WO2012075766A1 - 换热器、制冷剂导流管以及制冷剂导流管的加工方法 - Google Patents

换热器、制冷剂导流管以及制冷剂导流管的加工方法 Download PDF

Info

Publication number
WO2012075766A1
WO2012075766A1 PCT/CN2011/072993 CN2011072993W WO2012075766A1 WO 2012075766 A1 WO2012075766 A1 WO 2012075766A1 CN 2011072993 W CN2011072993 W CN 2011072993W WO 2012075766 A1 WO2012075766 A1 WO 2012075766A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
refrigerant
strip
sides
side edges
Prior art date
Application number
PCT/CN2011/072993
Other languages
English (en)
French (fr)
Inventor
高强
李艳星
黄宁杰
Original Assignee
三花丹佛斯(杭州)微通道换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三花丹佛斯(杭州)微通道换热器有限公司 filed Critical 三花丹佛斯(杭州)微通道换热器有限公司
Priority to US13/991,821 priority Critical patent/US9885521B2/en
Priority to KR1020137017423A priority patent/KR101511885B1/ko
Priority to EP11847879.1A priority patent/EP2650078B1/en
Priority to JP2013541185A priority patent/JP5809706B2/ja
Publication of WO2012075766A1 publication Critical patent/WO2012075766A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/06Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with the heat-exchange conduits forming part of, or being attached to, the tank containing the body of fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/14Making tubes from double flat material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/151Making tubes with multiple passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/156Making tubes with wall irregularities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/156Making tubes with wall irregularities
    • B21C37/157Perforations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/156Making tubes with wall irregularities
    • B21C37/158Protrusions, e.g. dimples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/16Making tubes with varying diameter in longitudinal direction
    • B21C37/18Making tubes with varying diameter in longitudinal direction conical tubes
    • B21C37/185Making tubes with varying diameter in longitudinal direction conical tubes starting from sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49391Tube making or reforming

Definitions

  • the present invention relates to the field of refrigeration technology, and more particularly to a method of processing a refrigerant conduit for a heat exchanger. Further, the present invention relates to a refrigerant flow guide tube processed by the above method and a heat exchanger including the above refrigerant flow guide tube.
  • a heat exchanger is a device that transfers part of the heat of a hot fluid to a cold fluid, also known as a heat exchanger, and is widely used in fields such as HVAC.
  • FIG. 1 is a schematic structural view of a heat exchanger in the prior art.
  • a typical heat exchanger 10 generally includes two headers 101 arranged in parallel.
  • FIG. 1 (only one side header 101 is shown in FIG. 1 ), and there are a plurality of heat exchange tubes 102 arranged substantially in parallel between the headers 101, and heat-dissipating fins are arranged between the heat-exchange tubes 102, and the heat-exchange tubes 102 are disposed.
  • the two ends are connected to the headers 101 on both sides, and the refrigerant enters the heat transfer tubes 102 from the headers 101 on one side, thereby realizing the process of heat exchange.
  • a refrigerant flow guiding tube 103 is inserted into the header 101, and the draft tube 103 is inserted into the bottom of the header 101.
  • the air guiding tube 103 is provided with an opening 1031 at a certain distance along the path, and the end of the guiding tube 103 is sealed.
  • Each opening 1031 of the guiding tube 103 is responsible for the refrigerant distribution of the heat exchange tube 102 in the corresponding area.
  • the refrigerant can be recirculated through the heat transfer tubes 102 through the openings 1031, or the refrigerant collecting ducts 103 flowing out of the heat exchange tubes 102 can be recirculated and exchanged.
  • the heat exchanger that is, the opening 1031 serves as a passage for the refrigerant to flow into or out of the draft tube.
  • the punching is usually directly processed on the surface of the tube of the draft tube 103.
  • the inside of the draft tube 103 is straight.
  • the diameter is small, and the diameter of the draft tube 103 is smaller as about 10 mm. Therefore, it is technically difficult to directly process the opening 1031 on the arc surface of the tube of the draft tube 103, and the processing efficiency is high. Low, high cost; and metal burrs, metal chips, etc. remain on the inside of the opening 1031 of the pipe body. Due to the small diameter of the pipe, these internal metal burrs and metal chips are difficult to remove, and the opening 1031 may be blocked during system operation. , causing uneven distribution of refrigerant, even free metal chips will block the throttle mechanism, causing system failure.
  • the present invention provides a method for processing a refrigerant flow guiding tube for a heat exchanger, the refrigerant guiding tube comprising a pipe body and a passage through the pipe wall of the pipe body, wherein The tubular body is formed by arranging one or more strip-shaped sheets through the side edges of the longitudinal direction thereof.
  • the tubular body is formed by abutting one or more strip-shaped plates through the sides of the longitudinal direction thereof, and the through holes are formed in at least one of the strip-shaped plates before the docking.
  • the through holes are machined at the opposite side edges, and when the butting, the two opposite side edges are brought close to each other, and the edges of the two opposite side edges are sealed.
  • the tubular body is formed by laminating one or more strip-shaped plates through the side edges of the longitudinal direction thereof, and before the fitting, the concaves extending along the thickness direction of the opposite sides are processed on at least one of the opposite sides.
  • the pair of sides, the groove and the other pair of sides form the channel.
  • a gap is left between the sides of the at least two pairs, the gap forming the channel.
  • the surfaces of at least two of the paired sides are oppositely formed to form the slit, and two The pair of side edges are bent in the same direction.
  • the refrigerant guiding tube of the present invention is processed by forming at least one strip of sheet material through the side edges of the longitudinal direction thereof to form a tube body, and when the method is used to process the draft tube, before the tube body is formed or During the formation process, the passage of the refrigerant on the draft tube is processed, thereby avoiding the processing of the passage directly on the pipe body, so that the process is more convenient.
  • the tubular body is formed by abutting one or more strip-shaped plates through the sides of the longitudinal direction thereof, and the through holes are formed in at least one of the strip-shaped plates before the docking.
  • the through hole is directly processed on the plate, the process is relatively simple, and various processing methods can be adopted, and various through hole shapes can be processed.
  • the plate can be subjected to processes such as deburring and metal shavings. It is easy to realize the processing at the edge of the through hole, and then the board is butted and connected to form a tube body.
  • the tubular body is formed by laminating one or more strip-shaped plates through the sides of the longitudinal direction thereof, and the at least one pair of side edges are processed along the thickness thereof before being bonded.
  • the notch of the groove faces the other pair of sides to which it fits, the groove forming the channel with the other of the pair of sides.
  • a gap is left between the sides of the two pairs, the slit forming the channel.
  • This embodiment directly utilizes the gap between the side edges as a passage for the refrigerant, and the machining process is more convenient.
  • the present invention also provides a refrigerant flow guiding tube for a heat exchanger, comprising a pipe body and a passage through a pipe wall of the pipe body, wherein the pipe body is more than one piece
  • the strip-shaped sheet is joined to the formed tube body by the side edges in the longitudinal direction thereof.
  • the pipe body is a pipe body formed by abutting one or more strip-shaped plate materials through side edges of the longitudinal direction thereof, and the pipe body has a through hole, and the through hole is located at a position other than the abutting portion of the pipe body, The through hole forms the passage.
  • the tubular body has the through holes distributed along a circumferential direction thereof.
  • the surfaces of the opposite sides of the tubular body are opposite and have a gap, and the through-holes are provided on the opposite sides.
  • a tube body formed, at least one of the opposite sides of the tube body having an EJ groove extending in a thickness direction, the groove of the groove facing the other side of the pair, the groove and the other The paired sides form the channel.
  • the slit forming the passage.
  • the surfaces of the two opposite side edges forming the slit are opposite, and the two opposite side edges are bent in the same direction.
  • the tubular body has at least two lumens.
  • the pipe body of the refrigerant guiding tube provided by the invention is a pipe body formed by pairing at least one strip-shaped plate material through the side edges of the longitudinal direction thereof, and the passage of the draft tube can be formed before or during the formation of the pipe body. Processing, avoiding the processing of the channel directly on the pipe body, making the process more convenient.
  • the present invention further provides a heat exchanger comprising a heat exchange tube, a header, and a refrigerant guiding tube inserted into the collecting tube, wherein the refrigerant guiding tube is the above The draft tube of any of the above. Since the above refrigerant flow conduit has the above technical effects, the heat exchanger having the refrigerant flow conduit should have the same technical effect.
  • FIG. 1 is a schematic structural view of a heat exchanger in the prior art
  • FIG. 2 is a flow chart of a first embodiment of a method for processing a refrigerant guiding tube according to the present invention
  • FIG. 3 is a flow chart of a second embodiment of a method for processing a refrigerant guide tube according to the present invention.
  • FIG. 4 is a flow chart of a third embodiment of a method for processing a refrigerant guiding tube according to the present invention.
  • Figs. 5-1 to 5-4 are respectively schematic structural views of four strip-shaped plates used in the processing method provided by the present invention.
  • FIG. 6 is a schematic structural view of a first embodiment of a refrigerant guiding tube provided by the present invention
  • 7 is another schematic structural view of a first embodiment of a refrigerant guiding tube provided by the present invention
  • Figure 8 is a schematic view showing still another structure of the first embodiment of the refrigerant guiding tube provided by the present invention.
  • Figure 9 is a schematic view showing the structure of a second embodiment of the refrigerant guiding tube provided by the present invention.
  • FIG. 10 is another schematic structural view of a second embodiment of a refrigerant guiding tube provided by the present invention.
  • FIG. 11 is a schematic structural view of a third embodiment of a refrigerant guiding tube provided by the present invention.
  • FIG. 12 is another schematic structural view of a third embodiment of a refrigerant guiding tube provided by the present invention.
  • 13-1 to 13-5 are schematic views respectively showing five shapes of a cross section of a refrigerant guiding tube provided by the present invention.
  • Figure 14 is a schematic view showing the structure of a fourth embodiment of a refrigerant guiding tube provided by the present invention.
  • 15-1 to 15-15 are schematic views respectively showing five ways of setting the passage of the refrigerant guiding tube provided by the present invention.
  • Fig. 16-1 to Fig. 16-3 are respectively three schematic views showing the structure of the passage of the refrigerant draft tube provided by the present invention.
  • the core of the present invention is to provide a method for processing a refrigerant draft tube for a heat exchanger. When the draft tube is processed by the method, the processing of the refrigerant passage on the draft tube is more convenient.
  • Another core of the present invention is to provide a refrigerant flow conduit machined by the above method.
  • Yet another core of the present invention is to provide a heat exchanger including the above-described refrigerant flow conduit.
  • the refrigerant guiding tube comprises a tube body and a passage for the refrigerant to flow into or out of the tube body, the passage channel distributes the flow amount of the refrigerant, and the passage penetrates the tube wall of the tube body, and the exchange provided by the invention
  • the processing method of the refrigerant guide tube for the heat exchanger requires more than one strip plate, usually
  • the metal flat plate is used to form the pipe body in the longitudinal direction of the pipe body.
  • There are various ways to match the pair such as welding, crimping, riveting, sliding, etc., and the side edges can be along the surface of the strip plate.
  • the inner or outer fit can also be lapped together.
  • the manner of the side pairing is not limited to the above manner, as long as the side edges of the sheet can be formed to form the tube body, which are within the protection scope of the present invention. .
  • the manufacturing process is more flexible, and the tube body of various cross-sectional shapes can be formed, and the tube body can be formed according to the actual required shape, which is easy to realize in the process, and adopts a piece.
  • the above strip-shaped plates are easy to implement. It is also possible to make the cross-sectional area of the pipe body gradually change along the flow direction of the refrigerant by appropriately adjusting the shape of the strip-shaped plate or adjusting the contact area of the paired side, so that the two-phase refrigerant is more uniformly mixed.
  • the use of the guide tube formed by the strip plate can enhance the disturbance of the two-phase fluid refrigerant in the draft tube, avoid the stratification of the gas-liquid refrigerant, and make the distribution of the refrigerant more uniform.
  • the passage of the refrigerant on the draft tube can be processed before or during the formation of the tube body, thereby avoiding the processing of the passage directly on the tube body, so that the process is more convenient;
  • the diversion tube with complex cross-section shape is processed by more than one strip-shaped sheet material, which can effectively reduce the difficulty of processing, without using special molds, saving the cost of the mold, thereby reducing the production cost.
  • FIG. 2 is a flow chart of a first specific embodiment of a method for processing a refrigerant guiding tube according to the present invention.
  • the processing method provided by the present invention comprises the following steps: Step S1: providing more than one strip of sheet material.
  • Step S2 processing a through hole on at least one strip of the sheet material.
  • a guide flap for guiding the flow of the refrigerant may be formed at the through hole, and may be formed by punching.
  • the specific shape of the guide flap can be selected according to factors such as the ease of processing, the material of the strip, the size of the strip, and the effect of the flow.
  • Step S4 performing a fixing treatment on the butted portions of the strips.
  • the tubular body is formed.
  • the through hole in the strip-shaped plate material conducts the inside of the tubular body, and becomes a passage for the refrigerant to flow into or out of the tubular body.
  • the process is relatively simple, and various processing methods can be employed, and a plurality of through hole shapes can be selectively processed, thereby controlling the outflow pattern of the fluid.
  • the strip plates can be subjected to the steps of removing burrs and wastes before the sides are butted. Since the objects such as burrs and wastes are on the surface of the strip plates, it is easy to handle, and then the strips are processed. The sides of the sheet are butted to form a tube body, thereby preventing burrs, wastes, etc. from blocking the through holes. Furthermore, it is convenient to machine the through holes on the strip plate, and the through hole size is set to be highly controllable.
  • step S2 through holes may be formed in each of the strip-shaped sheets.
  • a through hole distributed along the circumferential direction of the tube body is formed on the tube wall of the tube body.
  • strip-shaped sheets can be used, and through-holes are formed on each of the strip-shaped sheets, and then butted to form a square-shaped tube body, the four side walls of the square-shaped tube body each have a through-hole.
  • through-holes are formed on each of the strip-shaped sheets, and then butted to form a square-shaped tube body, the four side walls of the square-shaped tube body each have a through-hole.
  • the specific location and number of through holes can be determined according to actual needs.
  • the distribution of the through holes in the tubular body along its circumferential direction can increase the uniformity of the distribution of the flow of the refrigerant to the flow conduit.
  • FIG. 3 is a flow chart of a second specific embodiment of a method for processing a refrigerant guide tube according to the present invention.
  • the processing method provided by the present invention comprises the following steps: Step S2: providing one or more strips of sheet material.
  • Step S22 processing a groove extending along the thickness direction of the opposite side edges on at least one of the opposite side edges of the strip-shaped plate.
  • the groove may be formed by punching, and the cross-sectional shape of the groove may be a curved shape, a rectangular shape, or the like, and a groove having a deep gradient may be processed.
  • Step S23 laminating the opposite sides of each strip of sheet material along the surface of the strip sheet.
  • the paired side edges of the grooved surface are fitted to the surface of the other pair of side edge strip plates, and the notches of the groove need to face the other pair of side edges to which the groove is attached.
  • the groove and the other pair of side edges form a channel that conducts the inside of the pipe body, thereby acting as a passage of the refrigerant to the heat exchange pipe. , ' , , mouth , ,
  • Step S24 The bonding portion of each strip of the sheet material is subjected to a fixing treatment.
  • the tubular body is formed.
  • the through hole in the strip-shaped plate material conducts the inside of the tubular body, and becomes a passage for the refrigerant to flow into or out of the tubular body.
  • the grooves extending along the thickness direction of the opposite sides may be machined on the two opposite sides of the bonding, and the groove positions of the two opposite sides are mutually corresponding, correspondingly,
  • the two side edges are bonded to the surface of the strip plate, and the notches of the two grooves are opposed to each other, and the two grooves are fitted to form a passage for guiding the inside of the pipe body.
  • the size of the channel opening can be adjusted by adjusting the depth of the groove or along the length of the side.
  • step S22 when the grooves are machined, the spacing between the grooves of the same side can be made gradual, and the hole pitch of the finally formed tube hole is gradually changed.
  • the hole spacing can be flexibly adjusted according to actual use requirements, and the amount of refrigerant distributed can be adjusted to help improve the uniformity of distribution of the refrigerant inside the heat exchanger.
  • the through hole in addition to processing the groove, may be formed on the strip plate, and the formed pipe body has both the refrigerant passage formed by the groove and the opposite side. There is also a passage formed by the through hole.
  • the grooves are formed on the side edges of the strip-shaped plate, and when the side edges are fitted to form the pipe body, the groove and the paired side directly form a passage for the refrigerant to flow, and the processing process is performed; Moreover, the size of the passage opening formed by the side edge fitting is easy to precisely control, thereby facilitating the quality control of the batch product; in addition, the channel is formed by the two pairs of side edges along the surface of the strip sheet material, The area available for consolidation is large, and the consolidation process is easy to achieve regardless of riveting, welding or other consolidation methods.
  • FIG. 4 is a flow chart of a third specific embodiment of a method for processing a refrigerant guide tube according to the present invention.
  • the processing method provided by the present invention comprises the following steps: Step S3: providing one or more strips of sheet material.
  • Step S32 The side edges of the strips are arranged to be paired, and a gap is left between the at least two sides.
  • a tube body having side slits is formed. That is, when the side edges of the strips are paired, at least the two side edges are not completely fitted, but a certain gap is left between the two side edges, and the gap forms a refrigerant inflow or The passage out of the draft tube.
  • This embodiment directly utilizes the gap between the side edges as a passage for the refrigerant to flow, and the formation process of the tube body is the formation process of the draft tube, thereby eliminating the special processing channel, the consolidation and the side-to-side process, and the like. , making the processing process more convenient; in addition, it is easy to control the size of the passage opening by directly forming the gap.
  • step S32 the width of the gap between the paired sides can be gradually changed, and the cross section of the flow passage is gradually changed as the pressure along the direction of the refrigerant flows changes, correspondingly
  • the circulation of the refrigerant can be adjusted.
  • the distribution amount of the refrigerant flowing into or out of the draft tube can be adjusted to help improve the uniformity of the refrigerant distribution.
  • the gap is formed relatively, and the two opposite sides are bent in the same direction, and the orientation of the slit has an angle with the main plane of the draft tube, and the angle may be in the range of 0. ⁇ 270. By adjusting this angle, the outflow direction of the refrigerant can be adjusted according to the use requirements.
  • FIG. 5-1 to FIG. 5-4 are respectively schematic structural views of four strip-shaped plates used in the processing method provided by the present invention.
  • the spoiler bumps that disturb the flow of the refrigerant can be machined on the surface of the strip plate.
  • a convex strip-shaped sheet 1 such as a hemispherical, tetragonal, or the like, forming a spoiler projection
  • a strip-shaped sheet 1 having a double-sided corrugated shape, and a spoiler projection 15 is a corrugated structure.
  • the turbulence bulge is not limited to the above turbulence structure as long as the structure for disturbing the flow of the refrigerant can be realized.
  • the ratio of the inner cross-sectional area of the draft tube to the total area of the channel can be controlled within the range of 0.003 to 0.49. When the ratio is in this interval, the refrigerant distribution effect is better.
  • the present invention also provides a refrigerant flow guiding tube for a heat exchanger, comprising a pipe body and a passage penetrating the pipe wall of the pipe body, the passage for the refrigerant to flow into or out of the pipe body.
  • the tubular body is a tubular body formed by pairing one or more strip-shaped sheets through the side edges of the longitudinal direction thereof. Usually, it is formed by metal flat plate, which is formed by welding, crimping, riveting, sliding, etc., and the side edges can be attached inward or outward along the surface of the strip plate, and the side edges can also be joined together.
  • the tubular body has a side edge structure protruding outward or inward.
  • the tube body of the draft tube is formed by the pair of side edges of the strip plate material, and the passage of the refrigerant on the draft tube can be processed before or during the formation of the tube body, thereby avoiding the processing channel directly on the tube body.
  • the processing process is more convenient.
  • FIG. 6 is a schematic structural view of a first embodiment of a refrigerant guiding tube provided by the present invention.
  • the tubular body 2 may have a tubular body 2 formed by abutting one or more strip-shaped plate members 1 through the longitudinal sides thereof, and the tubular body 2 may have a through hole 11 at a position other than the abutting portion of the tubular body 2,
  • the butted portion is a position where the side edges are joined, and the through hole 11 forms a passage into which the refrigerant flows into or out of the draft tube.
  • the through hole 11 of the pipe body 2 can be formed before the pipe body 2 is formed. Therefore, when the through hole 11 is machined, objects such as burrs and wastes generated at the edge of the through hole 11 can be directly before the pipe body 2 is formed.
  • the sheet material 1 is subjected to a process of removing burrs, wastes, and the like, and it is not necessary to clean the inside of the tube body 2, and it is easier to handle in the process, thereby preventing burrs, wastes, and the like from clogging the through holes 11.
  • FIG. 7 is a first embodiment of a refrigerant guiding tube provided by the present invention. Another structural diagram.
  • the pipe wall of the pipe body 2 may have a through hole 11 distributed along the circumferential direction of the pipe body 2.
  • the upper half of the pipe body 2 shown in Fig. 7 has two rows of through holes, and the lower half portion also has two rows of through holes.
  • the circumferential distribution of the holes 11 along the tubular body 2 can improve the uniformity of refrigerant flow.
  • FIG. 8 is still another schematic structural view of the first embodiment of the refrigerant guiding tube provided by the present invention.
  • the pipe body 2 is opposite to the side surface (i.e., the surface of the strip-shaped plate 1) and has a gap, and has a through hole 11 on the opposite side, as shown in Fig. 8, the upper and lower sides of the side edge of the pipe body 2 are There is a through hole 11 in the thickness direction.
  • Such a structure can adjust the orientation of the through hole 11 as needed to adjust the flow direction of the refrigerant.
  • FIG. 9 is a schematic structural view of a second embodiment of a refrigerant guiding tube provided by the present invention
  • FIG. 10 is a second embodiment of a refrigerant guiding tube provided by the present invention. Another structural diagram.
  • the tube body 2 may be a tube body 2 formed by the side edges of the strip-shaped sheet material 1 being adhered along the surface of the strip-shaped sheet material 1. At least one of the opposite sides of the tube body 2 has a groove 16 extending in the thickness direction, the groove The notch of 16 faces the other side, and the groove 16 forms a hole 21 with the other side to serve as a passage for the refrigerant to flow, that is, the side edge formed on the side of the pipe body 2 has a hole shape.
  • the channel body 2 is formed by laminating three strip-shaped plates, and the cross-sectional shape of the groove 16 may be curved, rectangular or the like, and the cross-sectional shape of the corresponding channel is curved or rectangular, concave.
  • the depth and length of the groove 16 are related to the size of the cross-sectional area of the channel formed, and the depth of the groove 16 can be gradually changed, thereby grading the cross-sectional area of the formed channel, and controlling the flow rate and flow direction of the refrigerant.
  • the pipe body 2 may also be a pipe body formed by the side edges of the strip-shaped plate material 1 having the through holes 11, and the pipe body 2 has both the groove 16 and the opposite side edges.
  • the refrigerant passage also has a refrigerant passage formed by the through hole.
  • the opposite sides of the tubular body 2 each have a groove 16 extending in the thickness direction, and the notches of the two grooves 16 of the two opposite sides are opposite to each other, and the two grooves 16 together form the channel 21 as The passage through which the refrigerant flows, as shown in Fig. 9, the two rectangular recesses 16 form a rectangular passage, and the two arcuate recesses 16 in Fig. 10 form a circular passage, which can also be adjusted by the depth of the recess 16 or along the length of the side To adjust the size of the channel cross-sectional area.
  • the pipe body 2 of such a structure can have a passage at the joint of each pair of opposite sides, and the triangular-shaped pipe body 2 shown in FIG.
  • the tubular body 2 has channels distributed in the circumferential direction, which can improve the uniformity of the distribution of the flow of the refrigerant to the flow conduit.
  • the spacing between the channels on the tube body 2 can be gradually changed from one end. As shown in FIG. 10, the distance between the channels at the left end of the draft tube is large. When the draft tube is used, the refrigerant passage is changed according to actual design requirements.
  • the degree of density of the interval solves the problem of uneven distribution caused by the gradual decrease of the refrigerant mass flow rate, thereby adjusting the flow rate of the refrigerant, which helps to improve the uniformity of the refrigerant distribution.
  • the passage of the draft tube is directly formed by the paired side edges of the tube body 2, and the process tube is formed; and the passage is formed by the pair of side edges, and the size of the passage opening is easy to accurately control, thereby It is convenient for quality control of batch products; in addition, when processing the channel, the part that can be fixed is the surface part of the strip plate, and the area is large. Whether it is riveting, welding or other fixing method, the fixing process is easy to realize. .
  • FIG. 11 is a schematic structural view of a third embodiment of the refrigerant guiding tube provided by the present invention.
  • the tubular body 2 has at least one slit 22 extending axially along the tubular body 2, as shown in FIG.
  • Two slits 22 are formed for the two strip-shaped sheets, and the slits 22 form a passage into or out of the refrigerant.
  • the guiding tube in this embodiment directly utilizes the gap 22 between the side edges as a passage for the refrigerant to flow, and the special processing channel, the consolidation and the side edge are omitted, so that the processing process is further improved. Therefore, the production cost can be saved; in addition, it is easy to control the size of the passage opening by forming the slit 22 directly.
  • FIG. 12 is another schematic structural view of a third embodiment of the refrigerant guiding tube provided by the present invention.
  • the surfaces of the two opposite sides forming the slit 2 may be opposite, and the two opposite sides are bent in the same direction, and the orientation of the slit 2 and the main plane of the draft tube have an angle, and the angle may be in the range of At 0. ⁇ 270. Between the two, the angle between the slits 22 can be adjusted as needed. By adjusting the angle, the outflow direction of the refrigerant can be adjusted according to the use requirements.
  • the gap 2 of the pipe body 2 can be made.
  • the width is gradually changed.
  • the cross section of the flow passage is gradually changed, and the corresponding refrigerant flow rate is adjusted to help improve the uniformity of the refrigerant distribution.
  • Figs. 13-1 to 13-5 are schematic views of five shapes of a cross section of a refrigerant guiding tube provided by the present invention, respectively.
  • the tubular body 2 may have various cross-sectional shapes, such as a circular, square, triangular, oblate, and "8"-shaped cross section.
  • the cross-sectional shape of the tubular body 2 Will have an opening.
  • This type of pipe body 2 has high flexibility and can be applied to many types of heat exchangers and different working environments, and is easy to implement in the process.
  • the tubular body 2 may have more than one lumen in the longitudinal direction, and the tubular body 2 shown in FIG. 13-5 has a cross-sectional shape of "8", that is, the tubular body 2 shown in FIG. 8 and FIG.
  • the tube body 2 has two lumens, which can be formed into a tubular structure and then stamped and welded along the length thereof to form two lumens, and the lumens may or may not communicate with each other, and the refrigerant in each lumen Flow out from the respective channels to make the refrigerant flow distribution more uniform.
  • FIG. 14 is a schematic structural view of a fourth embodiment of a refrigerant guiding tube provided by the present invention.
  • the cross-sectional area of the tubular body 2 can be gradually tapered along the tubular body 2, so that the two-phase refrigerant in the tubular body 2 is more uniformly mixed.
  • the inner wall of the tubular body 2 may have a turbulent projection that disturbs the flow of the refrigerant in the tubular body 2.
  • the spoiler projection may be a sawtooth structure, a chord-like structure or a corrugated structure, or may be a hemispherical or tetragonal projection distributed on the inner wall of the tubular body 2.
  • Such a draft tube can enhance the disturbance of the two-phase refrigerant in the draft tube and avoid stratification of the gas-liquid refrigerant.
  • FIG. 15-1 to FIG. 15-5 are respectively schematic diagrams of five cross-sectional shapes of the passage of the refrigerant guiding tube provided by the present invention.
  • the tube wall other than the portion of the tube body 2 has a through hole 11 which is a passage for the refrigerant to flow into or out of the draft tube.
  • the through hole 11 is formed before the formation of the tubular body 2, i.e., the through hole 11 is first formed on the strip plate 1.
  • the shape of the through hole 11 in the tube body 2 can be various, as shown in Figs. 15-1 to 15-15, and may be a circular hole, an X-shaped hole, a slanted hole, a splayed hole, a straight hole or the like.
  • the processing method of the pipe body 2 is relatively simple, and various processing methods can be adopted, and A variety of through hole shapes are selectively processed to control the flow pattern of the fluid.
  • FIG. 16-1 to FIG. 16-3 are respectively three schematic structural views of the passage of the refrigerant guiding tube provided by the present invention.
  • the through hole 11 of the pipe body 2 may further have a guide flap for guiding the flow of the refrigerant.
  • the guide flap may be a bent piece 111 projecting from a part of the edge of the through hole 11, and the flow of the refrigerant flowing out or flowing may be subjected to the bent piece 111.
  • the limitation of the flow can not flow from the through hole 11 in all directions; the top of the bent piece 111 can also overlap the edge of the through hole 11 opposite to the partial edge to form the arc-shaped cover plate 112 or the arc-shaped cover plate 113, thereby
  • the refrigerant flowing out of the through hole 11 can flow only in the vertical direction of the arc-shaped cover 112 or the arc-shaped cover plate 113, thereby controlling the flow direction and the flow velocity of the refrigerant.
  • the guide flap may be located on the inner or outer wall of the tubular body 2 without affecting its utility.
  • the through hole 11 may also be a through hole 11 having a tapered cross-sectional area extending in the thickness direction of the pipe wall of the pipe body 2, and may also function to control the flow rate of the refrigerant.
  • the ratio of the inner cross-sectional area of the draft tube to the total area of the channel may be in the range of 0.003 to 0.49, and the refrigerant distribution effect is better when the ratio is in this interval.
  • the present invention also provides a heat exchanger comprising a heat exchange tube, a current collecting tube and a refrigerant guiding tube inserted into the collecting tube, wherein the refrigerant guiding tube is the draft tube according to any one of the above. Since the above-mentioned refrigerant flow guiding tube has the above technical effects, the heat exchanger having the refrigerant guiding tube should also have the same technical effect, and will not be described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

换热器、 制冷剂导流管以及制冷剂导流管的加工方法 本申请要求于 2010 年 12 月 8 日提交中国专利局、 申请号为 201010578458.7、 发明名称为"一种换热器及其制冷剂导流管, 以及制冷剂 导流管的加工方法"的中国专利申请的优先权,其全部内容通过引用结合在 本申请中。 技术领域
本发明涉及制冷技术领域, 特别是涉及一种加工换热器用的制冷剂导 流管的方法。 此外, 本发明还涉及一种由上述方法加工出的制冷剂导流管 以及包括上述制冷剂导流管的换热器。
背景技术
换热器是将热流体的部分热量传递给冷流体的设备,也称为热交换器, 广泛应用于暖通空调等领域。
请参考图 1 , 图 1为现有技术中一种换热器的结构示意图。
目前, 一种比较典型的换热器 10通常包括平行设置的两根集流管 101
(图 1中仅示出一侧集流管 101 ) , 集流管 101之间具有多根大体上平行设 置的换热管 102, 换热管 102之间间隔设置散热翘片, 换热管 102的两端 连通两侧的集流管 101 , 制冷剂由一侧的集流管 101进入换热管 102内, 从而实现热交换的过程。
为了保证换热器 10的制冷剂在各换热管 102内分配均匀,一般会在集 流管 101 内插入一根制冷剂导流管 103 , 该导流管 103插入到集流管 101 的底部, 同时导流管 103上沿程间隔一定距离设有开孔 1031 , 导流管 103 的端部密封,导流管 103上的每一个开孔 1031负责相应区域内换热管 102 的制冷剂分配或收集,制冷剂就可以通过这些开孔 1031均勾地分配道各换 热管 102内再流通, 或者均勾地将换热管 102内流出的制冷剂收集道导流 管 103内再流出换热器,即开孔 1031作为制冷剂流入或流出导流管的通道。
在加工以开孔 1031作为制冷剂通道的导流管 103 时, 通常在导流管 103管体的表面直接加工沖孔, 在微通道换热器中, 导流管 103的内侧直 径较小, 作为分配管时, 导流管 103的直径则更小, 在 10mm左右, 因此, 在导流管 103管体的弧面上直接加工出开孔 1031存在技术上的困难、加工 效率低下、 成本较高; 而且管体上开孔 1031的内侧会残留有金属毛刺、金 属屑等, 由于管径细小, 这些内部的金属毛刺和金属屑难以去除, 在系统 运行中可能堵塞开孔 1031 , 造成制冷剂分配不均, 甚至游离的金属屑会 堵塞节流机构, 造成系统故障。
因此, 如何使制冷剂导流管上开孔的加工更为便利, 消除管体上开孔 内侧的毛刺和废屑是本领域技术人员目前需要解决的技术问题。 发明内容
本发明的目的是提供一种加工换热器用的制冷剂导流管的方法, 使用 该方法加工导流管时, 导流管上制冷剂通道的加工工序更为筒便。 本发明 的另一目的是提供一种由上述方法加工出的制冷剂导流管。 本发明的又一 目的是提供一种包括上述制冷剂导流管的换热器
为解决上述技术问题, 本发明提供一种换热器用制冷剂导流管的加工 方法, 所述制冷剂导流管包括管体和贯通所述管体的管壁的通道, 其特征 在于, 所述管体由一片以上条形板材通过其长度方向的侧边拼对形成。
优选地, 所述管体由一片以上条形板材通过其长度方向的侧边对接形 成, 对接前, 在至少一片所述条形板材上加工出通孔。
优选地, 在拼对侧边处加工出所述通孔, 对接时, 将两所述拼对侧边 沿表面贴近, 并封固两所述拼对侧边的边缘。
优选地, 所述管体由一片以上条形板材通过其长度方向的侧边贴合形 成, 贴合前, 在至少一个拼对侧边上加工出沿所述拼对侧边厚度方向延伸 的凹槽; 贴合时, 将具有所述凹槽的拼对侧边与另一所述拼对侧边沿所述 条形板材的表面贴合,所述凹槽的槽口朝向与其贴合的另一所述拼对侧边, 所述凹槽与另一所述拼对侧边形成所述通道。
优选地, 将至少两个拼对的侧边之间留出缝隙, 所述缝隙形成所述通 道。
优选地, 将至少两个所述拼对侧边的表面相对形成所述缝隙, 且将两 所述拼对侧边沿同一方向弯折。
本发明所提供的制冷剂导流管的加工方法, 是将至少一片条形板材通 过其长度方向的侧边拼对形成管体, 使用该方法加工导流管时, 可以在管 体形成之前或形成的过程中加工出导流管上制冷剂的通道, 避免了直接在 管体上加工通道, 使工序更加筒便。
在一种具体的实施方式中, 所述管体由一片以上条形板材通过其长度 方向的侧边对接形成, 对接前, 在至少一片所述条形板材上加工出通孔。 在板材上直接加工通孔, 工艺较为筒单, 可以采用多样化的加工方式, 并 且可以加工出多种通孔形状; 其次, 加工出通孔之后, 可以对板材实施去 除毛刺、 金属屑等工序, 容易实现通孔边缘处的处理, 处理之后再对板材 进行对接, 连接形成管体。
在另一种具体实施方式中, 所述管体由一片以上条形板材通过其长度 方向的侧边贴合形成, 贴合前, 在至少一个拼对侧边上加工出沿其厚度方 所述凹槽的槽口朝向与其贴合的另一所述拼对侧边, 所述凹槽与另一所述 拼对侧边形成所述通道。 此实施方式仅需在侧边加工出凹槽, 侧边对接形 成管体时, 槽即与贴合拼对侧边形成通道, 工序筒便。
在又一种具体实施方式中, 将两个拼对的侧边之间留出缝隙, 所述缝 隙形成所述通道。 此实施方式直接利用拼对侧边之间的缝隙作为制冷剂的 通道, 加工工序更为筒便。
为达到本发明的另一目的, 本发明还提供一种用于换热器的制冷剂导 流管, 包括管体和贯通所述管体的管壁的通道, 所述管体为由一片以上条 形板材通过其长度方向的侧边拼对形成的管体。
优选地, 所述管体为由一片以上条形板材通过其长度方向的侧边对接 形成的管体, 所述管体上具有通孔, 所述通孔位于管体上对接部分以外的 位置, 所述通孔形成所述通道。
优选地, 所述管体具有沿其周向分布的所述通孔。
优选地, 所述管体的拼对侧边的表面相对并具有间隙, 所述拼对侧边 上具有所述通孔。 合形成的管体,所述管体的至少一个拼对侧边具有沿厚度方向延伸的 EJ槽, 所述凹槽的槽口朝向另一所述拼对侧边, 所述凹槽与另一所述拼对侧边形 成所述通道。
优选地, 所述管体上的至少两个拼对侧边之间具有缝隙, 所述缝隙形 成所述通道。
优选地, 形成所述缝隙的两个所述拼对侧边的表面相对, 且两所述拼 对侧边沿同一方向弯折。
优选地, 所述管体具有至少两个管腔。
本发明所提供的制冷剂导流管的管体为由至少一片条形板材通过其长 度方向的侧边拼对形成的管体, 导流管的通道可以在管体形成之前或形成 的过程中加工, 避免了直接在管体上加工通道, 使工序更加筒便。
为达到本发明的又一目的, 本发明还提供一种换热器, 包括换热管、 集流管以及插入所述集流管内的制冷剂导流管, 所述制冷剂导流管为上述 任一项所述的导流管。 由于上述制冷剂导流管具有上述技术效果, 具有该 制冷剂导流管的换热器也应具有相同的技术效果。
附图说明
图 1为现有技术中一种换热器的结构示意图;
图 2为本发明所提供的加工制冷剂导流管方法第一种具体实施方式的 流程图;
图 3为本发明所提供的加工制冷剂导流管方法第二种具体实施方式的 流程图;
图 4为本发明所提供的加工制冷剂导流管方法第三种具体实施方式的 流程图;
图 5-1至图 5-4, 图 5-1至图 5-4分别为本发明所提供的加工方法所使 用的四种条形板材的结构示意图;
图 6为本发明所提供制冷剂导流管第一种具体实施方式的一种结构示 意图; 图 7为本发明所提供制冷剂导流管第一种具体实施方式的另一种结构 示意图;
图 8为本发明所提供制冷剂导流管第一种具体实施方式的又一种结构 示意图;
图 9为本发明所提供制冷剂导流管第二种具体实施方式的一种结构示 意图;
图 10 为本发明所提供制冷剂导流管第二种具体实施方式的另一种结 构示意图;
图 11 为本发明所提供制冷剂导流管第三种具体实施方式的一种结构 示意图;
图 12 为本发明所提供制冷剂导流管第三种具体实施方式的另一种结 构示意图;
图 13-1至 13-5分别为本发明所提供制冷剂导流管的截面的五种形状 的示意图;
图 14 为本发明所提供制冷剂导流管第四种具体实施方式的结构示意 图;
图 15-1至图 15-5分别为本发明所提供制冷剂导流管的通道的五种设 置方式的示意图;
图 16-1至图 16-3分别为本发明所提供制冷剂导流管的通道的三种结 构示意图。
具体实施方式
本发明的核心是提供一种加工换热器用的制冷剂导流管的方法, 使用 该方法加工导流管时, 导流管上制冷剂通道的加工工序更为筒便。 本发明 的另一核心是提供一种由上述方法加工出的制冷剂导流管。 本发明的又一 核心是提供一种包括上述制冷剂导流管的换热器。
制冷剂导流管包括管体以及供制冷剂流入或流出管体的通道, 该通道 对制冷剂的流动量起到分配的作用, 且该通道贯穿管体的管壁, 本发明所 提供的换热器用制冷剂导流管的加工方法, 需要一片以上条形板材, 通常 是采用金属平板板材, 将其长度方向的侧边拼对形成管体, 拼对的方式有 多种, 比如焊接、 压接、 铆接, 滑接等方式, 侧边可以沿条形板材的表面 向内或向外贴合, 也可以搭接在一起, 当然, 侧边拼对的方式并不限于上 述方式, 只要能将板材的侧边进行拼对形成管体, 均在本发明保护范围之 内。
采取此种方法形成导流管的管体时, 制作工艺更为灵活, 可以形成多 种截面形状的管体, 可以根据实际需要的形状拼对形成管体, 在工艺上容 易实现, 而且采用一片以上条形板材, 拼对工艺容易实现。 还可以通过适 当调整条形板材的形状或是调整拼对拼对侧边的接触面积等方法, 使管体 的截面面积沿制冷剂流动方向渐变, 从而使两相制冷剂混合更加均匀。 采 用此种条形板材形成的导流管, 可以增强对导流管内两相流体制冷剂的扰 动, 避免气液制冷剂分层现象, 使制冷剂的分配更加均匀。
使用该方法加工导流管时, 可以在管体形成之前或形成的过程中加工 出导流管上制冷剂的通道, 避免了直接在管体上加工通道, 使工序更加筒 便; 而且对于具有复杂截面形状的导流管, 采用一片以上的条形板材分别 进行加工, 可以有效降低加工的难度, 无需使用特殊模具, 节省了模具的 费用, 从而降低了生产的成本。
为了使本技术领域的人员更好地理解本发明方案, 下面结合附图和具 体实施方式对本发明作进一步的详细说明。
请参考图 2, 图 2为本发明所提供的加工制冷剂导流管方法第一种具 体实施方式的流程图。
在第一种具体实施方式中, 本发明所提供的加工方法包括以下步骤: 步骤 S1 : 提供一片以上条形板材。
步骤 S2: 在至少一片条形板材上加工出通孔。
通常采用沖压的方式, 当然也可以是其他加工方法, 通孔的数目可以 根据实际需要确定。 此外, 为了进一步加强导流的效果, 还可以在通孔处 加工出引导制冷剂流向的导向挡片, 可以沖压形成。 导向挡片的具体形状 可以根据加工工序的筒易程度、 条形板材材质、 条形板材大小以及导流效 果等因素综合选择。 步骤 S3: 将各条形板材的侧边实施对接。
步骤 S4: 对各条形板材的对接部分进行固合处理。
经过以上步骤形成管体, 此时, 条形板材上的通孔导通管体的内部, 便成为制冷剂流入或流出管体的通道。
在条形板材上直接加工通孔, 工艺较为筒单, 可以采用多样化的加工 方式, 并且可以选择性地加工出多种通孔形状, 进而可以控制流体的流出 形态。
其次, 在形成通孔的过程中, 由于工艺的局限性, 难免会在通孔的边 缘处产生毛刺、 废屑等物体。 通孔形成之后, 侧边对接之前, 可以对条形 板材实施去除毛刺、 废屑等工序, 由于此时的毛刺、 废屑等物体均处于条 形板材的表面, 容易处理, 处理之后再对条形板材的侧边进行对接, 形成 管体, 从而避免毛刺、 废屑等堵塞通孔。 再者, 在条形板材上加工通孔较 为便利, 通孔尺寸定型的可控制度高。
在步骤 S2中, 可以在各片条形板材上均加工出通孔。
则形成管体后, 各个条形板材分别形成管体的部分管壁后, 在管体的 管壁上形成沿管体周向分布的通孔。
比如, 可以采用四片条形板材, 在各个条形板材上均加工出通孔, 然 后对接形成四方体的管体, 则四方体管体的四个侧壁均具有通孔。 当然, 通孔的具体位置以及数目可以根据实际需要确定。
管体上的通孔沿其周向分布可以提高导流管对制冷剂流动量分配的均 匀性。
还可以在拼对侧边上加工出通孔, 对接时, 使对接的两个拼对侧边沿 表面贴近, 再将两拼对侧边的边缘封固, 可以使一拼对侧边弯折以实现与 另一拼对侧边的封固, 即在管体上形成具有腔体的侧棱结构, 并使侧棱的 上侧和 /或下侧具有通孔。 此种方式可以根据需要调整通孔的朝向, 从而调 整制冷剂的流出流向。
请参考图 3 , 图 3为本发明所提供的加工制冷剂导流管方法第二种具 体实施方式的流程图。
在第二种具体实施方式中, 本发明所提供的加工方法包括以下步骤: 步骤 S2: 提供一片以上条形板材。
步骤 S22: 在条形板材的至少一个拼对侧边上加工出沿拼对侧边厚度 方向延伸的凹槽。
可以沖压形成凹槽, 凹槽的截面形状可以是弧形、 矩形等, 还可以加 工出深度渐变的凹槽。
步骤 S23: 将各条形板材的拼对侧边沿条形板材的表面贴合。
侧边贴合时, 将加工有凹槽的拼对侧边与另一个拼对侧边沿条形板材 的表面贴合, 凹槽的槽口需要朝向与其贴合的另一拼对侧边, 则凹槽与另 一拼对侧边形成导通管体内部的孔道,从而作为制冷剂流向换热管的通道, 向。 、 一 ' 、 、 口 、、
步骤 S24: 对各条形板材的贴合部分进行固合处理。
经过以上步骤形成管体, 此时, 条形板材上的通孔导通管体的内部, 便成为制冷剂流入或流出管体的通道。 在步骤 S22中, 可以在贴合的两个 拼对侧边上均加工出沿拼对侧边厚度方向延伸的凹槽, 且使两个拼对侧边 的凹槽位置相互对应, 相应地, 在步骤 S23中, 将两拼对侧边沿条形板材 的表面贴合, 两凹槽的槽口相对, 则两凹槽贴合形成导通管体内部的通道。 可以通过调整凹槽的深度或者沿侧边的长度来调整通道开口的大小。
此外, 在步骤 S22中, 加工凹槽时, 可以使同一侧边的凹槽之间间距 渐变, 则最终形成的管体孔道的孔间距渐变。 使用该导流管时, 可以根据 实际使用需要, 灵活调整孔间距, 进而对制冷剂的分配量进行调整, 有助 于提高制冷剂在换热器内部分配的均匀性。
进一步地, 在步骤 S22中, 除了加工出凹槽之外, 还可以在条形板材 上加工出通孔, 则形成的管体上既具有由凹槽与拼对侧边形成的制冷剂通 道, 还具有由通孔形成的通道。
此实施方式仅需在条形板材的拼对侧边上加工出凹槽, 侧边贴合形成 管体时, 槽即与拼对侧边直接形成供制冷剂流动的通道,加工工序筒便; 而且拼对侧边贴合形成的通道开口的尺寸易于精确控制, 从而便于对批量 产品的质量控制; 此外, 通道由两拼对侧边沿条形板材表面贴合形成, 则 可供固合的部分的面积较大, 无论采取铆接、 焊接或其他固合方式, 固合 工序均容易实现。
请参考图 4, 图 4为本发明所提供的加工制冷剂导流管方法第三种具 体实施方式的流程图。
在第三种具体实施方式中, 本发明所提供的加工方法包括以下步骤: 步骤 S3: 提供一片以上条形板材。
步骤 S32: 将各条形板材的侧边实施拼对, 并使至少两个拼对侧边之 间留有缝隙。
经过以上步骤形成具有侧缝的管体。即各条形板材的侧边进行拼对时, 至少使两个拼对侧边不完全贴合, 而是将两个拼对侧边之间留出一定的缝 隙, 此缝隙形成制冷剂流入或流出导流管的通道。
此实施方式直接利用拼对侧边之间的缝隙作为制冷剂流动的通道, 管 体的形成过程即为导流管的形成过程, 从而省去了专门加工通道、 固合拼 对侧边等工序, 使加工工序更为筒便; 此外, 直接拼对形成缝隙还易于控 制通道开口的大小。
同样, 为了进一步提高制冷剂分配的均匀性, 在步骤 S32中, 可以使 拼对侧边之间缝隙的宽度渐变, 随着制冷剂流动方向上沿程压力的变化, 流通通道截面渐变, 相应的制冷剂的流通量得以调整, 采取此种通道设置 方式, 可以对制冷剂流入或流出导流管的分配量进行调整, 有助于提高制 冷剂分配的均匀性。 相对形成缝隙, 且将两拼对侧边沿同一方向弯折, 则缝隙的朝向和导流管 的主平面具有夹角, 该夹角的范围可以在 0。~270。之间, 通过调整此夹角 可以使冷媒的流出方向根据使用需求得到调整。
请参考图 5-1至图 5-4, 图 5-1至图 5-4分别为本发明所提供的加工方 法所使用的四种条形板材的结构示意图。
对于以上实施方式, 均可以在条形板材的表面加工出扰动制冷剂流动 的扰流凸起。 比如, 图 5-1所示的单面具有锯齿形状的条形板材 1 , 扰流 凸起为锯齿结构 12; 图 5-2所示的单面呈正弦波状的条形板材 1 , 扰流凸 起为波状结构 13; 图 5-3所示的表面带有凸起的条形板材 1 , 诸如半球状、 四方体状等的凸起 14, 形成扰流凸起; 图 5-4所示的具有双面波纹状的条 形板材 1 , 扰流凸起为波纹状结构 15。 当然, 扰流凸起并不限于以上的扰 流结构, 只要能实现扰动制冷剂流动的结构即可。 条形板材 1的侧边拼对 时, 需要将具有扰流凸起的表面向内形成管体的内壁, 从而使制冷剂流经 具有扰流凸起的管道。
对于以上所有实施方式, 可以将导流管的内横截面积与通道的总面积 的比值控制在 0.003~0.49范围内, 比值位于此区间时, 制冷剂分配效果的 较好。
本发明还提供一种换热器用的制冷剂导流管, 包括管体和贯通管体的 管壁的通道, 该通道供制冷剂流入或流出管体。 管体为由一片以上条形板 材通过其长度方向的侧边拼对形成的管体。 通常是采用金属平板板材, 通 过焊接、 压接、 铆接, 滑接等方式拼对形成, 侧边可以沿条形板材的表面 向内或向外贴合, 侧边也可以搭接在一起, 则管体上具有向外或向内凸出 的侧棱结构。
该导流管的管体通过条形板材的侧边拼对形成, 可以在管体形成之前 或形成的过程中加工出导流管上制冷剂的通道, 避免了直接在管体上加工 通道, 加工工序更加筒便。
请参考图 6, 图 6为本发明所提供制冷剂导流管第一种具体实施方式 的一种结构示意图。
管体 2可以由一片以上条形板材 1通过其长度方向的侧边对接形成的 管体 2, 则管体 2上可以具有通孔 11 , 通孔 11位于管体 2上对接部分以外 的位置,对接部分即拼对侧边结合的位置,通孔 11形成制冷剂流入或流出 导流管的通道。
该管体 2的通孔 11可以形成于管体 2成型之前,因此加工通孔 11时, 在通孔 11边缘处所产生的毛刺、 废屑等物体, 可以在管体 2形成之前, 直 接对条形板材 1进行去除毛刺、废屑等工序,无需对管体 2内部进行清理, 在工序上更容易处理, 从而避免毛刺、 废屑等堵塞通孔 11。
请参考图 7, 图 7为本发明所提供制冷剂导流管第一种具体实施方式 的另一种结构示意图。 管体 2的管壁上可以具有沿管体 2周向分布的通孔 11 , 图 7所示的管体 2的上半部分具有两排通孔, 下半部分也具有两排通 孔, 通孔 11沿管体 2周向分布可以提高制冷剂流动的均匀性。
请参考图 8, 图 8为本发明所提供制冷剂导流管第一种具体实施方式 的又一种结构示意图。
该管体 2拼对侧边的表面 (即条形板材 1的表面)相对并具有间隙, 且拼对侧边上具有通孔 11 , 如图 8所示, 管体 2侧棱的上下侧均具有厚度 方向的通孔 11。 此种结构可以根据需要调整通孔 11 的朝向, 从而调整制 冷剂的流出流向。
请参考图 9和图 10, 图 9为本发明所提供制冷剂导流管第二种具体实 施方式的一种结构示意图;图 10为本发明所提供制冷剂导流管第二种具体 实施方式的另一种结构示意图。
管体 2可以为由条形板材 1的侧边沿条形板材 1的表面贴合所形成的 管体 2, 管体 2的至少一个拼对侧边具有沿厚度方向延伸的凹槽 16, 凹槽 16的槽口朝向另一拼对侧边, 凹槽 16与另一拼对侧边形成孔道 21 , 作为 制冷剂流动的通道, 即管体 2上拼对侧边形成的侧棱上具有孔状通道, 如 图 9所示的管体 2由三片条形板材贴合形成,凹槽 16的截面形状可以是是 弧形、 矩形等, 则相应的通道的截面形状为弧形或矩形, 凹槽 16深度以及 长度与形成的通道截面面积大小有关, 凹槽 16的深度可以渐变,从而使形 成的通道的截面面积渐变, 可以控制制冷剂的流速以及流向。 实际上, 该 实施方式中管体 2也可以是具有通孔 11的条形板材 1的侧边贴合形成的管 体, 则该管体 2既具有由凹槽 16与拼对侧边形成的制冷剂通道,还具有由 通孔形成的制冷剂通道。
进一步地, 管体 2的拼对侧边均具有沿厚度方向延伸的凹槽 16, 贴合 的两拼对侧边的两凹槽 16的槽口相对, 两凹槽 16共同形成孔道 21 , 作为 制冷剂流动的通道, 如图 9所示, 两矩形凹槽 16形成矩形通道, 图 10中 两弧形凹槽 16形成圓形通道, 同样可以通过调整凹槽 16的深度或者沿侧 边的长度来调整通道截面面积的大小。 此种结构的管体 2可以在各对拼对 侧边的贴合处均具有通道, 如图 9所示的三棱状管体 2由三片条形板材 1 形成, 其三个侧棱均具有孔道 21 , 图 10所示的圓筒状管体 2由两片条形 板材 1形成, 其贴合形成的两个侧棱也均具有孔道 21 , 则该结构的管体 2 具有沿周向分布的通道, 可以提高导流管对制冷剂流动量分配的均匀性。
管体 2上各通道之间的间距可以自一端逐渐变化,如图 10所示,导流 管左端通道之间的距离较大, 使用该导流管时, 根据实际设计需要, 改变 制冷剂通道间隔的疏密程度, 解决制冷剂质量流速沿程逐步降低可能导致 的分配不均匀问题, 从而对制冷剂的流量进行调整, 有助于提高制冷剂分 配的均匀性。
此实施方式中导流管的通道由管体 2上的拼对侧边直接贴合形成, 工 序筒便; 而且通道由拼对侧边贴合形成, 此种通道开口的尺寸易于精确控 制, 从而便于对批量产品的质量控制; 此外, 加工该通道时, 可供固合的 部分为条形板材的表面部分, 面积较大, 无论采取铆接、 焊接或其他固合 方式, 固合工序均容易实现。
请参考图 11 , 图 11 为本发明所提供制冷剂导流管第三种具体实施方 式的一种结构示意图。
在该实施方式中, 管体 2的其中至少两个拼对侧边之间具有一定距离 的缝隙 22, 即管体 2上存在至少一条沿管体 2轴向延伸的缝隙 22, 图 11 所示为两片条形板材拼对形成两条缝隙 22, 该缝隙 22形成制冷剂流入或 流出的通道。此实施方式中的导流管直接利用拼对侧边之间的缝隙 22作为 制冷剂流通的通道, 而省去了专门加工通道、 固合拼对侧边等工序, 从而 使加工工序更为筒便, 可以节约生产成本; 此外, 直接拼对形成缝隙 22 还易于控制通道开口的大小。
请参考图 12, 图 12为本发明所提供制冷剂导流管第三种具体实施方 式的另一种结构示意图。
可以使形成缝隙 2的两个拼对侧边的表面相对, 且两拼对侧边沿同一 方向弯折, 则缝隙 2的朝向和导流管的主平面具有夹角, 该夹角的范围可 以在在 0。~270。之间, 则各缝隙 22之间的角度可以根据需要调整, 通过调 整此夹角可以使冷媒的流出方向根据使用需求得到调整。
同样, 为了进一步提高制冷剂分配的均匀性, 可以使管体 2上缝隙 22 的宽度渐变, 随着制冷剂流动方向上沿程压力的变化, 流通通道截面渐变, 相应的制冷剂的流通量得以调整, 有助于提高制冷剂分配的均匀性。
请参考图 13-1至 13-5 , 图 13-1至 13-5分别为本发明所提供制冷剂导 流管的截面的五种形状的示意图。
对于以上实施方式, 管体 2可以具有多种截面形状, 比如圓形、 方形、 三角形、 扁圓形以及 "8" 字形等截面, 当然, 对于第三种具体实施方式, 管体 2的截面形状会具有开口。 此种管体 2具有较高的灵活性, 可以适用 于多种类型的换热器以及不同的工作环境, 在工艺上容易实现。 需要特别 说明的是, 管体 2可以具有一个以上长度方向的管腔, 如图 13-5所示的管 体 2截面形状为 "8" 字形, 即图 8和图 11所示的管体 2, 管体 2具有两 个管腔, 可以拼对形成管状结构后, 沿其长度方向进行沖压焊接, 形成两 个管腔, 管腔之间可以相通, 也可以不相通, 各管腔内制冷剂从各自对应 的通道流出, 从而使制冷剂流量分配地更加均匀。
请参考图 14, 图 14为本发明所提供制冷剂导流管第四种具体实施方 式的结构示意图。
该管体 2的截面面积可以沿管体 2轴向渐变, 从而使管体 2内的两相 制冷剂混合更加均匀。
此外, 管体 2的内壁可以具有扰动管体 2内制冷剂流动的扰流凸起。 比如, 扰流凸起可以是锯齿状结构、 弦波状结构或波纹状结构, 还可以是 分布于管体 2内壁上的半球状或四方体状的凸起。 此种导流管可以增强对 导流管内两相制冷剂的扰动, 避免气液制冷剂分层现象。
请参考图 15-1至图 15-5 , 图 15-1至图 15-5分别为本发明所提供制冷 剂导流管的通道的五种截面形状示意图。
对于第一种具体实施方式,管体 2上拼对部分以外的管壁具有通孔 11 , 该通孔 11即为制冷剂流入或流出导流管的通道。 通孔 11形成于管体 2成 型之前, 即在条形板材 1上首先加工出通孔 11。 管体 2上通孔 11的形状 可以有多种, 如图 15-1至图 15-5所示, 可以是圓孔、 X形孔、 斜孔、 八 字形孔、 直孔等形状。
该管体 2的加工工艺较为筒单, 可以采用多样化的加工方式, 并且可 以选择性地加工出多种通孔形状, 进而可以控制流体的流出形态。
请参考图 16-1至图 16-3 , 图 16-1至图 16-3分别为本发明所提供制冷 剂导流管的通道的三种结构示意图。
为了进一步加强导流的效果,管体 2上通孔 11处还可以具有引导制冷 剂流向的导向挡片。 如图 16-1至图 16-3所示, 导向挡片可以是 ^部自通 孔 11的部分边缘伸出的弯折片 111 , 则流出或流入的制冷剂的流向会受到 弯折片 111的限制, 无法自通孔 11向各个方向流动; 此弯折片 111的顶部 还可以搭接至与部分边缘相对的通孔 11边缘处,形成弧状盖板 112或者圓 弧状盖板 113, 从而使自通孔 11流出的制冷剂仅能沿弧状盖板 112或者圓 弧状盖板 113的上下方向流动, 进而控制制冷剂的流动方向以及流速。 导 向挡片可以位于管体 2的内壁或者外壁, 不影响其效用。通孔 11还可以是 沿管体 2管壁的厚度方向延伸的截面面积渐缩的通孔 11 , 同样可以起到控 制制冷剂流速的作用。
对于以上所有实施方式, 导流管的内横截面积与通道的总面积的比值 可以处于 0.003~0.49范围内, 比值位于此区间时,制冷剂分配效果的较好。
本发明还提供一种换热器, 包括换热管、 集流管以及插入集流管内的 制冷剂导流管, 制冷剂导流管为上述任一项所述的导流管。 由于上述制冷 剂导流管具有上述技术效果, 具有该制冷剂导流管的换热器也应具有相同 的技术效果, 在此不赘述。
以上对本发明所提供的一种换热器及其制冷剂导流管, 以及制冷剂导 流管的加工方法进行了详细介绍。 本文中应用了具体个例对本发明的原理 及实施方式进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方 法及其核心思想。 应当指出, 对于本技术领域的普通技术人员来说, 在不 脱离本发明原理的前提下, 还可以对本发明进行若干改进和修饰, 这些改 进和修饰也落入本发明权利要求的保护范围内。

Claims

权 利 要 求
1、一种换热器用制冷剂导流管的加工方法,所述制冷剂导流管包括管 体(2)和贯通所述管体(2) 的管壁的通道, 其特征在于, 所述管体(2) 由一片以上条形板材(1)通过其长度方向的侧边拼对形成。
2、 根据权利要求 1所述的加工方法, 其特征在于, 所述管体(2) 由 一片以上条形板材(1)通过其长度方向的侧边对接形成, 对接前, 在至少 一片所述条形板材( 1 )上加工出通孔( 11 )。
3、根据权利要求 2所述的加工方法, 其特征在于, 在拼对侧边处加工 出所述通孔, 对接时, 将两所述拼对侧边沿表面贴近, 并封固两所述拼对 侧边的边缘。
4、 根据权利要求 1或 2所述的加工方法, 其特征在于, 所述管体(2) 由一片以上条形板材(1)通过其长度方向的侧边贴合形成, 贴合前, 在至 少一个拼对侧边上加工出沿所述拼对侧边厚度方向延伸的凹槽( 16 ); 贴合 时, 将具有所述凹槽(16) 的拼对侧边与另一所述拼对侧边沿所述条形板 材( 1 )的表面贴合, 所述凹槽( 16)的槽口朝向与其贴合的另一所述拼对 侧边, 所述凹槽(16)与另一所述拼对侧边形成所述通道。
5、根据权利要求 1所述的加工方法, 其特征在于, 将至少两个拼对的 侧边之间留出缝隙 (22), 所述缝隙 (22)形成所述通道。
6、根据权利要求 5所述的加工方法, 其特征在于, 将至少两个所述拼 对侧边的表面相对形成所述缝隙( 22 ),且将两所述拼对侧边沿同一方向弯 折。
7、 一种用于换热器的制冷剂导流管, 包括管体(2)和贯通所述管体 (2) 的管壁的通道, 其特征在于, 所述管体(2) 为由一片以上条形板材 ( 1 )通过其长度方向的侧边拼对形成的管体( 2 )。
8、 根据权利要求 7所述的导流管, 其特征在于, 所述管体(2) 为由 一片以上条形板材( 1 )通过其长度方向的侧边对接形成的管体( 2 ), 所述 管体( 2 )上具有通孔( 11 ), 所述通孔( 11 )位于管体( 2 )上对接部分以 外的位置, 所述通孔( 11 )形成所述通道。
9、 根据权利要求 8所述的导流管, 其特征在于, 所述管体(2)具有 沿其周向分布的所述通孔( 11 )。
10、 根据权利要求 9所述的导流管, 其特征在于, 所述管体(2)的拼 对侧边的表面相对并具有间隙, 所述拼对侧边上具有所述通孔(11)。
11、 根据权利要求 7或 8所述的导流管, 其特征在于, 所述管体(2) 为由所述条形板材( 1 )的拼对侧边与另一所述拼对侧边沿所述条形板材( 1 ) 的表面贴合形成的管体(2), 所述管体(2)的至少一个拼对侧边具有沿厚 度方向延伸的凹槽(16), 所述凹槽(16) 的槽口朝向另一所述拼对侧边, 所述凹槽(16)与另一所述拼对侧边形成所述通道。
12、 根据权利要求 7所述的导流管, 其特征在于, 所述管体(2)上的 至少两个拼对侧边之间具有缝隙 (22), 所述缝隙 (22)形成所述通道。
13、 根据权利要求 12所述的导流管, 其特征在于, 形成所述缝隙(2) 的两个所述拼对侧边的表面相对, 且两所述拼对侧边沿同一方向弯折。
14、根据权利要求 7至 13任一项所述的导流管, 其特征在于, 所述管 体(2)具有至少两个管腔。
15、 一种换热器, 包括换热管、 集流管以及插入所述集流管内的制冷 剂导流管,其特征在于,所述制冷剂导流管为权利要求 7至 14任一项所述 的导流管。
PCT/CN2011/072993 2010-12-08 2011-04-19 换热器、制冷剂导流管以及制冷剂导流管的加工方法 WO2012075766A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/991,821 US9885521B2 (en) 2010-12-08 2011-04-19 Method for manufacturing refrigerant guide tube of heat exchanger, refrigerant guide tube manufactured using the method and heat exchanger with the refrigerant guide tube
KR1020137017423A KR101511885B1 (ko) 2010-12-08 2011-04-19 열교환기, 냉각제 유도관 및 냉각제 유도관의 가공방법
EP11847879.1A EP2650078B1 (en) 2010-12-08 2011-04-19 Method for manufacturing refrigerant guide tube of heat exchanger, refrigerant guide tube manufactured using the method and heat exchanger with the refrigerant guide tube
JP2013541185A JP5809706B2 (ja) 2010-12-08 2011-04-19 熱交換器、熱交換器用の冷媒導流管及び熱交換器用の冷媒導流管の加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010578458.7 2010-12-08
CN2010105784587A CN102079038B (zh) 2010-12-08 2010-12-08 一种换热器及其制冷剂导流管,以及制冷剂导流管的加工方法

Publications (1)

Publication Number Publication Date
WO2012075766A1 true WO2012075766A1 (zh) 2012-06-14

Family

ID=44085336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072993 WO2012075766A1 (zh) 2010-12-08 2011-04-19 换热器、制冷剂导流管以及制冷剂导流管的加工方法

Country Status (6)

Country Link
US (1) US9885521B2 (zh)
EP (1) EP2650078B1 (zh)
JP (1) JP5809706B2 (zh)
KR (1) KR101511885B1 (zh)
CN (1) CN102079038B (zh)
WO (1) WO2012075766A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068143A (zh) * 2012-12-19 2013-04-24 江苏安德信超导加速器科技有限公司 连续波射频四级加速器水冷系统及其制造方法
CN104422313B (zh) * 2013-09-10 2017-02-01 珠海格力电器股份有限公司 壳管换热器及具有其的空调机
US10072900B2 (en) * 2014-09-16 2018-09-11 Mahle International Gmbh Heat exchanger distributor with intersecting streams
CN109539852A (zh) * 2017-09-22 2019-03-29 浙江盾安机械有限公司 一种微通道换热器的扁管以及微通道换热器
FR3079291B1 (fr) * 2018-03-22 2020-07-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur avec dispositif melangeur liquide-gaz ameliore
CN110940220B (zh) * 2018-09-25 2022-03-01 丹佛斯有限公司 用于换热器的分配管组件和具有该分配管组件的集流管组件和换热器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1684083A (en) * 1927-06-02 1928-09-11 Samuel C Bloom Refrigerating coil
US4945635A (en) * 1988-07-14 1990-08-07 Showa Alumina Kabushiki Kaisha Method of manufacturing brazable pipes and heat exchanger
JPH09166368A (ja) * 1995-12-14 1997-06-24 Sanden Corp 熱交換器
EP1826523A1 (en) * 2004-09-08 2007-08-29 Calsonic Kansei Corporation Header tank for heat exchanger
CN101266093A (zh) * 2007-03-14 2008-09-17 三电有限公司 热交换器
US20080223565A1 (en) * 2007-03-13 2008-09-18 Kaori Heat Treatment Co., Ltd. Flow distributor for heat transfer device
CN101691981A (zh) * 2009-07-23 2010-04-07 三花丹佛斯(杭州)微通道换热器有限公司 具有改进的制冷剂流体分配均匀性的多通道换热器
CN101788243A (zh) * 2009-04-03 2010-07-28 三花丹佛斯(杭州)微通道换热器有限公司 用于热交换器的制冷剂分配器和热交换器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314091A (ja) * 1986-06-30 1988-01-21 Matsushita Electric Ind Co Ltd 伝熱管
JP2824308B2 (ja) * 1989-10-20 1998-11-11 サンデン株式会社 ヘッダーパイプの製造方法並びにヘッダーパイプとチューブの接続方法及びヘッダーパイプとチューブの接続構造
JPH04288461A (ja) * 1991-03-14 1992-10-13 Matsushita Refrig Co Ltd 冷媒分流器の製造方法
US5172476A (en) * 1991-08-14 1992-12-22 General Motors Corporation Method of manufacturing heat exchanger tubing
JP3879032B2 (ja) 1997-03-27 2007-02-07 三菱電機株式会社 冷却装置
KR20000051820A (ko) 1999-01-27 2000-08-16 구자홍 플레이트 핀형 열교환기
KR100467339B1 (ko) 2002-10-30 2005-01-24 모딘코리아 유한회사 열교환기용 튜브 제조방법
KR100785229B1 (ko) * 2003-06-23 2007-12-11 주식회사 엘지화학 원형 내지 타원형의 내부 유로를 갖는 난방패널
CN2679473Y (zh) * 2004-01-29 2005-02-16 鑫磊工贸有限公司 一种空气压缩机的储气罐
JP2007078325A (ja) * 2005-09-16 2007-03-29 Hitachi Densen Mekutekku Kk 熱交換用多穴管及びその製造方法
JP4974327B2 (ja) * 2005-12-15 2012-07-11 株式会社デンソー 熱交換器用チューブの製造方法および熱交換器
US7946036B2 (en) * 2006-09-28 2011-05-24 Delphi Technologies, Inc. Method of manufacturing a manifold for a heat exchanger
CN101788213B (zh) * 2009-01-22 2011-09-28 三花丹佛斯(杭州)微通道换热器有限公司 换热器
US20100300667A1 (en) 2009-06-01 2010-12-02 Delphi Technologies, Inc. Distributor tube and end cap subassembly
KR100988217B1 (ko) 2009-07-22 2010-10-18 주식회사 엘에치이 판형 열교환기용 인라인 필터 및 설치방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1684083A (en) * 1927-06-02 1928-09-11 Samuel C Bloom Refrigerating coil
US4945635A (en) * 1988-07-14 1990-08-07 Showa Alumina Kabushiki Kaisha Method of manufacturing brazable pipes and heat exchanger
JPH09166368A (ja) * 1995-12-14 1997-06-24 Sanden Corp 熱交換器
EP1826523A1 (en) * 2004-09-08 2007-08-29 Calsonic Kansei Corporation Header tank for heat exchanger
US20080223565A1 (en) * 2007-03-13 2008-09-18 Kaori Heat Treatment Co., Ltd. Flow distributor for heat transfer device
CN101266093A (zh) * 2007-03-14 2008-09-17 三电有限公司 热交换器
CN101788243A (zh) * 2009-04-03 2010-07-28 三花丹佛斯(杭州)微通道换热器有限公司 用于热交换器的制冷剂分配器和热交换器
CN101691981A (zh) * 2009-07-23 2010-04-07 三花丹佛斯(杭州)微通道换热器有限公司 具有改进的制冷剂流体分配均匀性的多通道换热器

Also Published As

Publication number Publication date
CN102079038A (zh) 2011-06-01
CN102079038B (zh) 2013-02-13
KR20130102629A (ko) 2013-09-17
KR101511885B1 (ko) 2015-04-13
US9885521B2 (en) 2018-02-06
US20130248158A1 (en) 2013-09-26
EP2650078B1 (en) 2020-06-17
EP2650078A1 (en) 2013-10-16
JP2014504211A (ja) 2014-02-20
JP5809706B2 (ja) 2015-11-11
EP2650078A4 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
WO2012075766A1 (zh) 换热器、制冷剂导流管以及制冷剂导流管的加工方法
CN108603732B (zh) 板式热交换器及具备板式热交换器的热泵式制热供热水系统
EP2410278B1 (en) Plate-type heat exchanger and refrigerating air-conditioning device
WO2017113571A1 (zh) 一体化相变抑制传热换热板结构及其制造方法
JP2010510473A (ja) プレート熱交換器
EP2975352A1 (en) Heat exchanger
JP2010190561A (ja) 熱交換器、熱交換器ヘッダおよびその形成方法
WO2015106726A1 (zh) 集流管组件以及具有该集流管组件的换热器
JP2008232497A (ja) 熱交換器用フィン、並びにガイド及びその使用方法
CN201885632U (zh) 一种换热器及其制冷剂导流管
CN202885598U (zh) 一种热交换器
CN106197093B (zh) 一种换热器
CN104764255A (zh) 平行流换热器
KR20130022014A (ko) 열교환기 및 그 제조 방법
WO2022121919A1 (zh) 换热器
KR20120086921A (ko) 열교환기용 마이크로채널 판
WO2020244446A1 (zh) 扁管及换热器
CN219328349U (zh) 一种换热器
JP7393527B2 (ja) 熱交換器
CN211777753U (zh) Egr冷却器壳体及egr冷却器
JP7190544B2 (ja) 熱交換器とそのフィン及び熱交換機器とエアコン
CN219713699U (zh) 一种空调器
CN219713482U (zh) 一种空调器
JPH0593591A (ja) 積層型熱交換器の製造方法
CN116907253B (zh) 一种板式换热器及具有其的换热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541185

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13991821

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011847879

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137017423

Country of ref document: KR

Kind code of ref document: A