WO2012070269A1 - 組合せ蒸気弁および蒸気タービン - Google Patents
組合せ蒸気弁および蒸気タービン Download PDFInfo
- Publication number
- WO2012070269A1 WO2012070269A1 PCT/JP2011/063822 JP2011063822W WO2012070269A1 WO 2012070269 A1 WO2012070269 A1 WO 2012070269A1 JP 2011063822 W JP2011063822 W JP 2011063822W WO 2012070269 A1 WO2012070269 A1 WO 2012070269A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- steam
- seat
- stop
- combination
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
- F01D17/14—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
- F01D17/141—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
- F01D17/145—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/32—Details
- F16K1/34—Cutting-off parts, e.g. valve members, seats
- F16K1/44—Details of seats or valve members of double-seat valves
- F16K1/443—Details of seats or valve members of double-seat valves the seats being in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K39/00—Devices for relieving the pressure on the sealing faces
- F16K39/02—Devices for relieving the pressure on the sealing faces for lift valves
- F16K39/024—Devices for relieving the pressure on the sealing faces for lift valves using an auxiliary valve on the main valve
Definitions
- the present invention relates to a combination steam valve used in, for example, a thermal power plant or a nuclear power plant, and a steam turbine provided with the same.
- Steam turbines such as thermal power plants and nuclear power plants are provided with a number of steam valves in order to shut off the supply of steam in the event of an abnormality or adjust the amount of steam according to load changes.
- a valve that shuts off the supply of steam in the event of an abnormality is called a stop valve
- a valve that adjusts the amount of steam according to a load change is called an adjusting valve.
- stop valves and control valves are large because they handle high-pressure and high-flow rate steam. For this reason, it is desired to save the space by efficiently laying out the stop valves and adjusting valves. Therefore, a combination steam valve in which a stop valve and an adjustment valve are provided in a common valve casing is known.
- a first valve body that functions as an adjusting valve and a second valve body that is disposed downstream of the first valve body and functions as a stop valve are incorporated in a common valve casing.
- a combination steam valve is described.
- both the first valve body (adjustment valve) and the second valve body (stop valve) are provided in one valve chamber, and the flow rate of steam is controlled by the upstream first valve body.
- the steam is shut off in an emergency by the second valve body on the downstream side.
- Patent Documents 2 and 3 describe a combination steam valve in which a stop valve and an adjusting valve arranged on the downstream side of the stop valve are incorporated in a common valve casing.
- stop valves and control valves are respectively arranged in two valve chambers, and a communication path is provided between the two valve chambers.
- the upstream stop valve shuts off the steam in an emergency, and the downstream control valve adjusts the steam amount according to the turbine load.
- the regulating valve is always operated with a halfway opening (slightly open state), so that the steam flow tends to be disturbed after passing through the regulating valve. And since this turbulent steam flow causes vibrations in each part of the combined steam valve, it is desired to develop a combined steam valve with less turbulent steam flow after passing through the adjusting valve.
- the first valve body (regulating valve) and the second valve body (stop valve) are provided in the same valve chamber, and the second valve body is located immediately after the first valve body. Since the body is arranged, the second valve body may become an obstacle and disturb the steam flow after passing through the first valve body.
- the second valve body may become an obstacle and disturb the steam flow after passing through the first valve body.
- it is possible to suppress the steam flow interference caused by the second valve body by always lifting the second valve body large, but if the lift amount of the second valve body as the stop valve is increased, the emergency speed can be increased quickly. It becomes difficult to shut off the steam.
- the valve stem and actuator of the stop valve and the valve stem and actuator of the adjusting valve are arranged so as to be orthogonal to each other as in the combination steam valve described in Patent Document 2, the overall shape of the combination steam valve is approximately T. It becomes a letter shape, and it is difficult to save space when laying out a plurality of combination steam valves.
- the present invention has been made in view of the above-described circumstances, and there is little steam flow disturbance after passing through the steam valve, and a combined steam valve that can easily save space during layout, and a steam turbine including the same
- the purpose is to provide.
- the combination steam valve according to the present invention is a combination steam valve in which a stop valve and an adjustment valve are provided in a common valve casing, and the first valve seat and the first valve seat with which the first valve body abuts when the valve is closed. And a stop valve having a first valve rod attached to the first valve body, and a second valve seat disposed downstream of the stop valve and in contact with the second valve body and the second valve body when the valve is closed And a control valve having a second valve rod attached to the second valve body, a stop valve chamber for storing the stop valve, a control valve chamber for storing the control valve, and steam for supplying steam to the stop valve chamber An inlet portion, a straight intermediate flow path provided between the stop valve chamber and the control valve chamber, and a valve casing having a steam outlet for discharging steam from the control valve chamber, the stop
- the first valve rod of the valve and the second valve rod of the regulator valve are the intermediate flow Characterized in that it extends in the opposite direction across the.
- the stop valve and the adjusting valve are housed in separate valve chambers, and the stop valve is arranged upstream of the adjusting valve, so that it is possible to suppress the turbulence of the steam flow after passing through the adjusting valve. . Further, since the first valve rod of the stop valve and the second valve rod of the adjusting valve are arranged so as to extend in opposite directions across the intermediate flow path, the overall shape of the combination steam valve is along the intermediate flow path It becomes a substantially straight line extending. Therefore, it is possible to save space when laying out a plurality of combination steam valves.
- a common valve seat in which the first valve seat and the second valve seat are integrated is provided on the inner wall of the valve casing over the entire length of the intermediate flow path.
- the common valve seat is fixed to the inner wall of the valve casing only upstream of the seat portion of the first valve seat in the steam flow direction.
- the common valve seat is fixed to the inner wall of the valve casing only on the upstream side of the seat portion of the stop valve (first valve seat), and not on the downstream side of the seat portion of the stop valve. By doing so, the steam flow is not disturbed by the fastening member for fixing.
- the diameter of the second valve seat is increased from the upstream side to the downstream side in the steam flow direction.
- the second valve seat of the adjusting valve has a shape that expands from the upstream side of the steam flow toward the downstream side, the downstream side of the seat portion is more upstream than the upstream side of the seat portion of the second valve seat.
- the steam passage area is larger.
- steam supplied from an intermediate flow path passes the seat part of a 2nd valve seat, a flow velocity becomes slow, and disturbance of the steam flow in the downstream of the seat part of a 2nd valve seat is suppressed. Therefore, the state of the annular flow in which the steam flow that has passed through the seat portion of the second valve seat remains attached to the second valve seat is maintained, and vibration of each portion of the combination steam valve can be suppressed.
- the annular flow means that the vapor flow flows in an annular shape along the valve seat. In general, it is said that the formation of the annular flow stabilizes the steam flow and can suppress the vibration of each part of the combined steam valve.
- valve head of the second valve body is preferably concave.
- the combination steam valve further includes a cylindrical valve body guide that is provided on an outer periphery of the second valve body and guides the second valve body, and the valve head of the second valve body includes the A balance hole is formed to communicate the inner space surrounded by the second valve body and the valve body guide to the intermediate flow path, and the inner diameter of the valve body guide is larger than the diameter of the seat portion of the second valve seat. Is preferably large.
- the vapor pressure in the internal space surrounded by the second valve body and the valve body guide and the intermediate flow path upstream of the second valve body become equal.
- the inner diameter of the valve body guide is larger than the diameter of the seat portion of the second valve seat, the net steam force acting on the second valve body as a whole is directed from the downstream side to the upstream side of the steam flow.
- Direction that is, the valve closing direction of the adjusting valve.
- the steam turbine according to the present invention includes a plurality of the combination steam valves, and a turbine casing in which the plurality of combination steam valves are connected and accommodates a rotor, and the plurality of combination steam valves includes the turbine wheel. It is arranged along the rotor axial direction on both sides of the chamber.
- the combination steam valve is configured so that the first valve rod of the stop valve and the second valve rod of the adjustment valve extend on substantially the same axis on the opposite side across the intermediate flow path. Since it has been arranged, the overall shape of the combination steam valve is substantially linear extending along the intermediate flow path.
- a plurality of substantially straight combination steam valves are arranged on both sides of the turbine casing along the rotor axial direction, so that the installation space can be reduced.
- the plurality of combination steam valves are provided at least one pair on both sides of the turbine casing, and the at least one pair of combination steam valves are shifted in a direction perpendicular to the vertical direction and the rotor axial direction.
- the combination steam valve is substantially linear, when providing at least one pair of substantially straight combination steam valves on both sides of the turbine casing, the combination steam valve is perpendicular to the vertical direction and the rotor axial direction. It can be shifted in the direction to do. Further, by shifting the combination steam valves in this way, it is possible to achieve both reduction in installation space and improvement in maintainability.
- the stop valve and the adjusting valve are housed in separate valve chambers, and the stop valve is arranged on the upstream side of the adjusting valve, so that it is possible to suppress turbulence in the steam flow after passing through the adjusting valve.
- the first valve rod of the stop valve and the second valve rod of the adjusting valve are arranged so as to extend in opposite directions across the intermediate flow path, the overall shape of the combination steam valve is along the intermediate flow path It is a substantially straight line extending. Therefore, it is possible to save space when laying out a plurality of combination steam valves.
- FIG. 2 is an enlarged view of the vicinity of an adjusting valve of the combination steam valve shown in FIG. 1. It is a top view which shows the structural example of a steam turbine provided with the combination steam valve shown in FIG. It is the front view which looked at the steam turbine shown in FIG. 3 from the A direction.
- FIG. 1 is a cross-sectional view showing a configuration example of a combination steam valve.
- FIG. 2 is an enlarged view of the vicinity of the adjusting valve of the combination steam valve shown in FIG.
- the combination steam valve 1 has a configuration in which a stop valve 10 and an adjusting valve 20 are provided in a common valve casing 40. While the stop valve 10 plays a role of blocking the steam flow in an emergency, the control valve 20 adjusts the amount of steam according to the load change.
- the valve casing 40 includes a steam inlet 46, a stop valve chamber 42, an intermediate flow path 48, an adjusting valve chamber 44, and a steam outlet 50 in order from the upstream side of the steam flow.
- a stop valve 10 is accommodated in the stop valve chamber 42, and an adjustment valve 20 is accommodated in the adjustment valve chamber 44.
- the stop valve chamber 42 and the adjustable valve chamber 44 are each closed by a bonnet 52 attached to the valve casing 40.
- the steam supplied from the steam inlet 46 flows through the stop valve chamber 42, then flows into the control valve chamber 44 through the intermediate flow path 48, and is finally discharged from the steam outlet 50.
- the stop valve 10 housed in the stop valve chamber 42 includes a first valve body 12, a first valve seat 14 with which the first valve body 12 comes into contact when the valve is closed, and a first valve attached to the first valve body 12. It has a rod 16 and a guide bush 18 for guiding the first valve rod 16.
- the first valve body 12 includes a main valve 12A that contacts the seat portion 14A of the first valve seat 14 when the stop valve 10 is closed, and a sub valve 12B included in the main valve 12A.
- the inner wall surface 13 of the main valve 12A functions as a valve seat for the sub valve 12B.
- the first valve rod 16 has one end attached to the sub-valve 12B of the first valve body 12, and the other end connected to an actuator (actuator 8 in FIG. 3).
- the driving force of the actuator is transmitted to the auxiliary valve 12B of the first valve body 12 through the first valve rod 16.
- a guide bush 18 that guides the first valve stem 16 is embedded in the bonnet 52. As a result, the first valve stem 16 driven by the actuator slides in the guide bush 18 and moves along the central axis C 1 of the first valve stem 16.
- the sub-valve 12B to which the first valve rod 16 is attached moves forward and backward independently up to a predetermined lift amount, but moves forward and backward together with the main valve 12A when the predetermined lift amount is reached. For this reason, when the sub valve 12B is moved in the valve opening direction (upward in FIG. 1) via the first valve rod 16 by the actuator, only the sub valve 12B moves until the predetermined lift amount, and the sub valve 12B Open first. Thereafter, when the auxiliary valve 12B is further moved in the valve opening direction via the first valve rod 16 by the actuator, the auxiliary valve 12B moves together with the main valve 12A at a predetermined lift amount, and the main valve 12A is also opened. It is. Thus, by opening the auxiliary valve 12B first, the pressure difference before and after the main valve 12A can be reduced, and the main valve 12A having a larger seat diameter than the auxiliary valve 12B can be opened with a small driving force. .
- a cylindrical strainer 17 for removing foreign substances contained in the steam is provided on the outer periphery of the stop valve 10. Since the foreign material having a predetermined size or more is removed by the strainer 17, the steam turbine to which each part (the stop valve 10 and the adjusting valve 20) of the combined steam valve 1 and the combined steam valve 1 on the downstream side of the strainer 17 is connected. It can be protected from failure due to foreign matter.
- a baffle plate 19 is provided on the side of the stop valve chamber 42 far from the steam inlet 46. The baffle plate 19 is disposed between the outer peripheral surface of the strainer 17 and the inner wall surface of the stop valve chamber 42, and rectifies the steam flow that bypasses the outer periphery of the strainer 17.
- An adjusting valve 20 is provided on the downstream side of the stop valve 10. As shown in FIGS. 1 and 2, the control valve 20 includes a second valve body 22, a second valve seat 24 with which the second valve body 22 contacts when the valve is closed, and a second valve body 22 attached to the second valve body 22. A valve stem 26 and a guide bush 28 for guiding the second valve stem 26 are provided.
- the second valve seat 24 of the adjusting valve 20 is shaped to expand from the upstream side to the downstream side, and the second valve body 22 Steam is allowed to flow from the valve head 23 toward the base.
- the second valve seat 24 of the control valve 20 has a shape that gradually increases in diameter from the upstream side to the downstream side in the steam flow direction, from the upstream side of the seat portion 24A of the second valve seat 24.
- the flow path area of the steam is larger on the downstream side of the seat portion 24A. For this reason, when the steam supplied from the intermediate flow path 48 passes through the seat portion 24A of the second valve seat 24, the flow velocity becomes slow, and the steam flow is disturbed on the downstream side of the seat portion of the second valve seat 24. It is suppressed. Therefore, the state of the annular flow in which the steam flow that has passed through the seat portion 24 ⁇ / b> A of the second valve seat 24 remains attached to the second valve seat 24 is maintained, and the vibration of each portion of the combination steam valve 1 can be suppressed.
- the control valve 20 of this embodiment has a noise (vibration) reduction effect of about 10 dB compared to the control valve of the conventional configuration.
- ⁇ (see FIG. 2) is preferably 25 to 50 degrees.
- the 2nd valve seat 24 of the adjustment valve 20 is provided as the common valve seat 4 integrated with the 1st valve seat 14 of the stop valve 10, as shown in FIG.
- the common valve seat 4 is provided over the entire length of the intermediate flow path 48 and is fixed to the inner wall of the valve casing 40.
- the common valve seat 4 is preferably fixed to the inner wall of the valve casing 40 only on the upstream side in the steam flow direction from the seat portion 14A of the first valve seat 14.
- the common valve seat 4 may be fixed to the inner wall of the valve casing 40 by the fastening member 6 at a position upstream of the seat portion 14A. In this manner, the common valve seat 4 is fixed to the inner wall of the valve casing 40 only on the upstream side of the seat portion 14A of the stop valve 10 and not on the downstream side of the seat portion 14A of the stop valve 10. By doing so, the steam flow is not disturbed by the fastening member 6 for fixing.
- the common valve seat 4 only one side (stop valve 10 side) of the common valve seat 4 is fixed by the fastening member 6, and the opposite side of the common valve seat 4 can be freely thermally expanded starting from the fixing point by the fastening member 6.
- the common valve seat 4 can be prevented from being damaged due to thermal stress generated by a sudden temperature change.
- the combination steam valve 1 is installed vertically (arranged along the vertical direction), the common valve seat 4 is removed from the stop valve 10 side, whereby the second valve body 22 and the like of the lower adjusting valve 20 are stopped.
- the combination steam valve 1 can be easily disassembled.
- the second valve body 22 that comes into contact with the second valve seat 24 when the valve is closed has a concave valve head 23 on the distal end side (side closer to the second valve seat 24).
- the valve head 23 of the second valve body 22 into a concave shape, as shown by the streamline 100 in FIG. 2, the valve head 23 on the upstream side of the seat portion 24 ⁇ / b> A of the second valve seat 24.
- the steam flow once stays in the concave portion of the gas and is rectified so that the steam flow follows the second valve seat 24. Therefore, the annular flow can be further stabilized.
- a cylindrical valve body guide 30 that guides the second valve body 22 is provided on the outer periphery of the second valve body 22.
- the inner diameter D G of the valve body guide 30 is greater than the diameter (seat diameter) D 0 of the seat portion 24A of the second valve seat 24.
- the valve head 23 of the second valve body 22 is formed with a balance hole 34 that communicates the internal space 32 surrounded by the second valve body 22 and the valve body guide 30 to the intermediate flow path 48.
- the vapor pressure in the internal space 32 surrounded by the second valve body 22 and the valve body guide 30 and the intermediate flow path 48 on the upstream side of the second valve body 22 are equal. become.
- the diameter D 0 of the seat portion 24A of the second valve seat 24 because there is the larger inner diameter D G of the valve body guide 30, the steam forces the net acting on the second valve body 22 as a whole, a vapor stream Direction from the downstream side to the upstream side (that is, the valve closing direction of the adjusting valve).
- the second valve body 22 is always pulled in the direction in which the control valve 20 is closed by the net steam force acting on the second valve body 22 of the control valve 20, the alignment of the second valve body 22 is improved. The turbulence of the steam flow can be further suppressed.
- a second valve rod 26 is attached to the second valve body 22. As shown in FIG. 1, the second valve rod 26 of the control valve 20 and the first valve rod 16 of the stop valve 10 extend in opposite directions with the intermediate flow path 48 interposed therebetween. In the example shown in FIG. 1, the second valve rod 26 of the adjusting valve 20 is arranged so that the central axis C 2 thereof substantially coincides with the central axis C 1 of the first valve rod 16 of the stop valve 10. Yes.
- the second valve rod 26 is connected to an actuator (actuator 9 in FIG. 3) at the end opposite to the end to which the second valve body 22 is attached.
- the driving force of the actuator is transmitted to the second valve body 22 via the second valve rod 26.
- a guide bush 28 for guiding the second valve stem 26 is embedded in the bonnet 52.
- the second valve stem 26 driven by the actuator slides in the guide bush 28 and moves along the central axis C 2 of the second valve stem 26.
- the stop valve 10 and the control valve 20 are housed in separate valve chambers (42, 44), and the stop valve 10 is disposed on the upstream side of the control valve 20, so the control valve Disturbance of the steam flow after passing through 20 can be suppressed. Further, since the first valve rod 16 of the stop valve 10 and the second valve rod 26 of the control valve 20 are arranged so as to extend in opposite directions across the intermediate flow path 48, the overall shape of the combination steam valve 1 Is a substantially straight line extending along the intermediate flow path 48. Therefore, it is possible to save space when laying out the plurality of combination steam valves 1.
- the intermediate flow path 48 between the stop valve 10 and the control valve 20 is shortened, so that the degree of opening of the control valve 20 due to the occurrence of condensation is extremely reduced. Furthermore, since the common valve seat 4 extends over the entire length of the intermediate flow path 48 (from the first valve seat 14 to the second valve seat 24), the intermediate flow path 48 is due to a heating effect due to heat conduction. The occurrence of condensation in the interior is reduced.
- FIG. 3 is a top view illustrating a configuration example of a steam turbine including the combination steam valve 1.
- FIG. 4 is a front view of the steam turbine shown in FIG. 3 as viewed from the A direction. Since the steam turbine described below has a symmetrical shape, only the left half of the steam turbine is shown in FIGS.
- the steam turbine 60 includes a plurality of combination steam valves 1 (1A, 1B) and a turbine casing 62 in which a rotor is accommodated.
- the combination steam valve 1 is provided on the upstream side of the turbine casing 62. Thereby, the steam flow flowing into the turbine casing 62 is interrupted by the stop valve 10 of the combination steam valve 1 in an emergency, and the amount of steam is adjusted by the adjusting valve 20 of the combination steam valve 1 according to the load change. .
- the combination steam valve 1 has a configuration in which the first valve rod 16 and the second valve rod 26 extend in opposite directions with the intermediate flow path 48 interposed therebetween. A substantially straight line extending along the path 48.
- FIG. 3 shows the overall shape of the combination steam valve 1 including the actuator 8 connected to the first valve stem 16 and the actuator 9 connected to the second valve stem 26.
- a plurality of substantially straight combination steam valves 1 can be arranged on both sides of the turbine casing 62 along the rotor axial direction. Thereby, the installation space of the steam turbine 60 can be reduced.
- the combination steam valve 1 is substantially linear, the combination steam valve 1 can be disposed in the immediate vicinity of the turbine casing 62. Thereby, the piping to the turbine casing 62 can be shortened, and the pressure loss in the piping can be reduced.
- a plurality of combination steam valves 1 (1A, 1B) are provided in pairs on the left and right sides of the turbine casing 62 as shown in FIGS.
- the pair of combination steam valves 1A and 1B are arranged so as to be shifted in the vertical direction and the direction orthogonal to the rotor axial direction.
- the combination steam valve 1 (1A, 1B) according to the present embodiment is substantially linear, the pair of combination steam valves 1A and 1B are shifted in the vertical direction and the direction orthogonal to the rotor axial direction. be able to. Then, by arranging the combination steam valves 1A and 1B in such a manner, the installation space can be reduced and the maintainability can be improved.
- the combination steam valve 1 having the overall configuration illustrated in FIG. 1 has been described.
- the combination steam valve 1 includes the stop valve 10 and the control valve 20 provided in separate valve chambers, and the stop valve 10.
- the first valve rod 16 and the second valve rod 26 of the control valve 20 are not particularly limited as long as the first valve rod 16 and the second valve rod 26 extend in opposite directions across the intermediate flow path 48.
- the configuration of the first valve body 12 of the stop valve 10 and the second valve body 22 of the control valve 20 is not limited to the above example.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lift Valve (AREA)
- Control Of Turbines (AREA)
- Details Of Valves (AREA)
Abstract
組合せ蒸気弁1では、止め弁10および加減弁20が共通の弁ケーシング40に設けられている。止め弁10は、第1弁体12、第1弁体12が閉弁時に当接する第1弁座14及び第1弁体12に取り付けられた第1弁棒16を有する。加減弁20は、第2弁体22、第2弁体22が閉弁時に当接する第2弁座24及び第2弁体22に取り付けられた第2弁棒26を有する。弁ケーシング40は、止め弁10を収納する止め弁室42、加減弁20を収納する加減弁室44、止め弁室42に蒸気を供給する蒸気入口部46、止め弁室42と加減弁室44との間に設けられるストレート形状の中間流路48、および、加減弁室44からの蒸気を排出する蒸気出口部50を有する。止め弁10の第1弁棒16と、加減弁20の第2弁棒26とは、中間流路48を挟んで反対方向に延在している。
Description
本発明は、例えば火力発電所や原子力発電所等で用いられる組合せ蒸気弁およびこれを備えた蒸気タービンに関する。
火力発電所や原子力発電所等の蒸気タービンは、異常時に蒸気の供給を遮断したり、負荷変化に応じて蒸気量を調節したりするために、多数の蒸気弁が設けられている。このうち、異常時に蒸気の供給を遮断するものは止め弁と称され、負荷変化に応じて蒸気量を調節するものは加減弁と称される。
これら止め弁及び加減弁は、高圧かつ大流量の蒸気量を扱うため大型である。このため、止め弁及び加減弁のレイアウトを効率的に行って、省スペース化を図ることが望まれる。そこで、止め弁及び加減弁を共通の弁ケーシングに設けた組合せ蒸気弁が知られている。
例えば、特許文献1には、加減弁として機能する第1弁体と、この第1弁体の下流側に配置され、止め弁として機能する第2弁体とが共通の弁ケーシングに組み込まれた組合せ蒸気弁が記載されている。この組合せ蒸気弁では、1個の弁室に第1弁体(加減弁)及び第2弁体(止め弁)の両方が設けられており、上流側の第1弁体により蒸気の流量を制御するとともに、下流側の第2弁体により蒸気を緊急時に遮断するようになっている。
また、特許文献2及び3には、止め弁と、この止め弁の下流側に配置される加減弁とが共通の弁ケーシングに組み込まれた組合せ蒸気弁が記載されている。この組合せ蒸気弁では、2個の弁室に止め弁と加減弁とがそれぞれ配置され、該2つの弁室の間に連通路が設けられている。そして、上流側の止め弁により蒸気を緊急時に遮断するとともに、下流側の加減弁によりタービン負荷に応じて蒸気量を調節するようになっている。
ところで、組合せ蒸気弁では、蒸気量の調節機能を有するという性質上、加減弁は常に途中開度(微開状態)で運転されるから、加減弁の通過後に蒸気流が乱れやすい傾向がある。そして、この蒸気流の乱れは、組合せ蒸気弁各部の振動の原因となるから、加減弁を通過した後の蒸気流の乱れが少ない組合せ蒸気弁の開発が望まれる。
この点、特許文献1に記載の組合せ蒸気弁では、第1弁体(加減弁)及び第2弁体(止め弁)が同一の弁室に設けられ、第1弁体の直後に第2弁体が配置されているため、第2弁体が障害物となって、第1弁体を通過後の蒸気流を乱す場合がある。もちろん、第2弁体を常に大きくリフトしておくことで、第2弁体による蒸気流の干渉を抑制できるが、止め弁としての第2弁体のリフト量を大きくすると、緊急時における迅速な蒸気の遮断が困難になってしまう。
一方、特許文献2に記載の組合せ蒸気弁では、止め弁の下流側に加減弁が配置されており、加減弁を通過した後の蒸気流を乱す障害物はないから、蒸気流の乱れは比較的少ない。
ところが、止め弁の弁棒及びこれを進退させるアクチュエータが弁室間の連通路に沿って延在する一方で、加減弁の弁棒及びアクチュエータは連通路に直交する方向に沿って延在している。ここで、止め弁と加減弁の弁棒及びアクチュエータは、組合せ蒸気弁のサイズ全体に占める割合が比較的大きい。このため、特許文献2に記載の組合せ蒸気弁のように、止め弁の弁棒及びアクチュエータと加減弁の弁棒及びアクチュエータとが互いに直交するように配置すると、組合せ蒸気弁の全体形状が略T字状になってしまい、複数の組合せ蒸気弁をレイアウトする際に、省スペース化することが難しい。
ところが、止め弁の弁棒及びこれを進退させるアクチュエータが弁室間の連通路に沿って延在する一方で、加減弁の弁棒及びアクチュエータは連通路に直交する方向に沿って延在している。ここで、止め弁と加減弁の弁棒及びアクチュエータは、組合せ蒸気弁のサイズ全体に占める割合が比較的大きい。このため、特許文献2に記載の組合せ蒸気弁のように、止め弁の弁棒及びアクチュエータと加減弁の弁棒及びアクチュエータとが互いに直交するように配置すると、組合せ蒸気弁の全体形状が略T字状になってしまい、複数の組合せ蒸気弁をレイアウトする際に、省スペース化することが難しい。
本発明は、上述の事情に鑑みてなされたものであり、蒸気弁を通過した後の蒸気流の乱れが少なく、レイアウト時の省スペース化を容易に行いうる組合せ蒸気弁およびこれを備える蒸気タービンを提供することを目的とする。
本発明に係る組合せ蒸気弁は、止め弁および加減弁が共通の弁ケーシングに設けられた組合せ蒸気弁であって、第1弁体、前記第1弁体が閉弁時に当接する第1弁座および前記第1弁体に取り付けられた第1弁棒を有する止め弁と、前記止め弁の下流側に配置され、第2弁体、前記第2弁体が閉弁時に当接する第2弁座および前記第2弁体に取り付けられた第2弁棒を有する加減弁と、前記止め弁を収納する止め弁室、前記加減弁を収納する加減弁室、前記止め弁室に蒸気を供給する蒸気入口部、前記止め弁室と前記加減弁室との間に設けられるストレート形状の中間流路、および、前記加減弁室からの蒸気を排出する蒸気出口部を有する弁ケーシングとを備え、前記止め弁の前記第1弁棒と、前記加減弁の前記第2弁棒とは、前記中間流路を挟んで反対方向に延在していることを特徴とする。
この組合せ蒸気弁によれば、止め弁と加減弁を別々の弁室に収納するとともに、止め弁を加減弁の上流側に配置したので、加減弁を通過した後の蒸気流の乱れを抑制できる。
また、止め弁の第1弁棒と加減弁の第2弁棒とを、中間流路を挟んで反対方向に延在するように配置したので、組合せ蒸気弁の全体形状は中間流路に沿って延びる略直線状となる。よって、複数の組合せ蒸気弁をレイアウトする際に、省スペース化を図ることが可能となる。
また、止め弁の第1弁棒と加減弁の第2弁棒とを、中間流路を挟んで反対方向に延在するように配置したので、組合せ蒸気弁の全体形状は中間流路に沿って延びる略直線状となる。よって、複数の組合せ蒸気弁をレイアウトする際に、省スペース化を図ることが可能となる。
上記組合せ蒸気弁において、前記弁ケーシングの内壁には、前記中間流路の全長にわたって、前記第1弁座および前記第2弁座が一体化された共通弁座が設けられていることが好ましい。
このように、止め弁の第1弁座と加減弁の第2弁座を共通化することで、部品数が減少し、組合せ蒸気弁の組立て作業の効率が向上する。また、第1弁座と第2弁座との間に継ぎ目がなく平滑面であるから、継ぎ目部分で蒸気流が乱れてしまうことがない。
この場合、前記共通弁座は、前記第1弁座のシート部よりも蒸気流れ方向における上流側においてのみ、前記弁ケーシングの内壁に固定されていることが好ましい。
このように、共通弁座の弁ケーシングの内壁への固定は、止め弁(第1弁座)のシート部よりも上流側においてのみ行い、止め弁のシート部よりも下流側では行わないようにすることで、固定用の締結部材等によって蒸気流が乱れることがない。
上記組合せ蒸気弁において、前記第2弁座は、蒸気流れ方向における上流側から下流側に向かって拡径していることが好ましい。
このように、加減弁の第2弁座を、蒸気流の上流側から下流側に向かって拡径する形状とすれば、第2弁座のシート部の上流側よりも該シート部の下流側のほうが蒸気の流路面積が大きい。このため、中間流路から供給される蒸気は、第2弁座のシート部を通過する際に流速が遅くなり、第2弁座のシート部の下流側における蒸気流の乱れが抑制される。よって、第2弁座のシート部を通過した蒸気流が第2弁座に付着したままのアニュラーフローの状態が維持され、組合せ蒸気弁の各部の振動を抑制できる。
なお、アニュラーフローとは、蒸気流が弁座に沿って環状に流れることをいう。一般的に、アニュラーフローの形成によって、蒸気流が安定化し、組合せ蒸気弁各部の振動を抑制可能であると言われている。
なお、アニュラーフローとは、蒸気流が弁座に沿って環状に流れることをいう。一般的に、アニュラーフローの形成によって、蒸気流が安定化し、組合せ蒸気弁各部の振動を抑制可能であると言われている。
この場合、前記第2弁体の弁頭部は凹形状であることが好ましい。
これにより、シート部の上流側において弁頭部の凹部に蒸気流が一旦滞留し、蒸気流が弁座に沿うように整流されるので、アニュラーフローをより一層安定化することができる。
また、上記組合せ蒸気弁は、前記第2弁体の外周に設けられ、前記第2弁体を案内する円筒状の弁体ガイドをさらに備え、前記第2弁体の弁頭部には、前記第2弁体及び前記弁体ガイドで囲まれた内部空間を前記中間流路に連通するバランス穴が形成されており、前記第2弁座のシート部の直径よりも、前記弁体ガイドの内径が大きいことが好ましい。
このように、バランス穴を設けることで、第2弁体及び弁体ガイドで囲まれた内部空間と、第2弁体の上流側の中間流路とにおける蒸気圧力が同等になる。ここで、第2弁座のシート部の直径よりも、弁体ガイドの内径のほうが大きいから、全体として第2弁体に作用する正味の蒸気力は、蒸気流の下流側から上流側に向かう方向(すなわち、加減弁の閉弁方向)である。こうして、加減弁の第2弁体に作用する正味の蒸気力によって、加減弁が閉まる方向に第2弁体が常に引っ張られるから、第2弁体の調心性が向上し、蒸気流の乱れをより一層抑制できる。
本発明に係る蒸気タービンは、複数の上記組合せ蒸気弁と、前記複数の組合せ蒸気弁が接続されるとともに、ロータを収納するタービン車室とを備え、前記複数の組合せ蒸気弁は、前記タービン車室の両側にロータ軸方向に沿って配置されることを特徴とする。
上述のように、上記組合せ蒸気弁は、止め弁の第1弁棒と加減弁の第2弁棒とを、中間流路を挟んで反対側に、略同一の軸線上に延在するように配置したので、組合せ蒸気弁の全体形状は中間流路に沿って延びる略直線状である。
本発明に係る蒸気タービンは、略直線状の複数の組合せ蒸気弁をタービン車室の両側にロータ軸方向に沿って配置したので、設置スペースを削減できる。
本発明に係る蒸気タービンは、略直線状の複数の組合せ蒸気弁をタービン車室の両側にロータ軸方向に沿って配置したので、設置スペースを削減できる。
上記蒸気タービンにおいて、前記複数の組合せ蒸気弁は、前記タービン車室の両側に少なくとも一対ずつ設けられており、前記少なくとも一対の組合せ蒸気弁は、鉛直方向および前記ロータ軸方向に直交する方向にずらして配置されていることが好ましい。
一対の組合せ蒸気弁をレイアウトするにあたって、組合せ蒸気弁の設置スペース(水平面上の設置面積)の削減が望まれる一方、それぞれの組合せ蒸気弁のメンテナンス性を確保する必要がある。
この点、上記組合せ蒸気弁は略直線状であるから、略直線状の少なくとも一対の組合せ蒸気弁をタービン車室の両側のそれぞれに設けるにあたって、組合せ蒸気弁を鉛直方向および前記ロータ軸方向に直交する方向にずらして配置することができる。そして、このように組合せ蒸気弁をずらして配置することで、設置スペースの削減とメンテナンス性の向上とを両立できる。
この点、上記組合せ蒸気弁は略直線状であるから、略直線状の少なくとも一対の組合せ蒸気弁をタービン車室の両側のそれぞれに設けるにあたって、組合せ蒸気弁を鉛直方向および前記ロータ軸方向に直交する方向にずらして配置することができる。そして、このように組合せ蒸気弁をずらして配置することで、設置スペースの削減とメンテナンス性の向上とを両立できる。
本発明によれば、止め弁と加減弁を別々の弁室に収納するとともに、止め弁を加減弁の上流側に配置したので、加減弁を通過した後の蒸気流の乱れを抑制できる。
また、止め弁の第1弁棒と加減弁の第2弁棒とを、中間流路を挟んで反対方向に延在するように配置したので、組合せ蒸気弁の全体形状は中間流路に沿って延びる略直線状である。よって、複数の組合せ蒸気弁をレイアウトする際に、省スペース化を図ることが可能となる。
また、止め弁の第1弁棒と加減弁の第2弁棒とを、中間流路を挟んで反対方向に延在するように配置したので、組合せ蒸気弁の全体形状は中間流路に沿って延びる略直線状である。よって、複数の組合せ蒸気弁をレイアウトする際に、省スペース化を図ることが可能となる。
以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
図1は、組合せ蒸気弁の構成例を示す断面図である。図2は、図1に示す組合せ蒸気弁の加減弁周辺の拡大図である。
図1に示すように、組合せ蒸気弁1は、止め弁10及び加減弁20が共通の弁ケーシング40に設けられた構成を有する。止め弁10が緊急時に蒸気流を遮断する役割を担う一方で、加減弁20は負荷変化に応じて蒸気量を調節するようになっている。
弁ケーシング40は、蒸気流れの上流側から順に、蒸気入口部46、止め弁室42、中間流路48、加減弁室44及び蒸気出口部50を有する。止め弁室42には止め弁10が収納され、加減弁室44には加減弁20が収納される。止め弁室42及び加減弁室44は、それぞれ、弁ケーシング40に取り付けられたボンネット52によって閉じられている。
蒸気入口部46から供給される蒸気は、止め弁室42を流れた後、中間流路48を経て加減弁室44に流入し、最終的に蒸気出口部50から排出される。
蒸気入口部46から供給される蒸気は、止め弁室42を流れた後、中間流路48を経て加減弁室44に流入し、最終的に蒸気出口部50から排出される。
止め弁室42に収納された止め弁10は、第1弁体12と、第1弁体12が閉弁時に当接する第1弁座14と、第1弁体12に取り付けられた第1弁棒16と、第1弁棒16を案内するガイドブシュ18とを有する。
第1弁体12は、止め弁10の閉弁時に第1弁座14のシート部14Aに当接する主弁12Aと、この主弁12Aに内包された副弁12Bとにより構成される。なお、主弁12Aの内壁面13は、副弁12Bにとっての弁座として機能する。
第1弁棒16は、一端が第1弁体12の副弁12Bに取り付けられ、他端がアクチュエータ(図3のアクチュエータ8)に連結されている。この第1弁棒16を介して、アクチュエータの駆動力が第1弁体12の副弁12Bに伝わるようになっている。
第1弁棒16を案内するガイドブシュ18は、ボンネット52に埋設されている。これにより、アクチュエータによって駆動される第1弁棒16は、ガイドブシュ18内を摺動し、第1弁棒16の中心軸C1に沿って移動する。
止め弁10では、第1弁棒16が取り付けられた副弁12Bは、所定のリフト量までは単独で進退するが、所定のリフト量に達すると主弁12Aとともに進退するようになっている。このため、アクチュエータによって第1弁棒16を介して副弁12Bを開弁方向(図1の上方向)に移動させると、所定のリフト量までは副弁12Bのみが移動し、副弁12Bが先に開く。この後、さらにアクチュエータによって第1弁棒16を介して副弁12Bを開弁方向に移動させると、所定のリフト量において副弁12Bが主弁12Aとともに移動するようになり、主弁12Aも開かれる。このように、最初に副弁12Bを開くことで、主弁12Aの前後の圧力差を低減することができ、副弁12Bよりもシート径の大きい主弁12Aを小さな駆動力で開くことができる。
止め弁10の外周には、蒸気に含まれる異物を除去する円筒状のストレーナ17が設けられている。ストレーナ17によって、所定のサイズ以上の異物が除去されるので、ストレーナ17よりも下流側の組合せ蒸気弁1の各部(止め弁10及び加減弁20)および組合せ蒸気弁1が接続される蒸気タービンを異物による故障から保護することができる。
また、止め弁室42の蒸気入口部46から遠い側にはバッフルプレート19が設けられている。バッフルプレート19は、ストレーナ17の外周面と止め弁室42の内壁面との間に配置され、ストレーナ17の外周を迂回してきた蒸気流を整流するようになっている。
また、止め弁室42の蒸気入口部46から遠い側にはバッフルプレート19が設けられている。バッフルプレート19は、ストレーナ17の外周面と止め弁室42の内壁面との間に配置され、ストレーナ17の外周を迂回してきた蒸気流を整流するようになっている。
止め弁10の下流側には加減弁20が設けられている。加減弁20は、図1及び2に示すように、第2弁体22と、第2弁体22が閉弁時に当接する第2弁座24と、第2弁体22に取り付けられた第2弁棒26と、第2弁棒26を案内するガイドブシュ28とを有する。
従来から、上流側から下流側に向かって徐々に縮径する弁座を用い、弁体の基部から弁頭部に向かって蒸気を流すようにした蒸気弁が当業者間で定着していた。これに対し、本実施形態では、アニュラーフローの安定化の観点から、加減弁20の第2弁座24を上流側から下流側に向かって拡径する形状にするとともに、第2弁体22の弁頭部23から基部に向かって蒸気を流すようにしている。
このように、加減弁20の第2弁座24は、蒸気流れ方向における上流側から下流側に向かって徐々に拡径する形状を有するから、第2弁座24のシート部24Aの上流側よりも該シート部24Aの下流側のほうが蒸気の流路面積が大きい。このため、中間流路48から供給される蒸気は、第2弁座24のシート部24Aを通過する際に流速が遅くなり、第2弁座24のシート部の下流側における蒸気流の乱れが抑制される。よって、第2弁座24のシート部24Aを通過した蒸気流が第2弁座24に付着したままのアニュラーフローの状態が維持され、組合せ蒸気弁1の各部の振動を抑制できる。
なお、本願発明者が行った数値流体力学(Computational Fluid
Dynamics:CFD)を用いた計算結果によれば、本実施形態の加減弁20は、従来の構成の加減弁に比べて約10dBの騒音(振動)低下効果が得られた。
このように、加減弁20の第2弁座24は、蒸気流れ方向における上流側から下流側に向かって徐々に拡径する形状を有するから、第2弁座24のシート部24Aの上流側よりも該シート部24Aの下流側のほうが蒸気の流路面積が大きい。このため、中間流路48から供給される蒸気は、第2弁座24のシート部24Aを通過する際に流速が遅くなり、第2弁座24のシート部の下流側における蒸気流の乱れが抑制される。よって、第2弁座24のシート部24Aを通過した蒸気流が第2弁座24に付着したままのアニュラーフローの状態が維持され、組合せ蒸気弁1の各部の振動を抑制できる。
なお、本願発明者が行った数値流体力学(Computational Fluid
Dynamics:CFD)を用いた計算結果によれば、本実施形態の加減弁20は、従来の構成の加減弁に比べて約10dBの騒音(振動)低下効果が得られた。
第2弁座24のシート部24Aから上流側に延ばしたシート部24Aにおける接線Tが、第2弁体22の中心軸(すなわち、第2弁棒26の中心軸C2)に対してなす角度θ(図2参照)は、25~50度であることが好ましい。このように、シート部24Aの接線Tが第2弁体22の中心軸に対してなす角度θを25度以上にすることで、シート部24Aを境に流路面積を急拡大させて、シート部24Aの上流側に比べて下流側の蒸気流の流速を十分遅くして、蒸気流の干渉をより確実に抑制できる。一方、同角度θを50度以下にすることで、噴流衝突が回避でき、流体騒音が低下し騒音を小さくすることができる。
また、加減弁20の第2弁座24は、図1に示すように、止め弁10の第1弁座14と一体化された共通弁座4として設けられている。共通弁座4は、中間流路48の全長にわたって設けられ、弁ケーシング40の内壁に固定される。
このように、止め弁10の第1弁座14と加減弁20の第2弁座24を共通化することで、部品数が減少し、組合せ蒸気弁1の組立て作業の効率が向上する。また、第1弁座14と第2弁座24との間に継ぎ目がなく平滑面であるから、継ぎ目部分で蒸気流が乱れてしまうことがない。
このように、止め弁10の第1弁座14と加減弁20の第2弁座24を共通化することで、部品数が減少し、組合せ蒸気弁1の組立て作業の効率が向上する。また、第1弁座14と第2弁座24との間に継ぎ目がなく平滑面であるから、継ぎ目部分で蒸気流が乱れてしまうことがない。
共通弁座4は、第1弁座14のシート部14Aよりも蒸気流れ方向における上流側においてのみ、弁ケーシング40の内壁に固定されていることが好ましい。例えば、シート部14Aよりも上流側の位置で、締結部材6によって共通弁座4を弁ケーシング40の内壁に固定してもよい。
このように、共通弁座4の弁ケーシング40の内壁への固定は、止め弁10のシート部14Aよりも上流側においてのみ行い、止め弁10のシート部14Aよりも下流側では行わないようにすることで、固定用の締結部材6によって蒸気流が乱れることがない。また、共通弁座4の片側(止め弁10側)のみが締結部材6により固定され、共通弁座4の反対側は締結部材6による固定点を始点として自由に熱膨張可能であるから、加減弁20の起動停止時に、急激な温度変化によって発生する熱応力に起因した共通弁座4の損傷を防止できる。さらに、組合せ蒸気弁1を縦置き(鉛直方向に沿って配置)する場合、共通弁座4を止め弁10側から抜き取ることで、下方の加減弁20の第2弁体22等を止め弁10側に抜くことができ、組合せ蒸気弁1の分解作業が容易になる。
このように、共通弁座4の弁ケーシング40の内壁への固定は、止め弁10のシート部14Aよりも上流側においてのみ行い、止め弁10のシート部14Aよりも下流側では行わないようにすることで、固定用の締結部材6によって蒸気流が乱れることがない。また、共通弁座4の片側(止め弁10側)のみが締結部材6により固定され、共通弁座4の反対側は締結部材6による固定点を始点として自由に熱膨張可能であるから、加減弁20の起動停止時に、急激な温度変化によって発生する熱応力に起因した共通弁座4の損傷を防止できる。さらに、組合せ蒸気弁1を縦置き(鉛直方向に沿って配置)する場合、共通弁座4を止め弁10側から抜き取ることで、下方の加減弁20の第2弁体22等を止め弁10側に抜くことができ、組合せ蒸気弁1の分解作業が容易になる。
第2弁座24に対して閉弁時に当接する第2弁体22は、先端側(第2弁座24に近い側)に凹形状の弁頭部23を有する。このように、第2弁体22の弁頭部23を凹形状とすることで、図2の流線100で示すように、第2弁座24のシート部24Aの上流側において弁頭部23の凹部に蒸気流が一旦滞留し、蒸気流が第2弁座24に沿うように整流される。よって、アニュラーフローをより一層安定化することができる。
図2に示すように、第2弁体22の外周には、第2弁体22を案内する円筒状の弁体ガイド30が設けられている。この弁体ガイド30の内径DGは、第2弁座24のシート部24Aの直径(シート径)D0よりも大きい。また、第2弁体22の弁頭部23には、第2弁体22及び弁体ガイド30で囲まれた内部空間32を中間流路48に連通するバランス穴34が形成されている。
このように、バランス穴34を設けることで、第2弁体22及び弁体ガイド30で囲まれた内部空間32と、第2弁体22の上流側の中間流路48とにおける蒸気圧力が同等になる。ここで、第2弁座24のシート部24Aの直径D0よりも、弁体ガイド30の内径DGのほうが大きいから、全体として第2弁体22に作用する正味の蒸気力は、蒸気流の下流側から上流側に向かう方向(すなわち、加減弁の閉弁方向)である。こうして、加減弁20の第2弁体22に作用する正味の蒸気力によって、加減弁20が閉まる方向に第2弁体22が常に引っ張られるから、第2弁体22の調心性が向上し、蒸気流の乱れをより一層抑制できる。
第2弁体22には第2弁棒26が取り付けられる。加減弁20の第2弁棒26と、止め弁10の第1弁棒16とは、図1に示すように、中間流路48を挟んで反対方向に延在している。なお、図1に示す例では、加減弁20の第2弁棒26は、その中心軸C2が、止め弁10の第1弁棒16の中心軸C1と略一致するように配置されている。
また第2弁棒26は、第2弁体22が取り付けられた端部とは反対側の端部で、アクチュエータ(図3のアクチュエータ9)に連結されている。この第2弁棒26を介して、アクチュエータの駆動力が第2弁体22に伝わるようになっている。
第2弁棒26を案内するガイドブシュ28は、ボンネット52に埋設されている。これにより、アクチュエータによって駆動される第2弁棒26は、ガイドブシュ28内を摺動し、第2弁棒26の中心軸C2に沿って移動する。
上記構成の組合せ蒸気弁1によれば、止め弁10と加減弁20を別々の弁室(42,44)に収納するとともに、止め弁10を加減弁20の上流側に配置したので、加減弁20を通過した後の蒸気流の乱れを抑制できる。
また、止め弁10の第1弁棒16と加減弁20の第2弁棒26とを、中間流路48を挟んで反対方向に延在するように配置したので、組合せ蒸気弁1の全体形状は中間流路48に沿って延びる略直線状である。よって、複数の組合せ蒸気弁1をレイアウトする際に、省スペース化を図ることが可能となる。
また、組合せ蒸気弁の場合、蒸気タービンの起動時や、止め弁による蒸気遮断時には、中間流路が低温となり結露が発生して、下流側の加減弁の開度不良を招くことがある。この点、上記構成の組合せ蒸気弁1によれば、止め弁10と加減弁20の間にある中間流路48を短くしたので、結露発生による加減弁20の開度不良が極めて少なくなる。更に、共通弁座4が、中間流路48の全長に亘って(第1弁座14から第2弁座24まで)延在しているため、熱伝導による加熱効果のため、中間流路48内における結露の発生が少なくなる。
また、止め弁10の第1弁棒16と加減弁20の第2弁棒26とを、中間流路48を挟んで反対方向に延在するように配置したので、組合せ蒸気弁1の全体形状は中間流路48に沿って延びる略直線状である。よって、複数の組合せ蒸気弁1をレイアウトする際に、省スペース化を図ることが可能となる。
また、組合せ蒸気弁の場合、蒸気タービンの起動時や、止め弁による蒸気遮断時には、中間流路が低温となり結露が発生して、下流側の加減弁の開度不良を招くことがある。この点、上記構成の組合せ蒸気弁1によれば、止め弁10と加減弁20の間にある中間流路48を短くしたので、結露発生による加減弁20の開度不良が極めて少なくなる。更に、共通弁座4が、中間流路48の全長に亘って(第1弁座14から第2弁座24まで)延在しているため、熱伝導による加熱効果のため、中間流路48内における結露の発生が少なくなる。
次に、上述の組合せ蒸気弁1を備える蒸気タービンについて説明する。図3は、組合せ蒸気弁1を備える蒸気タービンの構成例を示す上面図である。図4は、図3に示す蒸気タービンをA方向から視た正面図である。
なお、以下で説明する蒸気タービンは左右対称の形状であるから、図3及び4では蒸気タービンの左半分のみを示している。
なお、以下で説明する蒸気タービンは左右対称の形状であるから、図3及び4では蒸気タービンの左半分のみを示している。
蒸気タービン60は、複数の組合せ蒸気弁1(1A,1B)と、ロータが収納されたタービン車室62とを備える。組合せ蒸気弁1は、タービン車室62の上流側に設けられている。これにより、タービン車室62に流入する蒸気流は、組合せ蒸気弁1の止め弁10によって緊急時に遮断されるとともに、組合せ蒸気弁1の加減弁20によって負荷変化に応じて蒸気量が調節される。
組合せ蒸気弁1は、上述のとおり、第1弁棒16及び第2弁棒26が中間流路48を挟んで反対方向に延在する構成を有するため、組合せ蒸気弁1の全体形状は中間流路48に沿って延びる略直線状である。このことは、第1弁棒16に連結されるアクチュエータ8および第2弁棒26に連結されるアクチュエータ9を含めた組合せ蒸気弁1の全体形状を示した図3から明らかである。
したがって、略直線状の複数の組合せ蒸気弁1をタービン車室62の両側にロータ軸方向に沿って配置することができる。これにより、蒸気タービン60の設置スペースを削減できる。
また、組合せ蒸気弁1が略直線状であることから、タービン車室62のすぐ近くに組合せ蒸気弁1を配置することができる。これにより、タービン車室62への配管を短くして、配管における圧力損失を低減できる。
したがって、略直線状の複数の組合せ蒸気弁1をタービン車室62の両側にロータ軸方向に沿って配置することができる。これにより、蒸気タービン60の設置スペースを削減できる。
また、組合せ蒸気弁1が略直線状であることから、タービン車室62のすぐ近くに組合せ蒸気弁1を配置することができる。これにより、タービン車室62への配管を短くして、配管における圧力損失を低減できる。
複数の組合せ蒸気弁1(1A,1B)は、図3及び4に示すように、タービン車室62の左右両側に一対ずつ設けられている。そして、これら一対の組合せ蒸気弁1A及び1Bは、鉛直方向および前記ロータ軸方向に直交する方向にずらして配置されている。
一対の組合せ蒸気弁をレイアウトするにあたって、組合せ蒸気弁の設置スペース(水平面上の設置面積)の削減が望まれる一方、それぞれの組合せ蒸気弁のメンテナンス性を確保する必要がある。
この点、本実施形態に係る組合せ蒸気弁1(1A,1B)は略直線状であるから、一対の組合せ蒸気弁1A及び1Bを鉛直方向および前記ロータ軸方向に直交する方向にずらして配置することができる。そして、このように組合せ蒸気弁1A及び1Bをずらして配置することで、設置スペースの削減とメンテナンス性の向上とを両立できる。
この点、本実施形態に係る組合せ蒸気弁1(1A,1B)は略直線状であるから、一対の組合せ蒸気弁1A及び1Bを鉛直方向および前記ロータ軸方向に直交する方向にずらして配置することができる。そして、このように組合せ蒸気弁1A及び1Bをずらして配置することで、設置スペースの削減とメンテナンス性の向上とを両立できる。
以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
例えば、上述の実施形態では、図1に示す全体構成を有する組合せ蒸気弁1について説明したが、組合せ蒸気弁1は、止め弁10と加減弁20が別々の弁室に設けられ、止め弁10の第1弁棒16と加減弁20の第2弁棒26とが中間流路48を挟んで反対方向に延在する構成であれば特に限定されない。特に、止め弁10の第1弁体12および加減弁20の第2弁体22の構成は、上述の例に限定されない。
また、図3及び4には、タービン車室62の左右両側にそれぞれ一対ずつ組合せ蒸気弁1(1A,1B)を設けた蒸気タービン60について説明したが、組合せ蒸気弁1(1A,1B)の数はこの例に限定されない。例えば、タービン車室62の左右両側にn個(ただしn≧3)ずつ組合せ蒸気弁1を配置してもよい。
Claims (8)
- 止め弁および加減弁が共通の弁ケーシングに設けられた組合せ蒸気弁であって、
第1弁体、前記第1弁体が閉弁時に当接する第1弁座および前記第1弁体に取り付けられた第1弁棒を有する止め弁と、
前記止め弁の下流側に配置され、第2弁体、前記第2弁体が閉弁時に当接する第2弁座および前記第2弁体に取り付けられた第2弁棒を有する加減弁と、
前記止め弁を収納する止め弁室、前記加減弁を収納する加減弁室、前記止め弁室に蒸気を供給する蒸気入口部、前記止め弁室と前記加減弁室との間に設けられるストレート形状の中間流路、および、前記加減弁室からの蒸気を排出する蒸気出口部を有する弁ケーシングとを備え、
前記止め弁の前記第1弁棒と、前記加減弁の前記第2弁棒とは、前記中間流路を挟んで反対方向に延在していることを特徴とする組合せ蒸気弁。 - 前記弁ケーシングの内壁には、前記中間流路の全長にわたって、前記第1弁座および前記第2弁座が一体化された共通弁座が設けられていることを特徴とする請求項1に記載の組合せ蒸気弁。
- 前記共通弁座は、前記第1弁座のシート部よりも蒸気流れ方向における上流側においてのみ、前記弁ケーシングの内壁に固定されていることを特徴とする請求項2に記載の組合せ蒸気弁。
- 前記第2弁座は、蒸気流れ方向における上流側から下流側に向かって拡径していることを特徴とする請求項1乃至3のいずれか一項に記載の組合せ蒸気弁。
- 前記第2弁体の弁頭部は凹形状であることを特徴とする請求項4に記載の組合せ蒸気弁。
- 前記第2弁体の外周に設けられ、前記第2弁体を案内する円筒状の弁体ガイドをさらに備え、
前記第2弁体の弁頭部には、前記第2弁体及び前記弁体ガイドで囲まれた内部空間を前記中間流路に連通するバランス穴が形成されており、
前記第2弁座のシート部の直径よりも、前記弁体ガイドの内径が大きいことを特徴とする請求項4又は5に記載の組合せ蒸気弁。 - 請求項1乃至6のいずれか一項に記載された複数の組合せ蒸気弁と、
前記複数の組合せ蒸気弁が接続されるとともに、ロータを収納するタービン車室とを備え、
前記複数の組合せ蒸気弁は、前記タービン車室の両側にロータ軸方向に沿って配置されることを特徴とする蒸気タービン。 - 前記複数の組合せ蒸気弁は、前記タービン車室の両側に少なくとも一対ずつ設けられており、
前記少なくとも一対の組合せ蒸気弁は、鉛直方向および前記ロータ軸方向に直交する方向にずらして配置されていることを特徴とする請求項7に記載の蒸気タービン。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-260628 | 2010-11-22 | ||
JP2010260628A JP5701019B2 (ja) | 2010-11-22 | 2010-11-22 | 組合せ蒸気弁および蒸気タービン |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012070269A1 true WO2012070269A1 (ja) | 2012-05-31 |
Family
ID=46145631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/063822 WO2012070269A1 (ja) | 2010-11-22 | 2011-06-16 | 組合せ蒸気弁および蒸気タービン |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5701019B2 (ja) |
WO (1) | WO2012070269A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103470317A (zh) * | 2013-09-11 | 2013-12-25 | 上海电气电站设备有限公司 | 一种汽轮机联合阀门结构 |
EP2703697A1 (de) * | 2012-09-04 | 2014-03-05 | Siemens Aktiengesellschaft | Kombiniertes Stell- und Schnellschlussventil für eine Strömungsmaschine |
EP2703698A1 (de) * | 2012-09-04 | 2014-03-05 | Siemens Aktiengesellschaft | Kombiniertes Stell- und Schnellschlussventil für eine Strömungsmaschine |
CN107725788A (zh) * | 2017-11-22 | 2018-02-23 | 上海核阀门股份有限公司 | 双座稳压器喷雾阀 |
US10119416B2 (en) | 2014-10-28 | 2018-11-06 | Mitsubishi Hitachi Power Systems, Ltd. | Main steam valve and steam turbine |
CN112228166A (zh) * | 2020-11-04 | 2021-01-15 | 哈尔滨汽轮机厂有限责任公司 | 一种汽轮机用补汽阀门 |
CN113236789A (zh) * | 2021-04-30 | 2021-08-10 | 华能海南发电股份有限公司东方电厂 | 一种防断裂汽轮机调节阀阀杆结构 |
CN114135343A (zh) * | 2021-10-30 | 2022-03-04 | 中国长江动力集团有限公司 | 一种汽轮机用主汽调节联合汽阀 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102797519B (zh) * | 2012-08-30 | 2015-07-08 | 山东青能动力股份有限公司 | 高稳定性复杂型线进汽阀 |
JP6071831B2 (ja) * | 2013-09-30 | 2017-02-01 | 三菱重工業株式会社 | 開閉弁及び蒸気タービン |
JP6312320B2 (ja) * | 2014-10-28 | 2018-04-18 | 三菱日立パワーシステムズ株式会社 | 主蒸気弁、及び蒸気タービン |
JP6557577B2 (ja) * | 2015-10-30 | 2019-08-07 | 三菱日立パワーシステムズ株式会社 | 蒸気弁及び蒸気タービンシステム |
CN107061862A (zh) * | 2017-06-01 | 2017-08-18 | 东方电气集团东方汽轮机有限公司 | 一种阀门十字头连接结构 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56162210A (en) * | 1980-05-17 | 1981-12-14 | Toshiba Corp | Steam valve |
JPH0385302A (ja) * | 1989-08-29 | 1991-04-10 | Toshiba Corp | 蒸気タービン設備の運転方法 |
JPH08170503A (ja) * | 1994-12-15 | 1996-07-02 | Toshiba Corp | 蒸気タービン弁と蒸気タービン弁の開度制御装置 |
-
2010
- 2010-11-22 JP JP2010260628A patent/JP5701019B2/ja active Active
-
2011
- 2011-06-16 WO PCT/JP2011/063822 patent/WO2012070269A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56162210A (en) * | 1980-05-17 | 1981-12-14 | Toshiba Corp | Steam valve |
JPH0385302A (ja) * | 1989-08-29 | 1991-04-10 | Toshiba Corp | 蒸気タービン設備の運転方法 |
JPH08170503A (ja) * | 1994-12-15 | 1996-07-02 | Toshiba Corp | 蒸気タービン弁と蒸気タービン弁の開度制御装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2703697A1 (de) * | 2012-09-04 | 2014-03-05 | Siemens Aktiengesellschaft | Kombiniertes Stell- und Schnellschlussventil für eine Strömungsmaschine |
EP2703698A1 (de) * | 2012-09-04 | 2014-03-05 | Siemens Aktiengesellschaft | Kombiniertes Stell- und Schnellschlussventil für eine Strömungsmaschine |
CN103470317A (zh) * | 2013-09-11 | 2013-12-25 | 上海电气电站设备有限公司 | 一种汽轮机联合阀门结构 |
US10119416B2 (en) | 2014-10-28 | 2018-11-06 | Mitsubishi Hitachi Power Systems, Ltd. | Main steam valve and steam turbine |
CN107725788A (zh) * | 2017-11-22 | 2018-02-23 | 上海核阀门股份有限公司 | 双座稳压器喷雾阀 |
CN112228166A (zh) * | 2020-11-04 | 2021-01-15 | 哈尔滨汽轮机厂有限责任公司 | 一种汽轮机用补汽阀门 |
CN113236789A (zh) * | 2021-04-30 | 2021-08-10 | 华能海南发电股份有限公司东方电厂 | 一种防断裂汽轮机调节阀阀杆结构 |
CN113236789B (zh) * | 2021-04-30 | 2022-12-27 | 华能海南发电股份有限公司东方电厂 | 一种防断裂汽轮机调节阀阀杆结构 |
CN114135343A (zh) * | 2021-10-30 | 2022-03-04 | 中国长江动力集团有限公司 | 一种汽轮机用主汽调节联合汽阀 |
Also Published As
Publication number | Publication date |
---|---|
JP5701019B2 (ja) | 2015-04-15 |
JP2012112270A (ja) | 2012-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5701019B2 (ja) | 組合せ蒸気弁および蒸気タービン | |
JP4472297B2 (ja) | 蒸気を供給するための組合せ式停止及び調節バルブ | |
JP4776494B2 (ja) | 蒸気弁および蒸気タービン | |
JP5022887B2 (ja) | 蒸気弁装置および蒸気タービンプラント | |
JP5674521B2 (ja) | 蒸気弁装置および蒸気タービンプラント | |
CN206221689U (zh) | 用于控制工艺生产设备的流体流动的调节阀 | |
JP2008175267A (ja) | 蒸気弁装置及びそれを備えた発電設備 | |
WO2014098073A1 (ja) | 蒸気弁及び蒸気タービン | |
EP1557537B1 (en) | Steam valve | |
US9903219B2 (en) | Steam governing valve apparatus and power generation facility | |
JP2009507188A (ja) | バルブ組立体および関連した機構 | |
JP6076823B2 (ja) | 蒸気弁装置 | |
JP5611005B2 (ja) | 蒸気タービン用加減弁および組合せ蒸気弁 | |
RU2388955C2 (ru) | Запорно-дросселирующий клапан | |
JP6951081B2 (ja) | 蒸気弁及び蒸気タービン設備 | |
KR20140104599A (ko) | 이중 유로 글로브 밸브 | |
JP2006313011A (ja) | 流量調節弁および流量調節弁用のブシュ | |
JP5547608B2 (ja) | 整圧装置 | |
US20050214111A1 (en) | Pressure relief of a flange connection in overflow lines between a live steam valve and a high-pressure steam turbine inlet | |
JP2006329073A (ja) | 蒸気弁および蒸気弁を備えた発電設備 | |
US9810326B2 (en) | Steam valve | |
JP5818482B2 (ja) | 低圧蒸気タービンの入口構造 | |
JP5535768B2 (ja) | 蒸気弁 | |
US20170356300A1 (en) | Regulating valve and turbine | |
JP4456032B2 (ja) | パイロット整圧器の特性調整構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11842719 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11842719 Country of ref document: EP Kind code of ref document: A1 |