of metallic lithium on its surface when charged with a large current.
  • the battery battery 1, comparative battery C2 in which the second particles 22B (low-temperature calcined coke) are present on the surface side in the negative electrode active material layer is larger than the other batteries (comparative batteries C1, C3, C4). It is considered that the precipitation of metallic lithium was suppressed and the decrease in the first capacity retention rate was prevented.
  • the battery 1 (76.3 m ⁇ ) is smaller than the comparative battery C1 (76.1 m ⁇ ), and compared with the other batteries (comparative batteries C2, C3, C4). It turns out that it is small enough. Compared to low-temperature calcined coke that is amorphous, natural graphite has higher electronic conductivity.
  • the battery battery 1, comparative battery C1 in which the first particle 22A (natural graphite) is abundant in the negative electrode active material particles in the portion of the negative electrode active material layer located on the copper foil side (in contact with the copper foil)
  • the battery battery 1, comparative battery C1 in which the first particle 22A (natural graphite) is abundant in the negative electrode active material particles in the portion of the negative electrode active material layer located on the copper foil side (in contact with the copper foil)
  • it is considered that electrons can be easily transferred between the negative electrode active material layer and the copper foil 28, and the impedance value is reduced.
  • the comparative battery C2 using only the second particles 22B (low-temperature calcined coke) as the negative electrode active material particles of the negative electrode active material layer can have a higher first capacity retention ratio, but the impedance value is larger than that of other batteries.
  • the comparative battery C1 using only the first particles 22A (natural graphite) as the negative electrode active material particles of the negative electrode active material layer can have a smaller impedance value, but the first capacity retention rate is lower than that of other batteries.
  • the comparative battery C3 using a negative electrode plate having a single negative electrode active material layer in which the first particles 22A and the second particles 22B are uniformly mixed as the negative electrode active material particles has a first capacity retention ratio and an impedance.
  • both values were intermediate values between the comparative battery C1 and the comparative battery C2, and halfway characteristics were obtained. Furthermore, the negative electrode plate which has the negative electrode active material layer which has arrange
  • the battery 1 according to the first embodiment has a high first capacity retention rate substantially equal to that of the comparative battery C2, and a small impedance value substantially equivalent to that of the comparative battery C1.
  • the battery 1 is compared with a battery (comparative battery C3) in which graphite (first particles 22A) and amorphous carbon (second particles 22B) are uniformly mixed in the entire negative electrode active material layer. Impedance is low, and capacity retention after a low-temperature pulse cycle test can be increased.
  • an impedance can be made low by including many 1st particles in the part which touches copper foil among negative electrode active material layers.
  • the first capacity retention rate can be increased by including a large amount of the second particles in the portion of the negative electrode active material layer exposed on the surface.
  • the first particles 22 are used as the negative electrode active material particles 22 in the first layer L1 of the negative electrode active material layer 21, and the second particles 22B are used as the negative electrode active material particles 22 in the second layer L2. .
  • the impedance of the battery 1 can be set to a value that is substantially the same as that of the battery using only the first particles 22A as the negative electrode active material particles of the negative electrode plate (comparative battery C1). It can be set to the same good value as the battery (comparative battery C2) using only the second particles 22B as the negative electrode active material particles of the plate.
  • the negative electrode active material layer 21 is composed of two layers of the first layer L1 and the second layer L2, the negative electrode active material layer 21 can have a simple layer structure, The battery 1 can be easily manufactured.
  • the present inventors conducted the following investigation on the relationship between the density of the first layer used in the battery 1 and the battery characteristics. That is, first, similarly to the battery 1 described above, a plurality of 15 types of batteries using a negative electrode plate in which a negative electrode active material layer was composed of a first layer and a second layer were prepared. In these batteries, the density of the first layer is set to any one of five levels of 1.1, 1.2, 1.4, 1.6, and 1.7 g / cm 3 , and the density of the second layer is set. , 1.0, 1.1, 1.3 g / cm 3 . Note that the combination of the first layer and the second layer of each battery does not overlap with other batteries.
  • the battery capacity was measured for each of these batteries.
  • the battery capacity at this time is defined as “initial battery capacity BC0” of each battery.
  • initial battery capacity BC0 the battery capacity of each battery.
  • constant current charging and constant current discharging are alternately performed 1000 times at a current value of 2C so that the charging state (SOC) of each battery becomes SOC 0% and SOC 100%.
  • the test was repeated (hereinafter also referred to as “60 ° C. cycle test”). Thereafter, the battery capacity measurement described above was performed again for each battery, and the battery capacity of each battery after the 60 ° C. cycle test was measured.
  • the battery capacity at this time is defined as “battery capacity after second test BC2” of each battery.
  • This second capacity maintenance ratio is a value (percentage) obtained by dividing “second battery capacity BC2 after test” by “initial battery capacity BC0” (BC2 / BC0 ⁇ 100 (%)).
  • FIG. 4 shows a graph showing the relationship between the density of the first layer in each battery and the second capacity retention ratio (capacity retention ratio after the 60 ° C. cycle test) of each battery.
  • the result of the battery having the density of the second layer of 1.0 g / cm 3 is a circle ( ⁇ )
  • the result of the battery of 1.1 g / cm 3 is a square ( ⁇ )
  • 1.1 g / cm 3 The results of the batteries are plotted with triangles ( ⁇ ).
  • the second capacity retention rate of the battery using the first layer having a density of 1.2, 1.4 and 1.6 g / cm 3 is The second capacity retention rate of the battery using the first layer having the density of 1.2 and 1.7 g / cm 3 is considerably lower than 87%, while it is about 87%.
  • the density of the first layer is 1.2 to 1.6 g / cm 3
  • the first layer is appropriately pressed, there is no deterioration in electronic conductivity due to expansion and contraction, and the density Since it is difficult for the negative electrode active material layer (first layer) to crack due to being too high, it is considered that the decrease in the capacity retention rate (second capacity retention rate) after the 60 ° C. cycle test was suppressed.
  • the density is by using the first layer L1 is 1.2 g / cm 3 in the range of 1.2 ⁇ 1.6g / cm 3. Therefore, even in this battery 1, by suppressing the generation of SEI on the negative electrode active material particles 22, the battery 1 has a high second capacity retention rate after the above-described 60 ° C. cycle test.
  • the present inventors conducted the following investigation on the relationship between the density of the second layer used in the battery 1 and the battery characteristics. That is, first, the same batteries as those used in the 60 ° C. cycle test described above were prepared.
  • Each battery was subjected to a test in which a constant current charge of 10 seconds at a current value of 30 C and a constant current discharge of 10 seconds at a current value of 30 C were alternately repeated 280 times in a temperature environment of 0 ° C. ( Hereinafter, also referred to as “0 ° C. charge pulse cycle test”). Then, the battery capacity measurement mentioned above was performed about each battery, and the battery capacity of each battery after a 0 degreeC charge pulse cycle test was measured. In addition, let the battery capacity at this time be "battery capacity BC3 after 3rd test" of each battery.
  • This third capacity retention rate is a value (percentage) obtained by dividing “battery capacity BC3 after the third test” of each battery by “initial battery capacity BC0” of each battery measured before the 60 ° C. cycle test described above. Yes (BC3 / BC0 ⁇ 100 (%)).
  • FIG. 5 shows a graph showing the relationship between the density of the second layer in each battery and the third capacity retention ratio (capacity retention ratio after the 0 ° C. charge pulse cycle test) of each battery.
  • the third capacity retention ratio capacity retention ratio after the 0 ° C. charge pulse cycle test
  • the result of the battery is plotted with a triangle ( ⁇ ), the result of the battery of 1.6 g / cm 3 is marked with ⁇ , and the result of the battery of 1.7 g / cm 3 is plotted with *.
  • the third capacity retention rate of the battery using the second layer whose density is 1.0 and 1.2 g / cm 3 is 97% or more.
  • the third capacity retention rate of the battery using the second layer having a density of 1.3 g / cm 3 is significantly low from 97%.
  • the density is by using a second layer L2 is 1.2 g / cm 3 or less of 1.0 g / cm 3.
  • capacitance maintenance factor after the above-mentioned 0 degreeC charge pulse cycle test can also be made high. Therefore, the battery 1 that can be used for a long time can be obtained even when charging and discharging a large current at a low temperature.
  • the coating apparatus 100 includes an unwinding unit 101, a first coater 110, a second coater 120, a heater 130, a winding unit 102, and a plurality of auxiliary rollers 140 and 140 (see FIG. 6).
  • the first coater 110 includes a metal paste holding portion 111 that stores therein a first paste 21PA, which will be described later, and the first paste 21PA held in the paste holding portion 111 on the main surface of the copper foil 28. And a discharge port 112 that discharges continuously toward 28A.
  • the discharge port 112 is slit-shaped, on the main surface 28A of the copper foil 28 moving in the longitudinal direction DA, in order to discharge the first paste 21PA in a strip shape in the width direction of the copper foil 28 (in FIG. 6, It opens parallel to the depth direction.
  • the second coater 120 has a metal paste holding part 121 and a discharge port 122, similar to the first coater 110.
  • the paste holding part 121 stores the 2nd paste 21PB mentioned later inside.
  • the discharge port 122 is slit-shaped, and the width direction of the copper foil 28 (see FIG. 5) is used to discharge the second paste 21PB in a strip shape on the first coating film PSA formed on the main surface 28A of the copper foil 28. 6 in the depth direction).
  • the heater 130 heats and dries the first paste 21PA (first coating PSA) and the second paste 21PB (second coating PSB) applied to the copper foil 28.
  • the copper foil 28 is warmed while moving between the two heaters 130, 130, and the first paste 21 PA (first coating film PSA) and the second paste applied to the copper foil 28 are laminated and applied.
  • the paste 21PB (second coating film PSB) is gradually dried.
  • the first paste 21PA (first coating film PSA) and the second paste 21PB (second coating film PSB) are completely dried, that is, the first paste 21PA (first coating film PSA).
  • the solvent in the second paste 21PB (second coating film PSB) are all evaporated.
  • a second paste 21PB made by kneading the second particles 22B made of low-temperature fired coke, CMC, and SBR together with a solvent is prepared in advance.
  • the ratio of the first particles 22A to the entire negative electrode active material particles included in the first paste 21PA is 100%
  • the ratio of the second particles 22B is 0%
  • the first ratio Ra is 0%
  • the second ratio Rb is 100%. Accordingly, the second paste 21PB has a higher second ratio Rb and a lower first ratio Ra than the first paste 21PA.
  • the above-mentioned first paste 21PA is put into the paste holding unit 111 of the first coater 110, and the second paste 21PB is put into the paste holding unit 121 of the second coater 120, respectively. Then, the strip-shaped copper foil 28 wound around the unwinding portion 101 is moved in the longitudinal direction DA, and the first paste 21PA is applied onto the main surface 28A of the copper foil 28 by the first coater 110. As a result, a first coating film PSA made of the first paste 21PA is formed on the main surface 28A of the copper foil 28.
  • a second paste 21PB is applied on the first coating film PSA by the second coater 120.
  • the second coating film PSB made of the second paste 21PB is formed on the first coating film PSA.
  • a laminated coating PS in which the first coating PSA and the second coating PSB are laminated is formed on the main surface 28A of the copper foil 28 (see FIG. 7).
  • a drying process is performed using the heater 130 of the coating apparatus 100. That is, the laminated coating PS was dried with the heater 130 to obtain an uncompressed active material layer 21B before pressing. After this drying step, the single-side supported copper foil 28K carrying the uncompressed active material layer 21B on the main surface 28A on one side is once wound around the winding unit 102.
  • the first paste 21PA and the second paste 21PB are also applied to the other main surface 28A of the above-described single-side supported copper foil 28K (copper foil 28), and the multilayer coating film is applied. PS is formed.
  • the laminated coating PS is also completely dried by the heater 130.
  • an active material laminate 20B before pressing in which the uncompressed active material layers 21B and 21B are laminated on both the main surfaces 28A and 28A of the copper foil 28 is produced.
  • the active material laminated plate 30B before pressing is pressed by using a pressing device (not shown), and the negative electrode plate 20 formed by laminating two compressed negative electrode active material layers 21 and 21 on both sides of the copper foil 28. (See FIG. 2).
  • a positive electrode plate 30 was produced. Specifically, positive electrode active material particles, a conductive material and a binder (not shown) were mixed with a solvent to produce a positive electrode paste (not shown). And the above-mentioned positive electrode paste was apply
  • the electrode body 20 is formed by winding the separator 40 between the positive electrode plate 30 and the negative electrode plate 20 manufactured as described above. Further, the positive electrode current collecting member 91 and the negative electrode current collecting member 92 are welded to the positive electrode plate 30 and the negative electrode plate 20, respectively. Thereafter, the electrode body 20 is accommodated in the battery case main body 81, and the battery case main body 81 is sealed by welding with the sealing lid 82. Thereafter, an electrolytic solution is injected from a liquid injection hole (not shown), and the liquid injection hole is sealed to complete the battery 1 (see FIG. 1).
  • the active material paste applied to the upper layer of the first paste 21PA in the above-described layer coating step is the second occupying the negative electrode active material particles 22 included in itself.
  • a second paste 21PB in which the ratio of the particles 22B (second ratio Rb) is higher than that of the first paste 21PA and the ratio of the first particles 22A (first ratio Ra) is lower than that of the first paste 21PA is used.
  • the ratio of the first particles 22A to the entire negative electrode active material particles 22 is high in the portion (first layer L1) on the layer thickness direction DT copper foil 28 side of the negative electrode active material layer 21, and the negative electrode active material
  • the first ratio Ra in the first layer L1 was set to 100%.
  • the second ratio Rb in the second layer L2 was set to 100%.
  • the first ratio Ra in the first layer L1 and the second ratio Rb in the second layer L2 do not have to be 100%, and the first particles occupying the entire negative electrode active material particles included in the negative electrode active material layer.
  • the first ratio Ra of the first layer L1 is set higher than the ratio, and the ratio of the second particles occupying the whole negative electrode active material particles contained in the negative electrode active material layer is higher than that of the second layer L2. It is preferable to increase the second ratio Rb.
  • the first ratio Ra of the first layer L1 is a value higher than 50% (for example, 85 %).
  • the second ratio Rb of the second layer L2 is a value higher than 50% (for example, 80%). It is also good.
  • the battery 1 using the negative electrode plate 20 having the negative electrode active material layer 21 including the first layer L1 and the second layer L2 is shown.
  • a plurality of three or more layers are provided. It may be composed of layers.
  • the active material paste applied to the upper layer in the layer application step has a higher or equal ratio of the second particles to the negative electrode active material particles contained in itself, and the ratio of the first particles is
  • a laminated coating film may be formed using an active material paste that is low or equal.
  • Embodiment 1 the laminated coating process which forms a laminated coating film by apply
  • an active material paste any one of the first paste and the second paste described above
  • a coating process and a drying process described later are alternately performed using the coating apparatus 200 illustrated in FIG. That is, after the first application step of applying the first paste 21PA, a first drying step of drying the applied first paste 21PA is performed. Further, after the second application step of applying the second paste 21PB, a second drying step of drying the applied second paste 21PB is performed.
  • the coating apparatus 200 used for the above-mentioned first coating process, first drying process, second coating process, and second drying process will be described.
  • the coating apparatus 200 is similar to the first embodiment described above in that the unwinding unit 101, the first coater 110, the second coater 120, the second heater 230B, the winding unit 102, and a plurality of auxiliary rollers 140, 140 are provided. (Refer to FIG. 8).
  • the coating apparatus 200 also includes a first heater 230A between the first coater 110 and the second coater 120 (see FIG. 8).
  • the first heater 230A heats and dries the first paste 21PA (first coating film PSA) applied to the copper foil 28 by the first coater 110.
  • first paste 21PA first coating film PSA
  • the first heater 230A heats and dries the first paste 21PA (first coating film PSA) applied to the copper foil 28 by the first coater 110.
  • the copper foil 28 is warmed and the first paste 21PA (first coating film PSA) applied to the copper foil 28 is dried. Gradually progresses. And when passing through the first heater 230A, the first paste 21PA (first coating film PSA) is completely dried.
  • the second heater 230B heats the second paste 21PB (second coating PSB) applied on the completely dried first paste 21PA (first coating PSA). And dry.
  • the first coating step is performed using such a coating apparatus 200.
  • a first paste 21PA and a second paste 21PB similar to those of the first embodiment are prepared in advance. Therefore, in the second paste 21PB, the ratio of the second particles 22B to the entire anode active material particles 22 included in the second paste 21PB is higher than that of the first paste 21PA, and the ratio of the first particles 22A is the first paste 21PA. Lower than.
  • the first paste 21PA is put into the paste holding unit 111 of the first coater 110, the second paste 21PB is put into the paste holding unit 121 of the second coater 120, and the strip-shaped copper foil 28 wound around the unwinding unit 101 is wound. Is moved in the longitudinal direction DA, and the first paste 21PA is applied to the main surface 28A of the copper foil 28 by the first coater 110. Thereby, the first coating film PSA made of the first paste 21PA is formed on the main surface 28A of the copper foil 28 (see FIG. 8).
  • a first drying step is performed using the first heater 230A of the coating apparatus 200. That is, the first coating film PSA was dried by the first heater 230A to form an uncompressed first layer L1B (see FIG. 8).
  • the copper foil 28 on which the uncompressed first layer L1B is formed is moved in the longitudinal direction DA, and the second paste 21PB is applied onto the uncompressed first layer L1B by the second coater 120 (second application step). ). That is, in the second application step, the second paste 21PB is applied onto the uncompressed first layer L1B, which is the lower negative electrode active material layer that is formed by drying the first paste 21PA that has already been applied to the copper foil 28. Thereby, the 2nd coating film PSB which consists of 2nd paste 21PB is formed in the upper layer of uncompressed 1st layer L1B (refer FIG. 8).
  • a second drying process is performed using the second heater 230B of the coating apparatus 200. That is, the second coating PSB was dried by the second heater 230B to form an uncompressed second layer L2B, thereby forming an uncompressed active material layer 21B (see FIGS. 8 and 9). Thereafter, the single-side supported copper foil 28 ⁇ / b> K carrying the uncompressed active material layer 21 ⁇ / b> B on the main surface 28 ⁇ / b> A on one side is temporarily wound around the winding unit 102.
  • the coating apparatus 200 is used again, and the coating process and the drying process are repeated on the other main surface 28A of the above-described single-side supported copper foil 28K (copper foil 28).
  • the active material laminate 30B before pressing is pressed, and two compressed negative electrode active material layers 21 and 21 are laminated on both sides of the copper foil 28.
  • a negative electrode plate 20 is obtained (see FIG. 2).
  • the battery 101 is completed in the same manner as in the first embodiment (see FIG. 1).
  • the coating process and the drying process were alternately performed in the order of the first coating process, the first drying process, the second coating process, and the second drying process.
  • the second paste 21PB having a second ratio Rb and a lower first ratio Ra than the first paste 21PA applied in the first application step is used.
  • the ratio of the first particles 22A to the entire negative electrode active material particles 22 is high in the portion (first layer L1) on the layer thickness direction DT copper foil 28 side of the negative electrode active material layer 21, and the negative electrode active material
  • the battery 101 including the negative electrode plate 20 in which the ratio of the second particles 22B to the entire negative electrode active material particles 22 is increased in the layer 21 in the layer thickness direction DT surface 21F side (second layer L2) of the layer 21 is easily and It can be manufactured reliably. Therefore, it is possible to manufacture a battery 101 that reliably achieves both a low internal resistance and a high capacity retention rate after a low-temperature pulse cycle test.
  • the first ratio Ra in the first layer L1 was set to 100% as in the first embodiment.
  • the second ratio Rb in the second layer L2 was set to 100%.
  • the first ratio Ra in the first layer L1 and the second ratio Rb in the second layer L2 do not have to be 100%, and the first particles occupying the entire negative electrode active material particles included in the negative electrode active material layer.
  • the first ratio Ra of the first layer L1 is set higher than the ratio, and the ratio of the second particles occupying the whole negative electrode active material particles contained in the negative electrode active material layer is higher than that of the second layer L2. It is preferable to increase the second ratio Rb.
  • the first ratio Ra of the first layer L1 is a value higher than 50% (for example, 70 %).
  • the second ratio Rb of the second layer L2 is a value higher than 50% (for example, 75%). It is also good.
  • the battery 101 using the negative electrode plate 20 having the negative electrode active material layer 21 composed of the first layer L1 and the second layer L2 is shown, but for example, a plurality of layers of three or more layers You may comprise.
  • the active material paste to be applied later has a higher or equal ratio of the second particles to the negative electrode active material particles contained therein, and a lower ratio of the first particles.
  • the active material paste is preferably applied on the negative electrode current collector plate or the lower negative electrode active material layer using the same active material paste.
  • the first paste 21PA and the second paste 21PB are completely dried, respectively, but in the midway drying (first drying process), the active material paste is half-dried. It may be dry.
  • a vehicle 300 according to the second embodiment includes a battery pack 310 including a plurality of the above-described batteries 1 (or batteries 101).
  • vehicle 300 is a hybrid vehicle that is driven by using engine 340, front motor 320, and rear motor 330 in combination.
  • the vehicle 300 includes a vehicle body 390, an engine 340, a front motor 320, a rear motor 330, a cable 350, an inverter 360, and a battery pack 310 having a rectangular box shape.
  • the battery pack 310 accommodates a plurality of the batteries 1 (or batteries 101) described above.
  • the vehicle 300 according to the second embodiment is equipped with the battery 1 (or the battery 101) that achieves both a low internal resistance and a high capacity retention rate after a low-temperature pulse cycle test, and thus has stable battery performance. It can be set as the vehicle 300 which has.
  • the present invention has been described according to the first and second embodiments and the modified embodiments.
  • the present invention is not limited to the above-described embodiments, and can be appropriately modified and applied without departing from the gist thereof. Needless to say.
  • scaly graphite is used for the first particles 22A.
  • natural graphite other than the scaly graphite (block graphite, earth graphite, etc.) or artificial graphite is used for the first particles. May be.
  • the low-temperature firing coke is used for the second particles 22B, for example, hard carbon (non-graphitizable carbon) may be used for the second particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 負極活物質粒子に黒鉛及び非晶質炭素を用いるリチウムイオン二次電池において、低い内部抵抗と低温のパルスサイクル試験後の高い容量維持率とを両立させた電池、及び、このような電池の製造方法を提供することを課題とする。リチウムイオン二次電池(1)は、負極集電板(28)及び負極活物質層(21)を有する負極板(20)を備え、負極活物質粒子は、黒鉛からなる第1粒子(22A)、及び、非晶質炭素からなる第2粒子(22B)からなり、負極活物質層は、これに含まれる負極活物質粒子に占める第1粒子の比率に比して、負極活物質層のうち層厚方向(DT)負極集電板側の部位(L1)の負極活物質粒子に占める第1粒子の比率(Ra)が高く、負極活物質層に含まれる負極活物質粒子に占める第2粒子の比率に比して、負極活物質層のうち層厚方向表面(21F)側の部位(L2)の負極活物質粒子に占める第2粒子の比率(Rb)が高くされてなる。

Description

リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
 本発明は、複数種類の負極活物質粒子を含む負極活物質層を用いたリチウムイオン二次電池、及び、このようなリチウムイオン二次電池の製造方法に関する。
 近年、ハイブリッド自動車やノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、充放電可能なリチウムイオン二次電池(以下、単に電池ともいう)が利用されている。
 このような電池に関して、例えば、特許文献1には、負極(負極板)の負極材料(負極活物質層)に、黒鉛及び低温焼成炭素の2種類の炭素質材(負極活物質粒子)を用いたリチウムイオン二次電池が開示されている。
特開2002-100410号公報
 しかしながら、特許文献1に記載の電池の製造方法においては、黒鉛と、非晶質炭素である低温焼成炭素とを均一に混合した負極材料(負極活物質層)のみ開示されている。
 ところで、本発明者らは、負極板の負極活物質粒子に黒鉛のみを用いた電池A(後述する比較電池C1)、負極板の負極活物質粒子に低温焼成コークスのみを用いた電池B(後述する比較電池C2)、及び、黒鉛と非晶質炭素である低温焼成コークスを均一に混在させた負極活物質層を用いた電池C(後述する比較電池C3)の電池特性を調査した。
 上述の調査によれば、初期における電池の内部抵抗については、電池A、電池C、電池Bの順に低くなることが判った。負極活物質粒子に用いた低温焼成コークスが非晶質であり、黒鉛に比べて電子電導性が低い。このため、負極活物質粒子に低温焼成コークスを用いていない電池Aが、電池A~Cのうちで最も内部抵抗が低く、負極活物質粒子に低温焼成コークスのみ用いた電池Bの内部抵抗が最も高くなったと考えられる。
 一方、低温のパルスサイクル試験(後述の「0℃パルスサイクル試験」)を行った電池についての容量維持率は、上述の内部抵抗とは逆に電池B、電池C、電池Aの順に高くなることが判ってきた。このようになるのは、黒鉛は異方性を有しているため、等方的な低温焼成コークスに比して、外部に向けた、リチウムイオンの出入り口に偏りがある。このため、低温焼成コークスに比べて、黒鉛におけるリチウムイオンの授受(内部からのリチウムイオンの放出、及び、内部へのリチウムイオンの挿入(インターカレーション))がされにくく、比較的大きな電流で充放電された場合にリチウム析出を生じやすい。従って、黒鉛を用いていない電池Bが、電池A~Cのうちで最も容量維持率が高く、負極活物質粒子に黒鉛のみ用いた電池Aの容量維持率が最も低くなったと考えられる。
 また、負極活物質粒子として黒鉛と低温焼成コークスとを均一に混合して用いた電池Cは、内部抵抗や容量維持率のいずれにおいても、電池A及び電池Bの中間の特性を示した。即ち、内部抵抗は、負極活物質粒子に黒鉛のみを用いた電池ほど低くできず、一方、低温のパルスサイクル試験後の容量維持率は、負極活物質粒子に低温焼成コークスのみを用いた電池ほど高くできない。つまり、負極活物質層に黒鉛及び低温焼成コークスを均一に混合した電池Cでは、電池Aの利点(低い内部抵抗)、及び、電池Bの利点(高い容量維持率)のいずれも十分には得られない。
 本発明は、かかる知見に鑑みてなされたものであって、負極活物質粒子に黒鉛及び非晶質炭素を用いる電池において、低い内部抵抗と、低温のパルスサイクル試験後の高い容量維持率とを両立させた電池を提供する。また、このような電池の製造方法を提供することを目的とする。
 本発明の一態様は、負極集電板、及び、負極活物質粒子を含み、上記負極集電板上に形成されてなる負極活物質層、を有する負極板と、上記負極板に、セパレータを介して対向する正極板と、を備えるリチウムイオン二次電池であって、上記負極活物質粒子は、少なくとも、黒鉛からなる第1粒子、及び、非晶質炭素からなる第2粒子からなり、上記負極活物質層は、この負極活物質層に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率に比して、上記負極活物質層のうち層厚方向上記負極集電板側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率が高く、上記負極活物質層に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率に比して、上記負極活物質層のうち上記層厚方向表面側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率が高くされてなるリチウムイオン二次電池である。
 上述の電池は、負極活物質層全体に、黒鉛と非晶質炭素とを均一に混合した電池(前述の電池C)に比して、内部抵抗を低く、しかも低温のパルスサイクル試験後の容量維持率を高くできる。
 これは、非晶質炭素は、黒鉛に比してリチウムイオンの授受が容易であり、充放電の際に、自身の表面に金属リチウムが析出するのを抑制することができる。このため、負極活物質層のうち、表面をなして正極板と対向する部位において、負極活物質粒子に占める非晶質炭素(第2粒子)の比率を高くしておくことで、パルス状あるいはハイレートの充電の際でも、リチウムイオンを容易に負極活物質粒子(非晶質炭素)内に取り込むことができる。かくして、負極活物質層上にリチウム析出するのを抑制し、低温のパルスサイクル試験後の容量維持率の低下を防止できると考えられる。
 一方、黒鉛は、非晶質炭素に比して電子電導性が高い。このため、負極活物質層のうち負極集電板に接する部位において、負極活物質粒子に占める黒鉛(第1粒子)の比率を高くしておくと、第1粒子(黒鉛)と負極集電板との間で電子を容易に授受することができ、内部抵抗を低くできると考えられる。
 なお、第1粒子をなす黒鉛としては、例えば、鱗片状黒鉛,塊状黒鉛,土状黒鉛等の天然黒鉛や人造黒鉛が挙げられる。また、天然黒鉛や人造黒鉛を球状化した球状化黒鉛が挙げられる。また、第2粒子をなす非晶質炭素としては、例えば、低温焼成コークスやハードカーボン(難黒鉛化性炭素)が挙げられる。
 さらに、上述のリチウムイオン二次電池であって、前記負極活物質層は、前記層厚方向に積層された複数の層からなり、最も前記負極集電板側に位置する第1層、及び、最も前記表面側に位置する第2層を含み、上記第1層の前記負極活物質粒子は、前記第1粒子からなり、上記第2層の上記負極活物質粒子は、前記第2粒子からなるリチウムイオン二次電池とすると良い。
 上述の電池では、上述の第1層の負極活物質粒子が第1粒子からなり、第2層の負極活物質粒子が第2粒子からなる。このため、低い内部抵抗と、低温のパルスサイクル試験後における高い容量維持率とを、確実に両立した電池とすることができる。また、この電池の内部抵抗は、負極板の負極活物質粒子として黒鉛のみを用いた電池(前述の電池A)とほぼ同じにできる上、容量維持率は、負極板の負極活物質粒子として非晶質炭素のみを用いた電池(前述の電池B)とほぼ同じにできる。
 さらに、上述のリチウムイオン二次電池であって、前記負極活物質層は、前記第1層及び前記第2層からなるリチウムイオン二次電池とすると良い。
 上述の電池では、負極活物質層が第1層及び第2層からなるので、負極活物質層において第1層と第2層との間に他の層を介さない、シンプルな層構造とすることができ、製造容易な電池とすることができる。
 さらに、上述のいずれかのリチウムイオン二次電池であって、前記第1層の密度が1.2~1.6g/cmであるリチウムイオン二次電池とすると良い。
 ところで、本発明者らの研究によれば、前述の第1層及び第2層を有する負極活物質層を備える電池のうち、第1層の密度が1.2~1.6g/cmである電池は、第1層の密度がその範囲外である電池に比して、後述する60℃における定電流(2C)の充放電サイクル試験後の容量維持率が高いことが判ってきた。
 なお、電池について、上述の試験を行うと、充放電に伴う負極活物質粒子の膨張収縮により負極活物質粒子上に導電性の低い固体電解質界面膜(SolidElectrolyte Interface:SEI)が繰り返し生じ、その分、リチウムが消費されるので、上述の容量維持率が低下する。従って特に、この試験後の容量維持率が低いほど、負極活物質層上にSEIが多く生じていると考えられる。しかるに、第1層の密度が1.2~1.6g/cmである電池では、第1層が適切にプレスされているため、膨張収縮に伴う電子導電性の悪化もなく、また、密度が高すぎることによる負極活物質層(第1層)の割れが生じがたいので、60℃における定電流の充放電サイクル試験後の容量維持率が高くなったと考えられる。
 従って、上述の電池では、負極活物質粒子上にSEIの発生を抑制することにより、上述の充放電サイクル試験後の容量維持率についても高くすることができる電池となる。
 さらに、上述のいずれかのリチウムイオン二次電池であって、前記第2層の密度が1.2g/cm以下であるリチウムイオン二次電池とすると良い。
 また、本発明者らの研究によれば、前述の第1層及び第2層を有する負極活物質層を備える電池のうち、第2層の密度が1.2g/cm以下である電池は、第2層の密度が1.2g/cmよりも高い電池に比して、後述する0℃における充電パルスサイクル試験後における容量維持率が高いことが判ってきた。
 以上の知見から、上述の電池では、上述の充電パルスサイクル試験後における容量維持率を高くすることができる。従って、低温下で大電流の充放電を行っても長期間使用可能な電池とすることができる。
 或いは、前述のいずれか1項に記載のリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを動力源の全部又は一部に使用する車両とすると良い。
 上述の車両は、低い内部抵抗と、低温のパルスサイクル試験後の高い容量維持率とを両立させた電池を搭載しているので、安定した電池性能を有する車両とすることができる。
 或いは、本発明の他の態様は、負極集電板、及び、負極活物質粒子を含み、上記負極集電板上に形成されてなる負極活物質層、を有する負極板と、上記負極板に、セパレータを介して対向する正極板と、を備え、上記負極活物質粒子は、少なくとも、黒鉛からなる第1粒子、及び、非晶質炭素からなる第2粒子からなり、上記負極活物質層は、この負極活物質層に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率に比して、上記負極活物質層のうち層厚方向上記負極集電板側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率が高く、上記負極活物質層に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率に比して、上記負極活物質層のうち上記層厚方向表面側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率が高くされてなるリチウムイオン二次電池の製造方法であって、上記負極活物質粒子を含む活物質ペーストを、上記負極集電板上に複数回重ねて塗布した積層塗膜を形成する積層塗布工程と、上記積層塗膜を乾燥させる乾燥工程と、を備え、上記積層塗布工程は、上層に塗布する上記活物質ペーストほど、自身に含む上記負極活物質粒子全体に占める上記第2粒子の比率が高いか等しく、かつ、上記第1粒子の比率が低いか等しい活物質ペーストを用いるリチウムイオン二次電池の製造方法である。
 上述の電池の製造方法では、上述の積層塗布工程で、上層に塗布する活物質ペーストほど、自身に含む負極活物質粒子に占める第2粒子の比率が高いか等しく、かつ、第1粒子の比率が低いか等しい活物質ペーストを用いている。これにより、負極活物質層のうち層厚方向負極集電板側の部位で、負極活物質粒子全体に占める第1粒子の比率が高く、しかも、負極活物質層のうち層厚方向表面側の部位で、負極活物質粒子全体に占める第2粒子の比率が高くされた負極板を備える電池を、容易かつ確実に製造することができる。従って、低い内部抵抗と、低温のパルスサイクル試験後の高い容量維持率とを、確実に両立した電池を製造することができる。
 または、本発明の他の態様は、負極集電板、及び、負極活物質粒子を含み、上記負極集電板上に形成されてなる負極活物質層、を有する負極板と、上記負極板に、セパレータを介して対向する正極板と、を備え、上記負極活物質粒子は、少なくとも、黒鉛からなる第1粒子、及び、非晶質炭素からなる第2粒子からなり、上記負極活物質層は、この負極活物質層に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率に比して、上記負極活物質層のうち層厚方向上記負極集電板側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率が高く、上記負極活物質層に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率に比して、上記負極活物質層のうち上記層厚方向表面側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率が高くされてなるリチウムイオン二次電池の製造方法であって、上記負極活物質粒子を含む活物質ペーストを、上記負極集電板上、又は、既に塗布した活物質ペーストを乾燥させた下層負極活物質層上に塗布する塗布工程と、塗布された上記活物質ペーストを乾燥させる乾燥工程と、を交互に繰り返し、上記塗布工程は、後に塗布する上記活物質ペーストほど、自身に含む上記負極活物質粒子全体に占める上記第2粒子の比率が高いか等しく、かつ、上記第1粒子の比率が低いか等しい活物質ペーストを用いるリチウムイオン二次電池の製造方法である。
 上述の電池の製造方法では、上述の塗布工程と乾燥工程とを交互に繰り返し、このうちの塗布工程が、後に塗布する活物質ペーストほど、自身に含む負極活物質粒子全体に占める第2粒子の比率が高いか等しく、かつ、第1粒子の比率が低いか等しい活物質ペーストを用いる。これにより、負極活物質層のうち層厚方向負極集電板側の部位で、負極活物質粒子全体に占める第1粒子の比率が高く、しかも、負極活物質層のうち層厚方向表面側の部位で、負極活物質粒子全体に占める第2粒子の比率が高くされた負極板を備える電池を、容易かつ確実に製造することができる。従って、低い内部抵抗と、低温のパルスサイクル試験後の高い容量維持率とを、確実に両立した電池を製造することができる。
実施形態1,実施形態2,変形形態にかかる電池の斜視図である。 実施形態1,変形形態の負極板の斜視図である。 実施形態1,変形形態の負極板の拡大断面図(図3のA部)である。 実施形態1,変形形態の、第1層の密度と第2容量維持率との関係を示すグラフである。 実施形態1,変形形態の、第2層の密度と第3容量維持率との関係を示すグラフである。 実施形態1にかかる電池の製造方法のうち、積層塗布工程及び乾燥工程を示す説明図である。 実施形態1にかかり、積層塗布工程中の積層塗膜(図6のB部)の状態を示す説明図である。 変形形態にかかる電池の製造方法のうち、塗布工程及び乾燥工程を示す説明図である。 変形形態にかかり、塗布工程及び乾燥工程を交互に繰り返してできた未圧縮活物質層(図8のC部)の状態を示す説明図である。 実施形態2にかかる車両の説明図である。
1,101 電池(リチウムイオン二次電池)
20 負極板
21 負極活物質層
21F 表面
21PA 第1ペースト
21PB 第2ペースト
22 負極活物質粒子
22A 第1粒子
22B 第2粒子
28 銅箔(負極集電板)
30 正極板
40 セパレータ
DT 層厚方向
L1 第1層(負極集電板側の部位)
L1B 未圧縮第1層(下層負極活物質層)
L2 第2層(表面側の部位)
PS 積層塗膜
Ra 第1比率(負極活物質粒子全体に占める第1粒子の比率)
Rb 第2比率(負極活物質粒子全体に占める第2粒子の比率)
 (実施形態1)
 次に、本発明の実施形態1について、図面を参照しつつ説明する。まず、本実施形態1にかかる電池1について、図1を参照して説明する。この電池1は、帯状の正極板30と、帯状の負極板20と、正極板30と負極板20との間に介在させた帯状のセパレータ40とを捲回してなる電極体10を備えるリチウムイオン二次電池である(図1参照)。この電池1は、電極体10を電池ケース80に収容してなる。
 この電池ケース80は、共にアルミニウム製の電池ケース本体81及び封口蓋82を有する。このうち電池ケース本体81は有底矩形筒形であり、この電池ケース80と電極体10との間には、樹脂からなり、箱状に折り曲げた絶縁フィルム(図示しない)が介在させてある。また、封口蓋82は矩形板状であり、電池ケース本体81の開口を閉塞して、この電池ケース本体81に溶接されている。電極体10と接続している正極集電部材91及び負極集電部材92のうち、それぞれ先端側に位置する正極端子部91A及び負極端子部92Aが、封口蓋82を貫通して、図1中、上方に向く蓋表面82aから突出している。これら正極端子部91A及び負極端子部92Aと封口蓋82との間には、それぞれ絶縁性の樹脂からなる絶縁部材95が介在し、両者を絶縁している。さらに、この封口蓋82には矩形板状の安全弁97も封着されている。
 また、電極体10は、帯状の正極板30及び負極板20が、帯状のセパレータ40を介して扁平形状に捲回されてなる捲回型の形態を有している(図1参照)。なお、この電極体10では、正極板30と負極板20とがセパレータ40を介して対向している。また、この電極体10の正極板30及び負極板20はそれぞれ、クランク状に屈曲した板状の正極集電部材91又は負極集電部材92と接合している(図1参照)。
 このうち、2層のポリプロピレンの間にポリエチレンを挟んだ帯状のセパレータ40は、正極板30と負極板20との間に介在して、これらを離間させている。このセパレータ40には、全体に電解液(図示しない)が含浸させてある。なお、この電解液は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを、体積比でEC:DMC=3:7に調整した混合有機溶媒に、溶質としてLiPFを添加し、リチウムイオンを1mol/lの濃度とした非水電解液である。
 また、正極板30は、帯状のアルミニウム箔(図示しない)と、このアルミニウム箔の両主面上に配置され、帯状の2つの正極活物質層(図示しない)とを有している。このうち正極活物質層は、LiNi1/3Co1/3Mn1/3からなる正極活物質粒子、カーボンブラックからなる導電材、及び、ポリフッ化ビニリデン(PVDF)からなる結着材を含む。
 一方、負極板20は、図2に示すように、長手方向DAに帯状に延び、銅からなる銅箔28と、この銅箔28の両主面28A,28A上に形成された、帯状の2つの負極活物質層21,21とを有している。なお、この負極板20は、上述した正極板30に、前述のセパレータ40を介して対向している。
 このうち、長手方向DAに延びる帯状の負極活物質層21は、負極活物質粒子22(次述する第1粒子22A,第2粒子22B)と、PVDFからなる結着材(図示しない)とを含む。また、この負極活物質層21は、それぞれ、層厚方向DTに積層された2つの層(第1層L1,第2層L2)からなる。この負極活物質層21では、第1層L1は、下層をなし、層厚方向DTの銅箔28側に、第2層L2は、第1層L1の上層をなして、表面21F側にそれぞれ位置している(図2,3参照)。また、第1層L1及び第2層L2の密度はそれぞれ、1.2、1.0g/cmである。
 また、負極活物質層21のうち、第1層L1は、天然黒鉛からなる第1粒子22Aを含み、第2層L2は、非晶質炭素である低温焼成コークスからなる第2粒子22Bを含む。即ち、第1層L1において、この第1層L1が含む負極活物質粒子22全体に占める第1粒子22Aの比率(第1比率Ra)は100%であり、負極活物質粒子22全体に占める第2粒子22Bの比率(第2比率Rb)は0%である。また、第2層L2において、第1比率Raは0%であり、第2比率Rbは100%である。
 天然黒鉛(鱗片状黒鉛)からなる第1粒子22Aは、平均粒径が11.2μmで、BET比表面積が4.6m/gである。また、低温焼成コークスからなる第2粒子22Bは、平均粒径が14.9μmで、BET比表面積が5.8m/gである。なお、第1粒子22A,第2粒子22BのBET比表面積は、JIS規格のK6217-2に記載の方法で測定した値である。
 また、第1層L1及び第2層L2を合わせた負極活物質層21全体における、第1粒子22Aと第2粒子22Bとの存在比は1:1である。つまり、この負極活物質層21が含む負極活物質粒子22全体に占める第1粒子22Aの比率は50wt%である。また、負極活物質層21が含む負極活物質粒子22全体に占める第2粒子22Bの比率も50wt%である。
 このため、本実施形態1の負極活物質層21では、負極活物質層21全体における第1粒子22Aの比率(50wt%)に比して、第1層L1における第1粒子22Aの第1比率Ra(100%)が高くされている。同様に、負極活物質層21全体における第2粒子22Bの比率(50wt%)に比して、第2層L2における第2粒子22Bの第2比率Rb(100%)が高くされている。
 本発明者らは、上述した本実施形態1にかかる電池1の特性について、以下の調査を行った。
 まず、製造して間もない新品(初期)の電池1について、その電池容量を測定した。具体的には、まず、その電池1について、25℃の温度環境下において、電池1の電圧(端子間電圧)が4.1Vとなるまで、1/3Cの電流値で充電し、その後、この電圧を保持して2.5時間充電した(定電流-定電圧充電)。さらに、同じ25℃の温度環境下で、電池1の電圧が3.0Vとなるまで、1/3Cの一定電流値で定電流放電を行い、その後、電圧を3.0Vに保持して4.0時間放電し、放電された電気量(電荷量)を測定した(以下、「電池容量測定」ともいう)。なお、このときの電気量を、電池1の「初期電池容量BC0」とする。
 次いで、この電池1について、0℃の温度環境下で、30Cの電流値で10秒間の定電流充電と、30Cの電流値で10秒間の定電流放電とを、交互に250回繰り返す試験を行った(以下、「0℃パルスサイクル試験」ともいう)。
 その後、電池1について、上述した電池容量測定を再度行い、0℃パルスサイクル試験後における電池1の電池容量を測定した。なお、このときの電池容量を、電池1の「第1試験後電池容量BC1」とする。そして、電池1について、0℃パルスサイクル試験後の容量維持率(第1容量維持率)を算出した(表1)。この第1容量維持率は、「第1試験後電池容量BC1」を「初期電池容量BC0」で割った値(百分率)である(BC1/BC0×100(%))。
 
Figure JPOXMLDOC01-appb-T000001
 
 一方、電池1の比較例である比較電池C1,C2,C3,C4を別途用意し、これらの電池についての電池特性を、電池1と同様に測定した。但し、表1に示すように、比較電池C1は、負極活物質粒子として第1粒子22A(天然黒鉛)のみを含む単層の負極活物質層を有する負極板を用いた点で電池1と異なる。また、比較電池C2は、負極活物質粒子として第2粒子22B(低温焼成コークス)のみを含む単層の負極活物質層を有する負極板を用いた点で電池1と異なる。また、比較電池C3は、第1粒子22Aと第2粒子22Bとを均一に混在させた単層の負極活物質層を有する負極板を用いた点で電池1と異なる。また、比較電池C4は、電池1の負極活物質層21とは逆に、負極活物質層のうち層厚方向銅箔側に第2粒子22Bのみを含む層を、層厚方向表面側に第1粒子22Aのみを含む層をそれぞれ配置した負極活物質層を負極板を用いた点で電池1と異なる。
 これら比較電池C1,C2,C3,C4について、まず、電池1と同様にして、電池容量測定を行って、各比較電池C1,C2,C3,C4の初期電池容量BC0を測定した。次いで、電池1と同様、0℃パルスサイクル試験を行い、その後、再度電池容量測定を行って、各比較電池C1,C2,C3,C4の第1試験後電池容量BC1を測定した。そして、各電池の第1容量維持率(0℃パルスサイクル試験後の容量維持率)を算出した(表1)。
 また、電池1及び比較電池C1,C2,C3,C4について、各電池のインピーダンスの値を測定した。具体的には、Solartron製の電気化学インピーダンス測定装置を用いた交流インピーダンス法(周波数は10-1~10MHzの範囲)により、各電池のインピーダンスの値を測定した。なお、各電池のインピーダンスの値は、上述の交流インピーダンス法によって得られたコール-コールプロットの円弧を用いて求めた。即ち、コール-コールプロットを行った複素平面の原点から、コール-コールプロットとx軸(電気抵抗)との交点までの距離(絶対値)をインピーダンスの値とした。
 各電池(電池1及び比較電池C1,C2,C3,C4)のインピーダンスの値を、表1に示す。
 表1によれば、第1容量維持率について、電池1(98.2%)は、比較電池C2(98.4%)に次いで高く、しかも他の電池(比較電池C1,C3,C4)に比べて十分高いことが判る。天然黒鉛は異方性を有しているため、等方的な低温焼成コークスに比して、外部に向けた、リチウムイオンの出入り口に偏りがある。このため、低温焼成コークスは、天然黒鉛に比してリチウムイオンの授受が容易であり、大電流を充電した際に、自身の表面に金属リチウムが析出するのを抑制できる。従って、負極活物質層のうち表面側に第2粒子22B(低温焼成コークス)が多く存在する電池(電池1,比較電池C2)は、他の電池(比較電池C1,C3,C4)に比べて、金属リチウムの析出が抑制され、第1容量維持率の低下が防止されたと考えられる。
 一方、表1によれば、インピーダンスの値について、電池1(76.3mΩ)は、比較電池C1(76.1mΩ)に次いで小さく、しかも他の電池(比較電池C2,C3,C4)に比べて十分小さいことが判る。非晶質である低温焼成コークスに比べて、天然黒鉛は電子電導性が高い。このため、負極活物質層のうち銅箔側に位置する(銅箔に接する)部位の負極活物質粒子に第1粒子22A(天然黒鉛)が多く存在する電池(電池1,比較電池C1)は、他の電池(比較電池C2,C3,C4)に比べて、負極活物質層と銅箔28との間で電子を容易に授受することができ、インピーダンスの値が小さくなったと考えられる。
 なお、負極活物質層の負極活物質粒子に第2粒子22B(低温焼成コークス)のみを用いた比較電池C2は、第1容量維持率は高くできるが、インピーダンスの値は他の電池より大きくなる。また、負極活物質層の負極活物質粒子に第1粒子22A(天然黒鉛)のみを用いた比較電池C1は、インピーダンスの値は小さくできるが、第1容量維持率は他の電池より低くなる。また、負極活物質粒子として、第1粒子22Aと第2粒子22Bとを均一に混在させた単層の負極活物質層を有する負極板を用いた比較電池C3は、第1容量維持率及びインピーダンスの値とも、比較電池C1と比較電池C2の中間の値となり、中途半端な特性となった。さらに、負極活物質層のうち層厚方向銅箔側に第2粒子22Bのみを含む層を、層厚方向表面側に第1粒子22Aのみを含む層を配置した負極活物質層を有する負極板を用いた比較電池C4は、比較電池C1に次いで第1容量維持率が低く、比較電池C2に次いでインピーダンスの値が大きい、取り得のない特性となった。これらの結果からも、負極活物質層のうち、銅箔側に第1粒子を、表面側に第2粒子を配した電池1の良性がバランス良く、適切であることが理解できる。
 以上で説明したように、本実施形態1にかかる電池1は、比較電池C2とほぼ同等の高い第1容量維持率を有すると共に、比較電池C1とほぼ同等の小さいインピーダンスの値を有する。また、この電池1は、負極活物質層全体に、黒鉛(第1粒子22A)と非晶質炭素(第2粒子22B)とを均一に混在させた電池(比較電池C3)に比して、インピーダンスが低く、低温のパルスサイクル試験後の容量維持率を高くできる。なお、上述の検討から、負極活物質層のうち、銅箔に接する部分で、第1粒子を多く含むようにすることで、インピーダンスを低くできる。また、負極活物質層のうち、表面に露出する部分で、第2粒子を多く含むようにすることで、第1容量維持率を高くできることが理解できる。
 特に、この電池1では、負極活物質層21の第1層L1における負極活物質粒子22に第1粒子22を用い、第2層L2における負極活物質粒子22に第2粒子22Bを用いている。このため、低いインピーダンス、及び、低温のパルスサイクル試験後における高い容量維持率を確実に両立した電池1とすることができる。さらに、この電池1のインピーダンスは、負極板の負極活物質粒子として第1粒子22Aのみを用いた電池(比較電池C1)とほぼ同じ良好な値にできる上、電池1の容量維持率は、負極板の負極活物質粒子として第2粒子22Bのみを用いた電池(比較電池C2)とほぼ同じ良好な値にできる。
 また、特に実施形態1の電池1は、負極活物質層21が第1層L1と第2層L2との2層からなるので、負極活物質層21をシンプルな層構造とすることができ、製造容易な電池1とすることができる。
 さらに、本発明者らは、電池1に用いる第1層の密度と電池特性との関係について、以下の調査を行った。即ち、まず、前述の電池1と同様、負極活物質層が第1層及び第2層からなる負極板を用いた15種類の電池を複数用意した。これらの電池は、第1層の密度を、1.1,1.2,1.4,1.6,1.7g/cmの5水準のいずれかに、また、第2層の密度を、1.0,1.1,1.3g/cmの3水準のいずれかにしてある。なお、各電池の第1層及び第2層の組合せは、他の電池と重複しないようにしてある。
 これら各電池について、前述した電池容量測定を行った。このときの電池容量を各電池の「初期電池容量BC0」とする。次いで、60℃の温度環境下で、これら各電池について、各電池の充電状態(SOC)がSOC0%及びSOC100%になるよう、2Cの電流値で定電流充電及び定電流放電を交互に1000回繰り返す試験を行った(以下、「60℃サイクル試験」ともいう)。その後、各電池について、前述の電池容量測定を再度行い、60℃サイクル試験後における各電池の電池容量を測定した。このときの電池容量を、各電池の「第2試験後電池容量BC2」とする。
 そして、この各電池について、60℃サイクル試験後の容量維持率(第2容量維持率)を算出した。この第2容量維持率は、「第2試験後電池容量BC2」を、「初期電池容量BC0」で割った値(百分率)である(BC2/BC0×100(%))。
 各電池における第1層の密度と、各電池の第2容量維持率(60℃サイクル試験後の容量維持率)との関係を表すグラフを図4に示す。なお、第2層の密度が1.0g/cmの電池の結果については丸(○)で、1.1g/cmの電池の結果については四角(□)で、1.1g/cmの電池の結果については三角(△)で、それぞれプロットしている。このグラフによれば、第2層の密度によらず、密度が1.2、1.4及び1.6g/cmである第1層を用いた電池の第2容量維持率は、いずれも87%程度であるのに対し、密度が1.2及び1.7g/cmである第1層を用いた電池の第2容量維持率は、いずれも87%よりもかなり低くなっている。
 なお、電池について、上述の60℃サイクル試験を行うと、負極活物質粒子上に導電性の低いSEIが生じ、その分、リチウムが消費されるので、上述の容量維持率が低下する。従って特に、この試験後の容量維持率が低いほど、負極活物質層上にSEIが多く生じていると考えられる。しかるに、第1層の密度が1.2~1.6g/cmである電池では、第1層が適切にプレスされているため、膨張収縮に伴う電子導電性の悪化もなく、また、密度が高すぎることによる負極活物質層(第1層)の割れが生じがたいので、60℃サイクル試験後の容量維持率(第2容量維持率)の低下が抑制されたと考えられる。
 前述した実施形態1にかかる電池1は、密度が1.2~1.6g/cmの範囲内の1.2g/cmである第1層L1を用いている。従って、この電池1でも、負極活物質粒子22上にSEIが発生するのを抑制することにより、上述の60℃サイクル試験後の第2容量維持率をも高い電池1となる。
 さらに、本発明者らは、電池1に用いる第2層の密度と電池特性との関係について、以下の調査を行った。即ち、まず、前述の60℃サイクル試験を行ったのと同じ複数の電池を用意した。
 これら各電池について、0℃の温度環境下で、30Cの電流値で10秒間の定電流充電と、30Cの電流値で10秒間の定電流放電とを、交互に280回繰り返す試験を行った(以下、「0℃充電パルスサイクル試験」ともいう)。その後、各電池について、前述した電池容量測定を行い、0℃充電パルスサイクル試験後における各電池の電池容量を測定した。なお、このときの電池容量を、各電池の「第3試験後電池容量BC3」とする。
 そして、この各電池について、0℃充電パルスサイクル試験後の容量維持率(第3容量維持率)を算出した。この第3容量維持率は、各電池の「第3試験後電池容量BC3」を、前述の60℃サイクル試験の前に測定した各電池の「初期電池容量BC0」で割った値(百分率)である(BC3/BC0×100(%))。
 各電池における第2層の密度と、各電池の第3容量維持率(0℃充電パルスサイクル試験後の容量維持率)との関係を表すグラフを図5に示す。なお、第1層の密度が1.1g/cmの電池の結果については丸(○)で、1.2g/cmの電池の結果については四角(□)で、1.4g/cmの電池の結果については三角(△)で、1.6g/cmの電池の結果については×印で、1.7g/cmの電池の結果については*印で、それぞれプロットしている。このグラフによれば、第1層の密度によらず、密度が1.0及び1.2g/cmである第2層を用いた電池の第3容量維持率は、いずれも97%以上であるのに対し、密度が1.3g/cmである第2層を用いた電池の第3容量維持率は、いずれも97%から大幅に低い。
 前述した実施形態1にかかる電池1では、密度が1.2g/cm以下の1.0g/cmである第2層L2を用いている。このため、この電池1では、上述の0℃充電パルスサイクル試験後における第3容量維持率をも高くすることができる。従って、低温下で大電流の充放電を行っても長期間使用可能な電池1とすることができる。
 次に、本実施形態1にかかる電池1の製造方法について、図面を参照しつつ説明する。まず、塗工装置100を用いて、後述する積層塗膜を形成する積層塗布工程について、図6及び図7を参照しつつ説明する。この塗工装置100は、巻出し部101、第1コータ110、第2コータ120、ヒータ130、巻取り部102、及び、複数の補助ローラ140,140を備えている(図6参照)。
 このうち、第1コータ110は、後述する第1ペースト21PAを内部に貯留してなる金属製のペースト保持部111と、このペースト保持部111に保持した第1ペースト21PAを銅箔28の主面28Aに向かって連続的に吐出する吐出口112とを有する。このうち、吐出口112は、スリット状で、長手方向DAに移動する銅箔28の主面28A上に、帯状に第1ペースト21PAを吐出するべく、銅箔28の幅方向(図6中、奥行き方向)に平行に開口している。
 また、第2コータ120は、第1コータ110と同様、金属製のペースト保持部121と吐出口122とを有する。このうち、ペースト保持部121は、後述する第2ペースト21PBを内部に貯留してなる。また、吐出口122は、スリット状で、銅箔28の主面28A上に形成された第1塗膜PSA上に、帯状に第2ペースト21PBを吐出するべく、銅箔28の幅方向(図6中、奥行き方向)に平行に開口している。
 また、ヒータ130は、銅箔28に塗布された第1ペースト21PA(第1塗膜PSA)及び第2ペースト21PB(第2塗膜PSB)を加熱して乾燥させる。これにより、2つのヒータ130,130の間を移動している間に、銅箔28が暖められると共に、この銅箔28に積層塗布された第1ペースト21PA(第1塗膜PSA)及び第2ペースト21PB(第2塗膜PSB)の乾燥が徐々に進む。そして、ヒータ130を通過し終えたときには、第1ペースト21PA(第1塗膜PSA)及び第2ペースト21PB(第2塗膜PSB)は全乾燥、即ち、第1ペースト21PA(第1塗膜PSA)及び第2ペースト21PB(第2塗膜PSB)内の溶媒が全て蒸発する。
 このような塗工装置100を用いて、積層塗布工程を行う。具体的には、まず、水からなる溶媒と共に、天然黒鉛からなる第1粒子22Aとカルボキシメチルセルロース(CMC,図示しない)とスチレンブタジエンゴム(SBR,図示しない)とを混練してできた第1ペースト21PAを予め用意する。なお、第1ペーストPAにおける、第1粒子22A、CMC及びSBRの重量比は、第1粒子22A:CMC:SBR=98:1:1である。
 また、これとは別に、溶媒と共に、低温焼成コークスからなる第2粒子22BとCMCとSBRとを混練してできた第2ペースト21PBを予め用意する。なお、第2ペーストPBにおける、第2粒子22B、CMC及びSBRの重量比は、第2粒子22B:CMC:SBR=98:1:1である。
 なお、第1ペースト21PAにおいて、この第1ペースト21PAが含む負極活物質粒子全体に占める第1粒子22Aの比率(第1比率Ra)は100%であり、第2粒子22Bの比率(第2比率Rb)は0%である。また、第2ペースト21PBにおいて、第1比率Raは0%であり、第2比率Rbは100%である。従って、第2ペースト21PBは、第1ペースト21PAに比して、第2比率Rbが高く、第1比率Raが低い。
 上述の第1ペースト21PAを、第1コータ110のペースト保持部111に、第2ペースト21PBを、第2コータ120のペースト保持部121にそれぞれ投入する。そして、巻出し部101に捲回した帯状の銅箔28を長手方向DAに移動させ、その銅箔28の主面28A上に、第1コータ110により第1ペースト21PAを塗布する。これにより、銅箔28の主面28Aには、第1ペースト21PAからなる第1塗膜PSAが形成される。
 次いで、その第1塗膜PSA上に、第2コータ120により第2ペースト21PBを塗布する。これにより、第1塗膜PSAの上には、第2ペースト21PBからなる第2塗膜PSBが形成される。従って、銅箔28の主面28Aには、第1塗膜PSA及び第2塗膜PSBが積層された積層塗膜PSが形成される(図7参照)。
 続いて、塗工装置100のヒータ130を用いて、乾燥工程を行う。即ち、積層塗膜PSをヒータ130で乾燥させて、プレス前の未圧縮活物質層21Bとした。この乾燥工程の後、この未圧縮活物質層21Bを片側の主面28A上に担持した片面担持銅箔28Kを、一旦巻取り部102に巻き取る。
 次に、塗工装置100を再度用いて、上述の片面担持銅箔28K(銅箔28)の他方の主面28Aにも、第1ペースト21PAと第2ペースト21PBとを塗布し、積層塗膜PSを形成する。そして、この積層塗膜PSについてもヒータ130で全乾燥させる。かくして、銅箔28の両主面28A,28Aに未圧縮活物質層21B,21Bを積層配置した、プレス前の活物質積層板20Bが作製される。その後、図示しないプレス装置を用いて、プレス前の活物質積層板30Bをプレスして、銅箔28の両側に、圧縮済みの2つの負極活物質層21、21を積層してなる負極板20を得る(図2参照)。
 上述の負極板20とは別に、正極板30を作製した。具体的には、図示しない正極活物質粒子、導電材及び結着材を、溶媒と共に混合し、正極ペースト(図示しない)を製造した。そして、アルミニウム箔の両面に、上述の正極ペーストをダイコータで塗布し、その後に乾燥させ、これをプレスして、正極板30を形成した。
 上述のように作製した正極板30と負極板20との間に、セパレータ40を介在させて捲回し、電極体20とする。さらに、正極板30及び負極板20にそれぞれ正極集電部材91及び負極集電部材92を溶接する。その後、電極体20を電池ケース本体81に収容し、封口蓋82で電池ケース本体81を溶接で封口する。その後、図示しない注液孔から電解液を注液し、その注液孔を封止して、電池1が完成する(図1参照)。
 以上より、本実施形態1にかかる電池1の製造方法では、上述の積層塗布工程で、第1ペースト21PAよりも上層に塗布する活物質ペーストに、自身に含む負極活物質粒子22に占める第2粒子22Bの比率(第2比率Rb)が第1ペースト21PAよりも高く、第1粒子22Aの比率(第1比率Ra)が第1ペースト21PAよりも低い第2ペースト21PBを用いている。これにより、負極活物質層21のうち層厚方向DT銅箔28側の部位(第1層L1)で、負極活物質粒子22全体に占める第1粒子22Aの比率が高く、しかも、負極活物質層21のうち層厚方向DT表面21F側の部位(第2層L2)で、負極活物質粒子22全体に占める第2粒子22Bの比率が高くされた負極板20を備える電池1を、容易かつ確実に製造することができる。従って、低い内部抵抗と、低温のパルスサイクル試験後の高い容量維持率とを、確実に両立した電池1を製造することができる。
 なお、本実施形態1の電池1に用いた負極活物質層21では、第1層L1における第1比率Raを100%にした。また、第2層L2における第2比率Rbを100%にした。しかしながら、第1層L1における第1比率Ra、及び、第2層L2における第2比率Rbは100%である必要はなく、負極活物質層に含まれる負極活物質粒子全体に占める第1粒子の比率に比して、第1層L1の第1比率Raを高くし、かつ、負極活物質層に含まれる負極活物質粒子全体に占める第2粒子の比率に比して、第2層L2の第2比率Rbを高くすると良い。従って、例えば、負極活物質層に含まれる負極活物質粒子全体に占める第1粒子の比率が50%である場合に、第1層L1の第1比率Raを50%よりも高い値(例えば85%)としても良い。また、負極活物質層に含まれる負極活物質粒子全体に占める第2粒子の比率が50%である場合に、第2層L2の第2比率Rbを50%よりも高い値(例えば80%)としても良い。
 また、本実施形態1では、第1層L1及び第2層L2の2層からなる負極活物質層21を有する負極板20を用いた電池1を示したが、例えば、3層以上の複数の層で構成しても良い。なお、このような場合には、積層塗布工程で、上層に塗布する活物質ペーストほど、自身に含む負極活物質粒子に占める第2粒子の比率が高いか等しく、かつ、第1粒子の比率が低いか等しい活物質ペーストを用いて積層塗膜を形成すると良い。
 (変形形態)
 次に、本発明にかかる電池の製造方法の変形形態について、図面を参照しつつ説明する。実施形態1では、第1塗膜上に第2塗膜を塗布して積層塗膜を形成する積層塗布工程と、その積層塗膜全体を一度に乾燥させる乾燥工程とを行った。これに対し、本変形形態にかかる電池101の製造方法では、活物質ペースト(前述の第1ペースト及び第2ペーストのいずれか)を塗布する塗布工程と、この塗膜工程で塗布した活物質ペーストを乾燥させる乾燥工程とを交互に繰り返す点で、上述した実施形態1とは異なる。そこで、実施形態1と異なる点を中心に説明し、実施形態1と同様の部分の説明は省略または簡略化する。なお、実施形態1と同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
 本変形形態にかかる電池101の製造方法では、図8に示す塗工装置200を用いて、後述する塗布工程と乾燥工程とを交互に行う。即ち、第1ペースト21PAを塗布する第1塗布工程の次に、塗布された第1ペースト21PAを乾燥させる第1乾燥工程を行う。さらに、第2ペースト21PBを塗布する第2塗布工程の後に、塗布された第2ペースト21PBを乾燥させる第2乾燥工程を行う。
 上述の第1塗布工程、第1乾燥工程、第2塗布工程及び第2乾燥工程に用いる塗工装置200について説明する。この塗工装置200は、前述の実施形態1と同様の、巻出し部101、第1コータ110、第2コータ120、第2ヒータ230B、巻取り部102、及び、複数の補助ローラ140,140を備えている(図8参照)。但し、この塗工装置200は、第1コータ110と第2コータ120との間に、第1ヒータ230Aをも備えている(図8参照)。
 この第1ヒータ230Aは、第1コータ110により銅箔28に塗布された第1ペースト21PA(第1塗膜PSA)を加熱して乾燥させる。これにより、2つの第1ヒータ230A,230Aの間を移動している間に、銅箔28が暖められると共に、この銅箔28に塗布された第1ペースト21PA(第1塗膜PSA)の乾燥が徐々に進む。そして、第1ヒータ230Aを通過し終えたときには、第1ペースト21PA(第1塗膜PSA)は全乾燥している。
 また、第2ヒータ230Bは、第1ヒータ230Aと同様にして、全乾燥した第1ペースト21PA(第1塗膜PSA)上に塗布された第2ペースト21PB(第2塗膜PSB)を加熱して乾燥させる。
 このような塗工装置200を用いて、第1塗布工程を行う。具体的には、まず、実施形態1と同様の第1ペースト21PA、及び、第2ペースト21PBを予め用意する。従って、この第2ペースト21PBは、自身に含む負極活物質粒子22全体に占める第2粒子22Bの比率が、第1ペースト21PAよりも高く、かつ、第1粒子22Aの比率が、第1ペースト21PAよりも低い。
 第1ペースト21PAを、第1コータ110のペースト保持部111に、第2ペースト21PBを、第2コータ120のペースト保持部121にそれぞれ投入し、巻出し部101に捲回した帯状の銅箔28を長手方向DAに移動させ、その銅箔28の主面28A上に、第1コータ110により第1ペースト21PAを塗布する。これにより、銅箔28の主面28Aに、第1ペースト21PAからなる第1塗膜PSAを形成する(図8参照)。
 続いて、塗工装置200の第1ヒータ230Aを用いて、第1乾燥工程を行う。即ち、第1塗膜PSAを第1ヒータ230Aで乾燥させて、未圧縮第1層L1Bとした(図8参照)。
 さらに、未圧縮第1層L1Bを形成した銅箔28を長手方向DAに移動させて、この未圧縮第1層L1B上に、第2コータ120により第2ペースト21PBを塗布する(第2塗布工程)。つまり、第2塗布工程では、銅箔28に既に塗布した第1ペースト21PAを乾燥させてできた下層負極活物質層である未圧縮第1層L1B上に、第2ペースト21PBを塗布する。これにより、未圧縮第1層L1Bの上層に、第2ペースト21PBからなる第2塗膜PSBを形成する(図8参照)。
 続いて、塗工装置200の第2ヒータ230Bを用いて、第2乾燥工程を行う。即ち、第2塗膜PSBを第2ヒータ230Bで乾燥させて、未圧縮第2層L2Bを形成し、これにより未圧縮活物質層21Bを形成した(図8,9参照)。この後、この未圧縮活物質層21Bを片側の主面28A上に担持した片面担持銅箔28Kを、一旦巻取り部102に巻き取る。
 次に、実施形態1と同様、塗工装置200を再度用いて、上述の片面担持銅箔28K(銅箔28)の他方の主面28Aにも、塗布工程と乾燥工程とを繰り返し行い、銅箔28の両主面28A,28Aに未圧縮活物質層21B,21Bを積層配置した、プレス前の活物質積層板20Bを作製する。
 その後、実施形態1と同様、図示しないプレス装置を用いて、プレス前の活物質積層板30Bをプレスして、銅箔28の両側に、圧縮済みの2つの負極活物質層21、21を積層してなる負極板20を得る(図2参照)。以下、実施形態1と同様にして、電池101が完成する(図1参照)。
 以上より、本変形形態にかかる電池101の製造方法では、第1塗布工程、第1乾燥工程、第2塗布工程、第2乾燥工程の順に、塗布工程と乾燥工程とを交互に行った。また、第2塗布工程では、第1塗布工程で塗布した第1ペースト21PAよりも、第2比率Rbが高く、かつ、第1比率Raが低い第2ペースト21PBを用いている。これにより、負極活物質層21のうち層厚方向DT銅箔28側の部位(第1層L1)で、負極活物質粒子22全体に占める第1粒子22Aの比率が高く、しかも、負極活物質層21のうち層厚方向DT表面21F側の部位(第2層L2)で、負極活物質粒子22全体に占める第2粒子22Bの比率が高くされた負極板20を備える電池101を、容易かつ確実に製造することができる。従って、低い内部抵抗と、低温のパルスサイクル試験後の高い容量維持率とを、確実に両立した電池101を製造することができる。
 なお、本変形形態の電池101に用いた負極活物質層21では、実施形態1と同様、第1層L1における第1比率Raを100%にした。また、第2層L2における第2比率Rbを100%にした。しかしながら、第1層L1における第1比率Ra、及び、第2層L2における第2比率Rbは100%である必要はなく、負極活物質層に含まれる負極活物質粒子全体に占める第1粒子の比率に比して、第1層L1の第1比率Raを高くし、かつ、負極活物質層に含まれる負極活物質粒子全体に占める第2粒子の比率に比して、第2層L2の第2比率Rbを高くすると良い。従って、例えば、負極活物質層に含まれる負極活物質粒子全体に占める第1粒子の比率が50%である場合に、第1層L1の第1比率Raを50%よりも高い値(例えば70%)としても良い。また、負極活物質層に含まれる負極活物質粒子全体に占める第2粒子の比率が50%である場合に、第2層L2の第2比率Rbを50%よりも高い値(例えば75%)としても良い。
 また、本変形形態では、第1層L1及び第2層L2の2層からなる負極活物質層21を有する負極板20を用いた電池101を示したが、例えば、3層以上の複数の層で構成しても良い。なお、このような場合には、塗布工程で、後に塗布する活物質ペーストほど、自身に含む負極活物質粒子に占める第2粒子の比率が高いか等しく、かつ、第1粒子の比率が低いか等しい活物質ペーストを用いて、この活物質ペーストを負極集電板又は下層負極活物質層上に塗布すると良い。また、本変形形態の第1乾燥工程及び第2乾燥工程では、第1ペースト21PA及び第2ペースト21PBをそれぞれ全乾燥させたが、途中の乾燥(第1乾燥工程)において、活物質ペーストを半乾燥としても良い。
 (実施形態2)
 本実施形態2にかかる車両300は、前述した電池1(又は電池101)を複数含むバッテリパック310を搭載したものである。具体的には、図10に示すように、車両300は、エンジン340、フロントモータ320及びリアモータ330を併用して駆動するハイブリッド自動車である。この車両300は、車体390、エンジン340、これに取り付けられたフロントモータ320、リアモータ330、ケーブル350、インバータ360、及び、矩形箱形状のバッテリパック310を有している。このうちバッテリパック310は、前述した電池1(又は電池101)を複数収容してなる。
 本実施形態2にかかる車両300は、低い内部抵抗と、低温のパルスサイクル試験後の高い容量維持率とを両立させた電池1(又は電池101)を搭載しているので、安定した電池性能を有する車両300とすることができる。
 以上において、本発明を実施形態1,2及び変形形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
 例えば、実施形態1等では、第1粒子22Aに鱗片状黒鉛を用いたが、第1粒子に、例えば、鱗片状黒鉛以外の天然黒鉛(塊状黒鉛、土状黒鉛、等)や人造黒鉛を用いても良い。また第2粒子22Bに低温焼成コークスを用いたが、第2粒子に、例えば、ハードカーボン(難黒鉛化性炭素)を用いても良い。

Claims (7)

  1.  負極集電板、及び、負極活物質粒子を含み、上記負極集電板上に形成されてなる負極活物質層、を有する負極板と、
     上記負極板に、セパレータを介して対向する正極板と、を備える
    リチウムイオン二次電池であって、
     上記負極活物質粒子は、
      少なくとも、黒鉛からなる第1粒子、及び、非晶質炭素からなる第2粒子からなり、
     上記負極活物質層は、
      この負極活物質層に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率に比して、上記負極活物質層のうち層厚方向上記負極集電板側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率が高く、
      上記負極活物質層に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率に比して、上記負極活物質層のうち上記層厚方向表面側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率が高くされてなる
    リチウムイオン二次電池。
  2. 請求項1に記載のリチウムイオン二次電池であって、
     前記負極活物質層は、
      前記層厚方向に積層された複数の層からなり、
      最も前記負極集電板側に位置する第1層、及び、最も前記表面側に位置する第2層を含み、
     上記第1層の前記負極活物質粒子は、前記第1粒子からなり、
     上記第2層の上記負極活物質粒子は、前記第2粒子からなる
    リチウムイオン二次電池。
  3. 請求項2に記載のリチウムイオン二次電池であって、
     前記負極活物質層は、
      前記第1層及び前記第2層からなる
    リチウムイオン二次電池。
  4. 請求項2又は請求項3に記載のリチウムイオン二次電池であって、
     前記第1層の密度が1.2~1.6g/cmである
    リチウムイオン二次電池。
  5. 請求項2~請求項4のいずれか一項に記載のリチウムイオン二次電池であって、
     前記第2層の密度が1.2g/cm以下である
    リチウムイオン二次電池。
  6.  負極集電板、及び、負極活物質粒子を含み、上記負極集電板上に形成されてなる負極活物質層、を有する負極板と、
     上記負極板に、セパレータを介して対向する正極板と、を備え、
     上記負極活物質粒子は、
      少なくとも、黒鉛からなる第1粒子、及び、非晶質炭素からなる第2粒子からなり、
     上記負極活物質層は、
      この負極活物質層に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率に比して、上記負極活物質層のうち層厚方向上記負極集電板側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率が高く、
      上記負極活物質層に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率に比して、上記負極活物質層のうち上記層厚方向表面側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率が高くされてなる
    リチウムイオン二次電池の製造方法であって、
     上記負極活物質粒子を含む活物質ペーストを、上記負極集電板上に複数回重ねて塗布した積層塗膜を形成する積層塗布工程と、
     上記積層塗膜を乾燥させる乾燥工程と、を備え、
     上記積層塗布工程は、
      上層に塗布する上記活物質ペーストほど、自身に含む上記負極活物質粒子全体に占める上記第2粒子の比率が高いか等しく、かつ、上記第1粒子の比率が低いか等しい活物質ペーストを用いる
    リチウムイオン二次電池の製造方法。
  7.  負極集電板、及び、負極活物質粒子を含み、上記負極集電板上に形成されてなる負極活物質層、を有する負極板と、
     上記負極板に、セパレータを介して対向する正極板と、を備え、
     上記負極活物質粒子は、
      少なくとも、黒鉛からなる第1粒子、及び、非晶質炭素からなる第2粒子からなり、
     上記負極活物質層は、
      この負極活物質層に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率に比して、上記負極活物質層のうち層厚方向上記負極集電板側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第1粒子の比率が高く、
      上記負極活物質層に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率に比して、上記負極活物質層のうち上記層厚方向表面側の部位において、この部位に含まれる上記負極活物質粒子全体に占める上記第2粒子の比率が高くされてなる
    リチウムイオン二次電池の製造方法であって、
     上記負極活物質粒子を含む活物質ペーストを、上記負極集電板上、又は、既に塗布した活物質ペーストを乾燥させた下層負極活物質層上に塗布する塗布工程と、
     塗布された上記活物質ペーストを乾燥させる乾燥工程と、を交互に繰り返し、
     上記塗布工程は、
      後に塗布する上記活物質ペーストほど、自身に含む上記負極活物質粒子全体に占める上記第2粒子の比率が高いか等しく、かつ、上記第1粒子の比率が低いか等しい活物質ペーストを用いる
    リチウムイオン二次電池の製造方法。
     
     
PCT/JP2010/071844 2010-12-06 2010-12-06 リチウムイオン二次電池及びリチウムイオン二次電池の製造方法 WO2012077176A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/990,837 US9997768B2 (en) 2010-12-06 2010-12-06 Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
PCT/JP2010/071844 WO2012077176A1 (ja) 2010-12-06 2010-12-06 リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
CN2010800705430A CN103250279A (zh) 2010-12-06 2010-12-06 锂离子二次电池和锂离子二次电池的制造方法
JP2012547613A JP5673690B2 (ja) 2010-12-06 2010-12-06 リチウムイオン二次電池及びリチウムイオン二次電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/071844 WO2012077176A1 (ja) 2010-12-06 2010-12-06 リチウムイオン二次電池及びリチウムイオン二次電池の製造方法

Publications (1)

Publication Number Publication Date
WO2012077176A1 true WO2012077176A1 (ja) 2012-06-14

Family

ID=46206698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071844 WO2012077176A1 (ja) 2010-12-06 2010-12-06 リチウムイオン二次電池及びリチウムイオン二次電池の製造方法

Country Status (4)

Country Link
US (1) US9997768B2 (ja)
JP (1) JP5673690B2 (ja)
CN (1) CN103250279A (ja)
WO (1) WO2012077176A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140120977A (ko) * 2013-04-03 2014-10-15 에스케이이노베이션 주식회사 차등 내열성능을 갖는 전지셀로 구성된 전지팩
CN104126242A (zh) * 2013-01-25 2014-10-29 株式会社Lg化学 锂二次电池用负极及包含该负极的锂二次电池
EP2797142A4 (en) * 2013-01-25 2016-05-25 Lg Chemical Ltd ANODE FOR A LITHIUM SUBSTITUTING BATTERY AND LITHIUM SUBSTITUTING BATTERY THEREWITH
WO2016136803A1 (ja) * 2015-02-25 2016-09-01 新日鉄住金化学株式会社 リチウムイオン二次電池負極用活物質、それを用いた二次電池負極及び二次電池
JP2018147874A (ja) * 2017-03-08 2018-09-20 株式会社リコー 電極、電極素子、非水電解液蓄電素子
JP2020053142A (ja) * 2018-09-25 2020-04-02 本田技研工業株式会社 リチウムイオン二次電池用負極、および当該リチウムイオン二次電池用負極を用いたリチウムイオン二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10084206B2 (en) 2013-11-12 2018-09-25 Alexandre M. Iarochenko Fast charge apparatus for a battery
CN105489832A (zh) * 2015-11-25 2016-04-13 百顺松涛(天津)动力电池科技发展有限公司 一种解决水系负极浆料在辊压过程中粘辊严重问题的方法
CN111129503B (zh) * 2018-10-31 2021-06-15 宁德时代新能源科技股份有限公司 一种负极极片以及二次电池
CN111490253B (zh) * 2019-01-29 2021-12-10 宁德时代新能源科技股份有限公司 一种负极极片及其锂离子二次电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138671A (ja) * 1994-11-14 1996-05-31 Matsushita Electric Ind Co Ltd 非水電解液二次電池用電極
JP2005071918A (ja) * 2003-08-27 2005-03-17 Jfe Chemical Corp リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2008059999A (ja) * 2006-09-01 2008-03-13 Sony Corp 負極およびそれを用いた非水電解質二次電池
JP2009193924A (ja) * 2008-02-18 2009-08-27 Nec Tokin Corp リチウムイオン二次電池用負極、およびそれを用いたリチウムイオン二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339009B2 (ja) * 1994-07-04 2002-10-28 新東産業株式会社 ロックガイド
JP2002100410A (ja) 2000-07-21 2002-04-05 At Battery:Kk 非水電解液二次電池
KR100570648B1 (ko) 2004-01-26 2006-04-12 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
JP5171283B2 (ja) 2008-01-22 2013-03-27 日立ビークルエナジー株式会社 非水電解液二次電池
JP2010267540A (ja) * 2009-05-15 2010-11-25 Panasonic Corp 非水電解質二次電池
JP2012015051A (ja) 2010-07-05 2012-01-19 Hitachi Vehicle Energy Ltd リチウムイオン二次電池、及びリチウムイオン二次電池用負極
KR101549321B1 (ko) 2011-05-10 2015-09-01 도요타지도샤가부시키가이샤 2차 전지 및 2차 전지의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138671A (ja) * 1994-11-14 1996-05-31 Matsushita Electric Ind Co Ltd 非水電解液二次電池用電極
JP2005071918A (ja) * 2003-08-27 2005-03-17 Jfe Chemical Corp リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2008059999A (ja) * 2006-09-01 2008-03-13 Sony Corp 負極およびそれを用いた非水電解質二次電池
JP2009193924A (ja) * 2008-02-18 2009-08-27 Nec Tokin Corp リチウムイオン二次電池用負極、およびそれを用いたリチウムイオン二次電池

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104126242A (zh) * 2013-01-25 2014-10-29 株式会社Lg化学 锂二次电池用负极及包含该负极的锂二次电池
JP2015511389A (ja) * 2013-01-25 2015-04-16 エルジー・ケム・リミテッド リチウム二次電池用負極及びこれを含むリチウム二次電池
EP2797142A4 (en) * 2013-01-25 2016-05-25 Lg Chemical Ltd ANODE FOR A LITHIUM SUBSTITUTING BATTERY AND LITHIUM SUBSTITUTING BATTERY THEREWITH
US9583756B2 (en) 2013-01-25 2017-02-28 Lg Chem, Ltd. Anode for lithium secondary battery and lithium secondary battery including the same
CN106935793A (zh) * 2013-01-25 2017-07-07 株式会社Lg 化学 负极、制备负极的方法及包含该负极的锂二次电池
US10263242B2 (en) 2013-01-25 2019-04-16 Lg Chem, Ltd. Anode for lithium secondary battery and lithium secondary battery including the same
KR20140120977A (ko) * 2013-04-03 2014-10-15 에스케이이노베이션 주식회사 차등 내열성능을 갖는 전지셀로 구성된 전지팩
KR101990154B1 (ko) 2013-04-03 2019-06-17 에스케이이노베이션 주식회사 차등 내열성능을 갖는 전지셀로 구성된 전지팩
WO2016136803A1 (ja) * 2015-02-25 2016-09-01 新日鉄住金化学株式会社 リチウムイオン二次電池負極用活物質、それを用いた二次電池負極及び二次電池
JP2018147874A (ja) * 2017-03-08 2018-09-20 株式会社リコー 電極、電極素子、非水電解液蓄電素子
JP2020053142A (ja) * 2018-09-25 2020-04-02 本田技研工業株式会社 リチウムイオン二次電池用負極、および当該リチウムイオン二次電池用負極を用いたリチウムイオン二次電池
JP7010795B2 (ja) 2018-09-25 2022-01-26 本田技研工業株式会社 リチウムイオン二次電池用負極、および当該リチウムイオン二次電池用負極を用いたリチウムイオン二次電池

Also Published As

Publication number Publication date
US20130252111A1 (en) 2013-09-26
CN103250279A (zh) 2013-08-14
US9997768B2 (en) 2018-06-12
JP5673690B2 (ja) 2015-02-18
JPWO2012077176A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5673690B2 (ja) リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP5787196B2 (ja) リチウムイオン二次電池
KR101514586B1 (ko) 리튬 이온 2차 전지용 부극 활물질
JP5783433B2 (ja) リチウムイオン二次電池
KR20170031141A (ko) 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법
WO2013080379A1 (ja) リチウム二次電池とその製造方法
JP6057124B2 (ja) 二次電池
JP2011070976A (ja) リチウムイオン二次電池、車両及び電池搭載機器
US9190661B2 (en) Secondary battery and method for producing secondary battery
JP6902206B2 (ja) リチウムイオン二次電池
JP5432746B2 (ja) リチウムイオン二次電池
JP2020113486A (ja) 正極
JP7290124B2 (ja) リチウムイオン二次電池の製造方法および負極材料
JP6274532B2 (ja) 非水電解質二次電池の製造方法
US11302905B2 (en) Negative electrode of nonaqueous lithium-ion secondary battery and nonaqueous lithium-ion secondary battery using same
JP7365566B2 (ja) 非水電解液二次電池
JP7054440B2 (ja) 二次電池
JP2022100812A (ja) 非水電解質二次電池
JPH11283612A (ja) リチウム二次電池
JP2020202039A (ja) 非水電解質二次電池
JP2021039874A (ja) 非水電解質二次電池
JP2020155319A (ja) リチウムイオン二次電池
JP7329014B2 (ja) ラミネート型二次電池の製造方法
JP7249991B2 (ja) 二次電池
JP6731155B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13990837

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012547613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860478

Country of ref document: EP

Kind code of ref document: A1