WO2012070085A1 - 有機elパネル、それを用いた表示装置および有機elパネルの製造方法 - Google Patents

有機elパネル、それを用いた表示装置および有機elパネルの製造方法 Download PDF

Info

Publication number
WO2012070085A1
WO2012070085A1 PCT/JP2010/006859 JP2010006859W WO2012070085A1 WO 2012070085 A1 WO2012070085 A1 WO 2012070085A1 JP 2010006859 W JP2010006859 W JP 2010006859W WO 2012070085 A1 WO2012070085 A1 WO 2012070085A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
electrode
light emitting
film thickness
Prior art date
Application number
PCT/JP2010/006859
Other languages
English (en)
French (fr)
Inventor
恵子 倉田
哲征 松末
米田 和弘
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/819,059 priority Critical patent/US8916862B2/en
Priority to PCT/JP2010/006859 priority patent/WO2012070085A1/ja
Priority to JP2012545533A priority patent/JP5753191B2/ja
Publication of WO2012070085A1 publication Critical patent/WO2012070085A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present invention relates to an organic EL panel using an electroluminescent phenomenon of an organic material, a display device using the same, and a method for manufacturing the organic EL panel, and in particular, for each color of R (red), G (green), and B (blue).
  • the present invention relates to an optical design for increasing light extraction efficiency.
  • the organic EL panel has a configuration in which organic EL elements of R, G, and B colors are arranged on a substrate.
  • Patent Document 1 discloses a second layer including a first layer that generates holes and a light-emitting layer of each emission color between a first electrode that reflects light and a second electrode that transmits light. And a third layer that generates electrons, and a light-emitting element in which the thickness of the first layer is different for each emission color is disclosed (paragraphs 0022 to 0025).
  • the above-described conventional technique has a problem that the film thickness of the first layer that generates holes needs to be adjusted for each color of R, G, and B, and thus the manufacturing process becomes complicated.
  • the present invention provides an organic EL panel that can improve the light extraction efficiency by utilizing the light interference effect and can simplify the manufacturing process as compared with the prior art, and a display device and an organic EL panel using the same. It aims at providing the manufacturing method of.
  • An organic EL panel is provided for each of R (red), G (green), and B (blue) colors, and reflects the incident light, and the R, G, and A second electrode disposed opposite to the first electrode of each color B and transmitting incident light, and provided for each of the colors R, G, B, and between the first electrode and the second electrode
  • An organic light emitting layer that emits light of a corresponding color among R, G, and B when a voltage is applied between the first electrode and the second electrode, and the R,
  • a first functional layer comprising one or more layers provided for each color of G and B and disposed between the first electrode and the organic light emitting layer; and colors of the R, G and B
  • a second functional layer composed of one or two or more layers provided between each of the second electrodes and the organic light emitting layer, A part of the light emitted from the organic light emitting layer is incident on the first electrode through the first functional layer and reflected by the first electrode, and then the first functional layer and the organic light emitting layer.
  • the first optical path emitted to the outside through the second functional layer and the second electrode, and the remaining part of the light emitted from the organic light emitting layer does not travel to the first electrode side, A second optical path that travels toward the second electrode through the second functional layer and is emitted to the outside through the second electrode, and the first functional layer for each of the colors R, G, and B.
  • the optical distance from the organic light emitting layer to the first electrode is the same, the film thickness of the second functional layer is the same, and the organic The optical distance from the light emitting layer to the second electrode is the same, and the film of the organic light emitting layer But different from each other.
  • the organic light emitting layer is made of different materials for each color of R, G, and B, it is necessary to make different colors for each color regardless of whether or not the film thickness is the same.
  • the first and second functional layers have the same material for each color of R, G, and B, it is not necessary to make them separately for each color if the film thickness is the same.
  • the thicknesses of the first and second functional layers are the same for each color of R, G, and B, and the thickness of the organic light emitting layer is R, G, and B. Is different. That is, the film thickness for each color is adjusted only by the organic light emitting layer that needs to be prepared for each color. Therefore, by utilizing the light interference effect, the light extraction efficiency can be increased, and the manufacturing process can be simplified as compared with the prior art.
  • Sectional drawing which shows typically the pixel structure of the organic electroluminescent panel which concerns on embodiment of this invention
  • the figure which illustrates the resonator structure in a blue organic EL element The figure which shows the transmission spectrum of the color filter of each R, G, B color used by simulation It is a figure which shows the change of the light extraction efficiency when changing the film thickness of a positive hole transport layer, (a) is without CF of Example 1, (b) is with CF of Example 1, (C) is a case where the CF of Comparative Example 1 is not present, and (d) is a diagram illustrating a case where the CF of Comparative Example 1 is present. The change in the light extraction efficiency when the film thickness of each layer is changed is shown.
  • (A) shows the case where the hole transport layer has no CF
  • (b) shows the case where the hole transport layer has CF
  • (c) shows In the case where the organic light emitting layer has no CF
  • (d) shows the case where the organic light emitting layer has CF.
  • (a) is Example 1
  • (b) is a figure which shows the comparative example 1. Diagram showing various tolerances The figure which shows the minimum value (min), intermediate value (ave), and maximum value (max) of the film thickness of each layer of the organic EL element of Example 1.
  • the figure which illustrates the external appearance of the organic display apparatus which concerns on embodiment of this invention The figure for demonstrating the manufacturing method of the organic electroluminescent panel which concerns on embodiment of this invention.
  • the organic EL panel according to an aspect of the present invention is provided for each of R (red), G (green), and B (blue) colors, and reflects the incident light, and the R, G, A second electrode disposed opposite to the first electrode of each color B and transmitting incident light, and provided for each of the colors R, G, B, and between the first electrode and the second electrode
  • An organic light emitting layer that emits light of a corresponding color among R, G, and B when a voltage is applied between the first electrode and the second electrode, and the R,
  • a first functional layer comprising one or more layers provided for each color of G and B and disposed between the first electrode and the organic light emitting layer; and colors of the R, G and B
  • a second functional layer comprising one or two or more layers provided between each of the second electrodes and the organic light emitting layer
  • the organic light emitting layer is made of different materials for each color of R, G, and B, it is necessary to make different colors for each color regardless of whether or not the film thickness is the same.
  • the first and second functional layers have the same material for each color of R, G, and B, it is not necessary to make them separately for each color if the film thickness is the same.
  • the thicknesses of the first and second functional layers are the same for each color of R, G, and B, and the thickness of the organic light emitting layer is R, G, and B. Is different. That is, the film thickness for each color is adjusted only by the organic light emitting layer that needs to be prepared for each color. Therefore, by utilizing the light interference effect, the light extraction efficiency can be increased, and the manufacturing process can be simplified as compared with the prior art.
  • a color filter is provided for each of the R, G, and B colors and disposed on the opposite side of the organic light emitting layer with the second electrode interposed therebetween, and light extraction after passing through the color filter is provided.
  • the film thicknesses of the R, G, and B organic light-emitting layers may be adjusted so that the efficiency shows a maximum value.
  • the light extraction efficiency changes and the chromaticity also changes. Further, when the light extraction efficiency is a maximum value, the chromaticity becomes the target chromaticity. It turns out that it is not necessarily close.
  • the film thickness of the organic light-emitting layer is set so that the light extraction efficiency of light after passing through the color filter exhibits a maximum value. The extraction efficiency can be increased.
  • the film thickness of the first functional layer may be adjusted to a film thickness at which the light extraction efficiency of light after passing through the color filter exhibits a first-order maximum value.
  • the film thickness of the first functional layer When the film thickness of the first functional layer is changed, the light extraction efficiency changes periodically, and the maximum value of the light extraction efficiency appears periodically.
  • These maximum values are referred to as primary, secondary, tertiary, etc. in order of increasing thickness of the first functional layer. According to the inventors' research, it has been found that the smaller the order of the maximum value is, the larger the maximum value is, and the film thickness showing the maximum value is almost equal for each color of R, G, and B.
  • the thickness of the first functional layer is a film thickness that exhibits a first-order maximum value, the light extraction efficiency can be increased as compared with a case where the film thickness has a maximum value of another order.
  • the same film thickness can be set for each of the R, G, and B colors.
  • the film thickness of the organic light emitting layer of at least one of the R, G, and B colors may be deviated from the film thickness at which the light extraction efficiency of light before passing through the color filter exhibits a maximum value.
  • the light extraction efficiency of the light after passing through the color filter shows a maximum value, so that the light extraction efficiency can be increased.
  • the film thickness of the first functional layer is 31.5 nm or more and 38.5 nm or less, and the optical distance from the organic light emitting layer to the first electrode is 57.6 nm or more and 70.4 nm.
  • the thickness of the organic light emitting layer may be 81 nm to 99 nm in R, 63 nm to 77 nm in G, and 49.5 nm to 60.5 nm in B.
  • the first functional layer includes a transparent conductive layer formed on the anode as the first electrode, a hole injection layer formed on the transparent conductive layer, and a hole injection layer.
  • the transparent conductive layer has a thickness of 13.5 nm or more and 16.5 nm or less
  • the hole injection layer has a thickness of 4.5 nm or more and 5.5 nm or less.
  • the hole transport layer may have a thickness of 13.5 nm to 16.5 nm.
  • the film thickness of the second functional layer is not less than 27 nm and not more than 33 nm, and the optical distance from the organic light emitting layer to the second electrode is not less than 48.6 nm and not more than 59.4 nm. It is good.
  • the second functional layer may include an electron transport layer, and the thickness of the electron transport layer may be 27 nm or more and 33 nm or less.
  • the film thickness of the first functional layer is 45 nm or more and 55 nm or less, and the optical distance from the organic light emitting layer to the first electrode is 81.5 nm or more and 99.6 nm or less,
  • the thickness of the organic light emitting layer may be 72 nm to 88 nm in R, 54 nm to 66 nm in G, and 18 nm to 22 nm in B.
  • the first functional layer includes a transparent conductive layer formed on the anode as the first electrode, a hole injection layer formed on the transparent conductive layer, and a hole injection layer.
  • the transparent conductive layer has a thickness of 18 nm or more and 22 nm or less
  • the hole injection layer has a thickness of 4.5 nm or more and 5.5 nm or less.
  • the film thickness of the hole transport layer may be 22.5 nm or more and 27.5 nm or less.
  • the film thickness of the second functional layer is not less than 27 nm and not more than 33 nm, and the optical distance from the organic light emitting layer to the second electrode is not less than 48.6 nm and not more than 59.4 nm. It is good.
  • the second functional layer may include an electron transport layer, and the thickness of the electron transport layer may be 27 nm or more and 33 nm or less.
  • the organic light emitting layer may include an organic material and be formed using a printing method.
  • a display device includes the organic EL panel.
  • a third step of providing an organic light emitting layer that emits light of a corresponding color of R, G, and B, and one or more layers on the organic light emitting layer of each color of R, G, and B A second step of providing a second functional layer, and a second step of disposing incident light on the second functional layer of each color of R, G, B, opposite to the first electrode.
  • a fifth step of providing an electrode, and in the second step, the thickness of the first functional layer of each color of R, G, B is the same, and The first functional layer is provided so that the optical distance from the organic light emitting layer to the first electrode is the same, and in the third step, the organic light emitting layer film of each color of R, G, B is provided.
  • the organic light emitting layer is provided so that the thicknesses are different from each other.
  • the second functional layer has the same film thickness, and an optical element from the organic light emitting layer to the second electrode is provided.
  • the second functional layer is provided so that the general distance is the same.
  • FIG. 1 is a cross-sectional view schematically showing a pixel structure of an organic EL panel according to an embodiment of the present invention.
  • R (red), G (green), and B (blue) pixels are regularly arranged in a matrix in the row and column directions.
  • Each pixel is composed of an organic EL element using an organic material.
  • the blue organic EL device includes a substrate 1, a reflective electrode 2, a transparent conductive layer 3, a hole injection layer 4, a hole transport layer 5, an organic light emitting layer 6b, an electron transport layer 7, a transparent electrode 8, and a thin film sealing layer 9.
  • the resin sealing layer 10, the substrate 11, and the color filter 13b are provided.
  • the transparent conductive layer 3, the hole injection layer 4, and the hole transport layer 5 disposed between the reflective electrode 2 and the organic light emitting layer 6 b are referred to as “first functional layer” and are transparent with the organic light emitting layer 6 b.
  • the electron transport layer 7 disposed between the electrodes 8 may be referred to as a “second functional layer”.
  • the green organic EL element has the same configuration as the blue organic EL element except for the organic light emitting layer 6g and the color filter 13g.
  • the red organic EL element also has the same configuration as the blue organic EL element except for the organic light emitting layer 6r and the color filter (CF) 13r.
  • the substrate 1, the electron transport layer 7, the transparent electrode 8, the thin film sealing layer 9, the resin sealing layer 10 and the substrate 11 are common in the organic EL elements of R, G and B colors, The layers are separated by banks 12.
  • FIG. 2 illustrates a resonator structure in a blue organic EL element.
  • a part of the light emitted from the organic light emitting layer 6b enters the reflective electrode 2 through the first functional layer and is reflected by the reflective electrode 2, and then the first functional layer and the organic light emitting layer 6b.
  • the first optical path C1 emitted to the outside through the second functional layer and the transparent electrode 8 and the remaining part of the light emitted from the organic light emitting layer 6b do not travel to the reflective electrode 2 side, but the second function.
  • a second optical path C2 that travels to the transparent electrode 8 through the layer and is emitted to the outside through the transparent electrode 8 is formed.
  • the light passing through the first optical path C1 and the light passing through the second optical path C2 are intensified, and the light extraction efficiency can be increased.
  • the structure, material, and film thickness of the first functional layer are the same for each color of R, G, and B. Since the structure, material, and film thickness of the first functional layer are the same for each color of R, G, and B, the optical distance from the organic light emitting layer to the reflective electrode is the same for each color of R, G, and B.
  • the optical distance is obtained by the product of the film thickness and the refractive index in the case of a single layer structure, and is obtained by taking the product of the film thickness and the refractive index for each layer in the case of two or more multilayer structures. It is obtained by summing up the products.
  • the structure, material, and film thickness of the second functional layer are the same for each color of R, G, and B. Since the structure, material, and film thickness of the second functional layer are the same for each color of R, G, and B, the optical distance from the organic light emitting layer to the transparent electrode is the same for each color of R, G, and B.
  • the material and film thickness of the organic light emitting layer are different from each other in R, G, and B colors. Specifically, the film thickness of the organic light emitting layer is adjusted so that the light extraction efficiency after passing through the color filter has a maximum value.
  • the material of the first functional layer and the material of the second functional layer are the same for each color of R, G, and B, it is not necessary to make different colors.
  • the material of the organic light emitting layer is different for each color of R, G, and B, it is necessary to make different colors for each color.
  • the first functional layer and the second functional layer that do not need to be prepared separately for each color have the same film thickness for each color, and originally the film thickness for each color in the organic light emitting layer that needs to be prepared separately for each color. Therefore, the manufacturing process can be simplified.
  • Example 1 the film thickness of each layer of the organic EL element will be described in detail.
  • Comparative Example 1 obtained the optimum film thickness of each layer by simulation, and evaluated the light extraction efficiency and the simplicity of the manufacturing process.
  • the material of the reflective electrode is an Ag alloy
  • the material of the transparent conductive layer is ITO (Indium Tin Oxide)
  • the material of the organic light emitting layer of each color of R, G, and B is RP158 made by Summation.
  • GP1200 and BP105 were used.
  • FIG. 3 shows transmission spectra of the color filters of R, G, and B used in this simulation.
  • the color filter characteristics used in this simulation were prepared by appropriately adjusting from the viewpoints of optical characteristics and the like in the present embodiment based on a known technique. For example, the CF characteristics of Red and Green refer to JP-A-2005-116516 (FIG. 5), and the CF characteristics of Blue refer to B440 (Optline Co., Ltd.).
  • FIG. 4A and 4B are diagrams showing changes in light extraction efficiency when the film thickness of the hole transport layer is changed.
  • FIG. 4A shows the case of no CF in Example 1
  • FIG. 4B shows the CF in Example 1.
  • (c) is the case of no CF of Comparative Example 1
  • (d) is the case of having CF of Comparative Example 1.
  • the film thickness of the electron transport layer is 30 nm
  • the film thickness of the hole injection layer is 5 nm
  • the film thickness of the transparent conductive layer is 15 nm
  • the film thickness of the organic light emitting layer is 90 nm for each of R, G, and B colors, It is fixed at 70 nm and 55 nm, and only the film thickness of the hole transport layer is changed.
  • the thickness of the electron transport layer is 30 nm
  • the thickness of the hole injection layer is 5 nm
  • the thickness of the transparent conductive layer is 15 nm
  • the thickness of the organic light emitting layer is 80 nm for each of R, G, and B colors. It is fixed at 80 nm and 60 nm, and only the film thickness of the hole transport layer is changed.
  • 4 (a) and 4 (c) show the following.
  • (3) When maximal values that appear periodically are named primary (1st) and secondary (2nd) in descending order of the thickness of the hole transport layer, the maximum value increases as the order decreases.
  • the above (1) and (2) indicate that interference occurs between the light passing through the first optical path C1 and the light passing through the second optical path C2.
  • the above (3) indicates that the light extraction efficiency can be increased by setting the film thickness of the hole transport layer so that the order has a small maximum value.
  • Example 1 in order to increase the light extraction efficiency, it is optimal to set the film thicknesses of the R, G, and B color hole transport layers to 15 nm, 15 nm, and 15 nm. .
  • Comparative Example 1 in order to increase the light extraction efficiency, it is optimal that the film thicknesses of the hole transport layers of R, G, and B colors are 20 nm, 9 nm, and 5 nm. .
  • the film thickness of the hole transport layer optimum for increasing the light extraction efficiency is the same for each color of R, G, and B, but is not the same in Comparative Example 1.
  • Example 1 the organic color of each color of R, G, and B is such that the film thickness of the hole transport layer in which the light extraction efficiency exhibits the primary maximum value when CF is present is the same for each color of R, G, and B.
  • the film thickness of the light emitting layer is set. Specifically, the film thickness is 90 nm, 70 nm, and 55 nm for each of R, G, and B colors.
  • Comparative Example 1 does not have such a design concept, and is simply set so that the film thicknesses of the organic light emitting layers of R, G, and B colors are made uniform within a range that does not hinder light emission. Specifically, the film thickness is 80 nm, 80 nm, and 60 nm for each of R, G, and B colors. Due to such a difference in design philosophy, different results appear in Example 1 and Comparative Example 1.
  • Example 1 was obtained as a result of studying the film thickness of each layer with the CF characteristics involved, and is optimally designed when CF is present.
  • Example 1 the thickness of the hole transport layer, and hence the thickness of the first functional layer, is the same for each color of R, G, B, and the thickness of the organic light emitting layer is different for each color of R, G, B. .
  • adjusting the film thickness of each color of R, G, and B increases the light extraction efficiency more often than adjusting the film thickness of the first functional layer.
  • FIG. 5 shows changes in light extraction efficiency when the film thickness of each layer is changed.
  • A shows a case where the hole transport layer is not CF and
  • B shows a case where the hole transport layer is CF.
  • C is the case where the organic light emitting layer has no CF, and
  • (d) is the case where the organic light emitting layer has CF.
  • the light extraction efficiency change widths h1 and h2 are different. That is, the rate of change in light extraction efficiency with respect to change in film thickness is smaller in the organic light emitting layer than in the hole transport layer.
  • the film thickness is adjusted by the number of ink drops. At this time, the amount of one ink drop is the minimum unit of film thickness adjustment. Therefore, the film thickness can be adjusted only discretely rather than continuously. In such a case, adjusting the film thickness with a layer having a small rate of change in the light extraction efficiency with respect to the change in film thickness is advantageous for adjusting the film thickness to the highest light extraction efficiency.
  • Example 1 since the film thickness of each color of R, G, and B is adjusted in the organic light emitting layer, it is easy to adjust the film thickness to the highest light extraction efficiency.
  • FIG. 6 is a diagram showing the light extraction efficiency and the like when the film thickness of the hole transport layer is set to an optimum value, (a) is Example 1 and (b) is Comparative Example 1.
  • the optimum values of the film thicknesses of the R, G, and B hole transport layers are 15 nm, 15 nm, and 15 nm.
  • the light extraction efficiencies of the R, G, and B colors are 2.1 cd / A, 5.0 cd / A, and 0.51 cd / A, respectively, and the chromaticities are (0.66, 0.34), (0.28, 0.68), respectively. ), (0.13, 0.06).
  • the allowable ranges of film thickness errors for the R, G, and B colors in the first functional layer are ⁇ 10 to +10 nm, ⁇ 9 to +11 nm, and ⁇ 15 to +11 nm.
  • the width is 20 nm, 20 nm, and 26 nm.
  • the “allowable range of film thickness error” indicates a limit at which the thickness of each layer can be shifted from the optimum value on condition that the allowable range shown in FIG. 7 is satisfied.
  • the following allowable ranges are shown.
  • (1) Variation in light extraction efficiency within the surface of the organic EL panel is within 20%
  • Variation in chromaticity within the surface of the organic EL panel is within 0.04 for both x and y
  • Field of view The luminance at an angle of 30 ° is 90% or more with respect to the luminance at a viewing angle of 0 °, and the luminance at a viewing angle of 45 ° is 80% or more with respect to the luminance at a viewing angle of 0 °.
  • the difference between the chromaticity at ° and the chromaticity at viewing angle 0 ° is within 0.04 for both x and y.
  • the “allowable width of the film thickness error” is a difference between the upper limit and the lower limit of the allowable range (for example, in R of Example 1, the upper limit is +10 and the lower limit is ⁇ 10, so the difference is 20).
  • the optimum values of the film thicknesses of the R, G, B hole transport layers are 20 nm, 9 nm, and 5 nm.
  • the light extraction efficiencies of the R, G, and B colors are 2.1 cd / A, 5.0 cd / A, and 0.51 cd / A, respectively, and the chromaticities are (0.66, 0.34), (0.28, 0.68), respectively. ), (0.13, 0.06).
  • the allowable range of film thickness error for each color of R, G, B is -11 to +9 nm, ⁇ 7 to +11 nm, ⁇ 7 to +11 nm, and the allowable range of the film thickness error for each color of R, G, B is 20 nm, 18 nm and 18 nm.
  • Example 1 can achieve the same light extraction efficiency and chromaticity as Comparative Example 1, and can match the film thickness of the first functional layer with each color of R, G, and B. Therefore, the manufacturing process can be simplified while increasing the light extraction efficiency.
  • the film thickness of each layer of the organic EL element may be within a range of ⁇ 10% from the film thickness obtained by the simulation in consideration of manufacturing errors.
  • the minimum value (min), the intermediate value (ave), and the maximum value (max) of the film thickness of each layer of the organic EL element of Example 1 are shown. That is, for R, G, and B in common, the transparent conductive layer is 13.5 nm to 16.5 nm, the hole injection layer is 4.5 nm to 5.5 nm, and the hole transport layer is 13.5 nm to 16.5 nm.
  • the electron transport layer may be 27 nm or more and 33 nm or less.
  • the optical distance from the organic light emitting layer to the reflective electrode is from 57.6 nm to 70.4 nm
  • the optical distance from the organic light emitting layer to the transparent electrode is from 48.6 nm to 59.4 nm.
  • the R organic light emitting layer may be 81 nm to 99 nm
  • the G organic light emitting layer may be 63 nm to 77 nm
  • the B organic light emitting layer may be 49.5 nm to 60.5 nm.
  • the inventors further prepared Example 2 and Comparative Example 2, and obtained the optimum film thicknesses of these layers by simulation.
  • the second simulation differs from the first simulation in that the material of the reflective electrode is an Al alloy and the material of the transparent conductive layer is IZO (Indium Zinc Oxide).
  • FIG. 9A and 9B are diagrams showing changes in light extraction efficiency when the thickness of the hole transport layer is changed.
  • FIG. 9A shows the case of no CF in Example 2
  • FIG. 9B shows the CF in Example 2.
  • (c) is the case of no CF of Comparative Example 2
  • (d) is the case of having CF of Comparative Example 2.
  • the thickness of the electron transport layer is 30 nm
  • the thickness of the hole injection layer is 5 nm
  • the thickness of the transparent conductive layer is 20 nm
  • the thickness of the organic light emitting layer is 80 nm for each of R, G, and B colors.
  • the thickness is fixed to 60 nm and 20 nm, and only the film thickness of the hole transport layer is changed.
  • the thickness of the electron transport layer is 30 nm
  • the thickness of the hole injection layer is 5 nm
  • the thickness of the transparent conductive layer is 20 nm
  • the thickness of the organic light emitting layer is 80 nm for each of R, G, and B colors. It is fixed at 80 nm and 60 nm, and only the film thickness of the hole transport layer is changed.
  • the reason why the film thickness of the first functional layer is different between the second simulation and the first simulation is that the materials of the reflective electrode and the transparent conductive layer are different.
  • Example 9 (b) in Example 2, in order to increase the light extraction efficiency, it is optimal to set the film thickness of the R, G, B color hole transport layers to 25 nm, 25 nm, and 25 nm.
  • Comparative Example 2 in order to increase the light extraction efficiency, it is optimal to set the film thicknesses of the R, G, B color hole transport layers to 25 nm, 16 nm, and 9 nm. .
  • the film thickness of the hole transport layer optimum for increasing the light extraction efficiency is the same for each color of R, G, and B, but is not the same in Comparative Example 2. The reason for this is as described in the first simulation.
  • organic light emitting layers of R, G, and B colors are used so that the film thickness of the hole transport layer that exhibits the primary maximum value of the light extraction efficiency in the presence of CF matches in the colors of R, G, and B.
  • the film thicknesses of the organic light emitting layers of R, G, and B colors are set to 80 nm, 80 nm, and 60 nm.
  • Example 2 is optimally designed when there is a CF.
  • FIG. 10 is a diagram showing the light extraction efficiency and the like when the film thickness of the hole transport layer is set to an optimum value, (a) is Example 2 and (b) is Comparative Example 2.
  • the optimum values of the thicknesses of the R, G, and B color hole transport layers are 25 nm, 25 nm, and 25 nm.
  • the light extraction efficiencies of the R, G, and B colors are 1.9 cd / A, 4.8 cd / A, and 0.51 cd / A, respectively, and the chromaticities are (0.66, 0.34) and (0.28, 0.67, respectively). ), (0.13.0.06).
  • the allowable range of the film thickness error for each color of R, G, B in the first functional layer is ⁇ 13 to +13 nm, ⁇ 18 to +10 nm, ⁇ 14 to +11 nm, and the allowable film thickness error for each color of R, G, B The widths are 26 nm, 28 nm, and 25 nm.
  • the optimum values of the film thicknesses of the R, G, and B color hole transport layers are 25 nm, 16 nm, and 9 nm.
  • the light extraction efficiencies of the R, G, and B colors are 1.9 cd / A, 4.7 cd / A, and 0.49 cd / A, respectively, and the chromaticities are (0.66, 0.34) and (0.28, 0.67, respectively). ), (0.13, 0.06).
  • the allowable ranges of film thickness errors for the R, G, and B colors in the first functional layer are ⁇ 13 to +13 nm, ⁇ 17 to +11 nm, and ⁇ 9 to +11 nm.
  • the widths are 26 nm, 28 nm, and 20 nm.
  • Example 2 can achieve the same light extraction efficiency and chromaticity as Comparative Example 2, and can match the film thickness of the first functional layer with each color of R, G, and B. Therefore, the manufacturing process can be simplified while increasing the light extraction efficiency.
  • the film thickness of each layer of the organic EL element may be within a range of ⁇ 10% from the film thickness obtained by the simulation in consideration of manufacturing errors.
  • the minimum value (min), the intermediate value (ave), and the maximum value (max) of the film thickness of each layer of the organic EL element of Example 2 are shown. That is, in common to R, G, and B, the transparent conductive layer is 18 nm to 22 nm, the hole injection layer is 4.5 nm to 5.5 nm, the hole transport layer is 22.5 nm to 27.5 nm, and the electron transport layer May be 27 nm or more and 33 nm or less.
  • the optical distance from the organic light emitting layer to the reflective electrode is 81.5 nm to 99.6 nm
  • the optical distance from the organic light emitting layer to the transparent electrode is 48.6 nm to 59.4 nm.
  • the R organic light emitting layer may be 72 nm to 88 nm
  • the G organic light emitting layer may be 54 nm to 66 nm
  • the B organic light emitting layer may be 18 nm to 22 nm.
  • FIG. 12A and 12B are diagrams showing changes in light extraction efficiency when the film thickness of the hole transport layer is changed.
  • FIG. 12A shows the case of no CF in Example 3
  • FIG. 12B shows the CF in Example 3.
  • (c) shows the case of no CF of Comparative Example 3
  • (d) shows the case of CF of Comparative Example 3.
  • FIG. 13 is a diagram showing changes in chromaticity (x, y) when the film thickness of the hole transport layer is changed.
  • (A) is R
  • (b) is G
  • (c) is B. Each color.
  • FIG. 12 shows that the light extraction efficiency changes when the thickness of the hole transport layer is changed
  • FIG. 13 shows that the chromaticity changes when the thickness of the hole transport layer is changed.
  • the chromaticity is not always close to the target chromaticity when the light extraction efficiency is the maximum value.
  • the target chromaticities of the R, G, and B colors are (0.66, 0.34), (0.28, 0.68), and (0.13, 0.06), respectively.
  • the substrate 1 is, for example, a TFT (Thin Film Transistor) substrate.
  • the material of the substrate 1 include glass plates and quartz plates such as soda glass, non-fluorescent glass, phosphate glass, and borate glass, and acrylic resins, styrene resins, polycarbonate resins, epoxy resins, polyethylene, Examples thereof include plastic plates or plastic films such as polyester and silicone resin, and metal plates or foils such as alumina.
  • the bank 12 may be formed of an insulating material, and preferably has organic solvent resistance. Further, since the bank 12 may be subjected to an etching process, a baking process, or the like, it is preferable that the bank 12 be formed of a material having high resistance to these processes.
  • the material of the bank 12 may be an organic material such as resin or an inorganic material such as glass.
  • an acrylic resin, a polyimide resin, a novolac-type phenol resin, or the like can be used.
  • As the inorganic material silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), or the like can be used. it can.
  • the reflective electrode 2 is electrically connected to the TFT disposed on the substrate 1, functions as a positive electrode of the organic light emitting element, and emits light emitted from the organic light emitting layers 6b, 6g, and 6r toward the reflective electrode 2.
  • the reflective function may be exhibited by the constituent material of the reflective electrode 2 or may be exhibited by applying a reflective coating to the surface portion of the reflective electrode 2.
  • the reflective electrode 2 is, for example, Ag (silver), APC (silver, palladium, copper alloy), ARA (silver, rubidium, gold alloy), MoCr (molybdenum and chromium alloy), NiCr (nickel and chromium alloy). ) Etc.
  • the transparent conductive layer 3 functions as a protective layer that prevents the reflective electrode 2 from being naturally oxidized during the manufacturing process.
  • the material of the transparent conductive layer 3 may be formed of a conductive material having sufficient translucency with respect to light generated in the organic light emitting layers 6b, 6g, and 6r.
  • ITO or IZO is preferable. This is because good conductivity can be obtained even if the film is formed at room temperature.
  • the hole injection layer 4 has a function of injecting holes into the organic light emitting layers 6b, 6g, 6r.
  • an oxide of a transition metal such as tungsten oxide (WOx), molybdenum oxide (MoOx), or molybdenum tungsten oxide (MoxWyOz) is used.
  • tungsten oxide WOx
  • MoOx molybdenum oxide
  • MoxWyOz molybdenum tungsten oxide
  • metal compounds such as nitrides of transition metals can also be applied.
  • ⁇ Hole transport layer Examples of the material for the hole transport layer 5 include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, and the like described in JP-A-5-163488.
  • Particularly preferred are a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound.
  • Organic light emitting layer ⁇ Organic light emitting layer>
  • the materials of the organic light emitting layers 6b, 6g, 6r are, for example, oxinoid compounds, perylene compounds, coumarin compounds, azacoumarin compounds, oxazole compounds, oxadiazole compounds, perinone compounds, pyrrolopyrrole compounds described in JP-A-5-163488.
  • the material constituting the electron transport layer may be doped with an alkali metal such as Na, Ba, or Ca or an alkaline earth metal.
  • the transparent electrode 8 functions as a negative electrode of the organic EL element.
  • the material of the transparent electrode 8 may be formed of a conductive material having sufficient translucency with respect to the light generated in the organic light emitting layers 6b, 6g, 6r.
  • ITO or IZO is preferable.
  • the thin film sealing layer 9 has a function of preventing each layer sandwiched between the substrate 1 from being exposed to moisture and air.
  • the material of the thin film sealing layer 9 is, for example, silicon nitride (SiN), silicon oxynitride (SiON), resin, or the like.
  • the resin sealing layer 10 bonds the back panel composed of the layers from the substrate 1 to the thin film sealing layer 9 and the substrate 11 on which the color filters 13b, 13g, and 13r are formed, and exposes each layer to moisture and air. It has a function to prevent
  • the material of the resin sealing layer 10 is, for example, a resin adhesive.
  • the color filters 13b, 13g, and 13r have a function of correcting the chromaticity of light emitted from the organic light emitting layer. [Organic display device] FIG.
  • FIG. 14 is a diagram showing functional blocks of the organic display device according to the embodiment of the present invention.
  • FIG. 15 is a diagram illustrating the appearance of an organic display device according to an embodiment of the invention.
  • the organic display device 15 includes an organic display panel 16 and a drive control unit 17 electrically connected thereto.
  • the organic display panel 16 has the pixel structure shown in FIG.
  • the drive control unit 17 includes drive circuits 18 to 21 that apply a voltage between the reflective electrode 2 and the transparent electrode 8 of each organic EL element, and a control circuit 22 that controls the operation of the drive circuits 18 to 21.
  • Method for manufacturing organic EL panel Next, a method for manufacturing the organic EL panel will be described. 16 and 17 are views for explaining a method for manufacturing an organic EL panel according to an embodiment of the present invention.
  • the reflective electrode 2 is formed on the substrate 1 by vapor deposition or sputtering (FIG. 16A).
  • the transparent conductive layer 3 is formed on the reflective electrode 2 by vapor deposition or sputtering (FIG. 16B). At this time, the film thickness of the transparent conductive layer 3 is made the same for each color of R, G, and B.
  • a hole injection layer 4 is formed on the transparent conductive layer 3 by, for example, a vapor deposition method or a sputtering method, a bank 12 is formed, and further, a printing such as an inkjet method is performed on the hole injection layer 4.
  • the hole transport layer 5 is formed by the method (FIG. 16C). At this time, the film thicknesses of the hole injection layer 4 and the hole transport layer 5 are the same for each color of R, G, and B.
  • the organic light emitting layers 6b, 6g, 6r are formed on the hole transport layer 5 by a printing method such as an ink jet method (FIG. 16D). At this time, the film thicknesses of the organic light emitting layers 6b, 6g, and 6r are appropriately changed for each color of R, G, and B.
  • the electron transport layer 7 is formed on the organic light emitting layers 6b, 6g, and 6r by vapor deposition or sputtering (FIG. 17A). At this time, the film thickness of the electron transport layer 7 is made the same for each color of R, G, and B.
  • the transparent electrode 8 is formed on the electron transport layer 7 by vapor deposition or sputtering (FIG. 17B).
  • the film thickness of the transparent electrode 8 is, for example, 90 nm or more and 110 nm or less.
  • the thin film sealing layer 9 is formed on the transparent electrode 8 by vapor deposition or sputtering, and the substrate 11 on which the color filters 13b, 13g, and 13r are formed is bonded using the resin sealing layer 10 (FIG. 17 (c)).
  • the film thickness of these sealing layers is, for example, 900 nm or more and 1100 nm or less.
  • Example 1 the thickness of the first functional layer is 31.5 nm or more and 38.5 or less, but the present invention is not limited to this.
  • the effect of increasing the light extraction efficiency is considered to be obtained by the interference effect between the light passing through the first optical path C1 and the light passing through the second optical path C2. Then, it can be said that the film thickness of the first functional layer is not important, and the optical distance from the organic light emitting layer to the reflective electrode is important.
  • the optical distance from the organic light emitting layer to the reflective electrode may be 57.6 nm or more and 70.4 nm or less, and the same effect can be obtained even if the film thickness of the first functional layer is changed as long as this condition is satisfied. be able to.
  • the thickness of the first functional layer is set to 45 nm or more and 55 nm or less, but the present invention is not limited to this.
  • the optical distance from the organic light emitting layer to the reflective electrode may be 81.5 nm or more and 99.6 nm or less, and the same effect can be obtained even if the film thickness of the first functional layer is changed as long as this condition is satisfied. it can.
  • the film thickness of the second functional layer is set to 27 nm or more and 33 nm or less, the present invention is not limited to this.
  • the optical distance from the organic light emitting layer to the transparent electrode may be 48.6 nm or more and 59.4 nm or less, and the same effect can be obtained even if the thickness of the second functional layer is changed as long as this condition is satisfied. it can.
  • the first functional layer is composed of a transparent conductive layer, a hole injection layer, and a hole transport layer, but the present invention is not limited to this. Any of these may be omitted, and other functional layers may be included.
  • the second functional layer is composed of the electron transport layer, but the present invention is not limited to this. For example, an electron injection layer may be included.
  • the present invention can be used for an organic EL display or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 光取り出し効率を高め、かつ、製造工程を簡便にする。 入射された光を反射する第1電極と、入射された光を透過する第2電極と、R、G,Bのうちの対応する色の光を出射する有機発光層と、第1電極と有機発光層との間に配置された第1の機能層と、第2電極と有機発光層との間に配置された第2の機能層とを備える。R,G,B各色では、第1の機能層の膜厚が同一であって、かつ、有機発光層から第1電極までの光学的な距離が同一であり、第2の機能層の膜厚が同一であって、かつ、有機発光層から第2電極までの光学的な距離が同一であり、有機発光層の膜厚が互いに相違する。

Description

有機ELパネル、それを用いた表示装置および有機ELパネルの製造方法
 本発明は、有機材料の電界発光現象を利用した有機ELパネル、それを用いた表示装置および有機ELパネルの製造方法に関し、特に、R(レッド),G(グリーン),B(ブルー)各色の光取り出し効率を高めるための光学設計に関する。
 近年、デジタルテレビ等の表示装置に用いられる表示パネルとして、有機材料の電界発光現象を利用した有機EL(Electro Luminescence)パネルの採用が提案されている。有機ELパネルは、基板上にR,G,Bの各色の有機EL素子が配列された構成を有している。
 有機ELパネルでは、消費電力低減や長寿命化などの観点から、R,G,B各色の有機EL素子の光取り出し効率を向上させることが重要である。そこで、有機EL素子の光学設計の工夫により光取り出し効率を向上させる技術が多数提案されている(特許文献1~6参照)。例えば、特許文献1には、光を反射する第1の電極と光を透過する第2の電極との間に、正孔を発生する第1の層、各発光色の発光層を含む第2の層、電子を発生する第3の層を有し、第1の層の膜厚が発光色毎に異なる発光素子が開示されている(段落0022~0025)。同文献には、第1の電極と第2の層との間の光学距離を発光波長の(2m-1)/4倍(mは任意の正の整数)としたときに光の干渉効果により光取り出し効率が高くなると記載されている(段落0026,0027)。
特開2006-156344号公報 特開2005-317255号公報 特開2005-322435号公報 特開2005-100946号公報 特開2008-41925号公報 特開2006-179780号公報
 しかしながら、上記従来技術では、正孔を発生する第1の層の膜厚をR,G,Bの色毎に調整する必要があり、そのために製造工程が煩雑になるという問題がある。
 そこで、本発明は、光の干渉効果を利用することにより光取り出し効率を高め、かつ、従来技術よりも製造工程を簡便にすることができる有機ELパネル、それを用いた表示装置および有機ELパネルの製造方法を提供することを目的とする。
 本発明の一態様である有機ELパネルは、R(レッド),G(グリーン),B(ブルー)の色毎に設けられ、入射された光を反射する第1電極と、前記R,G,B各色の第1電極に対向して配置され、入射された光を透過する第2電極と、前記R,G,Bの色毎に設けられ、前記第1電極と前記第2電極との間に配置された、前記第1電極と前記第2電極との間に電圧が印加されることにより前記R、G,Bのうちの対応する色の光を出射する有機発光層と、前記R,G,Bの色毎に設けられ、前記第1電極と前記有機発光層との間に配置された、1または2以上の層からなる第1の機能層と、前記R,G,Bの色毎に設けられ、前記第2電極と前記有機発光層との間に配置された、1または2以上の層からなる第2の機能層と、を備え、前記有機発光層から出射された光の一部が、前記第1の機能層を通じて前記第1電極に入射されて前記第1電極により反射された後、前記第1の機能層、前記有機発光層、前記第2の機能層および前記第2電極を通じて外部に出射される第1光路と、前記有機発光層から出射された光の残りの一部が、前記第1電極側に進行することなく、前記第2の機能層を通じて前記第2電極側に進行し、前記第2電極を通じて外部に出射される第2光路と、が形成され、前記R,G,B各色では、前記第1の機能層の膜厚が同一であって、かつ、前記有機発光層から前記第1電極までの光学的な距離が同一であり、前記第2の機能層の膜厚が同一であって、かつ、前記有機発光層から前記第2電極までの光学的な距離が同一であり、前記有機発光層の膜厚が互いに相違する。
 通常、有機発光層は、R,G,B各色で材料が異なるので、膜厚が同一であるか否かにかかわらず色毎に作り分ける必要がある。これに対し、第1および第2の機能層は、R,G,B各色で材料が同一なので、膜厚が同一であれば色毎に作り分ける必要がない。本発明の一態様である有機ELパネルによれば、第1および第2の機能層の膜厚がR,G,B各色で同一であり、有機発光層の膜厚がR,G,Bで相違する。すなわち、本来、色毎に作り分けを必要とする有機発光層のみで色毎の膜厚が調整されている。したがって、光の干渉効果を利用することにより光取り出し効率を高め、かつ、従来技術よりも製造工程を簡便にすることができる。
本発明の実施形態に係る有機ELパネルの画素構造を模式的に示す断面図 青色の有機EL素子における共振器構造を例示する図 シミュレーションで用いたR,G,B各色のカラーフィルタの透過スペクトルを示す図 正孔輸送層の膜厚を変化させたときの光取り出し効率の変化を示す図であり、(a)は実施例1のCF無しの場合、(b)は実施例1のCF有りの場合、(c)は比較例1のCF無しの場合、(d)は比較例1のCF有りの場合を示す図 各層の膜厚を変化させたときの光取り出し効率の変化を示し、(a)は正孔輸送層でCF無しの場合、(b)は正孔輸送層でCF有りの場合、(c)は有機発光層でCF無しの場合、(d)は有機発光層でCF有りの場合を示す図 正孔輸送層の膜厚を最適値に設定した場合の光取り出し効率等を示す図であり、(a)は実施例1、(b)は比較例1を示す図 各種許容範囲を示す図 実施例1の有機EL素子の各層の膜厚の最小値(min)、中間値(ave)、最大値(max)を示す図 正孔輸送層の膜厚を変化させたときの光取り出し効率の変化を示す図であり、(a)は実施例2のCF無しの場合、(b)は実施例2のCF有りの場合、(c)は比較例2のCF無しの場合、(d)は比較例2のCF有りの場合を示す図 は、正孔輸送層の膜厚を最適値に設定した場合の光取り出し効率等を示す図であり、(a)は実施例2、(b)は比較例2を示す図 実施例2の有機EL素子の各層の膜厚の最小値(min)、中間値(ave)、最大値(max)を示す図 正孔輸送層の膜厚を変化させたときの光取り出し効率の変化を示す図であり、(a)は実施例3のCF無しの場合、(b)は実施例3のCF有りの場合、(c)は比較例3のCF無しの場合、(d)は比較例3のCF有りの場合を示す図 正孔輸送層の膜厚を変化させたときの色度(x,y)の変化を示す図であり、(a)はR、(b)はG、(c)はBの各色を示す図 本発明の実施形態に係る有機表示装置の機能ブロックを示す図 本発明の実施形態に係る有機表示装置の外観を例示する図 本発明の実施形態に係る有機ELパネルの製造方法を説明するための図 本発明の実施形態に係る有機ELパネルの製造方法を説明するための図
[本発明の一態様の概要]
 本発明の一態様に係る有機ELパネルは、R(レッド),G(グリーン),B(ブルー)の色毎に設けられ、入射された光を反射する第1電極と、前記R,G,B各色の第1電極に対向して配置され、入射された光を透過する第2電極と、前記R,G,Bの色毎に設けられ、前記第1電極と前記第2電極との間に配置された、前記第1電極と前記第2電極との間に電圧が印加されることにより前記R、G,Bのうちの対応する色の光を出射する有機発光層と、前記R,G,Bの色毎に設けられ、前記第1電極と前記有機発光層との間に配置された、1または2以上の層からなる第1の機能層と、前記R,G,Bの色毎に設けられ、前記第2電極と前記有機発光層との間に配置された、1または2以上の層からなる第2の機能層と、を備え、前記有機発光層から出射された光の一部が、前記第1の機能層を通じて前記第1電極に入射されて前記第1電極により反射された後、前記第1の機能層、前記有機発光層、前記第2の機能層および前記第2電極を通じて外部に出射される第1光路と、前記有機発光層から出射された光の残りの一部が、前記第1電極側に進行することなく、前記第2の機能層を通じて前記第2電極側に進行し、前記第2電極を通じて外部に出射される第2光路と、が形成され、前記R,G,B各色では、前記第1の機能層の膜厚が同一であって、かつ、前記有機発光層から前記第1電極までの光学的な距離が同一であり、前記第2の機能層の膜厚が同一であって、かつ、前記有機発光層から前記第2電極までの光学的な距離が同一であり、前記有機発光層の膜厚が互いに相違する。
 通常、有機発光層は、R,G,B各色で材料が異なるので、膜厚が同一であるか否かにかかわらず色毎に作り分ける必要がある。これに対し、第1および第2の機能層は、R,G,B各色で材料が同一なので、膜厚が同一であれば色毎に作り分ける必要がない。本発明の一態様である有機ELパネルによれば、第1および第2の機能層の膜厚がR,G,B各色で同一であり、有機発光層の膜厚がR,G,Bで相違する。すなわち、本来、色毎に作り分けを必要とする有機発光層のみで色毎の膜厚が調整されている。したがって、光の干渉効果を利用することにより光取り出し効率を高め、かつ、従来技術よりも製造工程を簡便にすることができる。
 また、さらに、前記R,G,Bの色毎に設けられ、前記第2電極を挟んで前記有機発光層の反対側に配置されるカラーフィルタを備え、前記カラーフィルタ通過後の光の光取り出し効率が極大値を示すように、前記R,G,B各色の有機発光層の膜厚が調整されていることとしてもよい。
 発明者らの研究により、各層の膜厚を変化させたときに、光取り出し効率が変化すると共に色度も変化すること、さらに、光取り出し効率が極大値のときに色度が目標色度に近いとは限らないことが判明した。
 色度が目標色度から遠ければ、その分だけカラーフィルタ(CF)により色度補正をする必要があり、その結果、色度補正前では光取り出し効率が極大値であっても、色度補正後には光取り出し効率が極大値ではなくなる場合がある。本発明の一態様によれば、カラーフィルタ通過後の光の光取り出し効率が極大値を示すように有機発光層の膜厚が設定されているので、色度を目標色度に近づけつつ、光取り出し効率を高めることができる。
 また、前記第1の機能層の膜厚が、前記カラーフィルタ通過後の光の光取り出し効率が1次の極大値を示す膜厚に調整されていることとしてもよい。
 第1の機能層の膜厚を変化させると、光取り出し効率が周期的に変化し、光取り出し効率の極大値が周期的に現れる。これらの極大値を、第1の機能層の膜厚の薄い順に、1次、2次、3次・・・と称する。発明者らの研究により、極大値の次数が小さいほど、極大値が大きくなり、しかも、極大値を示す膜厚がR,G,B各色でほぼ等しくなることが判明した。本発明の一態様により、第1の機能層の膜厚が1次の極大値を示す膜厚なので、別の次数の極大値を示す膜厚とする場合に比べて、光取り出し効率を高めることができ、しかも、R,G,B各色で同一の膜厚に設定することができる。
 また、前記R,G,B各色の少なくとも一色の有機発光層の膜厚が、前記カラーフィルタ通過前の光の光取り出し効率が極大値を示す膜厚からずれていることとしてもよい。
 このような場合であっても、カラーフィルタ通過後の光の光取り出し効率では極大値を示すので、光取り出し効率を高めることができる。
 また、前記第1の機能層の膜厚が、31.5nm以上38.5nm以下であって、かつ、前記有機発光層から前記第1電極までの光学的な距離が57.6nm以上70.4nm以下であり、前記有機発光層の膜厚が、Rでは81nm以上99nm以下、Gでは63nm以上77nm以下、Bでは49.5nm以上60.5nm以下であることとしてもよい。
 また、前記第1の機能層は、前記第1の電極である陽極上に形成された透明導電層と、前記透明導電層上に形成された正孔注入層と、前記正孔注入層上に形成された正孔輸送層とを含み、前記透明導電層の膜厚が、13.5nm以上16.5nm以下であり、前記正孔注入層の膜厚が、4.5nm以上5.5nm以下であり、前記正孔輸送層の膜厚が、13.5nm以上16.5nm以下であることとしてもよい。
 また、前記第2の機能層の膜厚が、27nm以上33nm以下であって、かつ、前記有機発光層から前記第2電極までの光学的な距離が48.6nm以上59.4nm以下であることとしてもよい。
 また、前記第2の機能層は、電子輸送層を含み、前記電子輸送層の膜厚が、27nm以上33nm以下であることとしてもよい。
 また、前記第1の機能層の膜厚が、45nm以上55nm以下であって、かつ、前記有機発光層から前記第1電極までの光学的な距離が81.5nm以上99.6nm以下であり、前記有機発光層の膜厚が、Rでは72nm以上88nm以下、Gでは54nm以上66nm以下、Bでは18nm以上22nm以下であることとしてもよい。
 また、前記第1の機能層は、前記第1の電極である陽極上に形成された透明導電層と、前記透明導電層上に形成された正孔注入層と、前記正孔注入層上に形成された正孔輸送層とを含み、前記透明導電層の膜厚が、18nm以上22nm以下であり、前記正孔注入層の膜厚が、4.5nm以上5.5nm以下であり、前記正孔輸送層の膜厚が、22.5nm以上27.5nm以下であることとしてもよい。
 また、前記第2の機能層の膜厚が、27nm以上33nm以下であって、かつ、前記有機発光層から前記第2電極までの光学的な距離が48.6nm以上59.4nm以下であることとしてもよい。
 また、前記第2の機能層は、電子輸送層を含み、前記電子輸送層の膜厚が、27nm以上33nm以下であることとしてもよい。
 また、前記有機発光層は、有機材料を含み、印刷法を用いて形成されることとしてもよい。
 本発明の一態様に係る表示装置は、上記有機ELパネルを備える。
 本発明の一態様に係る有機ELパネルの製造方法は、入射された光を反射する第1電極を、R(レッド),G(グリーン),B(ブルー)の色毎に準備する第1工程と、前記R,G,B各色の第1電極上に、1または2以上の層からなる第1の機能層を設ける第2工程と、前記R,G,B各色の第1の機能層上に、それぞれR,G,Bのうちの対応する色の光を出射する有機発光層を設ける第3工程と、前記R,G,B各色の有機発光層上に、1または2以上の層からなる第2の機能層を設ける第4工程と、前記R,G,B各色の第2の機能層上に、前記第1の電極と対向して配置され、入射された光を透過する第2電極を設ける第5工程と、を備え、前記第2工程では、前記R,G,B各色の第1の機能層の膜厚が同一であって、かつ、前記有機発光層から前記第1電極までの光学的な距離が同一になるように、前記第1の機能層を設け、前記第3工程では、前記R,G,B各色の有機発光層の膜厚が互いに相違するように、前記有機発光層を設け、前記第4工程では、前記第2の機能層の膜厚が同一であって、かつ、前記有機発光層から前記第2電極までの光学的な距離が同一になるように、前記第2の機能層を設ける。
 なお、本明細書において、「膜厚が同一」とは、実測値が一致している場合のほか、実測値が一致していなくても製造誤差を考慮して実測値が±10%の範囲内でずれている場合も含むものとする。
[有機ELパネルの画素構造]
 図1は、本発明の実施形態に係る有機ELパネルの画素構造を模式的に示す断面図である。
 有機ELパネルでは、R(レッド),G(グリーン),B(ブルー)各色の画素が行方向及び列方向にマトリックス状に規則的に配置されている。各画素は有機材料を用いた有機EL素子で構成されている。
 青色の有機EL素子は、基板1、反射電極2、透明導電層3、正孔注入層4、正孔輸送層5、有機発光層6b、電子輸送層7、透明電極8、薄膜封止層9、樹脂封止層10、基板11およびカラーフィルタ13bを備える。以下、反射電極2と有機発光層6bとの間に配置された、透明導電層3、正孔注入層4および正孔輸送層5を「第1機能層」と称し、有機発光層6bと透明電極8との間に配置された電子輸送層7を「第2機能層」と称することがある。
 緑色の有機EL素子は、有機発光層6gおよびカラーフィルタ13gを除き、青色の有機EL素子と同様の構成を有する。赤色の有機EL素子も、有機発光層6rおよびカラーフィルタ(CF)13rを除き、青色の有機EL素子と同様の構成を有する。この例では、R,G,B各色の有機EL素子において、基板1、電子輸送層7、透明電極8、薄膜封止層9、樹脂封止層10および基板11が共通であり、それ以外の層はバンク12で区分されている。
 各色の有機EL素子では、反射電極2の存在により光の干渉効果を利用した共振器構造が実現されている。図2に青色の有機EL素子における共振器構造を例示する。有機EL素子には、有機発光層6bから出射された光の一部が、第1機能層を通じて反射電極2に入射され、反射電極2により反射された後、第1機能層、有機発光層6b、第2機能層および透明電極8を通じて外部に出射される第1光路C1と、有機発光層6bから出射された光の残りの一部が、反射電極2側に進行することなく、第2機能層を通じて透明電極8に進行し、透明電極8を通じて外部に出射される第2光路C2とが形成される。第1機能層の膜厚を適切に設定することにより、第1光路C1を通過する光と第2光路C2を通過する光とが強め合い、光取り出し効率を高めることができる。
 本実施形態では、第1機能層の構造、材料および膜厚が、R,G,B各色で同一である。第1機能層の構造、材料および膜厚がR,G,B各色で同一なので、有機発光層から反射電極までの光学的な距離がR,G,B各色で同一となる。光学的な距離は、単層構造の場合には膜厚と屈折率の積により求められ、2以上の多層構造の場合には、層毎に膜厚と屈折率の積をとり、得られた積を合計することにより求められる。
 また、第2機能層の構造、材料および膜厚が、R,G,B各色で同一である。第2機能層の構造、材料および膜厚がR,G,B各色で同一なので、有機発光層から透明電極までの光学的な距離がR,G,B各色で同一となる。
 これに対し、有機発光層の材料および膜厚は、R,G,B各色で互いに相違する。具体的には、有機発光層の膜厚は、カラーフィルタ通過後の光の取り出し効率が極大値を示すように調整されている。
 通常、第1機能層の材料および第2機能層の材料はR,G,B各色で同一なので、色毎に作り分ける必要がない。一方、有機発光層の材料はR,G,B各色で異なるので、色毎に作り分ける必要がある。このように、色毎に作り分ける必要がない第1機能層および第2機能層では色毎の膜厚を同一とし、本来、色毎に作り分ける必要がある有機発光層で色毎の膜厚を異ならせているので、製造工程を簡便にすることができる。
 以下、有機EL素子の各層の膜厚について詳細に説明する。
[第1のシミュレーション]
 発明者らは、実施例1と比較例1とを用意し、これらの各層の最適膜厚をシミュレーションにより求め、光取り出し効率および製造工程の簡便性について評価した。
 第1のシミュレーションでは、反射電極の材料をAg合金、透明導電層の材料をITO(Indium Tin Oxide)、R,G,B各色の有機発光層の材料を、サメイション(SUMATION)社製のRP158、GP1200、BP105とした。図3に、本シミュレーションで用いたR,G,B各色のカラーフィルタの透過スペクトルを示す。本シミュレーションで用いたカラーフィルタ特性は、公知技術を元に、本実施形態における光学特性などの観点から適宜調整して作成した。例えば、Red,GreenのCF特性は、特開2005-116516(図5)を参考にし、BlueのCF特性は、B440(株式会社オプトライン)を参考にしている。
 図4は、正孔輸送層の膜厚を変化させたときの光取り出し効率の変化を示す図であり、(a)は実施例1のCF無しの場合、(b)は実施例1のCF有りの場合、(c)は比較例1のCF無しの場合、(d)は比較例1のCF有りの場合である。
 実施例1では、電子輸送層の膜厚を30nm、正孔注入層の膜厚を5nm、透明導電層の膜厚を15nm、有機発光層の膜厚をR,G,B各色でそれぞれ90nm、70nm、55nmに固定し、正孔輸送層の膜厚のみを変化させている。
 比較例1では、電子輸送層の膜厚を30nm、正孔注入層の膜厚を5nm、透明導電層の膜厚を15nm、有機発光層の膜厚をR,G,B各色でそれぞれ80nm、80nm、60nmに固定し、正孔輸送層の膜厚のみを変化させている。
 CF有りの場合は、任意の膜厚を選択し、その膜厚でのCF無しの場合の色度を求め、得られた色度を目標色度に近づけるためのCF特性を求め、そのCF特性を有するCFを設けた場合の光取り出し効率を求めるという一連の作業を、調査範囲の全ての膜厚に対して行うことにより得られる。
 図4(a)、(c)を見ると、以下のことが分かる。
(1)正孔輸送層の膜厚を変化させると、光取り出し効率が周期的に変化し、光取り出し効率の極大値が周期的に現れる。
(2)極大値が現れる周期は、R,G,Bの順、即ち、光の波長が短くなるほど短くなる。
(3)周期的に現れる極大値を、正孔輸送層の膜厚の薄い順に1次(1st)、2次(2nd)と名付けた場合、次数が小さいほど極大値が大きくなる。
 上記(1)、(2)は、第1光路C1を通過する光と第2光路C2を通過する光とで干渉が生じていることを示している。また、上記(3)は、次数が小さな極大値をとるように正孔輸送層の膜厚を設定することにより光取り出し効率を高められることを示している。
 また、図4(b)から、実施例1では、光取り出し効率を高めるためには、R,G,B各色の正孔輸送層の膜厚を15nm、15nm、15nmにするのが最適である。一方、図4(d)から、比較例1では、光取り出し効率を高めるためには、R,G,B各色の正孔輸送層の膜厚を20nm、9nm、5nmにするのが最適である。このように、実施例1では、光取り出し効率を高めるのに最適な正孔輸送層の膜厚がR,G,B各色で一致しているのに対し、比較例1では一致していない。これらの相違は、有機発光層の膜厚調整に起因している。実は、実施例1では、CF有りの場合に光取り出し効率が1次極大値を示す正孔輸送層の膜厚がR,G,B各色で一致するように、R,G,B各色の有機発光層の膜厚が設定されている。具体的には、R,G,B各色で膜厚が90nm、70nm、55nmである。これに対し、比較例1では、そのような設計思想はなく、単に、発光に支障が無い範囲でR,G,B各色の有機発光層の膜厚を揃えるように設定されている。具体的には、R,G,B各色で膜厚が80nm、80nm、60nmである。このような設計思想の相違に起因して、実施例1と比較例1とで異なる結果が現れている。
 なお、図4(c)に示すように、比較例1でも、CF無しの場合には、光取り出し効率が1次極大値を示す正孔輸送層の膜厚がR,G,B各色で一致している。しかしながら、図4(d)に示すように、CF有りの場合にはそれらがR,G,B各色で不一致となる。これは、CF有りの場合には、R,G,Bそれぞれの目標色度への色度補正の度合いがR,G,B各色で異なるからである。色度補正が大きい場合、光取り出し効率が1次極大値を示す正孔輸送層の膜厚が大きく変化してしまう(図4(d)を見ると、B>G>Rの順で1次極大値が変化している)。このことは、CF無しを前提として各層の膜厚を最適に設計したとしても、それにCFを設けた場合には必ずしも最適にはならないことを示唆している。つまり、CF有りを前提とする場合には、目標色度への各色の補正の度合いを考慮の上、CF特性を絡めて各層の膜厚を検討する必要がある。実施例1は、CF特性を絡めて各層の膜厚を検討した結果得られたものであり、CF有りの場合に最適な設計になっている。
 なお、実施例1では、正孔輸送層の膜厚、ひいては第1機能層の膜厚がR,G,B各色で同一であり、有機発光層の膜厚がR,G,B各色で異なる。以下に示すように、R,G,B各色の膜厚を調整することで、第1機能層の膜厚を調整するよりも、光取り出し効率を高められる場合が多くなる。
 図5は、各層の膜厚を変化させたときの光取り出し効率の変化を示し、(a)は正孔輸送層でCF無しの場合、(b)は正孔輸送層でCF有りの場合、(c)は有機発光層でCF無しの場合、(d)は有機発光層でCF有りの場合である。
 図5(b)、(d)を比較すると、正孔輸送層と有機発光層とで、光取り出し効率の変化の周期はほぼ同じであるが、光取り出し効率の変化幅h1、h2が異なる。即ち、膜厚変化に対する光取り出し効率の変化の割合が、有機発光層のほうが正孔輸送層よりも小さい。
 有機EL素子の各層をインクジェット法で作製する場合、インクの滴下数で膜厚が調整されることになる。このとき、インク一滴の量が膜厚調整の最小単位となる。そのため、膜厚の調整は、連続的ではなく離散的にしかすることができない。このような場合、膜厚変化に対する光取り出し効率の変化の割合が小さな層で膜厚を調整したほうが、光取り出し効率を最も高めることができる膜厚に合わせ込むのに有利である。
 実施例1では、有機発光層でR,G,B各色の膜厚を調整しているので、光取り出し効率を最も高めることができる膜厚に合わせ込みやすい。
 図6は、正孔輸送層の膜厚を最適値に設定した場合の光取り出し効率等を示す図であり、(a)は実施例1、(b)は比較例1である。
 上述のように、実施例1では、R,G,B各色の正孔輸送層の膜厚の最適値は、15nm、15nm、15nmである。このとき、R,G,B各色の光取り出し効率は、それぞれ2.1cd/A、5.0cd/A、0.51cd/Aとなり、色度は、それぞれ(0.66,0.34)、(0.28,0.68)、(0.13,0.06)となる。また、第1機能層におけるR,G,B各色の膜厚誤差の許容範囲は、-10~+10nm、-9~+11nm、-15~+11nmとなり、R,G,B各色の膜厚誤差の許容幅は、20nm、20nm、26nmとなる。
 「膜厚誤差の許容範囲」とは、図7に示す許容範囲を満たすことを条件として、各層の膜厚を最適値からずらすことができる限度を示している。図7では、次の許容範囲が示されている。
(1)有機ELパネルの面内での光取り出し効率のばらつきが20[%]以内
(2)有機ELパネルの面内での色度のばらつきがx,yともに0.04以内
(3)視野角30°における輝度が視野角0°における輝度に対して90[%]以上、かつ、視野角45°における輝度が視野角0°における輝度に対して80[%]以上
(4)視野角50°における色度と視野角0°における色度との差がx,yともに0.04以内
 膜厚誤差の許容範囲が広いほど、製造工程において各層の膜厚調整が容易となることを意味する。「膜厚誤差の許容幅」とは、許容範囲の上限と下限の差である(例えば、実施例1のRでは、上限が+10、下限が-10なので、差が20となる)。
 一方、比較例1では、R,G,B各色の正孔輸送層の膜厚の最適値は、20nm、9nm、5nmである。このとき、R,G,B各色の光取り出し効率は、それぞれ2.1cd/A、5.0cd/A、0.51cd/Aとなり、色度は、それぞれ(0.66,0.34)、(0.28,0.68)、(0.13,0.06)となる。また、R,G,B各色の膜厚誤差の許容範囲は、-11~+9nm、-7~+11nm、-7~+11nmとなり、R,G,B各色の膜厚誤差の許容幅は、20nm、18nm、18nmとなる。
 このように、実施例1は、比較例1と同程度の光取り出し効率および色度を実現しつつ、第1機能層の膜厚をR,G,B各色で一致させることができる。したがって、光取り出し効率を高めながら、製造工程を簡便にすることができる。
 また、より詳細には、有機EL素子の各層の膜厚は、製造誤差を考慮して、シミュレーションにより得られた膜厚から±10%のずれの範囲内であればよいものとする。図8に、実施例1の有機EL素子の各層の膜厚の最小値(min)、中間値(ave)、最大値(max)を示す。即ち、R,G,B共通に、透明導電層は13.5nm以上16.5nm以下、正孔注入層は4.5nm以上5.5nm以下、正孔輸送層は13.5nm以上16.5nm以下、電子輸送層は27nm以上33nm以下であればよい。このとき、有機発光層から反射電極までの光学的な距離が57.6nm以上70.4nm以下となり、有機発光層から透明電極までの光学的な距離が48.6nm以上59.4nm以下となる。また、Rの有機発光層は81nm以上99nm以下、Gの有機発光層は63nm以上77nm以下、Bの有機発光層は49.5nm以上60.5nm以下であればよい。
[第2のシミュレーション]
 発明者らは、さらに、実施例2と比較例2とを用意し、これらの各層の最適膜厚をシミュレーションにより求めた。第2のシミュレーションが第1のシミュレーションと異なるのは、反射電極の材料をAl合金、透明導電層の材料をIZO(Indium Zinc Oxide)としたことである。
 図9は、正孔輸送層の膜厚を変化させたときの光取り出し効率の変化を示す図であり、(a)は実施例2のCF無しの場合、(b)は実施例2のCF有りの場合、(c)は比較例2のCF無しの場合、(d)は比較例2のCF有りの場合である。
 実施例2では、電子輸送層の膜厚を30nm、正孔注入層の膜厚を5nm、透明導電層の膜厚を20nm、有機発光層の膜厚をR,G,B各色でそれぞれ80nm、60nm、20nmに固定し、正孔輸送層の膜厚のみを変化させている。
 比較例2では、電子輸送層の膜厚を30nm、正孔注入層の膜厚を5nm、透明導電層の膜厚を20nm、有機発光層の膜厚をR,G,B各色でそれぞれ80nm、80nm、60nmに固定し、正孔輸送層の膜厚のみを変化させている。
 第2のシミュレーションと第1のシミュレーションとで第1機能層の膜厚が異なるのは、反射電極および透明導電層の材料が異なることによる。
 図9(b)から、実施例2では、光取り出し効率を高めるためには、R,G,B各色の正孔輸送層の膜厚を25nm、25nm、25nmにするのが最適である。一方、図9(d)から、比較例2では、光取り出し効率を高めるためには、R,G,B各色の正孔輸送層の膜厚を25nm、16nm、9nmにするのが最適である。このように、実施例2では、光取り出し効率を高めるのに最適な正孔輸送層の膜厚がR,G,B各色で一致しているのに対し、比較例2では一致していない。この理由は、第1のシミュレーションで説明した通りである。実施例2では、CF有りの場合に光取り出し効率の1次極大値を示す正孔輸送層の膜厚がR,G,B各色で一致するように、R,G,B各色の有機発光層の膜厚が、80nm、60nm、20nmに設定されている。これに対し、比較例2では、第1のシミュレーションと同様、R,G,B各色の有機発光層の膜厚が、80nm、80nm、60nmに設定されている。
 なお、図9(a)に示すように、比較例2では、CF無しの場合には、光取り出し効率が1次極大値を示す正孔輸送層の膜厚がR,G,B各色で僅かに不一致である。しかしながら、図9(c)に示すように、CF有りの場合には、それらがR,G,B各色で一致する。このように、実施例2は、CF有りの場合に最適な設計になっている。
 図10は、正孔輸送層の膜厚を最適値に設定した場合の光取り出し効率等を示す図であり、(a)は実施例2、(b)は比較例2である。
 上述のように、実施例2では、R,G,B各色の正孔輸送層の膜厚の最適値は、25nm、25nm、25nmである。このとき、R,G,B各色の光取り出し効率は、それぞれ1.9cd/A、4.8cd/A、0.51cd/Aとなり、色度は、それぞれ(0.66,0.34)、(0.28,0.67)、(0.13.0.06)となる。また、第1機能層におけるR,G,B各色の膜厚誤差の許容範囲は、-13~+13nm、-18~+10nm、-14~+11nmとなり、R,G,B各色の膜厚誤差の許容幅は、26nm、28nm、25nmとなる。
 一方、比較例2では、R,G,B各色の正孔輸送層の膜厚の最適値は、25nm、16nm、9nmである。このとき、R,G,B各色の光取り出し効率は、それぞれ1.9cd/A、4.7cd/A、0.49cd/Aとなり、色度は、それぞれ(0.66,0.34)、(0.28,0.67)、(0.13,0.06)となる。また、第1機能層におけるR,G,B各色の膜厚誤差の許容範囲は、-13~+13nm、-17~+11nm、-9~+11nmとなり、R,G,B各色の膜厚誤差の許容幅は、26nm、28nm、20nmとなる。
 このように、実施例2は、比較例2と同程度の光取り出し効率および色度を実現しつつ、第1機能層の膜厚をR,G,B各色で一致させることができる。したがって、光取り出し効率を高めながら、製造工程を簡便にすることができる。
 また、より詳細には、有機EL素子の各層の膜厚は、製造誤差を考慮して、シミュレーションにより得られた膜厚から±10%のずれの範囲内であればよいものとする。図11に、実施例2の有機EL素子の各層の膜厚の最小値(min)、中間値(ave)、最大値(max)を示す。即ち、R,G,B共通に、透明導電層は18nm以上22nm以下、正孔注入層は4.5nm以上5.5nm以下、正孔輸送層は22.5nm以上27.5nm以下、電子輸送層は27nm以上33nm以下であればよい。このとき、有機発光層から反射電極までの光学的な距離が81.5nm以上99.6nm以下となり、有機発光層から透明電極までの光学的な距離が48.6nm以上59.4nm以下となる。また、Rの有機発光層は72nm以上88nm以下、Gの有機発光層は54nm以上66nm以下、Bの有機発光層は18nm以上22nm以下であればよい。
[補足説明]
 既に、CF有りの場合にはCF特性を絡めて各層の膜厚を検討すべきことを説明した。これについてもう少し詳細に説明する。
 図12は、正孔輸送層の膜厚を変化させたときの光取り出し効率の変化を示す図であり、(a)は実施例3のCF無しの場合、(b)は実施例3のCF有りの場合、(c)は比較例3のCF無しの場合、(d)は比較例3のCF有りの場合である。図13は、正孔輸送層の膜厚を変化させたときの色度(x,y)の変化を示す図であり、(a)はR、(b)はG、(c)はBの各色である。
 図12から、正孔輸送層の膜厚を変化させたときに光取り出し効率が変化すること、図13から、正孔輸送層の膜厚を変化させたときに色度が変化することが分かる。また、図12および図13から、光取り出し効率が極大値のときに色度が目標色度に近いとは限らないことが分かる。ここで、R,G,B各色の目標色度は、それぞれ(0.66,0.34)、(0.28,0.68)、(0.13,0.06)である。
 CF無しの場合の色度が目標色度から遠ければ、その分だけカラーフィルタにより色度補正をする必要がある。そのため、CF無しの場合(CF通過前)では光取り出し効率が極大値であっても、CF有りの場合(CF通過後)には光取り出し効率が極大値ではなくなる場合がある。図12(b)、(d)には、その様子が現れている。
 以上より、CF有りの場合には、CF特性を絡めて各層の膜厚を検討する必要があると言える。
[各層の具体例]
 <基板>
 基板1は、例えば、TFT(Thin Film Transistor)基板である。基板1の材料は、例えば、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラスなどのガラス板及び石英板、並びに、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂などのプラスチック板又はプラスチックフィルム、並びに、アルミナなどの金属板又は金属ホイルなどである。
 <バンク>
 バンク12は、絶縁性材料により形成されていれば良く、有機溶剤耐性を有することが好ましい。また、バンク12はエッチング処理、ベーク処理などされることがあるので、それらの処理に対する耐性の高い材料で形成されることが好ましい。バンク12の材料は、樹脂などの有機材料であっても、ガラスなどの無機材料であっても良い。有機材料として、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂などを使用することができ、無機材料として、シリコンオキサイド(SiO)、シリコンナイトライド(Si)などを使用することができる。
 <反射電極>
 反射電極2は、基板1に配されたTFTに電気的に接続されており、有機発光素子の正極として機能すると共に、有機発光層6b,6g,6rから反射電極2に向けて出射された光を反射する機能を有する。反射機能は、反射電極2の構成材料により発揮されるものでもよいし、反射電極2の表面部分に反射コーティングを施すことにより発揮されるものでもよい。反射電極2は、例えば、Ag(銀)、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)等で形成されている。
<透明導電層>
 透明導電層3は、製造過程において反射電極2が自然酸化するのを防止する保護層として機能する。透明導電層3の材料は、有機発光層6b,6g,6rで発生した光に対して十分な透光性を有する導電性材料により形成されればよく、例えば、ITOやIZOなどが好ましい。室温で成膜しても良好な導電性を得ることができるからである。
<正孔注入層>
 正孔注入層4は、正孔を有機発光層6b,6g,6rに注入する機能を有する。例えば、酸化タングステン(WOx)、酸化モリブデン(MoOx)、酸化モリブデンタングステン(MoxWyOz)などの遷移金属の酸化物で形成される。遷移金属の酸化物で形成することで、電圧-電流密度特性を向上させ、また、電流密度を高めて発光強度を高めることができる。なお、これ以外に、遷移金属の窒化物などの金属化合物も適用できる。
<正孔輸送層>
 正孔輸送層5の材料は、例えば、特開平5-163488号に記載のトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、ブタジエン化合物、ポリスチレン誘導体、ヒドラゾン誘導体、トリフェニルメタン誘導体、テトラフェニルベンジン誘導体である。特に好ましくは、ポリフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物である。
<有機発光層>
 有機発光層6b,6g,6rの材料は、例えば、特開平5-163488号公報に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、アンスラセン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属鎖体、2-ビピリジン化合物の金属鎖体、シッフ塩とIII族金属との鎖体、オキシン金属鎖体、希土類鎖体等の蛍光物質である。
<電子輸送層>
 電子輸送層7の材料は、例えば、特開平5-163488号公報のニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体、ジフェキノン誘導体、ペリレンテトラカルボキシル誘導体、アントラキノジメタン誘導体、フレオレニリデンメタン誘導体、アントロン誘導体、オキサジアゾール誘導体、ペリノン誘導体、キノリン錯体誘導体である。
 なお、電子注入性を更に向上させる点から、上記電子輸送層を構成する材料に、Na,Ba,Caなどのアルカリ金属またはアルカリ土類金属をドーピングしてもよい。
<透明電極>
 透明電極8は、有機EL素子の負極として機能する。透明電極8の材料は、有機発光層6b,6g,6rで発生した光に対して十分な透光性を有する導電性材料により形成されればよく、例えば、ITOやIZOなどが好ましい。
<薄膜封止層>
 薄膜封止層9は、基板1との間に挟まれた各層が水分や空気に晒されることを防止する機能を有する。薄膜封止層9の材料は、例えば、窒化シリコン(SiN)、酸窒化シリコン(SiON)や樹脂等である。
<樹脂封止層>
 樹脂封止層10は、基板1から薄膜封止層9までの各層からなる背面パネルと、カラーフィルタ13b,13g,13rが形成された基板11とを貼り合わせるとともに、各層が水分や空気に晒されることを防止する機能を有する。樹脂封止層10の材料は、例えば、樹脂接着剤等である。
<カラーフィルタ>
 カラーフィルタ13b,13g,13rは、有機発光層から出射された光の色度を矯正する機能を有する。
[有機表示装置]
 図14は、本発明の実施形態に係る有機表示装置の機能ブロックを示す図である。図15は、本発明の実施形態に係る有機表示装置の外観を例示する図である。有機表示装置15は、有機表示パネル16と、これに電気的に接続された駆動制御部17とを備える。有機表示パネル16は、図1に示す画素構造を有するものである。駆動制御部17は、各有機EL素子の反射電極2と透明電極8との間に電圧を印加する駆動回路18~21と、駆動回路18~21の動作を制御する制御回路22とからなる。
[有機ELパネルの製造方法]
 次に、有機ELパネルの製造方法を説明する。図16、図17は、本発明の実施形態に係る有機ELパネルの製造方法を説明するための図である。
 まず、基板1上に反射電極2を蒸着法やスパッタ法によって形成する(図16(a))。次に、反射電極2上に、蒸着法やスパッタ法により透明導電層3を形成する(図16(b))。このとき、透明導電層3の膜厚をR,G,B各色で同一にする。
 次に、透明導電層3上に、例えば、蒸着法やスパッタ法により正孔注入層4を形成し、バンク12を形成し、さらに、正孔注入層4上に、例えば、インクジェット法などの印刷法により正孔輸送層5を形成する(図16(c))。このとき、正孔注入層4および正孔輸送層5の膜厚をR,G,B各色で同一にする。
 次に、正孔輸送層5上に、例えば、インクジェット法などの印刷法により有機発光層6b,6g,6rを形成する(図16(d))。このとき、有機発光層6b,6g,6rの膜厚をR,G,B各色で適宜異ならせる。
 次に、有機発光層6b,6g,6r上に蒸着法やスパッタ法により電子輸送層7を形成する(図17(a))。このとき、電子輸送層7の膜厚をR,G,B各色で同一にする。
 次に、電子輸送層7上に、蒸着法やスパッタ法により透明電極8を形成する(図17(b))。透明電極8の膜厚は、例えば、90nm以上110nm以下とする。
 次に、透明電極8上に蒸着法やスパッタ法により薄膜封止層9を形成し、カラーフィルタ13b,13g,13rが形成された基板11を、樹脂封止層10を用いて貼り合わせる(図17(c))。これらの封止層の膜厚は、例えば、900nm以上1100nm以下とする。
 以上、本発明を実施形態に基づいて説明したが、本発明は上記実施形態に限られない。例えば、以下のような変形例がある。
(1)実施例1では、第1機能層の膜厚を31.5nm以上38.5以下としているが、本発明は、これに限らない。光取り出し効率を高める効果は、第1光路C1を通過する光と第2光路C2を通過する光の干渉効果により得られるものと考えられる。そうすると、第1機能層の膜厚が重要ではなく、有機発光層から反射電極までの光学的な距離が重要であると言える。したがって、有機発光層から反射電極までの光学的な距離が57.6nm以上70.4nm以下であればよく、この条件を満たす限り、第1機能層の膜厚を変えても同一の効果を得ることができる。
 同様に、実施例2では、第1機能層の膜厚を45nm以上55nm以下としているが、本発明は、これに限らない。有機発光層から反射電極までの光学的な距離が81.5nm以上99.6nm以下であればよく、この条件を満たす限り、第1機能層の膜厚を変えても同一の効果を得ることができる。
 同様に、第2機能層についても膜厚を27nm以上33nm以下としているが、本発明はこれに限らない。有機発光層から透明電極までの光学的な距離が48.6nm以上59.4nm以下であればよく、この条件を満たす限り、第2機能層の膜厚を変えても同一の効果を得ることができる。
(2)実施形態では、第1機能層が透明導電層、正孔注入層および正孔輸送層から構成されているが、本発明は、これに限らない。これらの何れかが無くてもよいし、これ以外の機能層が含まれていてもよい。
(3)実施形態では、第2機能層が電子輸送層から構成されているが、本発明は、これに限らない。例えば、電子注入層が含まれていてもよい。
 本発明は、有機ELディスプレイ等に利用可能である。
    1  基板
    2  反射電極
    3  透明導電層
    4  正孔注入層
    5  正孔輸送層
    6b,6g,6r 有機発光層
    7  電子輸送層
    8  透明電極
    9  薄膜封止層
   10  樹脂封止層
   11  基板
   12  バンク
   13b,13g,13r カラーフィルタ
   15  有機表示装置
   16  有機表示パネル
   17  駆動制御部
   18~21 駆動回路
   22  制御回路

Claims (27)

  1.  R(レッド),G(グリーン),B(ブルー)の色毎に設けられ、入射された光を反射する第1電極と、
     前記R,G,B各色の第1電極に対向して配置され、入射された光を透過する第2電極と、
     前記R,G,Bの色毎に設けられ、前記第1電極と前記第2電極との間に配置された、前記第1電極と前記第2電極との間に電圧が印加されることにより前記R、G,Bのうちの対応する色の光を出射する有機発光層と、
     前記R,G,Bの色毎に設けられ、前記第1電極と前記有機発光層との間に配置された、1または2以上の層からなる第1の機能層と、
     前記R,G,Bの色毎に設けられ、前記第2電極と前記有機発光層との間に配置された、1または2以上の層からなる第2の機能層と、を備え、
     前記有機発光層から出射された光の一部が、前記第1の機能層を通じて前記第1電極に入射されて前記第1電極により反射された後、前記第1の機能層、前記有機発光層、前記第2の機能層および前記第2電極を通じて外部に出射される第1光路と、
     前記有機発光層から出射された光の残りの一部が、前記第1電極側に進行することなく、前記第2の機能層を通じて前記第2電極側に進行し、前記第2電極を通じて外部に出射される第2光路と、が形成され、
     前記R,G,B各色では、
     前記第1の機能層の膜厚が同一であって、かつ、前記有機発光層から前記第1電極までの光学的な距離が同一であり、
     前記第2の機能層の膜厚が同一であって、かつ、前記有機発光層から前記第2電極までの光学的な距離が同一であり、
     前記有機発光層の膜厚が互いに相違すること
     を特徴とする有機ELパネル。
  2.  さらに、前記R,G,Bの色毎に設けられ、前記第2電極を挟んで前記有機発光層の反対側に配置されるカラーフィルタを備え、
     前記カラーフィルタ通過後の光の光取り出し効率が極大値を示すように、前記R,G,B各色の有機発光層の膜厚が調整されていること
     を特徴とする請求項1に記載の有機ELパネル。
  3.  前記第1の機能層の膜厚が、前記カラーフィルタ通過後の光の光取り出し効率が1次の極大値を示す膜厚に調整されていること
     を特徴とする請求項2に記載の有機ELパネル。
  4.  前記R,G,B各色の少なくとも一色の有機発光層の膜厚が、前記カラーフィルタ通過前の光の光取り出し効率が極大値を示す膜厚からずれていること
     を特徴とする請求項3に記載の有機ELパネル。
  5.  前記第1の機能層の膜厚が、31.5nm以上38.5nm以下であって、かつ、前記有機発光層から前記第1電極までの光学的な距離が57.6nm以上70.4nm以下であり、
     前記有機発光層の膜厚が、Rでは81nm以上99nm以下、Gでは63nm以上77nm以下、Bでは49.5nm以上60.5nm以下であること
     を特徴とする請求項1に記載の有機ELパネル。
  6.  前記第1の機能層は、前記第1の電極である陽極上に形成された透明導電層と、前記透明導電層上に形成された正孔注入層と、前記正孔注入層上に形成された正孔輸送層とを含み、
     前記透明導電層の膜厚が、13.5nm以上16.5nm以下であり、
     前記正孔注入層の膜厚が、4.5nm以上5.5nm以下であり、
     前記正孔輸送層の膜厚が、13.5nm以上16.5nm以下であること
     を特徴とする請求項5に記載の有機ELパネル。
  7.  前記第2の機能層の膜厚が、27nm以上33nm以下であって、かつ、前記有機発光層から前記第2電極までの光学的な距離が48.6nm以上59.4nm以下であること
     を特徴とする請求項5に記載の有機ELパネル。
  8.  前記第2の機能層は、電子輸送層を含み、
     前記電子輸送層の膜厚が、27nm以上33nm以下であること
     を特徴とする請求項7に記載の有機ELパネル。
  9.  前記第1の機能層の膜厚が、45nm以上55nm以下であって、かつ、前記有機発光層から前記第1電極までの光学的な距離が81.5nm以上99.6nm以下であり、
     前記有機発光層の膜厚が、Rでは72nm以上88nm以下、Gでは54nm以上66nm以下、Bでは18nm以上22nm以下であること
     を特徴とする請求項1に記載の有機ELパネル。
  10.  前記第1の機能層は、前記第1の電極である陽極上に形成された透明導電層と、前記透明導電層上に形成された正孔注入層と、前記正孔注入層上に形成された正孔輸送層とを含み、
     前記透明導電層の膜厚が、18nm以上22nm以下であり、
     前記正孔注入層の膜厚が、4.5nm以上5.5nm以下であり、
     前記正孔輸送層の膜厚が、22.5nm以上27.5nm以下であること
     を特徴とする請求項9に記載の有機ELパネル。
  11.  前記第2の機能層の膜厚が、27nm以上33nm以下であって、かつ、前記有機発光層から前記第2電極までの光学的な距離が48.6nm以上59.4nm以下であること
     を特徴とする請求項9に記載の有機ELパネル。
  12.  前記第2の機能層は、電子輸送層を含み、
     前記電子輸送層の膜厚が、27nm以上33nm以下であること
     を特徴とする請求項11に記載の有機ELパネル。
  13.  前記有機発光層は、有機材料を含み、印刷法を用いて形成されること
     を特徴とする請求項1に記載の有機ELパネル。
  14.  請求項1に記載の有機ELパネルを用いた表示装置。
  15.  入射された光を反射する第1電極を、R(レッド),G(グリーン),B(ブルー)の色毎に準備する第1工程と、
     前記R,G,B各色の第1電極上に、1または2以上の層からなる第1の機能層を設ける第2工程と、
     前記R,G,B各色の第1の機能層上に、それぞれR,G,Bのうちの対応する色の光を出射する有機発光層を設ける第3工程と、
     前記R,G,B各色の有機発光層上に、1または2以上の層からなる第2の機能層を設ける第4工程と、
     前記R,G,B各色の第2の機能層上に、前記第1の電極と対向して配置され、入射された光を透過する第2電極を設ける第5工程と、を備え、
     前記第2工程では、
     前記R,G,B各色の第1の機能層の膜厚が同一であって、かつ、前記有機発光層から前記第1電極までの光学的な距離が同一になるように、前記第1の機能層を設け、
     前記第3工程では、
     前記R,G,B各色の有機発光層の膜厚が互いに相違するように、前記有機発光層を設け、
     前記第4工程では、
     前記第2の機能層の膜厚が同一であって、かつ、前記有機発光層から前記第2電極までの光学的な距離が同一になるように、前記第2の機能層を設けること
     を特徴とする有機ELパネルの製造方法。
  16.  さらに、前記R,G,Bの色毎に、前記第2電極を挟んで前記有機発光層の反対側に配置されるカラーフィルタを設ける第6工程を備え、
     前記第3工程では、
     前記カラーフィルタ通過後の光の光取り出し効率が極大値を示すように、前記R,G,B各色の有機発光層の膜厚が調整されること
     を特徴とする請求項15に記載の有機ELパネルの製造方法。
  17.  前記第2工程では、
     前記第1の機能層の膜厚が、前記カラーフィルタ通過後の光の光取り出し効率が1次の極大値を示す膜厚に調整されること
     を特徴とする請求項16に記載の有機ELパネルの製造方法。
  18.  前記第3工程では、
     前記R,G,B各色の少なくとも一色の有機発光層の膜厚が、前記カラーフィルタ通過前の光の光取り出し効率が極大値を示す膜厚からずれるように調整されること
     を特徴とする請求項17に記載の有機ELパネルの製造方法。
  19.  前記第2工程では、
     前記第1の機能層の膜厚が、31.5nm以上38.5nm以下であって、かつ、前記有機発光層から前記第1電極までの光学的な距離が57.6nm以上70.4nm以下に調整され、
     前記第3工程では、
     前記有機発光層の膜厚が、Rでは81nm以上99nm以下、Gでは63nm以上77nm以下、Bでは49.5nm以上60.5nm以下に調整されること
     を特徴とする請求項15に記載の有機ELパネルの製造方法。
  20.  前記第1の機能層は、前記第1の電極である陽極上に形成された透明導電層と、前記透明導電層上に形成された正孔注入層と、前記正孔注入層上に形成された正孔輸送層とを含み、
     前記第2工程では、
     前記透明導電層の膜厚が、13.5nm以上16.5nm以下に調整され、
     前記正孔注入層の膜厚が、4.5nm以上5.5nm以下に調整され、
     前記正孔輸送層の膜厚が、13.5nm以上16.5nm以下に調整されること
     を特徴とする請求項19に記載の有機ELパネルの製造方法。
  21.  前記第4工程では、
     前記第2の機能層の膜厚が、27nm以上33nm以下であって、かつ、前記有機発光層から前記第2電極までの光学的な距離が48.6nm以上59.4nm以下に調整されること
     を特徴とする請求項19に記載の有機ELパネルの製造方法。
  22.  前記第2の機能層は、電子輸送層を含み、
     前記第4工程では、
     前記電子輸送層の膜厚が、27nm以上33nm以下に調整されること
     を特徴とする請求項21に記載の有機ELパネルの製造方法。
  23.  前記第2工程では、
     前記第1の機能層の膜厚が、45nm以上55nm以下であって、かつ、前記有機発光層から前記第1電極までの光学的な距離が81.5nm以上99.6nm以下に調整され、
     前記第3工程では、
     前記有機発光層の膜厚が、Rでは72nm以上88nm以下、Gでは54nm以上66nm以下、Bでは18nm以上22nm以下に調整されること
     を特徴とする請求項15に記載の有機ELパネルの製造方法。
  24.  前記第1の機能層は、前記第1の電極である陽極上に形成された透明導電層と、前記透明導電層上に形成された正孔注入層と、前記正孔注入層上に形成された正孔輸送層とを含み、
     前記第2工程では、
     前記透明導電層の膜厚が、18nm以上22nm以下に調整され、
     前記正孔注入層の膜厚が、4.5nm以上5.5nm以下に調整され、
     前記正孔輸送層の膜厚が、22.5nm以上27.5nm以下に調整されること
     を特徴とする請求項23に記載の有機ELパネルの製造方法。
  25.  前記第4工程では、
     前記第2の機能層の膜厚が、27nm以上33nm以下であって、かつ、前記有機発光層から前記第2電極までの光学的な距離が48.6nm以上59.4nm以下に調整されること
     を特徴とする請求項23に記載の有機ELパネルの製造方法。
  26.  前記第2の機能層は、電子輸送層を含み、
     前記第4工程では、
     前記電子輸送層の膜厚が、27nm以上33nm以下に調整されること
     を特徴とする請求項25に記載の有機ELパネルの製造方法。
  27.  前記有機発光層は、有機材料を含み、印刷法を用いて形成されること
     を特徴とする請求項15に記載の有機ELパネルの製造方法。
PCT/JP2010/006859 2010-11-24 2010-11-24 有機elパネル、それを用いた表示装置および有機elパネルの製造方法 WO2012070085A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/819,059 US8916862B2 (en) 2010-11-24 2010-11-24 Organic EL panel, display device using same, and method for producing organic EL panel
PCT/JP2010/006859 WO2012070085A1 (ja) 2010-11-24 2010-11-24 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP2012545533A JP5753191B2 (ja) 2010-11-24 2010-11-24 有機elパネル、それを用いた表示装置および有機elパネルの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006859 WO2012070085A1 (ja) 2010-11-24 2010-11-24 有機elパネル、それを用いた表示装置および有機elパネルの製造方法

Publications (1)

Publication Number Publication Date
WO2012070085A1 true WO2012070085A1 (ja) 2012-05-31

Family

ID=46145464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006859 WO2012070085A1 (ja) 2010-11-24 2010-11-24 有機elパネル、それを用いた表示装置および有機elパネルの製造方法

Country Status (3)

Country Link
US (1) US8916862B2 (ja)
JP (1) JP5753191B2 (ja)
WO (1) WO2012070085A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872086A (zh) * 2012-12-17 2014-06-18 精工爱普生株式会社 有机电致发光装置以及电子设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6140970B2 (ja) 2012-10-12 2017-06-07 三菱電機株式会社 表示装置およびその製造方法
KR101429725B1 (ko) * 2012-10-31 2014-08-12 엘지디스플레이 주식회사 유기전계발광표시장치 및 이의 제조방법
KR20160060170A (ko) * 2014-10-21 2016-05-30 엘지디스플레이 주식회사 유기전계 발광소자
KR20180095154A (ko) * 2017-02-16 2018-08-27 삼성디스플레이 주식회사 발광 표시 장치
CN108565350B (zh) 2018-04-13 2019-06-28 京东方科技集团股份有限公司 Oled器件及其制造方法和显示面板
KR102597673B1 (ko) * 2018-05-16 2023-11-02 삼성디스플레이 주식회사 표시 장치
CN108682681B (zh) * 2018-05-25 2021-03-30 京东方科技集团股份有限公司 显示基板及其制作方法以及显示器件
CN109713164A (zh) * 2018-12-29 2019-05-03 武汉天马微电子有限公司 显示面板以及显示装置
CN109742255B (zh) * 2018-12-29 2021-04-30 武汉天马微电子有限公司 显示面板以及显示装置
US11980046B2 (en) * 2020-05-27 2024-05-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming an isolation structure having multiple thicknesses to mitigate damage to a display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179780A (ja) * 2004-12-24 2006-07-06 Canon Inc 有機発光素子及び表示パネル
JP2007157732A (ja) * 2007-01-29 2007-06-21 Sony Corp 発光素子およびこれを用いた表示装置
JP2010067482A (ja) * 2008-09-11 2010-03-25 Fujifilm Corp 有機el表示装置
JP2010251156A (ja) * 2009-04-16 2010-11-04 Panasonic Corp カラー有機エレクトロルミネッセンス表示装置およびその製造方法

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137485A (ja) 1990-09-28 1992-05-12 Ricoh Co Ltd 電界発光素子
JP3065704B2 (ja) 1991-04-26 2000-07-17 パイオニア株式会社 有機エレクトロルミネッセンス素子
JPH05163488A (ja) 1991-12-17 1993-06-29 Konica Corp 有機薄膜エレクトロルミネッセンス素子
US5443922A (en) 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
JP4136185B2 (ja) 1999-05-12 2008-08-20 パイオニア株式会社 有機エレクトロルミネッセンス多色ディスプレイ及びその製造方法
JP4046948B2 (ja) 2001-02-26 2008-02-13 株式会社日立製作所 有機発光表示装置
JP3724732B2 (ja) 2002-06-07 2005-12-07 富士電機ホールディングス株式会社 有機el発光素子
US6737800B1 (en) 2003-02-18 2004-05-18 Eastman Kodak Company White-emitting organic electroluminescent device with color filters and reflective layer for causing colored light constructive interference
JP4543798B2 (ja) 2003-08-18 2010-09-15 セイコーエプソン株式会社 有機el装置および電子機器
JP4403399B2 (ja) 2003-09-19 2010-01-27 ソニー株式会社 表示装置および表示装置の製造方法
EP1672962B1 (en) 2003-09-19 2012-06-20 Sony Corporation Organic light emitting device, manufacturing method thereof and display device using the organic light emitting device
JP4479250B2 (ja) 2004-01-21 2010-06-09 ソニー株式会社 表示装置の製造方法および表示装置
KR100669716B1 (ko) 2004-07-14 2007-01-16 삼성에스디아이 주식회사 페닐카르바졸 화합물 및 이를 이용한 유기 전계 발광 소자
US8188315B2 (en) 2004-04-02 2012-05-29 Samsung Mobile Display Co., Ltd. Organic light emitting device and flat panel display device comprising the same
KR100573137B1 (ko) 2004-04-02 2006-04-24 삼성에스디아이 주식회사 플루오렌계 화합물 및 이를 이용한 유기 전계 발광 소자
KR100846586B1 (ko) 2006-05-29 2008-07-16 삼성에스디아이 주식회사 유기 발광 소자 및 이를 구비한 평판 표시 장치
KR100787425B1 (ko) 2004-11-29 2007-12-26 삼성에스디아이 주식회사 페닐카바졸계 화합물 및 이를 이용한 유기 전계 발광 소자
JP2005317255A (ja) 2004-04-27 2005-11-10 Seiko Epson Corp 電界発光素子及び表示素子
JP2005322435A (ja) 2004-05-06 2005-11-17 Seiko Epson Corp 電界発光素子及び表示素子
JP4507718B2 (ja) 2004-06-25 2010-07-21 京セラ株式会社 カラー有機elディスプレイ及びその製造方法
KR100721554B1 (ko) * 2004-07-22 2007-05-23 삼성에스디아이 주식회사 유기 전계 발광 소자 및 그의 제조 방법
JP4823629B2 (ja) 2004-09-24 2011-11-24 株式会社半導体エネルギー研究所 発光装置
KR101197691B1 (ko) 2004-09-24 2012-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광장치
JP4525536B2 (ja) 2004-11-22 2010-08-18 セイコーエプソン株式会社 El装置および電子機器
US8021765B2 (en) 2004-11-29 2011-09-20 Samsung Mobile Display Co., Ltd. Phenylcarbazole-based compound and organic electroluminescent device employing the same
KR100721562B1 (ko) 2004-12-03 2007-05-23 삼성에스디아이 주식회사 마그네슘-칼슘 막인 캐소드를 구비하는 유기전계발광소자및 그의 제조방법
JP2006253015A (ja) 2005-03-11 2006-09-21 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンスカラー発光装置
US7851989B2 (en) 2005-03-25 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP5072243B2 (ja) 2005-03-25 2012-11-14 株式会社半導体エネルギー研究所 発光装置
JP4984433B2 (ja) * 2005-05-16 2012-07-25 大日本印刷株式会社 発光層の形成方法およびそれを用いた有機発光デバイスの製造方法
US7960908B2 (en) 2005-07-15 2011-06-14 Toshiba Matsushita Display Technology Co., Ltd. Organic EL display
JP2007027042A (ja) 2005-07-21 2007-02-01 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
JP4412264B2 (ja) * 2005-09-12 2010-02-10 ソニー株式会社 表示装置および表示装置の製造方法
KR101230316B1 (ko) * 2006-03-21 2013-02-06 삼성디스플레이 주식회사 표시장치와 그 제조방법
JP5207645B2 (ja) * 2006-03-29 2013-06-12 キヤノン株式会社 多色有機発光装置
JP4967423B2 (ja) 2006-04-04 2012-07-04 セイコーエプソン株式会社 発光装置および電子機器
TW200803606A (en) * 2006-06-13 2008-01-01 Itc Inc Ltd The fabrication of full color OLED panel using micro-cavity structure
JP2008027722A (ja) * 2006-07-21 2008-02-07 Sony Corp 表示装置および表示装置の製造方法
JP4658877B2 (ja) 2006-08-07 2011-03-23 株式会社 日立ディスプレイズ 有機発光表示装置
JP2008135373A (ja) 2006-10-24 2008-06-12 Canon Inc 有機発光装置及びその製造方法
KR100823511B1 (ko) 2006-11-10 2008-04-21 삼성에스디아이 주식회사 유기 발광 표시 장치 및 그 제조방법
JP4899929B2 (ja) * 2007-02-28 2012-03-21 セイコーエプソン株式会社 表示装置
JP4858379B2 (ja) * 2007-09-18 2012-01-18 セイコーエプソン株式会社 発光装置および電子機器
US7741770B2 (en) 2007-10-05 2010-06-22 Global Oled Technology Llc LED device having improved light output
US8227978B2 (en) * 2007-10-10 2012-07-24 Samsung Electronics Co., Ltd. White organic light emitting device and color display apparatus employing the same
KR101434361B1 (ko) * 2007-10-16 2014-08-26 삼성디스플레이 주식회사 백색 유기 전계 발광소자 및 이를 이용한 컬러 디스플레이장치
JP5251239B2 (ja) * 2008-05-08 2013-07-31 セイコーエプソン株式会社 有機el装置、電子機器、有機el装置の製造方法
JP5515237B2 (ja) * 2008-05-14 2014-06-11 セイコーエプソン株式会社 発光装置及び電子機器
JP2010118163A (ja) 2008-11-11 2010-05-27 Seiko Epson Corp 発光装置及び電子機器
KR101403420B1 (ko) * 2009-06-11 2014-06-03 파이오니아 가부시키가이샤 발광소자 및 표시장치
JP2011009017A (ja) * 2009-06-24 2011-01-13 Panasonic Corp 有機elディスプレイパネル
JP5685855B2 (ja) * 2009-09-08 2015-03-18 株式会社リコー 表示装置および表示装置の製造方法
CN102474938B (zh) 2009-09-29 2015-09-09 株式会社日本有机雷特显示器 发光元件以及使用该发光元件的显示装置
JP5607654B2 (ja) 2010-01-08 2014-10-15 パナソニック株式会社 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
WO2012001727A1 (ja) 2010-06-28 2012-01-05 パナソニック株式会社 有機発光素子とその製造方法、有機表示パネル、有機表示装置
WO2012014252A1 (ja) 2010-07-27 2012-02-02 パナソニック株式会社 有機el表示パネルとその製造方法
CN102440073B (zh) 2010-08-10 2014-10-08 松下电器产业株式会社 有机发光元件、有机发光装置、有机显示面板、有机显示装置以及有机发光元件的制造方法
JP5425242B2 (ja) * 2012-01-31 2014-02-26 キヤノン株式会社 有機el素子及びこれを用いた表示装置
KR101990116B1 (ko) * 2012-10-22 2019-10-01 삼성디스플레이 주식회사 유기발광장치 및 그것의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179780A (ja) * 2004-12-24 2006-07-06 Canon Inc 有機発光素子及び表示パネル
JP2007157732A (ja) * 2007-01-29 2007-06-21 Sony Corp 発光素子およびこれを用いた表示装置
JP2010067482A (ja) * 2008-09-11 2010-03-25 Fujifilm Corp 有機el表示装置
JP2010251156A (ja) * 2009-04-16 2010-11-04 Panasonic Corp カラー有機エレクトロルミネッセンス表示装置およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872086A (zh) * 2012-12-17 2014-06-18 精工爱普生株式会社 有机电致发光装置以及电子设备
JP2014120318A (ja) * 2012-12-17 2014-06-30 Seiko Epson Corp 有機エレクトロルミネッセンス装置、及び電子機器
CN103872086B (zh) * 2012-12-17 2018-04-10 精工爱普生株式会社 有机电致发光装置以及电子设备

Also Published As

Publication number Publication date
US20130285023A1 (en) 2013-10-31
US8916862B2 (en) 2014-12-23
JP5753191B2 (ja) 2015-07-22
JPWO2012070085A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5753191B2 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP5574450B2 (ja) 有機発光素子、有機発光装置、有機表示パネル、有機表示装置および有機発光素子の製造方法
JP5600752B2 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP5303036B2 (ja) 発光素子およびそれを用いた表示装置
JP5607654B2 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP6019375B2 (ja) 発光素子およびそれを用いた表示装置
WO2012070087A1 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP5879613B2 (ja) 表示装置
WO2012070088A1 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP6111478B2 (ja) 発光素子及び表示装置
WO2012168978A1 (ja) 有機発光パネルおよびその製造方法
JP5778799B2 (ja) 有機発光素子
US11495777B2 (en) Self-luminous element, self-luminous panel, and self-luminous panel manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859999

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012545533

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13819059

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859999

Country of ref document: EP

Kind code of ref document: A1