WO2012073717A1 - 摺動構造部材 - Google Patents

摺動構造部材 Download PDF

Info

Publication number
WO2012073717A1
WO2012073717A1 PCT/JP2011/076554 JP2011076554W WO2012073717A1 WO 2012073717 A1 WO2012073717 A1 WO 2012073717A1 JP 2011076554 W JP2011076554 W JP 2011076554W WO 2012073717 A1 WO2012073717 A1 WO 2012073717A1
Authority
WO
WIPO (PCT)
Prior art keywords
dlc film
film
hydrogen content
lubricant
friction
Prior art date
Application number
PCT/JP2011/076554
Other languages
English (en)
French (fr)
Inventor
健太郎 小森
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2012546771A priority Critical patent/JP5730902B2/ja
Priority to CN2011800573949A priority patent/CN103228817A/zh
Priority to EP11844459.5A priority patent/EP2647738B1/en
Priority to US13/990,635 priority patent/US8895488B2/en
Publication of WO2012073717A1 publication Critical patent/WO2012073717A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/042Mixtures of base-materials and additives the additives being compounds of unknown or incompletely defined constitution only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/24Brasses; Bushes; Linings with different areas of the sliding surface consisting of different materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/10Connection to driving members
    • F16J1/14Connection to driving members with connecting-rods, i.e. pivotal connections
    • F16J1/16Connection to driving members with connecting-rods, i.e. pivotal connections with gudgeon-pin; Gudgeon-pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J7/00Piston-rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/09Complexes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/135Steam engines or turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2080/00Special pretreatment of the material to be lubricated, e.g. phosphatising or chromatising of a metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/08Crystalline

Definitions

  • the present invention relates to a sliding structure member used in a prime mover, a power transmission device, and the like, and an amorphous hard carbon film containing hydrogen is provided on one of the members that slide with each other, and a lubricant is interposed therebetween.
  • the present invention relates to a sliding structure member formed by combining an amorphous hard carbon film provided on the one member so as to slide with a counterpart member.
  • MoS 2 is a substance having a layered crystal structure and is known as a substance capable of obtaining an excellent lubricating effect because it slips in a certain direction when subjected to a high load.
  • Patent Document 1 discloses an amorphous hard carbon film (described as an amorphous carbon film in Patent Document 1) in which a ratio (strength ratio) between an amorphous structure and a graphite structure is limited to a predetermined range, and a predetermined amount.
  • a ratio stress ratio
  • Patent Document 2 describes that a sulfur, magnesium, titanium, or calcium component is added to an amorphous hard carbon film (described as an amorphous carbon film in Patent Document 2).
  • Patent Document 3 describes that copper dithiophosphate (Cu-DTP) is added to the lubricant
  • Patent Document 4 describes that the ceramic film provided on the counterpart member is limited.
  • Patent Document 5 describes that a special cooling mechanism is added.
  • Patent Document 6 discloses that the hydrogen content is 25% by mass or less, more preferably 5% by mass or less, still more preferably 0.5% by mass or less, and still more preferably an amorphous material containing no hydrogen.
  • a hard carbon film (described as a hard carbon thin film in Patent Document 6) is described.
  • Patent Document 1 there are many points where the details of the abundance ratio and the mechanism of the reaction product due to the chemical reaction are not known, and there is room for further improvement with respect to obtaining low friction characteristics, and in addition, it can be generated. There is a problem that molybdenum oxide promotes the chemical wear of the amorphous hard carbon film and does not take into account the possibility that the friction characteristics are deteriorated.
  • Patent Documents 2 to 5 the addition of a predetermined component to the amorphous hard carbon film or the lubricant, the limitation of the material of the mating member, or the addition of a special mechanism increases the manufacturing process, Since the manufacturing method and application range are limited, there is a problem that costs increase.
  • Patent Document 6 when an amorphous hard carbon film having a low hydrogen content is used as in Patent Document 6, the amorphous hard carbon film has excellent wear resistance, but the manufacturing method is limited, so that it is coated. There is a problem that the material and shape of the member are limited. Also, such amorphous hard carbon films have potentially very high hardness and tend to be excessively rough. In Patent Document 6, since these are not controlled at all, there is a problem that even when used together with a lubricant, the other party's aggressiveness is high and it is not preferable as a sliding structure member. Moreover, in order to solve this, there is a problem that a polishing process or the like is required after the film formation, which increases costs.
  • the present invention has been made in view of the above problems, and a main object is to provide a sliding structure member capable of obtaining good low friction characteristics.
  • the amorphous hard carbon film is amorphous (amorphous) material, so it is very smooth macroscopically, but there are microscopic microscopic unevenness.
  • MoS 2 molybdenum sulfide
  • the present invention that has solved the above-described problem is that an amorphous hard carbon film containing hydrogen is provided on one of the members that slide on each other, and an organic molybdenum compound and a compound containing zinc and sulfur as additives.
  • the amorphous hard carbon film provided on the one member is combined with the counterpart member through the lubricant to which is added, the amorphous hard
  • the root mean square roughness of the surface of the carbon film is 5 nm or more and 25 nm or less
  • the hydrogen content in the amorphous hard carbon film is 4.5 at% or more and 30 at% or less.
  • the root mean square roughness of the surface of the amorphous hard carbon film provided on one member is controlled to a specific range, and the hydrogen content in the amorphous hard carbon film is controlled to a specific range.
  • the frictional heat and pressure generated when the amorphous hard carbon film provided on one member and the mating member slide through the lubricant can be made appropriate. Therefore, it is possible to form a lubrication form that maintains a low friction and low wear state, and to obtain good low friction characteristics.
  • Such a lubricating form is obtained by chemically reacting an organomolybdenum compound contained in a lubricant with a compound containing zinc and sulfur by frictional heat or pressure to generate molybdenum ions (for example, Mo 4+ ) in the lubricant.
  • molybdenum ions for example, Mo 4+
  • the tribo film is a nano-level surface film formed on the sliding surface by the physicochemical action of an amorphous hard carbon film or a lubricant.
  • the organic molybdenum compound contained in the lubricant is controlled by controlling the root mean square roughness of the surface of the amorphous hard carbon film and the hydrogen content in the amorphous hard carbon film to a specific range. And a compound containing zinc and sulfur, while actively generating MoS 2 , the formation of molybdenum oxide is suppressed, and a tribo film is formed on the surface of the mating member, thereby obtaining a low friction characteristic.
  • a moving structural member can be provided.
  • (A) is principal part sectional drawing of the engine for motor vehicles shown as an example of the sliding structure member which concerns on one Embodiment of this invention
  • (b) and (c) are principal part expanded sectional views of (a). It is.
  • (A) is explanatory drawing explaining the mode of a friction test
  • (b) is explanatory drawing explaining the wear surface of a ball
  • (A) is a graph plotted from the contents shown in Table 3 so as to show the relationship between the root mean square roughness of the DLC film and the S 2 ⁇ / Mo 4+ ratio.
  • FIG. 5 is a graph plotting the relationship between the S 2 ⁇ / Mo 4+ ratio and the friction coefficient from the contents shown in Table 3.
  • FIG. (A) is a graph plotting the relationship between the hydrogen content of the DLC film and the detected amount of Mo 0 from the contents shown in Table 3, and (b) is a graph showing the hydrogen content of the DLC film of 4.5 at%. It is the photograph which image
  • FIG. It is the graph plotted so that the hydrogen content of a DLC film and the root mean square roughness of a DLC film might be shown.
  • the gist of the present invention is that the amorphous hard carbon film provided on one member and the frictional force and pressure generated by sliding with the mating member cause the additive added to the lubricant from MoO 2 and MoO 3. This is because the surface roughness of the amorphous hard carbon film and the hydrogen content are controlled within a specific range so as to generate MoS 2 having excellent friction characteristics.
  • FIG. 1A is a cross-sectional view of a main part of an automobile engine shown as an example of a sliding structure member according to an embodiment of the present invention.
  • the sliding structure member 1 which concerns on one Embodiment of this invention is the amorphous
  • DLC film 2 (Hereinafter referred to as “DLC film”) 2 is provided on one member 11 via a lubricant 3 to which an organic molybdenum compound and a compound containing zinc and sulfur are added as additives.
  • the DLC film 2 is combined so as to slide with the mating member 12.
  • the root mean square roughness of the surface of the DLC film 2 provided on the sliding structure member 1 is 5 nm or more and 25 nm or less, and the hydrogen content in the DLC film 2 is 4.5 at% (atomic%). Above 30 at%.
  • Examples of the object to which the sliding structure member 1 according to the present invention can be used include a prime mover or a power transmission device in which one member 11 and a counterpart member 12 slide through a lubricant (lubricating oil) 3. it can.
  • Examples of the prime mover include heat engines including internal combustion engines such as automobile engines and gas turbines and external combustion engines such as steam engines and steam turbines, fluid machines including electric motors (electric motors), hydraulic cylinders, windmills, water turbines, and the like. Is mentioned.
  • Examples of the power transmission device include a transmission connected to the above-described prime mover.
  • the above-described member 11 corresponds to the piston ring 11a.
  • 12 corresponds to the cylinder 12a.
  • the member 11 corresponds to the connecting rod bearing 11b used between the crankshaft 12b and the connecting rod 13, and the mating member 12 corresponds to the crankshaft 12b.
  • the member 11 provided with the DLC film 2 may be a cylinder and the mating member 12 may be a piston ring.
  • the member 11 provided with the DLC film 2 is a crankshaft.
  • 12 may be a connecting rod bearing.
  • the sliding structure member 1 includes any member as long as it is a combination of members such as a shaft member, a bearing, and a gear that slide with each other.
  • the member 11 on which the DLC film 2 is provided may include a piston pin, a groove of the piston, a skirt portion, and the like.
  • the sliding structural member 1 is one of the members 11 that slide relative to each other, and it is sufficient that the DLC film 2 is provided on the portion that slides with the mating member 12.
  • the DLC film 2 can also be provided on the entire member 11. In this way, in addition to improving low wear characteristics, it is possible to increase hardness, improve chemical stability, improve surface smoothness, improve releasability, and improve seizure resistance. . Therefore, when the piston ring is the member 11, the DLC film 2 can be provided on the outer peripheral surface of the piston ring as shown in FIG. 1B, but the DLC film 2 may be provided over the entire surface of the piston ring. it can.
  • the member 11 and the counterpart member 12 are steel members including so-called ordinary steel and special steel because the additive added to the lubricant 3 is easily adsorbed on the surface and good lubricity can be obtained. However, it may be a nonferrous metal member or a ceramic member. The lubricant 3 and the additive will be described later.
  • Common steel includes rolled steel for general structure (SS material), rolled steel for welded structure (SM material), boiler and pressure vessel steel (SB material), and high-pressure gas container.
  • SS material rolled steel for general structure
  • SM material rolled steel for welded structure
  • SB material boiler and pressure vessel steel
  • high-pressure gas container steel plate and steel strip
  • SG material hot rolled steel material and steel strip
  • SPHT material hot rolled carbon steel strip for steel pipes
  • SAPH material automotive structural hot rolled steel plate and steel strip
  • SPC materials cold rolled steel sheets and steel strips
  • high carbon chromium bearing steel (SUJ2 material) and chromium molybdenum steel steel (SCM material) are preferable, but carbon steel for machine structure (SC material), carbon tool steel (SK material), Alloy tool steel for cutting tools (SKS material), Alloy tool steel for cold dies (SKD material), Alloy tool steel for hot die (SKT material), High speed tool steel (SKH material), Carbon Chrome bearing steel (SUJ), spring steel (SUP), stainless steel (SUS), heat-resistant steel (SUH), carbon steel for constant temperature pressure vessels (SLA), magnetic core steel and magnet steel Forged steel products (SF materials), cast steel products (SC materials), cast iron products (FC materials), and the like.
  • non-ferrous metal examples include aluminum, magnesium, titanium, or an alloy mainly composed of any one selected from these.
  • Al—Si—Cu—Mg—Ni Al—Si alloy 4000 series
  • Al—Mg alloy 5000 series
  • Al—Mg—Si alloy 6000 series
  • Al—Zn—Mg— Cu Al—Zn—Mg alloy
  • Al—Cu alloy AC1A
  • Al—Cu—Mg alloy AC1B
  • Al—Cu—Mg—Ni alloy AC5A
  • Al—Si alloy AC3A
  • ADC1 Al—Cu—Si alloys (AC2A, AC2B), Al—Si—Cu alloys (AC4B, ADC10, ADC12), Al—Si—Mg alloys (AC4C, AC4C) , ADC3)
  • Al-Si-Cu-Mg-Ni alloy AC8A, AC8B
  • magnesium or magnesium alloy examples include 1 to 7 types specified by JIS.
  • examples of titanium or titanium alloy examples include 1 to 4 types specified by JIS.
  • the member 11 and the mating member 12 may be formed by appropriately selecting from the above materials according to the application. That is, the member 11 and the counterpart member 12 may be formed of the same material selected from the above, or may be formed of different materials.
  • the surface roughness of the portion of the mating member 12 that slides with the member 11 may be in a range that is used as a general sliding structure member.
  • the arithmetic average roughness (Ra) may be finished to about 1.6 ⁇ m or less
  • the ten-point average roughness (Rz JIS ) may be finished to about 6.3 ⁇ m or less.
  • a good frictional force can be obtained if the surface roughness of the mating member 12 is less than or equal to the numerical value described above.
  • the arithmetic average roughness (Ra) and the ten-point average roughness (Rz JIS ) can be measured in accordance with JIS B0601: 2001, but can be easily measured by using a measuring device in accordance with this. be able to.
  • the root mean square roughness (Rq) of the surface of the DLC film 2 provided on the member 11 is 5 nm or more and 25 nm or less. If the root mean square roughness of the surface of the DLC film 2 is in this range, it is preferable because a good frictional force can be obtained and the opponent attack property does not become excessively high. If the root mean square roughness of the surface of the DLC film 2 is less than 5 nm, the surface is too smooth and a sufficient frictional force cannot be obtained. Therefore, MoS 2 is not easily generated, and good low friction characteristics cannot be obtained.
  • the root mean square roughness of the surface of the DLC film 2 is preferably 5.2 nm or more and 24 nm or less, and more preferably 7.3 nm or more and 19 nm or less.
  • the root mean square roughness [nm] is measured using an atomic force microscope (AFM), and can be calculated from the obtained result in accordance with JIS B0601: 2001.
  • the hydrogen content in the DLC film 2 provided on the member 11 is 4.5 at% or more and 30 at% or less. If the hydrogen content in the DLC film 2 is within this range, the DLC film 2 is neither too hard nor too soft, and the hardness is just right for the present invention. When it does, it becomes easy to produce moderate frictional heat and pressure. Therefore, the organic molybdenum compound contained in the lubricant 3 and the compound containing zinc and sulfur are liable to cause a chemical reaction, and MoS 2 can be positively generated. Therefore, it is easy to obtain a lubrication form that maintains a low friction and low wear state, and it is possible to obtain good low friction characteristics.
  • the upper limit of the hydrogen content in the DLC film 2 is preferably 28.8 at% or less, more preferably 26.1 at% or less, and further preferably 18.4 at% or less. More preferably, it is made 7 at% or less.
  • the hydrogen content in the DLC film 2 can be measured, for example, by Rutherford Backscattering Spectrometry (RBS).
  • RBS Rutherford Backscattering Spectrometry
  • the hardness and Young's modulus of the DLC film 2 can be measured by a nanoindentation method (nanoindenter) based on ISO 14577, and can be calculated with high accuracy.
  • Such a DLC film 2 is a plasma using a hydrocarbon gas such as methane (CH 4 ), acetylene (C 2 H 2 ), benzene (C 6 H 6 ), toluene (C 7 H 8 ) as a raw material, for example.
  • a film with a high hydrogen content can be formed by CVD (Chemical Vapor Deposition), and a film with a low hydrogen content can be formed by PVD (Physical Vapor Deposition) using solid carbon as a raw material, for example.
  • CVD Chemical Vapor Deposition
  • PVD Physical Vapor Deposition
  • Which of the DLC films 2 is provided can be selected as appropriate according to the desired hydrogen content.
  • the hydrogen content in the DLC film 2 is arbitrarily adjusted in the range of 4.5 at% or more and 30 at% or less by variously changing the film forming conditions such as the raw material, pressure, film forming time, bias voltage, and plasma intensity. be able to.
  • the root mean square roughness of the surface of the DLC film 2 can be controlled by a combination of the apparatus conditions such as the type of source gas used, the bias voltage to be applied, and the film formation time.
  • the apparatus conditions such as the type of source gas used, the bias voltage to be applied, and the film formation time.
  • the pressure is about 0.1 to 5 Pa and the bias voltage of the member 11 is 400 to 2000 V.
  • the root mean square roughness of the surface of the DLC film 2 can be arbitrarily adjusted in the range of 5 nm to 25 nm by setting the plasma output to 20 to 200 W and the film formation time to 20 to 260 min.
  • the bias voltage of the member 11 is about 100 V
  • the arc voltage is about 80 V
  • the film formation time is about 100 min
  • the DLC film 2 The root mean square roughness of the surface can be in the range of 5 nm to 25 nm.
  • Lubricant 3 uses an additive containing an organic molybdenum compound and a compound containing zinc and sulfur as additives. In the present invention, since these additives are added to the lubricant 3, the friction force and pressure when the DLC film 2 provided on the member 11 and the mating member 12 slide are reduced in friction and wear. A lubrication form that maintains the state can be formed.
  • the organomolybdenum compound is usually dissolved in the lubricant 3 and causes a chemical reaction due to the frictional force and pressure when the DLC film 2 and the mating member 12 slide to generate MoS 2 , thereby reducing the friction and the low. It functions as a so-called friction modifier (friction modifier) that maintains the wear state. It also has the functions of improving wear resistance, extreme pressure, and oxidation resistance.
  • the organic molybdenum compound for example, molybdenum dialkyldithiocarbamate, molybdenum dithiophosphate, or the like can be used. These organomolybdenum compounds can be added to the lubricant 3 in any amount added alone or in combination.
  • a compound containing zinc and sulfur has a function of improving low friction characteristics (extreme pressure agent), and also functions as an antioxidant, a corrosion inhibitor, and the like.
  • the compound containing zinc and sulfur for example, zinc dialkyldithiophosphate or zinc dialkyldithiocarbamate composed of an alkyl group such as isopropyl, butyl, 2-ethylhexyl, isotridecyl or stearyl, or a mixture thereof is preferably used.
  • the compound containing zinc and sulfur can be added to the lubricant 3 in any amount.
  • detergents such as Ca sulfonates and Mg sulfonates are added as additives.
  • a detergent By adding a detergent, it is possible to prevent sludge formation of insoluble components such as an oxidation product and a polymer.
  • Lubricant 3 includes antioxidants such as phenols, amines and sulfides, polymethacrylate, and ethylene-propylene polymerization as long as the desired effects of the present invention are not impaired, depending on the purpose, in addition to the detergents described above.
  • Styrene-butadiene polymer Styrene-butadiene polymer, polyolefin-based viscosity index improver, fatty acid, fatty acid ester, phosphate ester, molybdenum disulfide friction modifier, succinimide, succinate ester, amine dispersants, Pour point depressants such as polymethacrylates, alkylnaphthalenes, phenols, extreme pressure agents such as phosphate esters and sulfur compounds, antifoaming agents such as alcohol and silicon (dimethylsiloxane), alkaline earth metal salts, sulfonic acids ( Alkali), rust preventives such as alcohol and amines, zinc dithiophosphate, zinc, SP compound What corrosion inhibitors, esters, alcohols, oils, oil-based agents such as organic acids, may be added as additives, coloring agents using an aromatic compound.
  • additives including detergents such as the aforementioned Ca sulfonates and Mg sulfonates, are generally
  • base oil serving as the base of the lubricant 3
  • examples of the base oil (base oil) serving as the base of the lubricant 3 include chemically synthesized oil, mineral oil, partially synthetic oil, and vegetable oil.
  • Lubricant 3 may be a grease whose viscosity is improved by adding a thickener in addition to a liquid one such as engine oil of an automobile engine.
  • the organic compound contained in the lubricant 3 is controlled by controlling the root mean square roughness of the surface of the DLC film 2 and the hydrogen content in the DLC film 2 to a specific range. It becomes possible to suppress the generation of molybdenum oxide while actively generating MoS 2 from the molybdenum compound and the compound containing zinc and sulfur. Therefore, the sliding structure member 1 has good low friction characteristics. Further, according to the sliding structure member 1, it is not necessary to add a predetermined component to the DLC film 2 or the lubricant 3, to limit the material of the mating member 12, and to add a special mechanism. Not necessary. Therefore, the sliding structure member 1 can obtain good low friction characteristics easily and inexpensively.
  • the friction test was conducted by a ball-on-disk friction and wear test shown in FIG.
  • Table 1 below shows the specifications of the test materials 1 to 4, the results of the friction coefficient after 10,000 cycles measured by the lubricant and the friction test.
  • SUJ2 material indicates a high carbon chromium bearing steel
  • DLC indicates that a DLC film is provided on the surface of the SUJ2 material.
  • the DLC shown in Table 1 was formed by a plasma CVD method. The conditions of the plasma CVD method were source gas: acetylene gas (C 2 H 2 ), pressure: 0.4 Pa, film formation time: 90 min, disc material bias voltage: 2000 V, and plasma output: 20 W.
  • the engine oils in Table 1 are commercially available, and as additives, molybdenum dithiocarbamate, which is an organic molybdenum compound, and zinc dialkyldithiophosphate, which is a compound containing zinc and sulfur, are added. ing. On the other hand, these additives are not added to the base oil.
  • Engine oil and base oil contain sulfur and sulfide components derived from mineral oil and Ca sulfonate as a detergent.
  • test material 1 since the test material 1 was provided with a DLC film on one member (disk material) and used engine oil to which an additive was added, it was found that the friction coefficient tends to be low. .
  • the test material 2 one member (disk material) and the other member (ball material) are both SUJ2 materials, and the test material 3 uses a lubricant to which no additive is added.
  • the material 4 was found to have a higher friction coefficient than the test material 1 because one of the members (disk material) and the counterpart member (ball material) was provided with the DLC film.
  • the test material 4 since the test material 4 has the DLC film in which the adsorbability of the additive is inferior to that of the SUJ2 material on both surfaces of the disk material and the ball material, there is a possibility that the amount of wear increases.
  • the DLC film is provided on one member (for example, the disk material 212), and the other member (for example, the ball material 211) is not provided, and the organic molybdenum compound and the compound containing zinc and sulfur are added. It was found that the idea of the present invention that these members slide in engine oil added as is effective. Next, along with this concept, the effectiveness of the effect of the present invention and the conditions for producing the effect were verified.
  • the DLC films of test materials 1 and 5 to 16 were measured for hardness, Young's modulus, hydrogen content, and root mean square roughness (Rq). Further, the friction test similar to [1] was performed to measure the friction coefficient, and the friction surface subjected to the friction test was analyzed. Here, a friction coefficient of 0.08 or less was accepted. Hardness [GPa] and Young's modulus [GPa] were measured using a nanoindenter according to ISO 14577. The hydrogen content [at%] was measured by Rutherford Backscattering Spectrometry (RBS). In RBS, the sample was irradiated with helium (He) ions, and particularly the hydrogen content was calculated from the results of detecting hydrogen recoiled and scattered forward. The root-mean-square roughness [nm] was calculated based on JIS B0601: 2001 from the results obtained by measuring a region having a side of 20 ⁇ m or more and 50 ⁇ m or less using an atomic force microscope (AFM).
  • AFM atomic force
  • the analysis of the friction surface was conducted by carefully washing and removing the lubricant adhering to the surface of the ball material after the ball-on-disk friction and wear test shown in FIG. With respect to the wear surface of the ball material shown in (b), the friction product was analyzed by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • various elements derived from DLC films such as C, O, Mo, S, Zn, and P, lubricants, and additives were detected.
  • Mo which is considered to be derived from molybdenum dithiocarbamate as an additive, has been confirmed to exist in various forms such as Mo 4+ , Mo 5+ , Mo 6+ ionic species and Mo 0 .
  • Table 3 shows the Young's modulus, hydrogen content, root mean square roughness, coefficient of friction, and XPS analysis results of the DLC films of test materials 1 and 5 to 16.
  • Mo 4+ , Mo 0 and S 2 ⁇ are listed as XPS analysis results. This is because Mo 4+ is expected to combine with S 2 ⁇ to form MoS 2 .
  • Mo 4+ is a molybdenum ion
  • Mo 0 is a metal molybdenum (Mo) or molybdenum carbide (Mo 2 C)
  • S 2 ⁇ is a sulfur ion.
  • FIG. 3 is a graph plotted from the contents shown in Table 3 to show the relationship between the detected amount of Mo 4+ on the ball material and the friction coefficient.
  • the horizontal axis indicates the detected amount [at%] of Mo 4+ on the ball material, and the vertical axis indicates the friction coefficient.
  • FIG. 4A is a graph plotted from the contents shown in Table 3 so as to show the relationship between the root mean square roughness of the DLC film and the S 2 ⁇ / Mo 4+ ratio
  • FIG. 4B shows the test material.
  • 16 is a photograph of the wear surface of the ball material of No. 16
  • (c) is a photograph of the wear surface of the ball material of the test material 1.
  • FIG. 4A the horizontal axis represents the root mean square roughness [nm] of the DLC film, and the vertical axis represents the S 2 ⁇ / Mo 4+ ratio.
  • FIG. 4A the horizontal axis represents the root mean square roughness [nm] of the DLC film, and the vertical axis represents the S 2 ⁇ / Mo 4+ ratio.
  • the plot of “ ⁇ ” indicates that the hydrogen content of the DLC film is 30 at% or less, and the plot of “ ⁇ ” indicates that the hydrogen content of the DLC film is more than 30 at% and 40 at% or less.
  • the “ ⁇ ” plot indicates more than 40 at%.
  • the scale bar in FIG.4 (b) and (c) shows 200 micrometers, respectively.
  • the abundance ratio of these ions forming MoS 2 is more favorable as the S 2 ⁇ / Mo 4+ ratio approaches 2.0.
  • the hydrogen content of the DLC film is 40 at% or less (that is, “ ⁇ ” and “ ⁇ ”)
  • the root mean square roughness of the DLC film becomes coarse and the MoS 2 is good. It was found that it is easy to generate.
  • the hydrogen content of the DLC film exceeds 40 at%, there is no change that the S 2 ⁇ / Mo 4+ ratio approaches 2.0 even when the root mean square roughness of the DLC film is increased. From this, it was suggested that MoS 2 is not easily generated well.
  • the hydrogen content of the DLC film is 30 at% or less
  • the root mean square roughness of the DLC film is 28 nm
  • the S 2 ⁇ / Mo 4+ ratio is 2.94.
  • specifically, the test material 16
  • the wear of the ball material as the mating member was more severe than that of the test material 1 (see FIGS. 4B and 4C). This is because the surface roughness of the DLC film was too rough, the hydrogen content of the DLC film was small, and the hardness was too high (hardness 61.4 GPa, Young's modulus 582 GPa as shown in Table 3). This is probably because the opponent's aggression has increased. This suggests that some control is required for the hydrogen content and root mean square roughness of the DLC film in order to achieve the effects of the present invention.
  • FIG. 5 is a graph plotting the relationship between the S 2 ⁇ / Mo 4+ ratio and the friction coefficient from the contents shown in Table 3.
  • the horizontal axis represents the S 2 ⁇ / Mo 4+ ratio, and the vertical axis represents the friction coefficient.
  • the friction coefficient (0.082) of the test material 3 verified in [1] is shown in FIG. 5 as a reference.
  • FIG. 6A is a graph plotting the relationship between the hydrogen content of the DLC film and the detected amount of Mo 0 from the contents shown in Table 3, and FIG. 6B is a graph in which the hydrogen content of the DLC film is 4. It is the photograph which image
  • the horizontal axis represents the hydrogen content [at%] of the DLC film, and the vertical axis represents the detected amount [at%] of Mo 0 .
  • the scale bar in FIG.6 (b) shows 200 micrometers.
  • the detected amount of Mo 0 was small in the range where the hydrogen content of the DLC film was 30 at% or less (the range of “I” and “IV” in FIG. 6A) (specifically, Are test materials 1, 5 to 8, 16). As shown in Table 3, these test materials had a small coefficient of friction.
  • the detected amount of Mo 0 increased in the range where the hydrogen content of the DLC film was more than 30 at% and 40 at% or less (specifically, test materials 9 to 13). This is considered to be due to the relationship with the root mean square roughness of the DLC film.
  • the hardness of the DLC film has a certain degree of hardness. It is considered that not only MoS 2 but also by-products such as molybdenum oxide (MoO 2 or MoO 3 ) were generated by a relatively large amount due to or pressure.
  • the generated molybdenum oxide is reduced by hydrogen derived from the DLC film to generate metallic molybdenum, and also reacts with the carbon derived from the DLC film to generate molybdenum carbide. Since the generation of metallic molybdenum and molybdenum carbide means chemical wear of the DLC film, the hydrogen content of the DLC film is more than 30 at% and less than 40 at% (the range of “II” in FIG. 6A). It was suggested that it is not preferable.
  • the DLC film turns to Mo 0 to the same extent as the range where the hydrogen content of the DLC film is 30 at% or less.
  • the friction coefficient did not become sufficiently low as shown in Table 3 (specifically, test materials 14 and 15). This is because the hydrogen content of the DLC film was high, that is, because the hardness (Young's modulus) of the DLC film was low and soft, frictional heat and pressure did not occur sufficiently, and MoS 2 was not generated sufficiently. It was thought that.
  • test material 16 in which the hydrogen content of the DLC film is less than 4.5 at% (the range of “IV” in FIG. 6A) has too little hydrogen content, That is, since the hardness of the DLC film was too high and the root mean square roughness of the DLC film was too rough, the opponent's aggression was high, and the ball member, which is the counterpart member, was severely worn (see FIG. 4B). .
  • the test material 16 did not have a particularly large coefficient of friction in this friction test, but it was suggested that there was an inconvenience when it was slid for a longer time and / or with a larger load than in this friction test.
  • the hydrogen content of the DLC film is set to 4.5 at% or more, and the DLC film
  • the hydrogen content of the DLC film should be 30 at% or less in order to suppress chemical wear and prevent deterioration of various properties of the lubricant.
  • FIG. 7 shows the above-mentioned (2) and (3) in an easy-to-understand manner.
  • FIG. 7 is a graph plotted to show the relationship between the hydrogen content of the DLC film and the root mean square roughness of the DLC film.
  • the horizontal axis represents the hydrogen content [at%] of the DLC film, and the vertical axis represents the root mean square roughness [nm] of the DLC film.
  • Black dots “ ⁇ ” within the range indicated by the broken line in FIG. 7 are the test materials 1 and 5 to 8 that satisfy the requirements (1) to (3), that is, the requirements of the present invention and have a low friction coefficient ( Example). Since the white dot “ ⁇ ” outside the range indicated by the broken line in FIG. 7 does not satisfy the requirements (2) and (3), that is, the requirements of the present invention, the friction coefficient becomes high, or the opponent attack is high.
  • the test materials 9 to 16 were judged to be unsuitable due to the increase in the amount of metal molybdenum or molybdenum carbide produced (comparative example).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Lubricants (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

良好な低摩擦特性を得ることのできる摺動構造部材を提供する。互いに摺動する部材のうちの一方の部材11に水素を含有するDLC膜2が設けられ、添加剤として、有機モリブデン化合物と、亜鉛および硫黄を含む化合物と、が添加された潤滑剤3を介して、一方の部材11に設けられたDLC膜2が相手部材12と摺動するように組み合わされてなり、DLC膜2の表面の二乗平均平方根粗さを5nm以上25nm以下、かつDLC膜2中の水素含有量を4.5at%(原子%)以上30at%以下とした。

Description

摺動構造部材
 本発明は、原動機や動力伝達装置などに用いられる摺動構造部材に係り、互いに摺動する部材のうちの一方の部材に水素を含有する非晶質硬質炭素膜が設けられ、潤滑剤を介して、前記一方の部材に設けられた非晶質硬質炭素膜が相手部材と摺動するように組み合わされてなる摺動構造部材に関する。
 原動機や動力伝達装置などに用いられる摺動構造部材については、互いに摺動する部材の保護や燃費向上を通じた地球環境保護を目的として、摩擦を減らすための研究が精力的に進められており、数多くの手法が提案されている。
 その中の一つの手法として、非晶質硬質炭素膜(ダイヤモンドライクカーボン膜(DLC膜)とも呼ばれる。)や黒鉛(グラファイト)と二硫化モリブデン(MoS2)を共存させることが提案されている。なお、MoS2は、層状結晶構造の物質であり、高い荷重を受けると一定方向に滑るため、優れた潤滑効果を得ることのできる物質として知られている。
 かかる手法の一例として特許文献1には、アモルファス構造とグラファイト構造の比率(強度比)を所定範囲に限定した非晶質硬質炭素膜(特許文献1では非晶質炭素被膜と記載)と所定量以上のMoS2を用いることが記載されている。
 また、他の手法として、酸化モリブデンにおける化学反応を抑制するため、非晶質硬質炭素膜や潤滑剤中への所定成分の添加や相手部材の材質の限定、特殊な機構の追加が提案されている。
 例えば、特許文献2には、硫黄、マグネシウム、チタンまたはカルシウム成分を非晶質硬質炭素膜(特許文献2では非晶質炭素被膜と記載)に添加することが記載されている。また例えば、特許文献3には、ジチオリン酸銅(Cu-DTP)を潤滑剤に添加することが記載されており、特許文献4には、相手部材に設けるセラミックス皮膜を限定することが記載され、特許文献5には、特殊な冷却機構を追加することが記載されている。
 さらに、他の手法として、水素の含有量を低く規制した非晶質硬質炭素膜と潤滑剤を用いることが提案されている。
 かかる手法の一例として特許文献6には、水素含有量を25質量%以下、より好ましくは5質量%以下、さらに好ましくは0.5質量%以下とし、さらにより好ましくは水素を含有しない非晶質硬質炭素膜(特許文献6では硬質炭素薄膜と記載)を用いることが記載されている。
特開2007-99947号公報 特開2008-195903号公報 特開2008-255160号公報 特開2009-114311号公報 特開2009-79138号公報 特開2005-2888号公報
 しかしながら、特許文献1には、化学反応による反応生成物の存在割合やそのメカニズムについて詳細が分かっていない点が多く、低摩擦特性を得ることについてさらなる改良の余地があることに加え、生成され得る酸化モリブデンによって非晶質硬質炭素膜の化学的摩耗が促進され、摩擦特性の悪化を招くおそれについて何ら考慮されていないという問題がある。
 また、特許文献2~5のように、非晶質硬質炭素膜や潤滑剤中への所定成分の添加や相手部材の材質の限定、または特殊な機構の追加は、製造工程が増加したり、製造手法や応用範囲が限定されたりするため、コストが嵩むという問題がある。
 そして、特許文献6のように水素の含有量の少ない非晶質硬質炭素膜を用いると、当該非晶質硬質炭素膜は優れた耐摩耗性を有する反面、製法が限定されるため、被覆する部材の材質や形状が限定されるという問題がある。また、このような非晶質硬質炭素膜は潜在的に非常に高い硬さをもち、表面が過度に粗くなる傾向にある。特許文献6は、これらを全く制御していないので、潤滑剤とともに用いても相手攻撃性が高く、摺動構造部材として好ましくないという問題があった。また、これを解決するためは、成膜後に研磨工程などが必要となるためコストが嵩むという問題があった。
 本発明は前記問題に鑑みてなされたものであり、良好な低摩擦特性を得ることのできる摺動構造部材を提供することを主たる課題とする。
 本発明者は鋭意研究を行った結果、非晶質硬質炭素膜はアモルファス(非晶質)材料であるため、巨視的には非常に滑らかであるが、微視的には微細な凹凸が存在し、形状や粗さは様々であること、また、良好な潤滑性を得ることのできる硫化モリブデン(MoS2)の生成には摩擦力や圧力などによってある程度のエネルギーを必要とすることに着目し、非晶質硬質炭素膜の硬さと表面粗さを特定の範囲に制御することで前記課題を解決できることを見出し、本発明を完成するに至った。
 前記課題を解決した本発明は、互いに摺動する部材のうちの一方の部材に水素を含有する非晶質硬質炭素膜が設けられ、添加剤として、有機モリブデン化合物と、亜鉛および硫黄を含む化合物と、が添加された潤滑剤を介して、前記一方の部材に設けられた非晶質硬質炭素膜が相手部材と摺動するように組み合わされてなる摺動構造部材において、前記非晶質硬質炭素膜の表面の二乗平均平方根粗さが5nm以上25nm以下、かつ前記非晶質硬質炭素膜中の水素含有量が4.5at%以上30at%以下であることを特徴としている。
 このように、一方の部材に設けられた非晶質硬質炭素膜の表面の二乗平均平方根粗さを特定の範囲に制御するとともに非晶質硬質炭素膜中の水素含有量を特定の範囲に制御することによって、一方の部材に設けられた非晶質硬質炭素膜と、相手部材とが潤滑剤を介して摺動する際に生じる摩擦熱や圧力を適切なものとすることができる。そのため、低摩擦、低摩耗状態を維持する潤滑形態を形成させることができ、良好な低摩擦特性を得ることができる。このような潤滑形態は、潤滑剤に含有される有機モリブデン化合物と、亜鉛および硫黄を含む化合物とを摩擦熱や圧力によって化学反応させ、潤滑剤中に生成されるモリブデンイオン(例えば、Mo4+)と硫黄イオン(S2-)からMoS2を積極的に生成させ、もってMoO2やMoO3といった酸化モリブデンの生成を抑制し、結果的にMoS2を多く含有する状態とすること、および、一般的に知られているように非晶質硬質炭素膜と相手部材との摩擦により、非晶質硬質炭素膜の炭素成分を黒鉛(カーボングラファイト)質成分に構造変化させ、これが相手部材の表面に付着して良好なトライボフィルムを形成することによって成されると考えられる。なお、トライボフィルムは、非晶質硬質炭素膜や潤滑剤の物理化学的作用によって摺動面上に形成されたナノレベルの表面膜であるとされている。トライボフィルムが形成されると、互いに摺動する部材の摺動面の直接接触を防ぐことができるため、低摩擦、低摩耗状態を維持することが可能となる。つまり、トライボフィルムやMoS2は、良好な低摩擦特性を得るための摩擦生成物ということができる。
 本発明によれば、非晶質硬質炭素膜の表面の二乗平均平方根粗さと非晶質硬質炭素膜中の水素含有量を特定の範囲に制御することによって、潤滑剤に含有される有機モリブデン化合物と、亜鉛および硫黄を含む化合物とから積極的にMoS2を生成させつつ酸化モリブデンの生成を抑制し、さらに相手部材の表面にトライボフィルムを形成させ、これにより良好な低摩擦特性を得た摺動構造部材を提供することができる。
(a)は、本発明の一実施形態に係る摺動構造部材の一例として示す自動車用エンジンの要部断面図であり、(b)および(c)は、(a)の要部拡大断面図である。 (a)は、摩擦試験の様子を説明する説明図であり、(b)は、ボール材の摩耗面を説明する説明図である。 表3に示した内容から、ボール材上のMo4+の検出量と摩擦係数の関係を示すようにプロットしたグラフである。 (a)は、表3に示した内容から、DLC膜の二乗平均平方根粗さとS2-/Mo4+比の関係を示すようにプロットしたグラフであり、(b)は、試験材16のボール材の摩耗面を撮影した写真であり、(c)は、試験材1のボール材の摩耗面を撮影した写真である。 表3に示した内容から、S2-/Mo4+比と摩擦係数の関係をプロットしたグラフである。 (a)は、表3に示した内容から、DLC膜の水素含有量とMo0の検出量の関係をプロットしたグラフであり、(b)は、DLC膜の水素含有量が4.5at%の試験材8のボール材の摩耗面を撮影した写真である。 DLC膜の水素含有量とDLC膜の二乗平均平方根粗さの関係を示すようにプロットしたグラフである。
 本発明の主旨は、一方の部材に設けた非晶質硬質炭素膜と、相手部材との摺動により生じる摩擦力や圧力によって、潤滑剤に添加された添加剤からMoO2やMoO3よりも摩擦特性に優れるMoS2を生成させるように、非晶質硬質炭素膜の表面粗さと、水素含有量とを特定の範囲に制御したことにある。
 以下、適宜図面を参照して本発明に係る摺動構造部材を実施するための形態について詳細に説明する。
 図1の(a)は、本発明の一実施形態に係る摺動構造部材の一例として示す自動車用エンジンの要部断面図である。
 図1の(a)に示すように、本発明の一実施形態に係る摺動構造部材1は、互いに摺動する部材のうちの一方の部材11に水素を含有する非晶質硬質炭素膜(以下、「DLC膜」という。)2が設けられ、添加剤として、有機モリブデン化合物と、亜鉛および硫黄を含む化合物と、が添加された潤滑剤3を介して、一方の部材11に設けられたDLC膜2が相手部材12と摺動するように組み合わされてなる。
 そして、本発明においては、摺動構造部材1に設けられるDLC膜2の表面の二乗平均平方根粗さを5nm以上25nm以下、かつDLC膜2中の水素含有量を4.5at%(原子%)以上30at%以下としている。
 本発明に係る摺動構造部材1が用いられ得る対象としては、潤滑剤(潤滑油)3を介して一方の部材11と相手部材12とが摺動する原動機や動力伝達装置などを挙げることができる。原動機としては、例えば、自動車用エンジンやガスタービンなどの内燃機関および蒸気機関や蒸気タービンなどの外燃機関を含む熱機関、電動機(電気モータ)、油圧シリンダや風車、水車などを含む流体機械などが挙げられる。また、動力伝達装置としては、前記した原動機と接続された変速機などが挙げられる。
 具体例を示して説明すると、例えば、図1(a)~(c)に示すような摺動構造部材1(自動車用エンジン)であれば前記した部材11がピストンリング11aに相当し、相手部材12がシリンダ12aに相当する。また、部材11がクランクシャフト12bとコネクティングロッド13の間に用いられるコンロッドベアリング11bに相当し、相手部材12がクランクシャフト12bに相当する。もちろん、前記した例において、DLC膜2が設けられる部材11をシリンダとし、相手部材12をピストンリングとしてもよいことはいうまでもなく、DLC膜2が設けられる部材11をクランクシャフトとし、相手部材12をコンロッドベアリングとしてもよいことはいうまでもない。本発明に係る摺動構造部材1はこのように部材同士が互いに摺動する軸部材、ベアリング、歯車などの部材を組み合わせたものであればどのようなものも含まれる。また、DLC膜2が設けられる部材11としては、この他にピストンピンやピストンの溝およびスカート部などを挙げることができる。
 摺動構造部材1は、互いに摺動する部材のうちの一方の部材11であって、相手部材12と摺動する部分にDLC膜2が設けられていればよい。相手部材12と摺動する部分にDLC膜2を設けることにより、摺動構造部材1の低摩耗特性を向上させることができる。なお、当該部材11の全体にDLC膜2を設けることもできる。このようにすれば、低摩耗特性の向上のほかにも、高硬度化、化学的安定性の向上、表面平滑性の向上、離型性の向上、耐焼付き性の向上などを図ることができる。したがって、ピストンリングを部材11とした場合、図1(b)に示したようにピストンリングの外周面にDLC膜2を設けることができるが、ピストンリングの表面全体にわたってDLC膜2を設けることもできる。
 部材11および相手部材12は、潤滑剤3に添加されている添加剤が表面に吸着しやすく、良好な潤滑性を得ることができるため、いわゆる普通鋼および特殊鋼を含む鉄鋼製の部材であるのが好ましいが、非鉄金属製の部材またはセラミック製の部材などであってもよい。なお、潤滑剤3および添加剤については後述する。
 普通鋼としては、日本工業規格(JIS)で規格されている一般構造用圧延鋼材(SS材)、溶接構造用圧延鋼材(SM材)、ボイラーおよび圧力容器用鋼材(SB材)、高圧ガス容器用鋼板および鋼帯(SG材)、熱間圧延鋼材および鋼帯(SPH材)、鋼管用熱間圧延炭素鋼鋼帯(SPHT材)、自動車構造用熱間圧延鋼板および鋼帯(SAPH材)、冷間圧延鋼板および鋼帯(SPC材)などを挙げることができる。
 また、特殊鋼としては、高炭素クロム軸受鋼(SUJ2材)、クロムモリブデン鋼鋼材(SCM材)が好ましいが、機械構造用炭素鋼(S-C材)、炭素工具鋼鋼材(SK材)、切削工具用合金工具鋼鋼材(SKS材)、冷間ダイス用合金工具鋼鋼材(SKD材)、熱間金型用合金工具鋼鋼材(SKT材)、高速度工具鋼鋼材(SKH材)、炭素クロム軸受鋼鋼材(SUJ材)、ばね鋼鋼材(SUP材)、ステンレス鋼鋼材(SUS材)、耐熱鋼鋼材(SUH材)、定温圧力容器用炭素鋼鋼材(SLA材)、磁心鋼や磁石鋼、鍛鋼品(SF材)、鋳鋼品(SC材)、鋳鉄品(FC材)などを挙げることができる。
 非鉄金属としては、アルミニウム、マグネシウム、チタンまたはこれらから選択されるいずれか一つを主成分とする合金を挙げることができる。
 アルミニウムまたはアルミニウム合金としては、JISで規格されている純Al(1000系)、Al-Cu,Al-Cu-Mg系合金(2000系)、Al-Mn,Al-Mn-Mg系合金(3000系)、Al-Si-Cu-Mg-Ni,Al-Si系合金(4000系)、Al-Mg系合金(5000系)、Al-Mg-Si系合金(6000系)、Al-Zn-Mg-Cu,Al-Zn-Mg系合金(7000系)、Al-Cu合金(AC1A)、Al-Cu-Mg合金(AC1B)、Al-Cu-Mg-Ni合金(AC5A)、Al-Si合金(AC3A、ADC1)、Al-Cu-Si合金(AC2A、AC2B)、Al-Si-Cu合金(AC4B、ADC10、ADC12)、Al-Si-Mg合金(AC4C、AC4CH、ADC3)Al-Si-Cu-Mg-Ni合金(AC8A、AC8B、AC8C、AC9A、AC9B、ADC14)、Al-Mg合金(AC7A、ADC5、ADC6)などを挙げることができる。
 マグネシウムまたはマグネシウム合金としては、JISで規格されている1~7種を挙げることができる。
 チタンまたはチタン合金としては、JISで規格されている1~4種を挙げることができる。
 部材11および相手部材12は、前記した材料の中から用途に応じて適宜選択して形成されたものであればよい。つまり、部材11および相手部材12は、前記の中から選択される同じ材料で形成されていてもよく、また、異なる材料で形成されていてもよい。
 ここで、相手部材12における、部材11と摺動する部分の表面の粗さは、一般的な摺動構造部材として使用される範囲であればよい。例えば、算術平均粗さ(Ra)が1.6μm程度以下、十点平均粗さ(RzJIS)が6.3μm程度以下に仕上げ加工されていればよい。相手部材12の表面粗さが前記した数値以下であれば良好な摩擦力を得ることができる。
 なお、算術平均粗さ(Ra)および十点平均粗さ(RzJIS)は、JIS B0601:2001に準拠して測定することができるが、これに準拠した測定装置を用いることにより簡便に測定することができる。
 前記したように、本発明においては、部材11に設けられるDLC膜2の表面の二乗平均平方根粗さ(Rq)を5nm以上25nm以下としている。DLC膜2の表面の二乗平均平方根粗さがこの範囲にあれば良好な摩擦力が得られつつ、相手攻撃性も過度に高くならないので好ましい。
 DLC膜2の表面の二乗平均平方根粗さが5nm未満であると表面が滑らか過ぎるため十分な摩擦力を得ることができない。したがって、MoS2が生成されにくく、良好な低摩擦特性を得ることができない。一方で、DLC膜2の表面の二乗平均平方根粗さが25nmを超えると、表面が粗過ぎるため過度に相手攻撃性が高くなり、相手部材12の摩耗が増大する。なお、DLC膜2の表面の二乗平均平方根粗さは、5.2nm以上24nm以下とするのが好ましく、7.3nm以上19nm以下とするのがより好ましい。
 ここで、二乗平均平方根粗さ[nm]は、原子間力顕微鏡(AFM)を用いて測定し、得られた結果からJIS B0601:2001に準拠して算出することができる。
 また、本発明においては、部材11に設けられるDLC膜2中の水素含有量を4.5at%以上30at%以下としている。DLC膜2中の水素含有量がこの範囲にあれば、DLC膜2が硬過ぎもせず、また軟らか過ぎもせず、本発明にとって丁度よい硬さとなるため、DLC膜2と相手部材12が摺動する際に適度な摩擦熱と圧力を生じ易くなる。そのため、潤滑剤3に含有される有機モリブデン化合物と、亜鉛および硫黄を含む化合物とが化学反応を起こし易くなり、積極的にMoS2を生成させることが可能となる。したがって、低摩擦、低摩耗状態を維持する潤滑形態を得やすくなり、良好な低摩擦特性を得ることが可能となる。
 DLC膜2中の水素含有量が4.5at%未満であると、一般的にDLC膜2が硬くなる傾向があり、相手攻撃性が高くなるため、相手部材12の摩耗が増大する。
 一方、DLC膜2中の水素含有量が30at%を超えると、DLC膜2の硬さは比較的丁度よい範囲にあるものの、水素が多く含まれているため種々の化学反応が起きやすい。とりわけ、副生成物として生成したMoO2やMoO3が、豊富に存在する水素と化学反応を起こして金属モリブデン(Mo)を生成したり、DLC膜2由来の炭素と反応して炭化モリブデン(Mo2C)を生成したりする。これらの生成は、水素や炭素が還元剤として作用して化学反応が進行することを意味しており、すなわち、DLC膜2が化学的に摩耗されるため好ましくない。
 なお、DLC膜2中の水素含有量が40at%以上になると、本発明にとってはDLC膜2が軟らかくなり過ぎるため、DLC膜2と相手部材12が摺動しても適度な摩擦熱と圧力を生じさせることができない。そのため、潤滑剤3に含有される有機モリブデン化合物と、亜鉛および硫黄を含む化合物とが化学反応を起こしにくくなる。その結果、良好な低摩擦特性を得ることができなくなる。なお、DLC膜2中の水素含有量の上限は、28.8at%以下とするのが好ましく、26.1at%以下とするのがより好ましく、18.4at%以下とするのがさらに好ましく、17.7at%以下とするのがさらにより好ましい。
 ここで、DLC膜2中の水素含有量は、例えば、ラザフォード後方散乱分光法(Rutherford Backscattering Spectrometry;RBS)で測定することができる。
 DLC膜2の硬さおよびヤング率は、ISO 14577に準拠したナノインデンテーション法(ナノインデンテンター)で測定することができ、精度よく算出することができる。
 このようなDLC膜2は、例えば、メタン(CH)、アセチレン(C22)、ベンゼン(C)やトルエン(C78)などの炭化水素ガスを原料として用いたプラズマCVD(Chemical Vapor Deposition)により水素含有量を高く成膜することができ、また、例えば、固体炭素を原料として用いたPVD(Physical Vapor Deposition)により水素含有量を低く成膜することができる。いずれによってDLC膜2を設けるかは、所望する水素含有量に応じて適宜に選択することができる。また、原料、圧力、成膜時間、バイアス電圧、プラズマ強度などの成膜条件を種々変更することでDLC膜2中の水素含有量を4.5at%以上30at%以下の範囲で任意に調整することができる。
 DLC膜2の表面の二乗平均平方根粗さは、用いる原料ガス種や印加するバイアス電圧などの装置条件や成膜時間の組み合わせにより制御することができる。例えば、原料ガスとしてCH、C22、C66、C78などを用いたプラズマCVDであれば、圧力を0.1~5Pa程度、部材11のバイアス電圧を400~2000V、プラズマ出力を20~200W、成膜時間を20~260minなどとすることで、DLC膜2の表面の二乗平均平方根粗さを5nm以上25nm以下の範囲で任意に調整することができる。また、例えば、固体炭素を用いたPVDであれば、圧力を10-3Pa以下、部材11のバイアス電圧を100V程度、アーク電圧を80V程度、成膜時間を100min程度とすれば、DLC膜2の表面の二乗平均平方根粗さを5nm以上25nm以下の範囲にすることができる。
 潤滑剤3は、添加剤として、有機モリブデン化合物と、亜鉛および硫黄を含む化合物と、が添加されたものを使用する。本発明においては、潤滑剤3にこれらの添加剤が添加されていることにより、部材11に設けられたDLC膜2と相手部材12が摺動する際の摩擦力や圧力によって低摩擦、低摩耗状態を維持する潤滑形態を形成させることができる。
 有機モリブデン化合物は、通常は潤滑剤3に溶け込んでおり、DLC膜2と相手部材12が摺動する際の摩擦力や圧力によって化学反応を起こしてMoS2を生成させ、これにより低摩擦、低摩耗状態を維持する、いわゆるフリクションモデファイアー(摩擦調整剤)として機能する。また、耐摩耗性を向上させ、極圧性を向上させ、耐酸化性を向上させる機能も有する。
 有機モリブデン化合物としては、例えば、ジアルキルジチオカルバミン酸モリブデン、ジチオリン酸モリブデンなどを用いることができる。有機モリブデン化合物は、これらを単独または混合して、任意の添加量で潤滑剤3に添加することができる。
 亜鉛および硫黄を含む化合物は、低摩擦特性を向上させる機能がある(極圧剤)とともに、酸化防止剤、腐食防止剤などとしても機能する。
 亜鉛および硫黄を含む化合物としては、例えば、イソプロピル、ブチル、2-エチルヘキシル、イソトリデシルまたはステアリルなどのアルキル基で構成されるジアルキルジチオリン酸亜鉛やジアルキルジチオカルバミン酸亜鉛、あるいはこれらの混合物などを好適に用いることができる。亜鉛および硫黄を含む化合物は、任意の添加量で潤滑剤3に添加することができる。
 また、添加剤としては、Caスルホネート類、Mgスルホネート類などの清浄剤が添加されているのが好ましい。清浄剤を添加することで、酸化生成物や高分子重合体などの不溶解分のスラッジ化を防止することができる。
 潤滑剤3には、前記した清浄剤以外にも目的に応じ、本発明の所望の効果を阻害しない範囲で、フェノール類、アミン類、硫化物などの酸化防止剤、ポリメタクリレート、エチレン-プロピレン重合物、スチレン-ブタジエン重合物、ポリオレフィン系などの粘度指数向上剤、脂肪酸、脂肪酸エステル、リン酸エステル、二硫化モリブデンなどの摩擦調整剤、コハク酸イミド、コハク酸エステル、アミン類などの分散剤、ポリメタクリレート、アルキルナフタレン、フェノール類などの流動点降下剤、リン酸エステル、硫黄化合物などの極圧剤、アルコール、シリコン(ジメチルシロキサン)などの消泡剤、アルカリ土類金属の塩、スルホン酸類(アルカリ)、アルコール、アミン類などの防錆剤、ジチオリン酸亜鉛、亜鉛、S-P化合物などの腐食防止剤、エステル、アルコール、油脂、有機酸などの油性剤、芳香族化合物を用いた着色剤などを添加剤として添加し得る。前記したCaスルホネート類、Mgスルホネート類などの清浄剤を含め、これらの添加剤は、自動車用エンジンに用いられるエンジンオイルであれば一般的に添加されているものである。
 潤滑剤3のベースとなるベースオイル(基油)は化学合成油、鉱物油、部分合成油、植物油などを挙げることができる。
 潤滑剤3は、自動車用エンジンのエンジンオイルのように液体状のもののほか、増稠剤を添加して粘稠性を向上させたグリースであってもよい。
 以上に説明した摺動構造部材1によれば、DLC膜2の表面の二乗平均平方根粗さとDLC膜2中の水素含有量を特定の範囲に制御することによって、潤滑剤3に含有される有機モリブデン化合物と、亜鉛および硫黄を含む化合物とから積極的にMoS2を生成させつつ酸化モリブデンの生成を抑制することが可能となる。そのため、摺動構造部材1は、良好な低摩擦特性を有する。
 また、摺動構造部材1によれば、DLC膜2や潤滑剤3中への所定成分の添加、相手部材12の材質の限定、特殊な機構の追加などを行う必要がなく、研磨工程なども必要ではない。そのため、摺動構造部材1は、コストが嵩まずかつ簡便に、良好な低摩擦特性を得ることができる。
 次に、本発明に係る摺動構造部材の効果を確認した実施例について具体的に説明する。
[1]本発明の考え方の有効性の検証
 はじめに、本発明の考え方の有効性を検証するため、円形のディスク材およびボール材(直径6mm)の表面に、適宜、非晶質硬質炭素膜(DLC膜)を設けて試験材1~4を作製し、摩擦試験を行って摩擦係数を測定した。
 摩擦試験は、図2(a)に示すボールオンディスク摩擦摩耗試験により行った。試験条件は、表1に示す潤滑剤および添加剤を用いて、ボール材211への荷重:5N(=1.1GPa)、摺動速度(ディスク材212の回転速度):100mm/秒、温度:室温(40℃)、10000サイクル(50分)という条件で行った。なお、潤滑剤として使用したベースオイルおよびエンジンオイルの粘度は0W-20であった。
 下記表1に試験材1~4の仕様、潤滑剤および摩擦試験で測定した10000サイクル後の摩擦係数の結果を示す。
 なお、表1中の「SUJ2材」は、高炭素クロム軸受鋼を示し、「DLC」は、SUJ2材の表面にDLC膜を設けていることを示す。
 表1に示すDLCは、プラズマCVD法により成膜した。プラズマCVD法の条件は、原料ガス:アセチレンガス(C22)、圧力:0.4Pa、成膜時間:90min、ディスク材のバイアス電圧:2000V、プラズマ出力:20Wであった。
 また、表1中のエンジンオイルは、市販されているものであって、添加剤として、有機モリブデン化合物であるジチオカルバミン酸モリブデンと、亜鉛および硫黄を含む化合物であるジアルキルジチオリン酸亜鉛と、が添加されている。これに対し、ベースオイルはこれらの添加剤は添加されていない。なお、エンジンオイルおよびベースオイルには、鉱油に由来する硫黄成分および硫化物成分と、清浄剤であるCaスルホネートとが含まれている。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試験材1は、一方の部材(ディスク材)にDLC膜を設け、添加剤が添加されたエンジンオイルを用いていたので摩擦係数が低くなる傾向にあることがわかった。
 これに対し、試験材2は、一方の部材(ディスク材)および相手部材(ボール材)がともにSUJ2材であり、試験材3は、添加剤が添加されていない潤滑剤を用いており、試験材4は、一方の部材(ディスク材)および相手部材(ボール材)がともにDLC膜が設けられていたため、いずれも試験材1と比較して摩擦係数が高くなる傾向にあることがわかった。また、試験材4は、SUJ2材よりも添加剤の吸着性が劣るDLC膜がディスク材とボール材の両方の表面に形成されているため、摩耗量が大きくなるおそれがある。
 かかる検証により、一方の部材(例えば、ディスク材212)にDLC膜を設け、相手部材(例えば、ボール材211)にはこれを設けず、有機モリブデン化合物と亜鉛および硫黄を含む化合物とを添加剤として添加されたエンジンオイル中でこれらの部材を摺動させるという、本発明の考え方が有効であることがわかった。
 次に、この考え方に沿って、本発明の効果の有効性および効果を奏するための条件について検証した。
[2]効果の有効性および効果を奏するための条件の検証
 効果の有効性および効果を奏するための条件を検証するため、下記表2に示す条件でSUJ2材製のディスク材にDLC膜を設け、DLC膜を設けないSUJ2材製のボール材と組み合わせて試験材1、5~16とした。なお、表2には、[1]の検証で好成績を収めた試験材1を併せて記載した。
Figure JPOXMLDOC01-appb-T000002
 試験材1、5~16のDLC膜について、硬さ、ヤング率、水素含有量および二乗平均平方根粗さ(Rq)を測定した。また、[1]と同様の摩擦試験を行って摩擦係数を測定し、さらに、摩擦試験を行った摩擦表面の分析を行った。なお、ここでは、摩擦係数が0.08以下を合格とした。
 硬さ[GPa]およびヤング率[GPa]は、ISO 14577に準拠したナノインデンターを用いて測定した。
 水素含有量[at%]は、ラザフォード後方散乱分光法(Rutherford Backscattering Spectrometry;RBS)により測定した。RBSでは、試料にヘリウム(He)イオンを照射して、特に水素含有量については、反跳して前方に散乱した水素を検出した結果より算出した。
 二乗平均平方根粗さ[nm]は、原子間力顕微鏡(AFM)を用いて、一辺が20μm以上50μm以下の領域を測定し、得られた結果からJIS B0601:2001に準拠して算出した。
 摩擦表面の分析は、図2(a)に示すボールオンディスク摩擦摩耗試験を行った後のボール材に対し、表面に付着した潤滑剤を有機溶剤にて慎重に洗浄して除去し、図2(b)に示したボール材の摩耗面について、X線光電子分光法(X-ray Photoelectron Spectroscopy;XPS)による摩擦生成物の分析を行った。その結果、XPSによる分析では、C,O,Mo,S,Zn,PなどのDLC膜や潤滑剤、添加剤に由来する様々な元素が検出された。なかでも、添加剤であるジチオカルバミン酸モリブデンに由来すると考えられるMoについては、Mo4+、Mo5+、Mo6+といったイオン種やMo0など、様々な形態で存在が確認された。
 試験材1、5~16のDLC膜のヤング率、水素含有量、二乗平均平方根粗さ、摩擦係数、XPSによる分析結果を併せて下記表3に示す。なお、表3には、XPSによる分析結果として、Mo4+、Mo0およびS2-を掲載した。Mo4+はS2-と結びついてMoS2を形成することが期待されるからである。表3中、Mo4+はモリブデンイオンであり、Mo0は金属モリブデン(Mo)または炭化モリブデン(Mo2C)であり、S2-は硫黄イオンである。
Figure JPOXMLDOC01-appb-T000003
 効果の有効性および効果を奏するための条件を検証するため、表3に示した内容に基づいて種々検討した。
 図3は、表3に示した内容から、ボール材上のMo4+の検出量と摩擦係数の関係を示すようにプロットしたグラフである。なお、横軸はボール材上のMo4+の検出量[at%]を示し、縦軸は摩擦係数を示す。
 図3に示されるように、Mo4+量の増加に伴って摩擦係数が低下することがわかった。なお、[1]で検証した、添加剤を添加していないベースオイルを用いた試験材3の摩擦係数が0.082であったので、参考として図3中に示した。
 図4(a)は、表3に示した内容から、DLC膜の二乗平均平方根粗さとS2-/Mo4+比の関係を示すようにプロットしたグラフであり、(b)は、試験材16のボール材の摩耗面を撮影した写真であり、(c)は、試験材1のボール材の摩耗面を撮影した写真である。なお、図4(a)の横軸はDLC膜の二乗平均平方根粗さ[nm]を示し、縦軸はS2-/Mo4+比を示す。また、図4中、「◇」のプロットは、DLC膜の水素含有量が30at%以下を示し、「□」のプロットは、DLC膜の水素含有量が30at%超40at%以下を示し、「△」のプロットは、40at%超を示す。また、図4(b)および(c)中のスケールバーはそれぞれ200μmを示す。
 S2-/Mo4+比が2.0に近づくほどMoS2を形成するこれらのイオンの存在比率が好ましい状況にあるといえる。
 図4(a)から、DLC膜の水素含有量が40at%以下(すなわち、「◇」および「□」)の場合、DLC膜の二乗平均平方根粗さが粗くなるのにともなってMoS2が良好に生成されやすいことがわかった。一方で、DLC膜の水素含有量が40at%超になると、DLC膜の二乗平均平方根粗さが粗くなってもS2-/Mo4+比が2.0に近づくような変化はみられないことから、MoS2が良好に生成されにくいことが示唆された。
 ここで、図4(a)中における、DLC膜の水素含有量が30at%以下であって、DLC膜の二乗平均平方根粗さが28nmであり、S2-/Mo4+比が2.94であるプロット◇(具体的には試験材16)は、試験材1と比較して相手部材となるボール材の摩耗が激しかった(図4(b)、(c)参照)。これは、DLC膜の表面粗さが粗過ぎたこと、かつDLC膜の水素含有量が少なく、硬さが高過ぎた(表3に示すように硬さ61.4GPa、ヤング率582GPa)ことから相手攻撃性が高くなったためと考えられる。このことから、本発明の効果を奏するためには、DLC膜の水素含有量と二乗平均平方根粗さについて何らかの制御を行う必要があることが示唆された。
 図5は、表3に示した内容から、S2-/Mo4+比と摩擦係数の関係をプロットしたグラフである。なお、横軸はS2-/Mo4+比を示し、縦軸は摩擦係数を示す。なお、[1]で検証した試験材3の摩擦係数(0.082)を参考として図5中に示した。
 図5から、S2-/Mo4+比が2.0に近づき、小さくなるほど摩擦係数も小さくなり、良い相関性があることがわかった。ただし、図5に示すように、S2-/Mo4+比が2.0近傍であっても、DLC膜の水素含有量が30at%超40at%以下(プロット□)の場合にこの相関性から外れ、摩擦係数が高くなるものがあった(具体的には試験材11、12)。これは、MoS2以外の、例えば、酸化モリブデン、金属モリブデンや炭化モリブデン(Mo0)といったMoS2の摩擦効果を阻害する副生成物やDLC膜の浸食が関与しているためと考えられた。よって、次のような検討を行った。
 図6(a)は、表3に示した内容から、DLC膜の水素含有量とMo0の検出量の関係をプロットしたグラフであり、(b)は、DLC膜の水素含有量が4.5at%の試験材8のボール材の摩耗面を撮影した写真である。なお、図6(a)の横軸はDLC膜の水素含有量[at%]であり、縦軸はMo0の検出量[at%]である。図6(b)中のスケールバーは200μmを示す。
 図6に示すように、DLC膜の水素含有量が30at%以下の範囲(図6(a)中の「I」および「IV」の範囲)ではMo0の検出量が少なかった(具体的には試験材1、5~8、16)。表3に示されているように、これらの試験材は摩擦係数が小さいものであった。
 これに対し、DLC膜の水素含有量が30at%超40at%以下の範囲ではMo0の検出量が多くなった(具体的には試験材9~13)。これは、DLC膜の二乗平均平方根粗さとの関係にもよると考えられるが、DLC膜の水素含有量がこの範囲である場合、DLC膜の硬さがある程度の硬さを有するため、摩擦熱や圧力によってMoS2のみならず酸化モリブデン(MoO2やMoO3)などの副生成物が比較的多く生成されたものと考えられる。そして、生成された酸化モリブデンは、DLC膜由来の水素によって還元され金属モリブデンを生成し、また、DLC膜由来の炭素と反応して炭化モリブデンを生成したと考えられる。金属モリブデン、炭化モリブデンの生成はDLC膜の化学的摩耗を意味することから、DLC膜の水素含有量が30at%超40at%以下の範囲(図6(a)中の「II」の範囲)は好ましくないことが示唆された。
 DLC膜の水素含有量が40at%超の範囲(図6(a)中の「III」の範囲)では一転して、DLC膜の水素含有量が30at%以下の範囲と同程度までMo0の検出量が少なくなったものの、表3に示されるように摩擦係数は十分に低くならなかった(具体的には試験材14、15)。これは、DLC膜の水素含有量が高かったため、つまり、DLC膜の硬さ(ヤング率)が低く軟らかかったため、摩擦熱や圧力が十分に生じず、MoS2が十分に生成されなかったことによると考えられた。
 なお、DLC膜の水素含有量が4.5at%未満(図6(a)中の「IV」の範囲)である試験材(具体的には試験材16)は、水素含有量が少な過ぎ、つまり、DLC膜の硬さが高過ぎ、かつ、DLC膜の二乗平均平方根粗さが粗過ぎたため相手攻撃性が高く、相手部材であるボール材の摩耗が激しかった(図4(b)参照)。試験材16は、今回の摩擦試験では、摩擦係数は特別大きくならなかったが、今回の摩擦試験よりも長時間および/または大きい荷重で摺動させた場合に不都合があることが示唆された。
 表3および図3~6を参照して検討した結果から、効果の有効性および効果を奏するための条件は次のようなものであることがわかった。
(1)互いに摺動する部材のうちの一方の部材に水素を含有するDLC膜が設けられ、添加剤として、有機モリブデン化合物と、亜鉛および硫黄を含む化合物と、が添加された潤滑剤を介して、一方の部材に設けられたDLC膜が相手部材と摺動するように組み合わされていること。
(2)表3および図4、図5で明らかになったように、MoS2を生成させるため、かつ相手攻撃性が過度に高くならないようにするため、DLC膜の表面の二乗平均平方根粗さを5nm以上25nm以下とすること。
(3)表3および図6で明らかになったように、DLC膜の相手攻撃性が過度に高くならないようにするため、DLC膜の水素含有量を4.5at%以上とし、かつDLC膜の化学的摩耗の抑制と潤滑剤の諸特性悪化防止のためDLC膜の水素含有量を30at%以下とすること。
 前記した(2)および(3)をわかりやすく図示したのが図7である。図7は、DLC膜の水素含有量とDLC膜の二乗平均平方根粗さの関係を示すようにプロットしたグラフである。なお、横軸はDLC膜の水素含有量[at%]を示し、縦軸はDLC膜の二乗平均平方根粗さ[nm]を示す。
 図7中の破線で示した範囲内の黒点「●」が前記(1)~(3)の要件、すなわち本発明の要件を満たし、摩擦係数の低かった試験材1、5~8である(実施例)。図7中の破線で示した範囲外の白点「○」が前記(2)および(3)の要件、すなわち本発明の要件を満たさないために摩擦係数が高くなったり、相手攻撃性が高くなったり、または金属モリブデンや炭化モリブデンの生成量が増加したりしたため、不適当であると判断された試験材9~16である(比較例)。
 1   摺動構造部材
 11  部材
 12  相手部材
 2   非晶質硬質炭素膜(DLC膜)
 3   潤滑剤

Claims (1)

  1.  互いに摺動する部材のうちの一方の部材に水素を含有する非晶質硬質炭素膜が設けられ、添加剤として、有機モリブデン化合物と、亜鉛および硫黄を含む化合物と、が添加された潤滑剤を介して、前記一方の部材に設けられた非晶質硬質炭素膜が相手部材と摺動するように組み合わされてなる摺動構造部材において、
     前記非晶質硬質炭素膜の表面の二乗平均平方根粗さが5nm以上25nm以下、かつ
     前記非晶質硬質炭素膜中の水素含有量が4.5at%以上30at%以下
     であることを特徴とする摺動構造部材。
PCT/JP2011/076554 2010-11-30 2011-11-17 摺動構造部材 WO2012073717A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012546771A JP5730902B2 (ja) 2010-11-30 2011-11-17 摺動構造部材
CN2011800573949A CN103228817A (zh) 2010-11-30 2011-11-17 滑动结构部件
EP11844459.5A EP2647738B1 (en) 2010-11-30 2011-11-17 Sliding structural members
US13/990,635 US8895488B2 (en) 2010-11-30 2011-11-17 Sliding structural members

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010267110 2010-11-30
JP2010-267110 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073717A1 true WO2012073717A1 (ja) 2012-06-07

Family

ID=46171661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076554 WO2012073717A1 (ja) 2010-11-30 2011-11-17 摺動構造部材

Country Status (5)

Country Link
US (1) US8895488B2 (ja)
EP (1) EP2647738B1 (ja)
JP (1) JP5730902B2 (ja)
CN (1) CN103228817A (ja)
WO (1) WO2012073717A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011361A1 (fr) * 2013-07-25 2015-01-29 H.E.F. Pièce mécanique revêtue d'une couche de carbone amorphe en vue de son glissement vis-à-vis d'un autre composant moins dur
WO2017026042A1 (ja) * 2015-08-10 2017-02-16 日本アイ・ティ・エフ株式会社 ピストンリングおよびエンジン
CN108048160A (zh) * 2017-12-18 2018-05-18 中国科学院兰州化学物理研究所 一种碳结构薄膜与石墨烯添加剂固液复合减摩抗磨的方法
JP2018123240A (ja) * 2017-02-01 2018-08-09 Emgルブリカンツ合同会社 潤滑油組成物

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982408B2 (ja) * 2011-03-02 2016-08-31 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,トリュープバッハ 潤滑化条件下でのトライボロジー用途により摩耗および摩擦挙動を向上させるための金属含有炭素層によりコーティングされた摺動部品
WO2012138864A1 (en) * 2011-04-07 2012-10-11 Shell Oil Company Lubricant composition and method for using the lubricant composition
JP5681252B1 (ja) * 2013-08-30 2015-03-04 株式会社リケン 内燃機関用ピストンリング
DE102014200607A1 (de) 2014-01-15 2015-07-16 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere Kolbenring
JP5941503B2 (ja) * 2014-07-11 2016-06-29 株式会社豊田中央研究所 摺動機械
JP6090303B2 (ja) * 2014-12-24 2017-03-08 マツダ株式会社 エンジン
CN107208264B (zh) 2015-01-29 2020-01-24 株式会社捷太格特 低摩擦覆膜的制造方法和滑动方法
JP6843123B2 (ja) * 2015-05-04 2021-03-17 ピクセリジェント・テクノロジーズ,エルエルシー 改良した潤滑剤を可能にするナノ添加剤
US10619739B2 (en) * 2015-07-31 2020-04-14 Nippon Piston Ring Co., Ltd Piston ring
WO2018018149A1 (en) * 2016-07-29 2018-02-01 Industries Mailhot Inc. A cylinder piston rod and method of fabrication thereof
FR3063122A1 (fr) 2017-02-21 2018-08-24 Peugeot Citroen Automobiles Sa Dispositif de transmission de mouvement pour moteur thermique
DE112018003515T5 (de) * 2017-07-10 2020-04-09 The University Of Akron Katalytische metallbeschichtungen für metallbauteile zur verbesserung des tribologischen verhaltens in geschmierten systemen
EP3907268A1 (en) * 2020-05-04 2021-11-10 Total Marketing Services Lubricating composition for reducing wear and tear on dlc parts used in internal combustion engines
CN111424249B (zh) * 2020-05-19 2021-03-30 中国科学院兰州化学物理研究所 一种超滑纳米硫复合含氢碳膜制备方法
CN111876753A (zh) * 2020-08-04 2020-11-03 中国科学院兰州化学物理研究所 通过含氢碳薄膜与二硫化钼组成配副体系实现超滑宏观的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002888A (ja) 2003-06-12 2005-01-06 Nissan Motor Co Ltd 自動車エンジン用ピストンリング及びこれに用いる潤滑油組成物
JP2005098289A (ja) * 2003-08-21 2005-04-14 Nissan Motor Co Ltd 冷媒圧縮機
JP2007099947A (ja) 2005-10-05 2007-04-19 Toyota Motor Corp 摺動構造及び摺動方法
JP2008081630A (ja) * 2006-09-28 2008-04-10 Brother Ind Ltd 摺動部材
JP2008195903A (ja) 2007-02-15 2008-08-28 Toyota Motor Corp 摺動構造
JP2008255160A (ja) 2007-04-02 2008-10-23 Toyota Motor Corp 摺動構造
JP2008297477A (ja) * 2007-06-01 2008-12-11 Kanagawa Prefecture 低摩擦摺動部材
JP2009079138A (ja) 2007-09-26 2009-04-16 Toyota Motor Corp 摺動構造または摺動方法
JP2009084579A (ja) * 2001-09-27 2009-04-23 Toyota Central R&D Labs Inc 高摩擦摺動部材
JP2009114311A (ja) 2007-11-06 2009-05-28 Toyota Motor Corp 摺動構造

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949612A (en) * 1995-03-21 1999-09-07 Censtor Corp. Low friction sliding hard disk drive system
JP4824406B2 (ja) * 2003-08-06 2011-11-30 Jx日鉱日石エネルギー株式会社 Dlc接触面を有するシステム、該システムの潤滑方法及び該システム用潤滑油
US7771821B2 (en) * 2003-08-21 2010-08-10 Nissan Motor Co., Ltd. Low-friction sliding member and low-friction sliding mechanism using same
US7790658B2 (en) * 2005-05-27 2010-09-07 University of Florida Research Foundaction, Inc. Inert wear resistant PTFE-based solid lubricant nanocomposite
JP2009040802A (ja) * 2007-08-06 2009-02-26 Matsufumi Takatani 基材の表面に潤滑性を付与する方法及び潤滑性表面を有する基材

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084579A (ja) * 2001-09-27 2009-04-23 Toyota Central R&D Labs Inc 高摩擦摺動部材
JP2005002888A (ja) 2003-06-12 2005-01-06 Nissan Motor Co Ltd 自動車エンジン用ピストンリング及びこれに用いる潤滑油組成物
JP2005098289A (ja) * 2003-08-21 2005-04-14 Nissan Motor Co Ltd 冷媒圧縮機
JP2007099947A (ja) 2005-10-05 2007-04-19 Toyota Motor Corp 摺動構造及び摺動方法
JP2008081630A (ja) * 2006-09-28 2008-04-10 Brother Ind Ltd 摺動部材
JP2008195903A (ja) 2007-02-15 2008-08-28 Toyota Motor Corp 摺動構造
JP2008255160A (ja) 2007-04-02 2008-10-23 Toyota Motor Corp 摺動構造
JP2008297477A (ja) * 2007-06-01 2008-12-11 Kanagawa Prefecture 低摩擦摺動部材
JP2009079138A (ja) 2007-09-26 2009-04-16 Toyota Motor Corp 摺動構造または摺動方法
JP2009114311A (ja) 2007-11-06 2009-05-28 Toyota Motor Corp 摺動構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2647738A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344242B2 (en) 2013-07-25 2019-07-09 H.E.F. Mechanical part coated with a layer of amorphous carbon for sliding in relation to a less hard component
KR20210047976A (ko) * 2013-07-25 2021-04-30 이드러메까니끄 에 프러뜨망 덜 경성인 부품에 대한 슬라이딩용 비정질 탄소 층으로 코팅된 기계 부품
CN105492651A (zh) * 2013-07-25 2016-04-13 H.E.F.公司 涂覆有无定形碳层用于其相对于其它硬度较低部件的滑动性的机械元件
KR102472526B1 (ko) 2013-07-25 2022-11-29 이드러메까니끄 에 프러뜨망 덜 경성인 부품에 대한 슬라이딩용 비정질 탄소 층으로 코팅된 기계 부품
FR3008905A1 (fr) * 2013-07-25 2015-01-30 Hydromecanique & Frottement Piece mecanique revetue d'une couche de carbone amorphe en vue de son glissement vis-a-vis d'un autre composant moins dur
CN113584431A (zh) * 2013-07-25 2021-11-02 流体力学与摩擦公司 涂覆有无定形碳层用于其相对于其它硬度较低部件的滑动性的机械元件
AU2014294910B2 (en) * 2013-07-25 2018-07-19 H.E.F. Mechanical part coated with a layer of amorphous carbon for sliding in relation to a less hard component
WO2015011361A1 (fr) * 2013-07-25 2015-01-29 H.E.F. Pièce mécanique revêtue d'une couche de carbone amorphe en vue de son glissement vis-à-vis d'un autre composant moins dur
WO2017026042A1 (ja) * 2015-08-10 2017-02-16 日本アイ・ティ・エフ株式会社 ピストンリングおよびエンジン
JPWO2017026042A1 (ja) * 2015-08-10 2018-05-31 日本アイ・ティ・エフ株式会社 ピストンリングおよびエンジン
US10634249B2 (en) 2015-08-10 2020-04-28 Nippon Itf, Inc. Piston ring and engine
WO2018143365A1 (ja) * 2017-02-01 2018-08-09 エクソンモービル リサーチ アンド エンジニアリング カンパニー 潤滑油組成物
JP2018123240A (ja) * 2017-02-01 2018-08-09 Emgルブリカンツ合同会社 潤滑油組成物
CN108048160B (zh) * 2017-12-18 2020-12-01 中国科学院兰州化学物理研究所 一种碳结构薄膜与石墨烯添加剂固液复合减摩抗磨的方法
CN108048160A (zh) * 2017-12-18 2018-05-18 中国科学院兰州化学物理研究所 一种碳结构薄膜与石墨烯添加剂固液复合减摩抗磨的方法

Also Published As

Publication number Publication date
EP2647738A4 (en) 2014-08-13
US20130252860A1 (en) 2013-09-26
CN103228817A (zh) 2013-07-31
EP2647738A1 (en) 2013-10-09
EP2647738B1 (en) 2015-10-14
US8895488B2 (en) 2014-11-25
JP5730902B2 (ja) 2015-06-10
JPWO2012073717A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5730902B2 (ja) 摺動構造部材
Neville et al. Compatibility between tribological surfaces and lubricant additives—how friction and wear reduction can be controlled by surface/lube synergies
Khorramian et al. Review of antiwear additives for crankcase oils
US11015141B2 (en) Lubricant composition based on metal nanoparticles
EP2593581A1 (en) Method for providing a low-friction surface
JP5298451B2 (ja) 摺動構造
CN100447224C (zh) 具有dlc接触表面的系统、用于润滑该系统的方法以及用于该系统的润滑剂
GB2473983A (en) A slide member for a slide bearing
JP6063376B2 (ja) 摺動部材
JP7040532B2 (ja) 低摩擦摺動機構
CN105462655A (zh) 一种超低粘度节能型发动机减摩剂及其制备方法
JP3657742B2 (ja) 耐焼付性にすぐれたすべり軸受
JP6832213B2 (ja) 潤滑油組成物及びこれを用いた摺動機構
Nakagome et al. Friction and wear properties of hard coatings on steel surfaces under lubrication with a fully formulated oil with a Mo additive
JP2009203374A (ja) べベルギヤ用グリース組成物及びこれを含むベベルギヤ
Ogihara et al. Seizure and friction properties of the DLC coated journal and aluminum alloy bearing
Tung et al. Engine oil Effects on friction and wear using 2.2 L direct injection diesel engine components for bench testing part 2-tribology bench test results and surface analyses
Zhang et al. Study tribological properties of MoDTC and its interactions with metal detergents
Tomlinson et al. On the Role of Friction Modifier Additives in the Oil Control Ring and Piston Liner Contact
Kosarieh Tribochemistry of boundary lubricated DLC/steel interfaces and their influence in tribological performance
JP2006199836A (ja) 低摩擦摺動機構
Neville et al. Comparison of tribological properties of metal–metal and metal–cermet couples under lubricated and dry conditions
Боев et al. IMPROVEMENT OF EFFICIENCY OF INTERNAL COMBUSTION ENGINES BY TRIBOCOMPONENTS
Gebretsadik et al. Tribological Compatibility of Some Selected Pb-Free Engine Bearing Materials with Different Engine Oil Formulations
CN115851349A (zh) 一种轻量化车用铝合金紧固件成型油及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844459

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012546771

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13990635

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011844459

Country of ref document: EP