WO2012073801A1 - 太陽電池セル及び太陽電池モジュール - Google Patents

太陽電池セル及び太陽電池モジュール Download PDF

Info

Publication number
WO2012073801A1
WO2012073801A1 PCT/JP2011/077132 JP2011077132W WO2012073801A1 WO 2012073801 A1 WO2012073801 A1 WO 2012073801A1 JP 2011077132 W JP2011077132 W JP 2011077132W WO 2012073801 A1 WO2012073801 A1 WO 2012073801A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solar battery
solar cell
portions
sections
Prior art date
Application number
PCT/JP2011/077132
Other languages
English (en)
French (fr)
Inventor
馬場 俊明
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46171740&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012073801(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201190000907.8U priority Critical patent/CN203481246U/zh
Priority to EP11845908.0A priority patent/EP2648224A4/en
Publication of WO2012073801A1 publication Critical patent/WO2012073801A1/ja
Priority to US13/895,517 priority patent/US20130247955A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar battery cell and a solar battery module.
  • the solar battery cell has a photoelectric conversion unit that generates carriers such as electrons and holes by receiving light, and an electrode that collects the carriers generated in the photoelectric conversion unit.
  • an electrode for collecting the carriers for example, as described in Patent Document 1 below, the electrode extends along one direction on the main surface of the photoelectric conversion unit and is perpendicular to the one direction.
  • An electrode including a plurality of linear finger electrode portions arranged along other directions and a bus bar portion electrically connecting the plurality of finger electrodes is widely used.
  • This invention is made
  • the objective is to provide the photovoltaic cell and photovoltaic module which have the improved photoelectric conversion efficiency.
  • the solar battery cell according to the present invention has a rectangular photoelectric conversion portion whose corners are chamfered and an electrode.
  • the electrode is disposed on one main surface of the photoelectric conversion unit.
  • One main surface of the photoelectric conversion unit includes an end portion where a chamfered corner portion is provided in the first direction, and a central portion located on the center side of the chamfered corner portion in the first direction.
  • the electrode includes a plurality of linear electrode portions and a trapezoidal electrode portion.
  • the plurality of linear electrode portions are provided in the central portion.
  • the plurality of linear electrode portions extend along a second direction perpendicular to the first direction.
  • the trapezoidal electrode part is provided at the end.
  • the trapezoidal electrode portion includes an upper bottom portion and a lower bottom portion, and a pair of oblique sides.
  • the upper bottom portion and the lower bottom portion extend along the second direction.
  • the pair of oblique sides connect the end portion of the upper bottom portion and the end portion of the lower bottom portion.
  • the pair of oblique sides extend along the edges of the chamfered corners.
  • the solar cell module according to the present invention includes a plurality of the solar cells according to the present invention and a wiring material.
  • the wiring material electrically connects a plurality of solar cells.
  • the wiring material is arranged so as to intersect with the plurality of linear electrode portions.
  • a solar battery cell and a solar battery module having improved photoelectric conversion efficiency can be provided.
  • FIG. 1 is a schematic plan view of a light receiving surface of the solar battery cell according to the first embodiment.
  • FIG. 2 is a schematic plan view of the back surface of the solar battery cell in the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of the portion indicated by line III-III in FIG.
  • FIG. 4 is a schematic enlarged plan view in which a part of the light receiving surface of the solar battery cell in the first comparative example is enlarged.
  • FIG. 5 is a schematic enlarged plan view in which a part V of the light receiving surface of the solar battery cell in the first embodiment is enlarged.
  • FIG. 6 is a schematic plan view of the light receiving surface of the solar battery cell according to the first modification.
  • FIG. 1 is a schematic plan view of a light receiving surface of the solar battery cell according to the first embodiment.
  • FIG. 2 is a schematic plan view of the back surface of the solar battery cell in the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of the portion indicated by line III-
  • FIG. 7 is a schematic plan view of a light receiving surface of a solar battery cell according to a second modification.
  • FIG. 8 is a schematic plan view of the light receiving surface of the solar battery cell according to the second embodiment.
  • FIG. 9 is a schematic enlarged plan view in which a part of the light receiving surface of the solar battery cell in the second comparative example is enlarged.
  • FIG. 10 is a schematic enlarged plan view in which a part of the light receiving surface of the solar battery cell in the second embodiment is enlarged.
  • FIG. 11 is a schematic plan view of a light receiving surface of a solar battery cell according to a third modification.
  • FIG. 12 is a schematic cross-sectional view of a solar cell module according to the third embodiment.
  • FIG. 1 is a schematic plan view of a light receiving surface of the solar battery cell according to the first embodiment.
  • FIG. 2 is a schematic plan view of the back surface of the solar battery cell in the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of the portion indicated by line III-III in FIG.
  • the solar battery cell 10 has a photoelectric conversion unit 20.
  • the photoelectric conversion unit 20 is a member that generates carriers such as electrons and holes by receiving light.
  • the photoelectric conversion unit 20 may include a crystalline semiconductor substrate having one conductivity type, and may have a semiconductor junction such as a pn junction or a pin junction.
  • the photoelectric conversion unit 20 is disposed on one main surface of the crystalline semiconductor substrate having one conductivity type, and the first amorphous semiconductor layer having another conductivity type. And a second amorphous semiconductor layer having one conductivity type, which is disposed on the other main surface of the crystalline semiconductor substrate.
  • the photoelectric conversion unit 20 may have a semiconductor substrate in which an n-type dopant diffusion region and a p-type dopant diffusion region are exposed on the surface.
  • the photoelectric conversion unit 20 has a rectangular shape in which each of the four corners is chamfered.
  • the photoelectric conversion unit 20 has chamfered corners 20A to 20D. That is, each of the light receiving surface 20a and the back surface 20b of the photoelectric conversion unit 20 has a rectangular shape in which each of the four corners is chamfered.
  • the light receiving surface 20a includes, in the x direction, a first end 20a2 provided with chamfered corners 20A and 20B, a second end 20a3 provided with chamfered corners 20C and 20D, and a chamfer. It includes a central portion 20a1 located on the central side of the corner portions 20A to 20D. Similarly, the back surface 20b also includes first and second end portions and a central portion.
  • a planar transparent conductive film (TCO: Transparent Conductive Oxide) 25a is provided on the light receiving surface 20a. The portion of the light receiving surface 20a excluding the edge is covered with the transparent conductive film 25a. Similarly, a planar transparent conductive film 25b is provided on the back surface 20b. The portion excluding the edge portion of the back surface 20b is covered with the transparent conductive film 25b.
  • These transparent conductive films 25a and 25b have a function of assisting current collection by the following electrodes 21a and 21b. By providing the transparent conductive films 25a and 25b, the generated carriers are efficiently collected by the electrodes 21a and 21b before being recombined. Therefore, more improved photoelectric conversion efficiency can be realized.
  • the transparent conductive films 25a and 25b can be formed of, for example, ITO (Indium Tin Oxide).
  • the thickness of the transparent conductive films 25a and 25b can be set to, for example, 50 nm to 150 nm.
  • the electrode 21a is arranged on the light receiving surface 20a. Specifically, the electrode 21a is disposed on a transparent conductive film 25a provided on the light receiving surface 20a.
  • the electrode 21b is disposed on the back surface 20b. Specifically, the electrode 21b is disposed on a transparent conductive film 25b provided on the back surface 20b.
  • the material of the electrodes 21a and 21b is not particularly limited as long as it is a conductive material.
  • Each of the electrodes 21a and 21b can be made of, for example, a metal such as silver, copper, aluminum, titanium, nickel, or chromium, or an alloy containing one or more of these metals.
  • the electrodes 21a and 21b may be configured by, for example, a stacked body of a plurality of conductive layers made of the above metals or alloys.
  • the formation method of the electrodes 21a and 21b is not particularly limited.
  • the electrodes 21a and 21b can be formed using a conductive paste such as an Ag paste, for example.
  • the electrodes 21a and 21b can be formed using, for example, a sputtering method, a vapor deposition method, a screen printing method, a plating method, or the like.
  • the electrode 21b has substantially the same configuration as the electrode 21b. Therefore, here, the configuration of the electrode 21a will be described in detail. For the electrode 21b, the description relating to the electrode 21a is cited.
  • the electrode 21 a includes a plurality of linear electrode portions 31, trapezoidal electrode portions 32 a and 32 b, and a plurality of bus bar portions 33.
  • Each of the plurality of linear electrode portions 31 is disposed in the central portion 20a1.
  • Each of the plurality of linear electrode portions 31 extends along the x direction perpendicular to the y direction.
  • the plurality of linear electrode portions 31 are arranged along the y direction.
  • the plurality of linear electrode portions 31 are parallel to each other.
  • the trapezoidal electrode portion 32a is disposed on the first end 20a2.
  • the trapezoidal electrode portion 32a includes an upper bottom portion 32a1, a lower bottom portion 32a2, and a pair of oblique sides 32a3 and 32a4.
  • Each of the upper bottom portion 32a1 and the lower bottom portion 32a2 extends along the x direction.
  • the upper bottom part 32a1 is located relatively outside in the y direction, and the lower bottom part 32a2 is located relatively inside in the y direction.
  • the upper bottom portion 32a1 is shorter than the lower bottom portion 32a2.
  • Each of the pair of oblique sides 32a3 and 32a4 connects the end portion of the upper bottom portion 32a1 and the end portion of the lower bottom portion 32a2.
  • the pair of oblique sides 32a3 and 32a4 extend along the end sides of the chamfered corners 20A and 20B. That is, the oblique sides 32a3 and 32a4 extend in directions inclined with respect to the x direction and the y direction, respectively. In the present embodiment, the angle formed by the oblique sides 32a3 and 32a4 and each of the x direction and the y direction is about 45 °.
  • the trapezoidal electrode portion 32a further includes a linear electrode portion 32a5.
  • the linear electrode portion 32a5 is located between the upper bottom portion 32a1 and the lower bottom portion 32a2 in the y direction.
  • the linear electrode portion 32a5 extends along the x direction.
  • the linear electrode portion 32a5 connects the middle portions of the pair of oblique sides 32a3 and 32a4.
  • the trapezoidal electrode portion 32b is disposed on the second end portion 20a3.
  • the trapezoidal electrode portion 32b includes an upper bottom portion 32b1, a lower bottom portion 32b2, and a pair of oblique sides 32b3 and 32b4.
  • Each of the upper bottom portion 32b1 and the lower bottom portion 32b2 extends along the x direction.
  • the upper bottom part 32b1 is located relatively outside in the y direction, and the lower bottom part 32b2 is located relatively inside in the y direction.
  • the upper bottom portion 32b1 is shorter than the lower bottom portion 32b2.
  • Each of the pair of oblique sides 32b3 and 32b4 connects the end portion of the upper bottom portion 32b1 and the end portion of the lower bottom portion 32b2.
  • the pair of oblique sides 32b3 and 32ba4 extend along the edges of the chamfered corners 20C and 20D. That is, the oblique sides 32b3 and 32b4 extend in directions inclined with respect to the x direction and the y direction, respectively. In the present embodiment, the angle formed by the oblique sides 32b3 and 32b4 and each of the x direction and the y direction is about 45 °.
  • the trapezoidal electrode portion 32b further includes a linear electrode portion 32b5.
  • the linear electrode portion 32b5 is located between the upper bottom portion 32b1 and the lower bottom portion 32b2 in the y direction.
  • the linear electrode portion 32b5 extends along the x direction.
  • the linear electrode portion 32b5 connects the middle portions of the pair of oblique sides 32b3 and 32b4.
  • the “trapezoid” includes a rectangle.
  • the widths of the linear electrode portions 31, 32a5, 32b5, the upper bottom portions 32a1, 32b1, the lower bottom portions 32a2, 32b2, and the hypotenuse portions 32a3, 32a4, 32b3.32b4 are not particularly limited. can do.
  • the widths of the linear electrode portions 31, 32a5, 32b5, the upper bottom portions 32a1, 32b1, and the lower bottom portions 32a2, 32b2 may be different from each other or the same.
  • the interval between the linear electrode portions 31 adjacent in the y direction is not particularly limited, but can be, for example, about 1 mm to 3 mm.
  • the plurality of bus bar portions 33 extend along the y direction.
  • the plurality of bus bar portions 33 are arranged along the x direction.
  • Each of the plurality of bus bar portions 33 is electrically connected to the plurality of linear electrode portions 31, the upper bottom portions 32a1, 32b1, the lower bottom portions 32a2, 32b2, and the linear electrode portions 32a5, 32b5.
  • the electrode 21a includes the two bus bar portions 33 has been described.
  • the present invention is not limited to this configuration.
  • the electrode may not include the bus bar portion, or may include one or three or more bus bar portions.
  • the width of the bus bar portion 33 is not particularly limited, but can be, for example, about 0.5 mm to 2 mm.
  • the bus bar portion 33 is linear. However, in the present invention, the bus bar portion may not be linear.
  • the bus bar portion may be provided in a zigzag shape, for example.
  • a plurality of linear electrode portions may be formed on the first and second end portions without providing the trapezoidal electrode portion. That is, it is conceivable that the electrode is composed of only a plurality of linear electrode portions or a plurality of linear electrode portions and bus bar portions. However, in that case, the current collecting resistance at the chamfered corner portion of the photoelectric conversion efficiency is increased. Accordingly, the photoelectric conversion efficiency is lowered. Hereinafter, this reason will be described with reference to FIG.
  • the trapezoidal electrode portion when the trapezoidal electrode portion is not provided at the end portion and a plurality of linear electrode portions 131 are provided, the light receiving surface 120a is close to the linear electrode portion 131 in the y direction.
  • the distance that the carrier 100 generated in the non-proximity region 120a21 that has not been moved must move before being collected by the linear electrode portion 131 is long. For this reason, the current collection resistance in the non-proximity region 120a21 increases. As a result, the photoelectric conversion efficiency is lowered.
  • trapezoidal electrode portions 32a and 32b are provided at the end portions 20a2 and 20a3.
  • the trapezoidal electrode portions 32a and 32b include oblique sides 32a3, 32a4, 32b3 and 32b4.
  • the oblique sides 32a3, 32a4, 32b3, and 32b4 extend along the end sides of the chamfered corners 20A to 20D. Therefore, as shown in FIG. 5, the carrier 35 generated in the region 20a21 is collected by the oblique sides 32a3, 32a4, 32b3, and 32b4. For this reason, the distance that the carrier 35 has to move before being collected by the electrode 21a is short. Therefore, the current collecting resistance in the region 20a21 can be reduced. Therefore, the photoelectric conversion efficiency can be improved.
  • linear electrode portions 32a5 and 32b5 are provided inside the trapezoidal electrode portions 32a and 32b. For this reason, the current collection resistance in the edge parts 20a2 and 20a3 provided with the trapezoidal electrode parts 32a and 32b is more efficiently reduced. Therefore, more improved photoelectric conversion efficiency can be realized.
  • the solar battery cell 10 of this embodiment and a solar battery cell having a configuration substantially similar to that of the solar battery cell 10 except that the oblique side portion is not provided are created, and the photoelectric conversion efficiency is measured. did. As a result, it was confirmed that the photovoltaic cell 10 having the oblique sides 32a3, 32a4, 32b3, and 32b4 has about 1% higher photoelectric conversion efficiency than the photovoltaic cell not provided with the oblique sides.
  • FIG. 6 is a schematic plan view of the light receiving surface of the solar battery cell according to the first modification.
  • each of the electrodes 21a and 21b has one or more bus bar portions.
  • the present invention is not limited to this configuration.
  • the electrode 21 a may not include the bus bar portion 33.
  • FIG. 7 is a schematic plan view of a light receiving surface of a solar battery cell according to a second modification.
  • the trapezoidal electrode portions 32a and 32b are respectively provided on the first and second end portions 20a2 and 20a3 .
  • the present invention is not limited to this configuration.
  • a plurality of trapezoidal electrode portions 32a may be arranged along the y direction at the first end 20a2.
  • a plurality of trapezoidal electrode portions 32b may be arranged at the second end portion 20a3 along the y direction.
  • the trapezoidal electrode portions 32a and 32b may not be provided with the linear electrode portions 32a5 and 32b5, or may be provided with a plurality of linear electrode portions 32a5 and 32b5.
  • FIG. 8 is a schematic plan view of the light receiving surface of the solar battery cell according to the second embodiment.
  • the whole some linear electrode part 31 is located on the transparent conductive film 25a, and the edge part of the linear electrode part 31 has not reached the edge of the transparent conductive film 25a.
  • An example was described.
  • the end of the linear electrode portion 31 reaches the end of the transparent conductive film 25a. Specifically, the end portion of the linear electrode portion 31 reaches the end side of the photoelectric conversion portion 20. For this reason, more improved photoelectric conversion efficiency can be obtained. Hereinafter, this reason will be described with reference to FIG. 9 and FIG.
  • the solar battery of the second embodiment in which the end portion of the linear electrode portion 31 reaches the end side of the transparent conductive film 25a. It was confirmed that the cell had a photoelectric conversion efficiency about 1% higher than that of the solar cell 10 of the first embodiment in which the end of the linear electrode portion 31 did not reach the end of the transparent conductive film 25a. .
  • FIG. 11 is a schematic plan view of a light receiving surface of a solar battery cell according to a third modification.
  • the electrode 21a extends along the x direction from the respective ends of the upper bottom portions 32a1, 32b1, the lower bottom portions 32a2, 32b2, and the linear electrode portions 32a5, 32b5, and ends of the transparent conductive film 25a.
  • linear electrode portions 32a6 to 32a11 and 32b6 to 32b11 may be further provided. According to this configuration, the current collecting resistance in the chamfered corner portions 20A to 20D can be further reduced. As a result, more improved photoelectric conversion efficiency can be obtained.
  • both the electrode 21a on the light receiving surface 20a and the electrode 21b on the back surface 20b have trapezoidal electrode portions.
  • the present invention is not limited to this configuration.
  • the electrode on the light receiving surface may include a trapezoidal electrode portion
  • the electrode on the back surface may not include a trapezoidal electrode portion.
  • the electrode on the back surface may be a planar electrode.
  • one of the electrode on the light receiving surface and the electrode on the back surface is an electrode having the form shown in FIGS. 1, 6 to 8 or 11, and the other is an electrode having the form shown in FIGS.
  • an electrode having a different form from the electrode on the light receiving surface may be used. That is, although both the electrode on the light receiving surface and the electrode on the back surface include the trapezoidal electrode portion, the electrode on the light receiving surface and the electrode on the back surface may have different forms.
  • FIG. 12 is a schematic cross-sectional view of a solar cell module according to the third embodiment.
  • the solar battery cell 10 according to the embodiment and the modification can be used as a solar battery module 1 as shown in FIG.
  • the solar cell module 1 of the present embodiment includes a plurality of solar cells 10 arranged along the y direction.
  • the plurality of solar cells 10 are electrically connected by the wiring material 11.
  • a plurality of solar cells 10 are electrically connected in series or in parallel by electrically connecting adjacent solar cells 10 with the wiring material 11.
  • the wiring member 11 is arranged so as to intersect with the plurality of linear electrode portions 31, the upper bottom portions 32a1, 32b1, and the lower bottom portions 32a2, 32b2, and is electrically connected to these electrode portions. Yes.
  • the electrodes 21 a and 21 b include the bus bar portion 33
  • the wiring member 11 is arranged so as to cover the bus bar portion 33.
  • crossing includes orthogonality
  • the wiring member 11 and the solar battery cell 10 are bonded with an adhesive.
  • an adhesive solder or a resin adhesive can be used.
  • the resin adhesive may have an insulating property or an anisotropic conductivity.
  • First and second protective members 14 and 15 are disposed on the light receiving surface side and the back surface side of the plurality of solar cells 10.
  • a sealing material 13 is provided between the solar battery cell 10 and the first protective member 14 and between the solar battery cell 10 and the second protective member 15. The plurality of solar cells 10 are sealed with this sealing material 13.
  • the sealing material 13 can be formed of a light-transmitting resin such as ethylene / vinyl acetate copolymer (EVA) or polyvinyl butyral (PVB).
  • EVA ethylene / vinyl acetate copolymer
  • PVB polyvinyl butyral
  • the first and second protective members 14 and 15 can be formed of, for example, glass or resin.
  • the first protective member 14 is disposed on the light receiving surface side of the solar battery cell 10.
  • the first protective member 14 is made of glass or translucent resin.
  • the second protective member 15 is disposed on the back side of the solar battery cell 10.
  • the 2nd protection member 15 is comprised by the resin film which interposed metal foil, such as aluminum foil.
  • a metal such as Al is used on the outer periphery of the laminate having the first protective member 14, the sealing material 13, the plurality of solar cells 10, the sealing material 13, and the second protective member 15, if necessary.
  • a frame (not shown) is attached.
  • the terminal box for taking out the output of the photovoltaic cell 10 outside is provided in the surface of the 1st protection member 14 as needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 向上された光電変換効率を有する太陽電池セル及び太陽電池モジュールを提供する。 電極21aは、複数の線状電極部31と、台形状電極部32a、32bとを含む。台形状電極部32a、32bは、端部20a2,20a3に設けられている。台形状電極部32a、32bは、上底部32a1,32b1及び下底部32a2,32b2と、一対の斜辺部32a3,32a4,32b3,32b4とを含む。一対の斜辺部32a3,32a4,32b3,32b4は、上底部32a1,32b1の端部と下底部32a2,32b2の端部とを接続している。一対の斜辺部32a3,32a4,32b3,32b4は、面取り状角部20A~20Dの端辺に沿って延びている。

Description

太陽電池セル及び太陽電池モジュール
 本発明は太陽電池セル及び太陽電池モジュールに関する。
 近年、環境負荷が低いエネルギー源として、太陽電池セルが大いに注目されている。太陽電池セルは、受光することにより電子や正孔などのキャリアを生成させる光電変換部と、光電変換部において生成したキャリアを収集する電極とを有している。このキャリアを収集するための電極としては、例えば、下記の特許文献1などに記載されているように、光電変換部の主面上において、一の方向に沿って延び、一の方向に垂直な他の方向に沿って配列された直線状の複数のフィンガー電極部と、それら複数のフィンガー電極を電気的に接続しているバスバー部とを含む電極が広く用いられている。
特開2010-186862号公報
 近年、太陽電池セルの光電変換効率をさらに高めたいという要望が高まってきている。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、向上された光電変換効率を有する太陽電池セル及び太陽電池モジュールを提供することにある。
 本発明に係る太陽電池セルは、角部が面取り状である矩形状の光電変換部と、電極とを有する。電極は、光電変換部の一主面の上に配されている。光電変換部の一主面は、第1の方向において面取り状角部が設けられている端部と、第1の方向において面取り状角部よりも中央側に位置している中央部とを含む。電極は、複数の線状電極部と、台形状電極部とを含む。複数の線状電極部は、中央部に設けられている。複数の線状電極部は、第1の方向に対して垂直な第2の方向に沿って延びている。台形状電極部は、端部に設けられている。台形状電極部は、上底部及び下底部と、一対の斜辺部とを含む。上底部及び下底部は、第2の方向に沿って延びている。一対の斜辺部は、上底部の端部と下底部の端部とを接続している。一対の斜辺部は、面取り状角部の端辺に沿って延びている。
 本発明に係る太陽電池モジュールは、複数の上記本発明に係る太陽電池セルと、配線材とを備えている。配線材は、複数の太陽電池セルを電気的に接続している。配線材は、複数の線状電極部と交差するように配されている。
 本発明によれば、向上された光電変換効率を有する太陽電池セル及び太陽電池モジュールを提供することができる。
図1は、第1の実施形態に係る太陽電池セルの受光面の略図的平面図である。 図2は、第1の実施形態における太陽電池セルの裏面の略図的平面図である。 図3は、図1の線III-IIIに示す部分の略図的断面図である。 図4は、第1の比較例における太陽電池セルの受光面の一部分を拡大した模式的拡大平面図である。 図5は、第1の実施形態における太陽電池セルの受光面の一部分Vを拡大した模式的拡大平面図である。 図6は、第1の変形例に係る太陽電池セルの受光面の略図的平面図である。 図7は、第2の変形例に係る太陽電池セルの受光面の略図的平面図である。 図8は、第2の実施形態に係る太陽電池セルの受光面の略図的平面図である。 図9は、第2の比較例における太陽電池セルの受光面の一部分を拡大した模式的拡大平面図である。 図10は、第2の実施形態における太陽電池セルの受光面の一部分を拡大した模式的拡大平面図である。 図11は、第3の変形例に係る太陽電池セルの受光面の略図的平面図である。 図12は、第3の実施形態に係る太陽電池モジュールの略図的断面図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、以下の実施形態は、単なる例示である。本発明は、以下の実施形態に何ら限定されない。
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 (第1の実施形態)
 図1は、第1の実施形態に係る太陽電池セルの受光面の略図的平面図である。図2は、第1の実施形態における太陽電池セルの裏面の略図的平面図である。図3は、図1の線III-IIIに示す部分の略図的断面図である。
 まず、図1~図3を参照しながら、本実施形態に係る太陽電池セル10の構成について説明する。太陽電池セル10は、光電変換部20を有する。光電変換部20は、受光することによって電子や正孔などのキャリアを生成させる部材である。光電変換部20は、例えば、一の導電型を有する結晶性半導体基板を有し、pn接合、pin接合等の半導体接合を有するものであってもよい。また、光電変換部20は、一の導電型を有する結晶性半導体基板と、その結晶性半導体基板の一主面上に配されており、他の導電型を有する第1の非晶質半導体層と、結晶性半導体基板の他の主面上に配されており、一の導電型を有する第2の非晶質半導体層とを有するものであってもよい。また、光電変換部20は、n型ドーパント拡散領域とp型ドーパント拡散領域とが表面に露出している半導体基板を有するものであってもよい。
 光電変換部20は、4つの角部のそれぞれが面取り状である矩形状である。光電変換部20は、面取り状の角部20A~20Dを有する。すなわち、光電変換部20の受光面20a及び裏面20bのそれぞれは、4つの角部のそれぞれが面取り状の矩形状である。
 受光面20aは、x方向において、面取り状角部20A,20Bが設けられている第1の端部20a2と、面取り状角部20C,20Dが設けられている第2の端部20a3と、面取り状角部20A~20Dよりも中央側に位置している中央部20a1を含む。同様に、裏面20bも、第1及び第2の端部並びに中央部を含んでいる。
 受光面20aの上には、面状の透明導電膜(TCO:Transparent Conductive Oxide)25aが設けられている。受光面20aの端縁部を除いた部分は、この透明導電膜25aにより覆われている。同様に、裏面20bの上には、面状の透明導電膜25bが設けられている。裏面20bの端縁部を除いた部分は、この透明導電膜25bにより覆われている。これら透明導電膜25a、25bは、下記の電極21a、21bによる集電を補助する機能を有している。透明導電膜25a、25bを設けることにより、生成したキャリアが再結合する前に効率的に電極21a、21bに収集される。従って、より改善された光電変換効率を実現することができる。
 なお、透明導電膜25a、25bは、例えば、ITO(Indium Tin Oxide)などにより形成することができる。透明導電膜25a、25bの厚みは、例えば、50nm~150nm度とすることができる。
 受光面20aの上には、電極21aが配されている。詳細には、この電極21aは、受光面20aの上に設けられた透明導電膜25aの上に配されている。一方、裏面20bの上には、電極21bが配されている。詳細には、この電極21bは、裏面20bの上に設けられた透明導電膜25bの上に配されている。
 電極21a、21bの材質は、導電材料である限りにおいて特に限定されない。電極21a、21bのそれぞれは、例えば、銀、銅、アルミニウム、チタン、ニッケル、クロムなどの金属や、それらの金属のうちの一種以上を含む合金により構成することができる。また、電極21a、21bは、例えば、上記金属や合金からなる複数の導電層の積層体により構成されていてもよい。
 電極21a、21bの形成方法は、特に限定されない。電極21a,21bは、例えば、Agペースト等の導電性ペーストを用いて形成することができる。また、電極21a,21bは、例えば、スパッタ法、蒸着法、スクリーン印刷法或いはメッキ法等を用いて形成することができる。
 なお、本実施形態においては、電極21bは、電極21bと実質的に同様の構成を有する。このため、ここでは、電極21aの構成について詳細に説明する。電極21bについては、電極21aに関する説明を援用することとする。
 電極21aは、複数の線状電極部31と、台形状電極部32a、32bと、複数のバスバー部33とを含む。複数の線状電極部31のそれぞれは、中央部20a1に配されている。複数の線状電極部31のそれぞれは、y方向に対して垂直なx方向に沿って延びている。複数の線状電極部31は、y方向に沿って配列されている。複数の線状電極部31は、互いに平行である。
 台形状電極部32aは、第1の端部20a2に配されている。台形状電極部32aは、上底部32a1と、下底部32a2と、一対の斜辺部32a3,32a4とを含む。上底部32a1及び下底部32a2のそれぞれは、x方向に沿って延びている。上底部32a1は、y方向において相対的に外側に位置しており、下底部32a2がy方向において相対的に内側に位置している。上底部32a1の方が、下底部32a2よりも短い。一対の斜辺部32a3,32a4のそれぞれは、上底部32a1の端部と、下底部32a2の端部とを接続している。一対の斜辺部32a3,32a4は、面取り状角部20A、20Bの端辺に沿って延びている。すなわち、斜辺部32a3,32a4は、x方向及びy方向のそれぞれに対して傾斜した方向に延びている。本実施形態では、斜辺部32a3,32a4と、x方向及びy方向のそれぞれとのなす角の大きさは、約45°である。
 台形状電極部32aは、線状電極部32a5をさらに含んでいる。線状電極部32a5は、y方向において上底部32a1と下底部32a2との間に位置している。線状電極部32a5は、x方向に沿って延びている。線状電極部32a5は、一対の斜辺部32a3,32a4の途中部間を接続している。
 台形状電極部32bは、第2の端部20a3に配されている。台形状電極部32bは、上底部32b1と、下底部32b2と、一対の斜辺部32b3,32b4とを含む。上底部32b1及び下底部32b2のそれぞれは、x方向に沿って延びている。上底部32b1は、y方向において相対的に外側に位置しており、下底部32b2がy方向において相対的に内側に位置している。上底部32b1の方が、下底部32b2よりも短い。一対の斜辺部32b3,32b4のそれぞれは、上底部32b1の端部と、下底部32b2の端部とを接続している。一対の斜辺部32b3,32ba4は、面取り状角部20C、20Dの端辺に沿って延びている。すなわち、斜辺部32b3,32b4は、x方向及びy方向のそれぞれに対して傾斜した方向に延びている。本実施形態では、斜辺部32b3,32b4と、x方向及びy方向のそれぞれとのなす角の大きさは、約45°である。
 台形状電極部32bは、線状電極部32b5をさらに含んでいる。線状電極部32b5は、y方向において上底部32b1と下底部32b2との間に位置している。線状電極部32b5は、x方向に沿って延びている。線状電極部32b5は、一対の斜辺部32b3,32b4の途中部間を接続している。
 なお、本発明において、「台形」には、矩形が含まれるものとする。
 上記線状電極部31,32a5,32b5、上底部32a1,32b1、下底部32a2,32b2及び斜辺部32a3,32a4,32b3.32b4のそれぞれの幅は、特に限定されないが、例えば、50μm~200μm程度とすることができる。線状電極部31,32a5,32b5、上底部32a1,32b1及び下底部32a2,32b2のそれぞれの幅は、相互に異なっていてもよいし、同じであってもよい。y方向において隣り合う線状電極部31の間隔は、特に限定されないが、例えば、1mm~3mm程度とすることができる。
 複数のバスバー部33は、y方向に沿って延びている。複数のバスバー部33は、x方向に沿って配列されている。複数のバスバー部33のそれぞれは、複数の線状電極部31、上底部32a1,32b1及び下底部32a2,32b2と、線状電極部32a5,32b5とに電気的に接続されている。
 なお、本実施形態では、電極21aが2本のバスバー部33を含む例について説明した。但し、本発明は、この構成に限定されない。本発明では、電極は、バスバー部を含んでいなくてもよいし、1本または3本以上のバスバー部を含んでいてもよい。バスバー部33の幅は、特に限定されないが、例えば、0.5mm~2mm程度とすることができる。
 また、本実施形態では、バスバー部33は、直線状であるが、本発明において、バスバー部は直線状でなくてもよい。バスバー部は、例えば、ジグザグ状に設けられていてもよい。
 ところで、例えば、台形状電極部を設けずに、第1及び第2の端部の上にも複数の線状電極部を形成することも考えられる。すなわち、電極を複数の線状電極部のみ、または複数の線状電極部及びバスバー部により構成することも考えられる。しかしながら、その場合は、光電変換効率の面取り状角部における集電抵抗が高くなる。従って、光電変換効率が低くなる。以下、この理由について、図4を参照しながら説明する。
 例えば、端部においても、台形状電極部が設けられておらず、複数の線状電極部131が設けられている場合は、受光面120aのうち、y方向において線状電極部131と近接していない非近接領域120a21において生じたキャリア100が線状電極部131により収集されるまでに移動しなければならない距離が長い。このため、非近接領域120a21における集電抵抗が大きくなる。その結果、光電変換効率が低くなる。
 それに対して、本実施形態では、端部20a2,20a3に、台形状電極部32a、32bが設けられている。台形状電極部32a、32bは、斜辺部32a3,32a4,32b3,32b4を含む。そして、斜辺部32a3,32a4,32b3,32b4は、面取り状角部20A~20Dの端辺に沿って延びている。従って、図5に示すように、領域20a21において生じたキャリア35は、斜辺部32a3,32a4,32b3,32b4により収集される。このため、キャリア35が電極21aにより収集されるまでに移動しなければならない距離が短い。よって、領域20a21における集電抵抗を低減することができる。従って、光電変換効率を改善することができる。
 また、本実施形態では、台形状電極部32a、32bの内部に線状電極部32a5,32b5が設けられている。このため、台形状電極部32a、32bが設けられた端部20a2、20a3における集電抵抗がより効率的に低減されている。従って、より改善された光電変換効率を実現することができる。
 具体的に、本実施形態の太陽電池セル10と、斜辺部が設けられていないこと以外は太陽電池セル10と実質的に同様の構成を有する太陽電池セルとを作成し、光電変換効率を測定した。その結果、斜辺部32a3,32a4,32b3,32b4を有する太陽電池セル10の方が、斜辺部が設けられていない太陽電池セルよりも約1%光電変換効率が高いことが確認された。
 以下、本発明を実施した好ましい形態の他の例や変形例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 (第1の変形例)
 図6は、第1の変形例に係る太陽電池セルの受光面の略図的平面図である。
 上記第1の実施形態では、電極21a、21bのそれぞれが1以上のバスバー部を有している例について説明した。但し、本発明は、この構成に限定されない。例えば、図6に示すように、電極21aは、バスバー部33を含んでいなくてもよい。
 (第2の変形例)
 図7は、第2の変形例に係る太陽電池セルの受光面の略図的平面図である。
 上記第1の実施形態では、第1及び第2の端部20a2,20a3のそれぞれに、台形状電極部32a、32bがひとつずつ設けられている例について説明した。但し、本発明は、この構成に限定されない。例えば、図7に示すように、第1の端部20a2に、台形状電極部32aが複数y方向に沿って配列されていてもよい。同様に、第2の端部20a3に、台形状電極部32bが複数y方向に沿って配列されていてもよい。
 また、台形状電極部32a、32bには、線状電極部32a5,32b5が設けられていなくてもよいし、複数の線状電極部32a5,32b5が設けられていてもよい。
 (第2の実施形態)
 図8は、第2の実施形態に係る太陽電池セルの受光面の略図的平面図である。
 上記第1の実施形態では、複数の線状電極部31の全体が透明導電膜25aの上に位置しており、線状電極部31の端部が、透明導電膜25aの端辺に至っていない例について説明した。
 それに対して、本実施形態では、線状電極部31の端部は、透明導電膜25aの端辺に至っている。具体的には、線状電極部31の端部は、光電変換部20の端辺にまで至っている。このため、より改善された光電変換効率を得ることができる。以下、この理由について、図9及び図10を参照して説明する。
 図9に示すように、線状電極部31の端部が透明導電膜25aの端辺に至っていない場合は、透明導電膜25aの端縁部25a1で生成したキャリアが線状電極部31により収集されるまでに移動しなければならない距離が長くなる。このため、端縁部25a1における集電抵抗が高くなる。その結果、光電変換効率が低くなる傾向にある。
 それに対して、図10にも示すように、線状電極部31の端部が透明導電膜25aの端辺に至っている場合は、端縁部25a1で生成したキャリアが線状電極部31により収集されるまでに移動しなければならない距離が短くなる。このため、端縁部25a1における集電抵抗を低くすることができる。その結果、光電変換効率をさらに改善することができる。
 具体的に、本実施形態の太陽電池セルを作製し、光電変換効率を測定した結果、線状電極部31の端部が透明導電膜25aの端辺に至っている第2の実施形態の太陽電池セルの方が、線状電極部31の端部が透明導電膜25aの端辺に至っていない第1の実施形態の太陽電池セル10よりも光電変換効率が約1%高くなることが確認された。
 (第3の変形例)
 図11は、第3の変形例に係る太陽電池セルの受光面の略図的平面図である。図11に示すように、電極21aは、上底部32a1、32b1、下底部32a2,32b2及び線状電極部32a5,32b5のそれぞれの端部から、x方向に沿って延び、透明導電膜25aの端部にまで至る線状の電極部32a6~32a11、32b6~32b11をさらに備えていてもよい。この構成によれば、面取り状角部20A~20Dにおける集電抵抗をより低減できる。その結果、より改善された光電変換効率を得ることができる。
 なお、上記第1の実施形態では、受光面20a上の電極21aと、裏面20b上の電極21bとの両方が台形状電極部を有する例について説明した。但し、本発明は、この構成に限定されない。本発明において、受光面上の電極と、裏面上の電極とのうちの少なくとも一方の電極が台形状電極部を有していればよい。従って、例えば、受光面上の電極を、台形状電極部を含むものとし、裏面上の電極を台形状電極部を含まないものとしてもよい。その場合は、例えば、裏面上の電極を平面状の電極としてもよい。
 また、受光面上の電極及び裏面上の電極のうちの一方を、図1,6~8または11に示す形態の電極とし、他方を、図1,6~8及び11に示す形態の電極のうち、受光面上の電極とは異なる形態を有する電極としてもよい。すなわち、受光面上の電極と裏面上の電極との両方が台形状電極部を含むものの、受光面上の電極と裏面上の電極とが相互に異なる形態を有していてもよい。
 (第3の実施形態)
 図12は、第3の実施形態に係る太陽電池モジュールの略図的断面図である。
上記実施形態や変形例に係る太陽電池セル10は、図12に示すような太陽電池モジュール1として利用することもできる。本実施形態の太陽電池モジュール1は、y方向に沿って配列された複数の太陽電池セル10を備えている。複数の太陽電池セル10は、配線材11によって電気的に接続されている。具体的には、隣接する太陽電池セル10間が配線材11によって電気的に接続されることによって、複数の太陽電池セル10が直列または並列に電気的に接続されている。具体的には、配線材11は、複数の線状電極部31、上底部32a1、32b1、下底部32a2、32b2と交差するように配されており、これらの電極部に電気的に接続されている。また、図1及び図2に示すように、電極21a、21bがバスバー部33を含む場合は、配線材11は、バスバー部33の上を覆うように配されている。
 なお、本発明において、「交差」には、直交が含まれるものとする。
 配線材11と太陽電池セル10とは、接着剤によって接着されている。接着剤としては、半田または樹脂接着剤を用いることができる。接着剤として樹脂接着剤を用いる場合には、樹脂接着剤は絶縁性を有するものであってもよいし、異方導電性を有するものであってもよい。
 複数の太陽電池セル10の受光面側及び裏面側には、第1及び第2の保護部材14,15が配置されている。太陽電池セル10と第1の保護部材14との間及び太陽電池セル10と第2の保護部材15との間には、封止材13が設けられている。複数の太陽電池セル10は、この封止材13により封止されている。
 なお、封止材13並びに第1及び第2の保護部材14,15の材料は、特に限定されない。封止材13は、例えば、エチレン・酢酸ビニル共重合体(EVA)やポリビニルブチラール(PVB)等の透光性を有する樹脂により形成することができる。
 第1及び第2の保護部材14,15は、例えば、ガラス、樹脂などにより形成することができる。また、例えば、第1及び第2の保護部材14,15のうちの一方を、アルミニウム箔などの金属箔を介在させた樹脂フィルムにより構成してもよい。本実施形態では、第1の保護部材14は、太陽電池セル10の受光面側に配置されている。第1の保護部材14は、ガラスまたは透光性樹脂からなる。
 第2の保護部材15は、太陽電池セル10の裏面側に配置されている。第2の保護部材15は、アルミニウム箔などの金属箔を介在させた樹脂フィルムにより構成されている。第1の保護部材14、封止材13、複数の太陽電池セル10、封止材13、第2の保護部材15を有する積層体の外周には、必要に応じて、Al等の金属製の枠体(図示しない)が取り付けられる。また、第1の保護部材14の表面には、必要に応じて、太陽電池セル10の出力を外部に取り出すための端子ボックスが設けられる。
1…太陽電池モジュール
10…太陽電池セル
11…配線材
13…封止材
14…第1の保護部材
15…第2の保護部材
20…光電変換部
20A~20D…面取り状角部
20a…受光面
20a1…中央部
20a2…第1の端部
20a3…第2の端部
20b…裏面
21a,21b…電極
25a、25b…透明導電膜
31…線状電極部
32a、32b…台形状電極部
32a1、32b1…上底部
32a2、32b2…下底部
32a3,32a4,32b3,32b4…斜辺部
32a5,32b5…線状電極部
33…バスバー部

Claims (9)

  1.  角部が面取り状である矩形状の光電変換部と、前記光電変換部の一主面の上に配された電極とを有する太陽電池セルであって、
     前記一主面は、第1の方向において前記面取り状角部が設けられている端部と、前記第1の方向において前記面取り状角部よりも中央側に位置している中央部とを含み、
     前記電極は、
     前記中央部に設けられており、前記第1の方向に対して垂直な第2の方向に沿って延びる複数の線状電極部と、
     前記端部に設けられており、前記第2の方向に沿って延びる上底部及び下底部と、前記前記上底部の端部と前記下底部の端部とを接続しており、前記面取り状角部の端辺に沿って延びる一対の斜辺部とを含む台形状電極部と、
    を有する、太陽電池セル。
  2.  前記台形状電極部は、前記第1の方向において前記上底部と前記下底部との間に位置しており、前記一対の斜辺部間を接続している線状の電極部をさらに含む、請求項1に記載の太陽電池セル。
  3.  前記電極は、前記複数の線状電極部、前記上底部及び前記下底部を電気的に接続している少なくともひとつのバスバー部をさらに有する、請求項1または2に記載の太陽電池セル。
  4.  前記電極は、前記台形状電極部を複数含む、請求項1~3のいずれか一項に記載の太陽電池セル。
  5.  前記一主面と前記電極との間において、前記一主面の端縁部を除いた部分を覆うように設けられている面状の透明導電膜をさらに備える、請求項1~4のいずれか一項に記載の太陽電池セル。
  6.  前記複数の線状電極部は、前記透明導電膜の端辺に至るように設けられている、請求項5に記載の太陽電池セル。
  7.  前記電極は、前記上底部及び前記下底部の少なくとも一方の端部から前記第2の方向に沿って延び、前記透明導電膜の端辺に至る電極部をさらに有する請求項5または6に記載の太陽電池セル。
  8.  前記一主面は、受光面である、請求項1~7のいずれか一項に記載の太陽電池セル。
  9.  請求項1~8のいずれか一項に記載の複数の太陽電池セルと、
     前記複数の太陽電池セルを電気的に接続している配線材と、
    を備え、
     前記配線材は、前記複数の線状電極部と交差するように配されている、太陽電池モジュール。
PCT/JP2011/077132 2010-11-29 2011-11-25 太陽電池セル及び太陽電池モジュール WO2012073801A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201190000907.8U CN203481246U (zh) 2010-11-29 2011-11-25 太阳能电池单元和太阳能电池模块
EP11845908.0A EP2648224A4 (en) 2010-11-29 2011-11-25 Solar battery cell and solar battery module
US13/895,517 US20130247955A1 (en) 2010-11-29 2013-05-16 Solar battery cell and solar battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-265592 2010-11-29
JP2010265592A JP5857237B2 (ja) 2010-11-29 2010-11-29 太陽電池セル及び太陽電池モジュール

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/895,517 Continuation US20130247955A1 (en) 2010-11-29 2013-05-16 Solar battery cell and solar battery module

Publications (1)

Publication Number Publication Date
WO2012073801A1 true WO2012073801A1 (ja) 2012-06-07

Family

ID=46171740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077132 WO2012073801A1 (ja) 2010-11-29 2011-11-25 太陽電池セル及び太陽電池モジュール

Country Status (5)

Country Link
US (1) US20130247955A1 (ja)
EP (1) EP2648224A4 (ja)
JP (1) JP5857237B2 (ja)
CN (1) CN203481246U (ja)
WO (1) WO2012073801A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014055781A1 (en) * 2012-10-04 2014-04-10 Silevo, Inc. Photovoltaic devices with electroplated metal grids
JP2014120775A (ja) * 2012-12-17 2014-06-30 Motech Industries Inc 太陽電池及び太陽電池モジュール

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012766B2 (en) 2009-11-12 2015-04-21 Silevo, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
US9214576B2 (en) 2010-06-09 2015-12-15 Solarcity Corporation Transparent conducting oxide for photovoltaic devices
US9773928B2 (en) 2010-09-10 2017-09-26 Tesla, Inc. Solar cell with electroplated metal grid
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
US9054256B2 (en) 2011-06-02 2015-06-09 Solarcity Corporation Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
DE112012006610T5 (de) * 2012-06-29 2015-04-23 Sanyo Electric Co., Ltd. Solarzelle, Solarzellenmodul und Verfahren zum Fertigen einer Solarzelle
US9865754B2 (en) 2012-10-10 2018-01-09 Tesla, Inc. Hole collectors for silicon photovoltaic cells
JP6273583B2 (ja) * 2012-11-30 2018-02-07 パナソニックIpマネジメント株式会社 太陽電池
US9281436B2 (en) 2012-12-28 2016-03-08 Solarcity Corporation Radio-frequency sputtering system with rotary target for fabricating solar cells
WO2014110520A1 (en) 2013-01-11 2014-07-17 Silevo, Inc. Module fabrication of solar cells with low resistivity electrodes
US9412884B2 (en) 2013-01-11 2016-08-09 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
US10074755B2 (en) 2013-01-11 2018-09-11 Tesla, Inc. High efficiency solar panel
US9624595B2 (en) 2013-05-24 2017-04-18 Solarcity Corporation Electroplating apparatus with improved throughput
US10309012B2 (en) 2014-07-03 2019-06-04 Tesla, Inc. Wafer carrier for reducing contamination from carbon particles and outgassing
KR101889842B1 (ko) * 2014-11-26 2018-08-20 엘지전자 주식회사 태양 전지 모듈
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
US9947822B2 (en) 2015-02-02 2018-04-17 Tesla, Inc. Bifacial photovoltaic module using heterojunction solar cells
US9761744B2 (en) 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US9842956B2 (en) 2015-12-21 2017-12-12 Tesla, Inc. System and method for mass-production of high-efficiency photovoltaic structures
US9496429B1 (en) 2015-12-30 2016-11-15 Solarcity Corporation System and method for tin plating metal electrodes
US10115838B2 (en) 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
US10672919B2 (en) 2017-09-19 2020-06-02 Tesla, Inc. Moisture-resistant solar cells for solar roof tiles
US11190128B2 (en) 2018-02-27 2021-11-30 Tesla, Inc. Parallel-connected solar roof tile modules
KR102622744B1 (ko) * 2019-01-08 2024-01-09 상라오 신위안 웨동 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지 및 이를 포함하는 태양 전지 패널

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950576A (ja) * 1982-09-16 1984-03-23 Agency Of Ind Science & Technol 太陽電池の電極の形成方法
JP2007287861A (ja) * 2006-04-14 2007-11-01 Sharp Corp 太陽電池、太陽電池ストリング、および太陽電池モジュール
JP2008235795A (ja) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd 太陽電池
JP2009302274A (ja) * 2008-06-13 2009-12-24 Hitachi Maxell Ltd 光発電素子、cis系光発電素子の製造方法
JP2010067987A (ja) * 2009-10-29 2010-03-25 Sanyo Electric Co Ltd 太陽電池の製造装置及び太陽電池の製造方法
JP2010109334A (ja) * 2008-09-30 2010-05-13 Mitsubishi Materials Corp 導電性インク組成物及び該組成物を用いて形成された太陽電池モジュール
JP2010141326A (ja) * 2008-12-09 2010-06-24 Palo Alto Research Center Inc ノズル弁を備える微細押出プリントヘッド

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407710A (en) * 1981-10-15 1983-10-04 Exxon Research And Engineering Co. Hybrid method of making an amorphous silicon P-I-N semiconductor device
US4487989A (en) * 1983-07-25 1984-12-11 Atlantic Richfield Company Contact for solar cell
DE602004032509D1 (de) * 2004-01-13 2011-06-16 Sanyo Electric Co Photovoltaisches Bauelement
JP5025135B2 (ja) * 2006-01-24 2012-09-12 三洋電機株式会社 光起電力モジュール
KR101194238B1 (ko) * 2006-06-27 2012-10-29 에이티에이 엔지니어링, 인크. 모달 파라미터 추정을 위한 방법들 및 장치
EP2279530B1 (en) * 2008-04-11 2013-06-26 QUALCOMM MEMS Technologies, Inc. Method for improving pv aesthetics and efficiency

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950576A (ja) * 1982-09-16 1984-03-23 Agency Of Ind Science & Technol 太陽電池の電極の形成方法
JP2007287861A (ja) * 2006-04-14 2007-11-01 Sharp Corp 太陽電池、太陽電池ストリング、および太陽電池モジュール
JP2008235795A (ja) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd 太陽電池
JP2009302274A (ja) * 2008-06-13 2009-12-24 Hitachi Maxell Ltd 光発電素子、cis系光発電素子の製造方法
JP2010109334A (ja) * 2008-09-30 2010-05-13 Mitsubishi Materials Corp 導電性インク組成物及び該組成物を用いて形成された太陽電池モジュール
JP2010141326A (ja) * 2008-12-09 2010-06-24 Palo Alto Research Center Inc ノズル弁を備える微細押出プリントヘッド
JP2010067987A (ja) * 2009-10-29 2010-03-25 Sanyo Electric Co Ltd 太陽電池の製造装置及び太陽電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2648224A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014055781A1 (en) * 2012-10-04 2014-04-10 Silevo, Inc. Photovoltaic devices with electroplated metal grids
AU2013326971A1 (en) * 2012-10-04 2015-04-23 Tesla, Inc. Photovoltaic devices with electroplated metal grids
AU2013326971B2 (en) * 2012-10-04 2016-06-30 Tesla, Inc. Photovoltaic devices with electroplated metal grids
JP2014120775A (ja) * 2012-12-17 2014-06-30 Motech Industries Inc 太陽電池及び太陽電池モジュール

Also Published As

Publication number Publication date
US20130247955A1 (en) 2013-09-26
JP5857237B2 (ja) 2016-02-10
CN203481246U (zh) 2014-03-12
EP2648224A1 (en) 2013-10-09
JP2012119393A (ja) 2012-06-21
EP2648224A4 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP5857237B2 (ja) 太陽電池セル及び太陽電池モジュール
JP5687506B2 (ja) 太陽電池及び太陽電池モジュール
JP5874011B2 (ja) 太陽電池及び太陽電池モジュール
JP5842170B2 (ja) 太陽電池モジュール
JP4948219B2 (ja) 太陽電池
JP5884077B2 (ja) 太陽電池及び太陽電池モジュール
WO2012057243A1 (ja) 太陽電池及び太陽電池モジュール
TWI488318B (zh) Thin film solar cell module
JP2008300449A (ja) 太陽電池モジュール及びその製造方法
JP5799255B2 (ja) 太陽電池セル及び太陽電池モジュール
JP2012160768A (ja) 太陽電池セル
JP2017147472A (ja) 太陽電池セルおよび太陽電池モジュール
JP2019024143A (ja) 太陽電池モジュール
JP2015188117A (ja) 太陽電池セル
JP6134918B2 (ja) 太陽電池モジュール
JP2017069442A (ja) 太陽電池モジュール
JP2015057863A (ja) 太陽電池セル
JP5906422B2 (ja) 太陽電池及び太陽電池モジュール
US20110308569A1 (en) Multi-terminal solar panel
JP6224696B2 (ja) 太陽電池モジュール
KR102162719B1 (ko) 태양전지 모듈
US20130192669A1 (en) Photoelectric device
JP6191925B2 (ja) 太陽電池モジュール
JP2017069291A (ja) 太陽電池モジュール
CN115917763A (zh) 串联太阳能电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000907.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE