WO2012069440A1 - Copolymere, die carbonsäuregruppen, sulfonsäuregruppen und polyalkylenoxidgruppen enthalten, als belagsinhibierender zusatz zu wasch- und reinigungsmitteln - Google Patents

Copolymere, die carbonsäuregruppen, sulfonsäuregruppen und polyalkylenoxidgruppen enthalten, als belagsinhibierender zusatz zu wasch- und reinigungsmitteln Download PDF

Info

Publication number
WO2012069440A1
WO2012069440A1 PCT/EP2011/070616 EP2011070616W WO2012069440A1 WO 2012069440 A1 WO2012069440 A1 WO 2012069440A1 EP 2011070616 W EP2011070616 W EP 2011070616W WO 2012069440 A1 WO2012069440 A1 WO 2012069440A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
acid
copolymers
copolymers according
groups
Prior art date
Application number
PCT/EP2011/070616
Other languages
English (en)
French (fr)
Inventor
Jürgen Detering
Bolette Urtel
Heike Weber
Roland Ettl
Torben GÄDT
Ewald Heintz
Thorsten Bastigkeit
Thomas Eiting
Dorota SENDOR-MÜLLER
Original Assignee
Basf Se
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Henkel Ag & Co. Kgaa filed Critical Basf Se
Priority to PL11784708T priority Critical patent/PL2643368T3/pl
Priority to MX2013005692A priority patent/MX340486B/es
Priority to ES11784708.7T priority patent/ES2556408T3/es
Priority to EP11784708.7A priority patent/EP2643368B1/de
Priority to CN201180065659.XA priority patent/CN103492436B/zh
Priority to BR112013012695-7A priority patent/BR112013012695B1/pt
Priority to JP2013540318A priority patent/JP6125428B2/ja
Priority to CA2818703A priority patent/CA2818703A1/en
Priority to RU2013128412/04A priority patent/RU2576325C2/ru
Priority to KR1020137013149A priority patent/KR101859790B1/ko
Publication of WO2012069440A1 publication Critical patent/WO2012069440A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/378(Co)polymerised monomers containing sulfur, e.g. sulfonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F228/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F228/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a bond to sulfur
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers

Definitions

  • the invention relates to copolymers containing carboxylic acid groups, sulfonic acid groups and polyalkylene oxide groups, and their use as a deposit-inhibiting additive to detergents and cleaners, in particular to phosphate-containing and phosphate-free cleaning formulations for machine dishwashing.
  • detergents and cleaners in particular to phosphate-containing and phosphate-free cleaning formulations for machine dishwashing.
  • phosphate-containing and phosphate-free cleaning formulations for machine dishwashing In the automatic dishwashing, the items to be washed in residue-free cleaned state with flawless glossy surface incurred, for which usually a cleaner, a rinse aid and Regeneriersalz must be used for water softening.
  • the "3in1" dishwashing detergents introduced on the market since 2001 combine the function of detergent, rinse aid and regenerating salt in one product.
  • Copolymers of monomers containing carboxyl groups and monomers containing sulfonic acid have been an important constituent of phosphate-containing and phosphate-free automatic dishwasher detergents for some years. Their contribution to the cleaning and rinsing performance and above all their contribution to the prevention of deposits on the items to be washed are still in need of improvement.
  • EP-A-0 778 340 describes the use of copolymers of allyl alcohol ethoxylates and acrylic acid in phosphate-free dishwashing detergent compositions.
  • WO 02/08527 discloses sulfonic acid group-containing copolymers, the preparation of the copolymers and their use as an additive to detergents, cleaners and rinse aids.
  • the copolymers contain (a) 70 to 100 mol% of at least two different monoethylenically unsaturated carboxylic acid monomers and (b) 0 to 30 mol% of one or more nonionic monomers.
  • the introduction of the sulfonic acid groups is carried out by amidation with an amino-Ci-C 2 alkanesulfonic acid.
  • WO 2005/042684 describes the use of special copolymers of acrylic acid, methacrylic acid and acrylic acid alkoxylates as deposit-inhibiting additives in machine dishwashing.
  • DE 102 25 794 describes the use of copolymers containing sulfonic acid groups of from 30 to 95 mol% of a monoethylenically unsaturated carboxylic acid, from 3 to 35 mol% of at least one monomer containing sulfonic acid groups and from 2 to 35 mol% of a (meth) acrylic acid alkoxylate as deposit-inhibiting additive to laundry detergent. and detergents.
  • copolymers of (meth) acrylic acid, methoxypolyethylene glycol methacrylate and sulfoethylmethacrylic acid sodium salt are used.
  • a binary copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid is used.
  • WO2008 / 132131 describes the use of copolymers containing sulfonic acid groups of from 30 to 95 mol% of acrylic acid and / or methacrylic acid, from 3 to 35 mol% of a sulfonic acid-containing monomer and from 2 to 35 mol% of a nonionic monomer of the formula
  • H 2 C C (R 2 ) -COO-R 3 - [- R 4 -O-] n -R 5 as a deposit-inhibiting additive to machine dishwashing detergents to prevent the formation of calcium phosphate deposits.
  • WO 2010/024468 describes the use of copolymers of a carboxylate group-containing monomer, a sulfonate-containing polymer and an allyl ether or allyl alcohol ethoxylate having 1 to 5 ethylene oxide groups as an additive to detergents and cleaners.
  • Preferred sulfonate group-containing monomer is 2-hydroxy-3-allyloxypropanesulfonklare.
  • the object of the invention is to provide copolymers which are distinguished by advantageous application properties, in particular by their coating-inhibiting effect and broad applicability in the field of machine dishwashing in phosphate-containing and phosphate-free dishwashing detergents.
  • the object of the invention is furthermore to provide improved phosphate-containing and phosphate-free cleaning formulations for machine dishwashing, which result in an improved dishwashing result.
  • the object of the invention is, in particular, to provide such formulations which, without the use of additional rinse aid, result in a dish-free, covering-free and drip-free dish.
  • the object is further achieved by the use of the copolymers as a coating-inhibiting additive to detergents and cleaners, in particular to phosphate-free or phosphate-containing cleaning formulations for machine dishwashing.
  • the object is further achieved by a cleaning formulation for machine dishwashing containing as components: a) 1 to 20 wt .-% of at least one copolymer, which a1) from 30 to 90% by weight of at least one monoethylenically unsaturated C 3 -C 8 -carboxylic acid, an anhydride or salt thereof, a2) from 3 to 60% by weight of at least one sulfonic acid-containing monomer, a3) from 3 to 60% by weight.
  • % of at least one nonionic monomer of the formula (I) H 2 C C (R 1) COO- [R 2 -0] 0 -R 3 (I) in which R 1 represents hydrogen or methyl, R 2 are identical or different, linear or branched C 2 -C 6 -alkylene radicals, which may be arranged blockwise or randomly, and R 3 is hydrogen or a straight-chain or branched C 1 -C 4 -alkyl radical and o is a natural number from 3 to 50, a4) 0 to 30 % By weight of one or more further ethylenically unsaturated monomers polymerizable with a1), a2) and a3), the sum of a1), a2), a3) and a4) giving 100% by weight,
  • nonionic surfactants 0.1 to 20% by weight of nonionic surfactants
  • bleaching agent 0 to 30 wt .-% bleaching agent and optionally bleach activators and bleach catalysts
  • enzymes 0 to 8% by weight of enzymes, i) 0 to 50 wt .-% of one or more other additives such as anionic or zwitterionic surfactants, alkali carriers, corrosion inhibitors, defoamers, dyes, fragrances, fillers, organic solvents and water, wherein the sum of components a) to i) 100 wt. -% results.
  • additives such as anionic or zwitterionic surfactants, alkali carriers, corrosion inhibitors, defoamers, dyes, fragrances, fillers, organic solvents and water, wherein the sum of components a) to i) 100 wt. -% results.
  • the copolymer contains 30 to 90 wt .-% of at least one monoethylenically unsaturated C 3 -C 8 carboxylic acid, an anhydride or a salt thereof.
  • Suitable water-soluble salts are, for example, the sodium and potassium salts of the carboxylic acids.
  • Suitable unsaturated C 3 -C 8 -carboxylic acids are, in particular, acrylic acid, methacrylic acid, ethacrylic acid, vinylacetic acid, allylacetic acid, crotonic acid, maleic acid, fumaric acid, mesaconic acid and itaconic acid and also their water-soluble salts.
  • the said unsaturated C 3 -C 8 -carboxylic acids can form anhydrides, these too are suitable as monomers a1), for example maleic anhydride, itaconic anhydride and methacrylic anhydride.
  • the copolymer contains as component a1) acrylic acid, methacrylic acid or their water-soluble salts.
  • Water-soluble salts are, for example, the sodium and potassium salts.
  • the copolymer contains from 3 to 60% by weight of a monomer containing sulfonic acid groups.
  • Preferred monomers a2) are 2-acrylamido-2-methylpropanesulfonic acid, allylsulfonic acid or salts thereof.
  • Suitable salts are generally water-soluble salts, preferably the sodium, potassium and ammonium salts of the acids mentioned.
  • R 1 is hydrogen or methyl
  • R 2 are identical or different, linear or branched C 2 -C 6 -alkylene radicals which may be arranged blockwise or randomly
  • R 3 is hydrogen or a straight-chain or branched CC 4 alkyl radical and o is a natural number from 3 to 50 are.
  • alkylene radicals can also be arranged blockwise and randomly, ie be arranged in blocks in one or more blocks of identical alkylene oxide radicals and next to one or more blocks of two or more different alkylene oxide radicals. This is encompassed by the phrase "blockwise or statistically arranged”.
  • the nonionic monomer a3) contains on average 3 to 50, preferably 8 to 45, more preferably 10 to 45, especially 20 to 45 alkylene oxide units. For example, it may contain on average 22 or 44 alkylene oxide units.
  • the index o refers to the average number of alkylene oxide units.
  • Preferred alkylene oxide units R 2 -O are ethylene oxide, 1, 2-propylene oxide and 1, 2-butylene oxide, particularly preferred are ethylene oxide and 1, 2-propylene oxide.
  • the nonionic monomers a3) contain only ethylene oxide units.
  • R 3 is methyl.
  • the copolymer may contain 0 to 30% by weight of one or more further ethylenically unsaturated monomers which are polymerizable with a1), a2) and a3).
  • Examples of further ethylenically unsaturated monomers a4) include acrylamide, t-butylacrylamide, vinyl acetate, vinylmethyl ether, hydroxybutyl vinyl ether, 1-vinylpyrrolidone, 1-vinylcaprolactam, 1-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, methyl methacrylate, ethyl acrylate, isobutene, diisobutene, isoprenol , 1-alkenes such as 1-octene, N, N-dimethylacrylamide and styrene into consideration.
  • the proportion of polymerized monomers a1) in particular of copolymerized acrylic acid, methacrylic acid or a water-soluble salt of these acids, 40 to 85 wt .-% and particularly preferably 47 to 83 wt .-%.
  • the proportion of polymerized 2-acrylamido-2-methylpropanesulfonic a2) is preferably 4 to 40 wt .-%, preferably 6 to 35 wt .-% and particularly preferably 8 to 32 wt .-%.
  • the proportion of monomer units a3) of the formula (I) is preferably from 4 to 35% by weight, more preferably from 6 to 30% by weight.
  • monomers a4) are present in the copolymers according to the invention, their proportion is preferably up to 20% by weight, more preferably up to 15% by weight and especially up to 10% by weight.
  • the novel copolymers a) generally have an average molecular weight M w of from 2,000 to 200,000 g / mol, preferably from 3,000 to 100,000 g / mol, more preferably from 10,000 to 50,000 g / mol, determined by gel permeation chromatography at room temperature with water as eluent against polyacrylate standards.
  • K values are from 15 to 100, preferably from 20 to 80, particularly preferably from 30 to 50, measured at pH 7.0 in 1% strength by weight aqueous solution at 25 ° C. according to H. Finkentscher, Cellulose -Chemie Volume 13, pages 58 to 64 and 71 to 74 (1932).
  • copolymers of the invention can be prepared by free-radical polymerization of the monomers. It can be worked by all known radical polymerization. In addition to the bulk polymerization, the methods of solution polymerization and emulsion polymerization should be mentioned in particular, with the solution polymerization being preferred.
  • the polymerization is preferably carried out in water as a solvent.
  • alcoholic solvents in particular C 1 -C 4 -alcohols, such as methanol, ethanol and isopropanol, or mixtures of these solvents with water.
  • Suitable polymerization initiators are both thermally and photochemically (photoinitiators) decomposing and thereby radical-forming compounds. Frequently, redox initiator systems are used which consist of a peroxo compound, a metal salt and a reducing agent.
  • suitable peroxo compounds are hydrogen peroxide, peroxodisulfate (as the ammonium, sodium or potassium salt), peroxosulfates, and organic peroxo compounds such as tert-butyl hydroperoxide, cumene hydroperoxide or dibenzoyl peroxide.
  • Suitable metal salts are especially iron (II) salts such as iron (II) sulfate heptahydrate.
  • Suitable reducing agents are sodium sulfite, the disodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid, sodium hydroxymethanesulfinate, ascorbic acid, iso-ascorbic acid or mixtures thereof.
  • thermally activatable polymerization initiators preference is given to initiators having a decomposition temperature in the range from 20 to 180.degree. C., in particular from 50 to 90.degree.
  • thermal initiators are inorganic peroxo compounds, such as peroxodisulfates (ammonium and preferably sodium peroxodisulfate), peroxosulfates, percarbonates and hydrogen peroxide; organic peroxy compounds, such as diacetyl peroxide, di-tert-butyl peroxide, diamyl peroxide, dioctanoyl peroxide, Didecanoyl peroxide, dilauroyl peroxide, dibenzoyl peroxide, bis (o-toloyl) peroxide, succinyl peroxide, tert-butyl perneodecanoate, tert-butyl perbenzoate, tert-butyl perisobutyrate, tert-butyl perpivalate, tert-butyl peroctoate, tert-butyl perneodecanoate, tert-butyl perbenzoate tert-buty
  • initiators can be used in combination with reducing compounds as starter / regulator systems.
  • reducing compounds include phosphorus-containing compounds such as phosphorous acid, hypophosphites and phosphinates, sulfur-containing compounds such as sodium hydrogen sulfite, sodium sulfite and sodium formaldehyde sulfoxilate, and hydrazine.
  • phosphorus-containing compounds such as phosphorous acid, hypophosphites and phosphinates
  • sulfur-containing compounds such as sodium hydrogen sulfite, sodium sulfite and sodium formaldehyde sulfoxilate
  • hydrazine examples of suitable photoinitiators are benzophenone, acetophenone, Benzyldialkylketone and derivatives thereof.
  • thermal initiators are used, with inorganic peroxo compounds, in particular sodium peroxodisulfate, being preferred.
  • the peroxo compounds are particularly advantageous in combination with sulfur-containing reducing agents, in particular sodium hydrogen sulfite, as the redox initiator system.
  • sulfur-containing reducing agents in particular sodium hydrogen sulfite
  • this starter / regulator system copolymers are obtained which contain as end groups -S0 3 " Na + and / or -S0 4 " Na + and are characterized by special cleaning power and deposit-inhibiting effect.
  • phosphorus-containing starter / regulator systems may also be used, e.g. Hypophosphites / phosphinates.
  • the amounts of photoinitiator or starter / regulator system are to be matched to the particular substances used. If, for example, the preferred system peroxodisulfate / hydrogen sulfite is used, usually 2 to 6% by weight, preferably 3 to 5% by weight, of peroxodisulfate and generally 5 to 30% by weight, preferably 5 to 10% by weight. %, Hydrogen sulfite, in each case based on the monomers a1), a2) a3) and optionally a4) used.
  • polymerization regulators can also be used.
  • sulfur compounds such as mercaptoethanol, 2-ethylhexyl thioglycolate, thioglycolic acid and dodecyl mercaptan are suitable.
  • polymerization regulators their amount used is generally from 0.1 to 15% by weight, preferably from 0.1 to 5% by weight. and particularly preferably 0, 1 to 2.5 wt .-%, based on monomers a1), a2) a3) and optionally a4).
  • the polymerization temperature is usually at 20 to 200 ° C, preferably at 20 to 150 ° C and particularly preferably at 20 to 120 ° C.
  • the polymerization may be carried out under atmospheric pressure, but is preferably carried out in the closed system under the evolving autogenous pressure.
  • the copolymers can be obtained in the acidic state, but they can also, if desired for the application, by the addition of bases, in particular sodium hydroxide, already during the polymerization or after completion of the polymerization, neutralized or partially neutralized.
  • bases in particular sodium hydroxide
  • the preferred pH of the aqueous copolymer solutions is in the range of 3 to 8.5.
  • copolymers used according to the invention can be used directly in the form of the aqueous solutions obtained in the preparation by means of solvent polymerization in water or in dried form (obtained, for example, by spray drying, spray granulation, fluidized spray drying, drum drying or freeze drying).
  • the cleaning formulations according to the invention can contain as component b) 0 to 20% by weight of component a) various polycarboxylates. These may be hydrophilic or hydrophobic modified. If component a) contains various polycarboxylates, these are generally present in amounts of from 0.1 to 20% by weight.
  • Suitable are alkali metal salts of homo- and copolymers of acrylic acid or methacrylic acid.
  • monoethylenically unsaturated dicarboxylic acids such as maleic acid, fumaric acid, maleic anhydride, itaconic acid and citraconic acid are suitable.
  • a suitable polymer is in particular polyacrylic acid, which preferably has a molar mass of from 2000 to 40 000 g / mol. Because of their superior solubility, the short-chain polyacrylic acid, which has molar masses of from 2000 to 10 000 g / mol, in particular from 3000 to 8000 g / mol, may be preferred from this group.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid and / or fumaric acid.
  • Anhydrides such as maleic acid, maleic anhydride, acrylic acid, methacrylic acid, fumaric acid, itaconic acid and citraconic acid with at least one hydrophilic or hydrophobic modified monomers are used as enumerated below.
  • Suitable hydrophobic monomers are, for example, isobutene, diisobutene, butene, pentene, hexene and styrene, olefins having 10 or more carbon atoms or mixtures thereof, for example 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-hexadecene and 1-octadecene.
  • Suitable hydrophilic monomers are monomers having sulfonate or phosphonate groups, as well as nonionic monomers having hydroxy function or alkylene oxide groups. Examples include: allyl alcohol, isoprenol, methoxypolyethylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, methoxypolybutylene glycol (meth) acrylate, methoxypoly (propylene oxide-co-ethylene oxide) (meth) acrylate,
  • the polyalkylene glycols contain 3 to 50, in particular 5 to 40 and especially 10 to 30 alkylene oxide units.
  • Particularly preferred monomers containing sulfonic acid groups are 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-methacrylamido-2-methylpropanesulfonic acid, 3-methacrylamide.
  • Particularly preferred phosphonate group-containing monomers are the vinylphosphonic acid and its salts.
  • amphoteric and cationic polymers can also be used.
  • the cleaning formulations according to the invention may contain 0 to 50% by weight of one or more complexing agents. If complexing agents are contained, they are present in amounts of from 0.1 to 50% by weight, preferably from 1 to 45% by weight and more preferably from 1 to 40% by weight.
  • Preferred complexing agents are selected from the group consisting of nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid and methylglycinediacetic acid, glutamic acid diacetic acid, iminodisuccinic acid, hydroxyimidodisuccinic acid, ethylenediamine disuccinic acid, aspartic acid diacetic acid and their salts.
  • Particularly preferred complexing agents c) are methylglycinediacetic acid and its salts.
  • the cleaning agent according to the invention may contain 0 to 70% by weight of phosphates. If the cleaning agent contains phosphates, it generally contains these in amounts of from 1 to 70% by weight, preferably from 5 to 60% by weight, particularly preferably from 20 to 55% by weight.
  • alkali metal phosphates with a particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), have the greatest importance in the washing and cleaning agent industry.
  • Suitable phosphates for dishwashing detergents are, in particular, alkali metal phosphates and polymeric alkali metal phosphates, which may be present in the form of their alkaline, neutral or acidic sodium or potassium salts.
  • alkali metal phosphates and polymeric alkali metal phosphates which may be present in the form of their alkaline, neutral or acidic sodium or potassium salts.
  • examples of such phosphates are trisodium phosphate, tetrasodium diphosphate, disodium dihydrogen diphosphate, pentasodium tripolyphosphate, so-called sodium hexametaphosphate, oligomeric trisodium phosphate having a degree of oligomerization of 5 to 1000, preferably 5 to 50, and the corresponding potassium salts, or mixtures of sodium hexametaphosphate and the corresponding potassium salts, or mixtures of the sodium and potassium salts.
  • Particularly preferred are tripolyphosphate salts.
  • the cleaning agent according to the invention may contain from 0 to 60% by weight of builder and cobuilder. If the detergent contains builders and cobuilders, it generally contains them in amounts of from 0.1 to 60% by weight. Builders and co-builders are water-soluble or water-insoluble substances whose main purpose is the binding of calcium and magnesium ions.
  • carboxylic acids and their salts such as alkali citrates, especially anhydrous trisodium citrate or trisodium citrate dihydrate, alkali metal succinates, alkali metal malonates, fatty acid sulfonates, oxydisuccinate, alkyl or alkenyl disuccinates, gluconic acids, oxadiacetates, carboxymethyloxysuccinates, tartrate monosuccinate, tartrate disuccinate, tartrate monoacetate, tartrate diacetate and .alpha.-hydroxypropionic acid be.
  • Another class of substances with cobuilder properties which may be present in the cleansing compositions according to the invention are the phosphonates.
  • hydroxyalkane or aminoalkane phosphonates are, in particular, hydroxyalkane or aminoalkane phosphonates.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Preferred aminoalkanephosphonates are ethylenediamine tetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs.
  • the builder used here is preferably HEDP from the class of phosphonates.
  • the aminoalkanephosphonates also have a pronounced heavy metal binding capacity. Accordingly, in particular if the agents also contain bleach, it may be preferable to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • silicates Contain may be crystalline layered silicates having the general formula NaMSi x 0 2x + i yH 2 O, where M is sodium or hydrogen, x is a number from 1, 9 to 22, preferably from 1, 9 to 4, with particularly preferred values for x 2, 3 or 4 and y is a number from 0 to 33, preferably 0 to 20.
  • amorphous sodium silicates having a Si0 2 : Na 2 0 ratio of 1 to 3.5, preferably from 1, 6 to 3 and especially from 2 to 2.8 are used.
  • carbonates and bicarbonates are used, of which the alkali metal salts, in particular sodium salts are preferred.
  • the cleaning formulations according to the invention contain from 0.1 to 20% by weight of nonionic surfactants, usually low or low foaming nonionic surfactants. These are preferably present in proportions of 0, 1 to 15 wt .-%, particularly preferably from 0.25 to 10 wt .-%.
  • Suitable nonionic surfactants include the surfactants of the general formula (III) R 18 -O- (CH 2 CH 2 O) p - (CHR 17 CH 2 O) m -R 19 where R 18 is a linear or branched alkyl radical with 8 is up to 22 C atoms,
  • R 17 and R 19 are independently hydrogen or a linear or branched alkyl radical having 1-10 C atoms or H, wherein R 17 is preferably methyl, and
  • p and m are independently 0 to 300.
  • the surfactants of formula (III) may be both random copolymers and block copolymers, preferably block copolymers.
  • di- and multiblock copolymers composed of ethylene oxide and propylene oxide are used which (BASF Corporation) are commercially available, for example under the name Pluronic ® (BASF SE) or Tetronic ®.
  • Pluronic ® BASF SE
  • Tetronic ® Tetronic ®
  • reaction products of sorbitan esters with ethylene oxide and / or propylene oxide can be used.
  • amine oxides or alkyl glycosides An overview of suitable nonionic surfactants is given by EP-A 851 023 and DE-A 198 19 187.
  • the cleaning formulations according to the invention may contain from 0 to 30% by weight of bleach, optionally bleach activators and optionally bleach catalysts. If the cleaning formulations contain bleaches, bleach activators or bleach catalysts, they contain these in amounts of from 0.1 to 30% by weight, preferably from 1 to 30% by weight and more preferably from 5 to 30% by weight.
  • Bleaching agents are subdivided into oxygen bleaching agents and chlorine-containing bleaching agents.
  • Use as oxygen bleach find alkali metal perborates and their hydrates and alkali metal percarbonates.
  • Preferred bleaching agents here are sodium perborate in the form of the mono- or tetrahydrate, sodium percarbonate or the hydrates of sodium percarbonate.
  • oxygen bleaching agents are persulfates and hydrogen peroxide.
  • Typical oxygen bleaches are also organic peracids such as perbenzoic acid, peroxy-alpha-naphthoic acid, peroxylauric acid, peroxystearic acid, phthalimidoperoxycaproic acid, 1,12-diperoxydodecanedioic acid, 1,9-diperoxyazelaic acid, diperoxoisophthalic acid or 2-decyldiperoxybutane-1,4-diacid.
  • organic peracids such as perbenzoic acid, peroxy-alpha-naphthoic acid, peroxylauric acid, peroxystearic acid, phthalimidoperoxycaproic acid, 1,12-diperoxydodecanedioic acid, 1,9-diperoxyazelaic acid, diperoxoisophthalic acid or 2-decyldiperoxybutane-1,4-diacid.
  • oxygen bleaches can also be used in the detergent formulation:
  • Chlorine-containing bleaches as well as the combination of chlorine-containing bleach with peroxide-containing bleaches may also be used.
  • Known chlorine-containing bleaching agents are for example 1, 3-dichloro-5,5-dimethylhydantoin, N-Chlorosulfamid, chloramine T, dichloramine T, chloramine B, ⁇ , ⁇ '-Dichlorbenzoylharnstoff, p-toluene- or sulfondichloroamid Trichlorethylamin.
  • Preferred chlorine-containing bleaching agents are sodium hypochlorite, calcium hypochlorite, potassium hypochlorite, magnesium hypochlorite, potassium dichloroisocyanurate or sodium dichloroisocyanurate.
  • Chlorine-containing bleaching agents are used in amounts of generally from 0.1 to 20% by weight, preferably from 0.2 to 10% by weight, particularly preferably from 0.3 to 8% by weight, based on the total detergent formulation used.
  • bleach stabilizers such as phosphonates, borates, metaborates, metasilicates or magnesium salts can be added in small amounts.
  • Bleach activators are compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 carbon atoms, in particular 2 to 4 carbon atoms, and / or substituted perbenzoic acid.
  • Suitable compounds are those which contain one or more N- or O-acyl groups and / or optionally substituted benzoyl groups, for example substances from the class of the anhydrides, esters, imides, acylated imidazoles or oximes.
  • TAED tetraacetylethylenediamine
  • TAMD tetraacetylmethylenediamine
  • TAGU tetraacetylglycoluril
  • TAHD tetraacetylhexylenediamine
  • N-acylimides such as N-nonanoylsuccinimide (NOSI)
  • acylated phenolsulfonates such as n-nonanoyl or isononanoyloxybenzenesulfonates (n- or n-nonanoyl) iso-NOBS
  • PAG pentaacetylglucose
  • DADHT 1,5-diacetyl-2,2-dioxohexahydro-1,3,5-triazine
  • ISA isatoic anhydride
  • bleach activators are also suitable as bleach activators are nitrile quats such as N-methyl morpholinium acetonitrile salt
  • Bleach activators are preferably suitable from the group consisting of polyacylated alkylenediamines, particularly preferably TAED, N-acylimides, particularly preferably NOSI, acylated phenolsulfonates, more preferably n- or iso-NOBS, MMA and TMAQ.
  • Bleach activators are used in amounts of generally from 0.1 to 10% by weight, preferably from 1 to 9% by weight, particularly preferably from 1.5 to 8% by weight, based on the total detergent formulation.
  • bleach catalysts may also be included.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as manganese, iron, cobalt, ruthenium or molybdenum-salene complexes or carbonyl complexes.
  • Manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium and copper complexes with nitrogen-containing tripod ligands and cobalt, iron, copper and ruthenium-amine complexes can also be used as bleach catalysts.
  • the cleaning formulations according to the invention may contain from 0 to 8% by weight of enzymes. If the cleaning formulations contain enzymes, they generally contain them in amounts of 0, 1 to 8 wt .-%. Enzymes may be added to the detergent to increase the performance of the detergents or to provide equivalent cleaning performance under milder conditions.
  • the most commonly used enzymes include lipases, amylases, cellulases and proteases.
  • esterases, pectinases, lactases and peroxidases can be used.
  • the cleaning agents according to the invention as component i) 0 to 50 wt .-% of one or more other additives such as anionic or zwitterionic surfactants, alkali carriers, corrosion inhibitors, defoamers, dyes, fragrances, fillers, organic solvents, tableting aids, disintegrating agents, thickeners , Solubilizer and water.
  • additives such as anionic or zwitterionic surfactants, alkali carriers, corrosion inhibitors, defoamers, dyes, fragrances, fillers, organic solvents, tableting aids, disintegrating agents, thickeners , Solubilizer and water.
  • the cleaning formulation contains other additives, these are generally contained in amounts of 0, 1 to 50 wt .-%.
  • the formulations may contain anionic or zwitterionic surfactants, preferably in admixture with nonionic surfactants. Suitable anionic and zwitterionic surfactants are mentioned in EP-A 851 023 and DE-A 198 19
  • alkali carriers may be present.
  • alkali metal hydroxides may also be ammonium or alkali metal hydroxides, ammonium or alkali metal silicates and ammonium or alkali metal silicates and mixtures of the abovementioned substances be used.
  • silver protectants from the group of the triazoles, the benzotriazoles, the bisbenzotriazoles, the aminotriazoles, the alkylaminotriazoles and the transition metal salts or complexes.
  • Glass corrosion inhibitors are used to prevent glass corrosion, which is manifested by clouding, iridescence, streaks and lines on the glasses.
  • Preferred glass corrosion inhibitors are from the group of magnesium-zinc and bismuth salts and complexes.
  • Paraffin oils and silicone oils can optionally be used as defoamers and for the protection of plastic and metal surfaces. Defoamers are generally used in proportions of 0.001 wt .-% to 5 wt .-%.
  • dyes such as patent blue, preservatives such as Kathon CG, perfumes and other perfumes may be added to the cleansing formulation of the invention.
  • a suitable filler is, for example, sodium sulfate.
  • the cleaning formulations according to the invention can be provided in liquid or solid form, single- or multiphase, as tablets or in the form of other dosage units, packaged or unpackaged.
  • the monomer mixture was added within 5 hours, sodium peroxodisulfate within 5.25 hours and sodium bisulfite within 5 hours. Subsequently, polymerization was continued at 100 ° C. for a further 2 hours. It was then cooled to room temperature and then adjusted to a pH of 7.2 with 178.8 g of a 50% strength by weight aqueous sodium hydroxide solution. The pH and K values, molecular weights M n and M w and the solids content were determined and the product mixture was visually assessed.
  • M w 1086 g / mol
  • demineralized water 1004.0 g of a mixture consisting of 44.8% by weight of distilled Acrylic acid, 22.4% by weight of 2-acrylamido-2-methylpropanesulfonic acid, 0.002 Wt .-% 4-methoxyphenol, 17.5 wt .-% of
  • the monomers were added within 4 hours, sodium peroxodisulfate within 4.75 hours and sodium bisulfite within 4 hours.
  • 150.0 g of a 25% strength by weight aqueous sodium hydroxide solution were added over the course of 2 hours at an internal temperature of 90.degree.
  • polymerization was continued at 90 ° C. for 1 hour. It was then cooled to room temperature and adjusted with 1 15.5 g of a 50 wt .-% aqueous sodium hydroxide solution, the polymer solution to pH 4.5. pH and K value, molecular weights M n and M w and the solids content were determined and the product mixture was visually assessed.
  • the monomers were added within 4 hours, sodium peroxodisulfate within 4.75 hours and sodium bisulfite within 4 hours.
  • Add demineralised water separately and in parallel with stirring. The monomers were added within 4 hours, sodium peroxodisulfate within 4.75 hours and sodium bisulfite within 4 hours.
  • the monomers were added within 4 hours, sodium peroxodisulfate within 4.75 hours and sodium bisulfite within 4 hours.
  • 150.0 g of a 25% strength by weight aqueous sodium hydroxide solution were added over 2 hours at an internal temperature of 90 ° C.
  • polymerization was continued at 90 ° C. for 1 hour.
  • the polymer solution was cooled to room temperature and adjusted with 1 15.5 g of a 50 wt .-% aqueous sodium hydroxide solution to pH 4.5. pH and K value, molecular weights M n and M w and the solids content were determined and the product mixture was visually assessed.
  • the monomers were within 4 hours, sodium peroxodisulfate within 4.75 hours and sodium bisulfite within 4 hours.
  • 150.0 g of a 25 wt .-% aqueous sodium hydroxide solution were added within 2 hours at 90 ° C internal temperature.
  • the mixture was then postpolymerized at 90 ° C for 1 hour. Thereafter, the polymer solution was cooled to room temperature and adjusted to pH 4.5 with 115.5 g of a 50 wt .-% aqueous sodium hydroxide solution. pH and K value, molecular weights M n and M w and the solids content were determined and the product mixture was visually assessed.
  • the monomers were added within 4 hours, sodium peroxodisulfate within 4.75 hours and sodium bisulfite within 4 hours.
  • 150.0 g of a 25% strength by weight aqueous sodium hydroxide solution were added over 2 hours at an internal temperature of 90 ° C.
  • polymerization was continued at 90 ° C. for 1 hour. Thereafter, it was cooled to room temperature and adjusted with 1 15.5 g of a 50 wt .-% aqueous sodium hydroxide solution, the polymer solution to pH 4.5. pH and K value, molecular weights M n and M w and the solids content were determined and the product mixture was visually assessed.
  • V1 AS / MAS / SEMA / MPEGMA 1000 28.3: 31, 0: 29.2: 1 1, 6
  • V2 AS / MAS / VS / MPEGMA 1000 28.3: 31, 0: 29.2: 1 1, 6
  • AM PS 2-acrylamido-2-methylpropylsulfonic acid
  • MPEGMA (1000) methyl polyethylene glycol ether with an average of 22 ethylene oxide units.
  • MPEGMA (2000) methyl polyethylene glycol ether with an average of 44 ethylene oxide units
  • the polymers were tested in the following phosphate-free formulations PF1 and PF2, as well as in the phosphate-based formulation P1.
  • the composition of the test formulations is given in Table 3 (in% by weight). Table 3
  • Dishwashing detergent 21 g
  • ballast dirt 50 g ballast dirt is thawed with the formulation dosed after pre-rinsing, for composition see below
  • Rinse cycles 15; between each 1 h break (10 min open door, 50 min closed door)
  • Starch 0.5% potato starch, 2.5% gravy
  • the polymers according to the invention were also tested in formulation PF2. Even with the formulation PF2, the copolymers of the invention performed better than the comparative polymers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Detergent Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Die Erfindung betrifft Copolymere, welche a1) 30 bis 90 Gew.-% mindestens einer monoethylenisch ungesättigten C3-C8- Carbonsäure, eines Anhydrids oder wasserlöslichen Salzes derselben, a2) 3 bis 60 Gew.-% mindestens eines Sulfonsäuregruppen enthaltenden Monomers, a3) 3 bis 60 Gew.- % mindestens eines nichtionischen Monomers der Formel (I) H2C=C(R1)COO-[R2-O]0-R3 (I), in der R1 für Wasserstoff oder Methyl, R2 für gleiche oder verschiedene, lineare oder verzweigte C2-C6-Alkylenreste, die blockweise oder statistisch angeordnet sein können, und R3 für Wasserstoff oder einen geradkettigen oder verzweigten C1-C4-Alkylrest und o für eine natürliche Zahl von 3 bis 50 stehen, a4) 0 bis 30 Gew.-% eines oder mehrerer weiterer ethylenisch ungesättigter Monomere, die mit a1), a2) und a3) polymerisierbar sind, wobei die Summe aus a1), a2), a3) und a4) 100 Gew.-% ergibt, einpolymerisiert enthalten.

Description

Copolymere, die Carbonsäuregruppen, Sulfonsäuregruppen und Polyalkylenoxid- gruppen enthalten, als belagsinhibierender Zusatz zu Wasch- und Reinigungsmitteln
Die Erfindung betrifft Copolymere, die Carbonsäuregruppen, Sulfonsäuregruppen und Polyalkylenoxidgruppen enthalten, sowie deren Verwendung als belagsinhibierender Zusatz zu Wasch- und Reinigungsmitteln, insbesondere zu phosphathaltigen und phosphatfreien Reinigungsformulierungen für die maschinelle Geschirrreinigung. Bei der maschinellen Geschirrspülreinigung soll das Spülgut in rückstandsfrei gereinigtem Zustand mit makellos glänzender Oberfläche anfallen, wofür üblicherweise ein Reiniger, ein Klarspüler und Regeneriersalz zur Wasserenthärtung eingesetzt werden müssen. Die seit 2001 im Markt eingeführten "3in1 " Geschirrspülmittel vereinigen die Funktion von Reiniger, Klarspülmittel und Regeneriersalz in einem Produkt. Neben reinigenden Komponen- ten zur Entfernung der Anschmutzungen auf dem Spülgut enthalten sie integrierte Klarspül- tenside, die während des Klarspül- und Trocknungsgangs für einen flächigen Wasserablauf auf dem Spülgut sorgen und so Kalk- und Wasserflecken verhindern. Zusätzlich weisen sie Komponenten zur Bindung der härtebildenden Calcium- und Magnesiumionen auf. Dadurch entfällt für den Verbraucher ein Nachfüllen von Klarspüler und Salz in die Geschirr- Spülmaschine. Das Einbinden von weiteren Funktionen (z. B. Schutz vor Glaskorrosion und Schutz vor dem Anlaufen von Silber) führte zur Entwicklung von x in 1 (mit z. B. x = 6 oder 9) oder„all in one"-Produkten.
Copolymere aus carboxylgruppenhaltigen und sulfonsäuregruppenhaltigen Monomeren sind seit einigen Jahren wichtiger Bestandteil von phosphathaltigen und phosphatfreien maschinellen Geschirrspülmitteln. Ihr Beitrag zur Reinigungs- und Klarspülleistung und vor allem ihr Beitrag zur Verhinderung von Belägen auf dem Spülgut sind jedoch noch verbesserungsbedürftig. EP-A 0 778 340 beschreibt die Verwendung von Copolymeren von Allylalkoholethoxylaten und Acrylsäure in phosphatfreien Geschirrspülmittelzusammensetzungen.
WO 02/08527 offenbart sulfonsäuregruppenhaltige Copolymere, die Herstellung der Copolymere und deren Verwendung als Zusatz zu Wasch-, Reinigungs- und Klarspülmit- teln. Die Copolymere enthalten (a) 70 bis 100 mol-% mindestens zweier verschiedener monoethylenisch ungesättigter Carbonsäuremonomere und (b) 0 bis 30 mol-% eines oder mehrerer nichtionischer Monomere. Die Einführung der Sulfonsäuregruppen erfolgt durch Amidierung mit einer Amino-Ci-C2-alkansulfonsäure. WO 2005/042684 beschreibt die Verwendung spezieller Copolymere aus Acrylsäure, Methacrylsäure und Acrylsäurealkoxylaten als belagsinhibierende Additive bei der maschinellen Geschirrreinigung. DE 102 25 794 beschreibt die Verwendung von sulfonsäuregruppenhaltigen Copolymeren aus 30 bis 95 mol-% einer monoethylenisch ungesättigten Carbonsäure, 3 bis 35 mol-% mindestens eines sulfonsäuregruppenhaltigen Monomers und 2 bis 35 mol-% eines (Meth)acrylsäurealkoxylats als belagsinhibierender Zusatz zu Wasch- und Reinigungsmitteln. In den Beispielen werden Copolymere aus (Meth)acrylsäure, Methoxypolyethylenglykolmethacrylat und Sulfoethylmethacrylsäure-Natriumsalz eingesetzt. In einem weiteren Beispiel wird ein binäres Copolymer aus Acrylsäure und 2- Acrylamido-2-methylpropansulfonsäure eingesetzt.
WO2008/132131 beschreibt die Verwendung von sulfonsäuregruppenhaltigen Copolymeren aus 30 bis 95 mol-% Acrylsäure und/oder Methacrylsäure, 3 bis 35 mol-% eines sulfonsäuregruppenhaltigen Monomers und 2 bis 35 mol-% eines nichtionischen Monomers der Formel
H2C=C(R2)-COO-R3-[-R4-0-]n-R5 als belagsinhibierender Zusatz zu Maschinengeschirrspülmitteln zur Verhinderung der Bildung von Calciumphosphat-Belägen.
WO 2010/024468 beschreibt die Verwendung von Copolymeren aus einem Carboxylatgruppen-haltigen Monomer, einem Sulfonatgruppen-haltigen Polymer und einem Allylether oder Allylalkohol-Ethoxylat mit 1 bis 5 Ethylenoxid-Gruppen als Zusatz zu Wasch- und Reinigungsmitteln. Bevorzugtes sulfonatgruppenhaltiges Monomer ist 2- Hydroxy-3-allyloxypropansulfonsäure. Aufgabe der Erfindung ist es, Copolymere bereitzustellen, die sich durch vorteilhafte Anwendungseigenschaften, insbesondere durch ihre belagsinhibierende Wrkung und breite Einsetzbarkeit im Bereich der maschinellen Geschirrreinigung in phosphathaltigen und phosphatfreien Geschirrspülmitteln auszeichnen. Aufgabe der Erfindung ist es weiterhin, verbesserte phosphathaltige und phosphatfreie Reinigungsformulierungen für die maschinelle Geschirrreinigung, die ein verbessertes Spülergebnis ergeben, bereitzustellen. Aufgabe der Erfindung ist es insbesondere, derartige Formulierungen bereitzustellen, welche ohne Verwendung von zusätzlichem Klarspüler ein streifen-, belag- und tropfenfreies Geschirr ergeben. Gelöst wird die Aufgabe durch Copolymere, welche a1) 30 bis 90 Gew.-% mindestens einer monoethylenisch ungesättigten C3-C8- Carbonsäure, eines Anhydrids oder Salzes derselben, a2) 3 bis 60 Gew.-% mindestens eines Sulfonsäuregruppen enthaltenden Monomers, a3) 3 bis 60 Gew.- % mindestens eines nichtionischen Monomers der Formel (I) H2C=C(R1)COO-[R2-0]0-R3 (I), in der R1 für Wasserstoff oder Methyl, R2 gleiche oder verschiedene, lineare oder verzweigte C2-C6-Alkylenreste, die blockweise oder statistisch angeordnet sein können, und R3 für Wasserstoff oder einen geradkettigen oder verzweigten C C4- Alkylrest und o für eine natürliche Zahl von 3 bis 50 stehen, a4) 0 bis 30 Gew.-% eines oder mehrerer weiterer ethylenisch ungesättigter Monomere, die mit a1), a2) und a3) polymerisierbar sind, einpolymerisiert enthalten, wobei die Summe aus a1), a2), a3) und a4) 100 Gew.-% ergibt.
Gelöst wird die Aufgabe weiterhin durch die Verwendung der Copolymere als belagsinhibierender Zusatz zu Wasch- und Reinigungsmitteln, insbesondere zu phosphatfreien oder phosphathaltigen Reinigungsformulierungen für die maschinelle Geschirrreinigung.
Es wurde gefunden, dass durch Zusatz der erfindungsgemäßen Copolymere, die
Carbonsäuregruppen, Sulfonsäuregruppen und Polyalkylenoxidgruppen enthalten, zu phosphathaltigen und phosphatfreien maschinellen Geschirrspülmitteln eine ausgezeichnete Reinigungs- und Klarspülleistung sowie eine hervorragende Belagsinhibierung sowohl gegenüber anorganischen als auch organischen Belägen erzielt werden kann. Gelöst wird die Aufgabe weiterhin durch eine Reinigungsformulierung für die maschinelle Geschirrreinigung enthaltend als Komponenten: a) 1 bis 20 Gew.-% mindestens eines Copolymeren, welches a1) 30 bis 90 Gew.-% mindestens einer monoethylenisch ungesättigten C3-C8- Carbonsäure, eines Anhydrids oder Salzes derselben, a2) 3 bis 60 Gew.-% mindestens eines Sulfonsäuregruppen enthaltenden Monomers, a3) 3 bis 60 Gew.- % mindestens eines nichtionischen Monomers der Formel (I) H2C=C(R1)COO-[R2-0]0-R3 (I), in der R1 für Wasserstoff oder Methyl, R2 gleiche oder verschiedene, lineare oder verzweigte C2-C6-Alkylenreste, die blockweise oder statistisch angeordnet sein können, und R3 für Wasserstoff oder einen geradkettigen oder verzweigten CrC4-Alkylrest und o für eine natürliche Zahl von 3 bis 50 stehen, a4) 0 bis 30 Gew.-% eines oder mehrerer weiterer ethylenisch ungesättigter Monomere, die mit a1), a2) und a3) polymerisierbar sind, einpolymerisiert enthält, wobei die Summe aus a1), a2), a3) und a4) 100 Gew.-% ergibt,
0 bis 20 Gew.-% von Komponente a) verschiedene Polycarboxylate,
0 bis 50 Gew.-% Komplexbildner,
0 bis 70 Gew.-% Phosphate,
0 bis 60 Gew.-% weitere Builder und Cobuilder,
0,1 bis 20 Gew.-% nichtionische Tenside,
0 bis 30 Gew.-% Bleichmittel und gegebenenfalls Bleichaktivatoren und Bleich- Katalysatoren
0 bis 8 Gew.-% Enzyme, i) 0 bis 50 Gew.-% ein oder mehrere weitere Zusatzstoffe wie anionische oder zwitterionische Tenside, Alkaliträger, Korrosionsinhibitoren, Entschäumer, Farbstoffe, Duftstoffe, Füllstoffe, organische Lösungsmittel und Wasser, wobei die Summe der Komponenten a) bis i) 100 Gew.-% ergibt.
Als Komponente a1) enthält das Copolymer 30 bis 90 Gew.-% mindestens einer monoethylenisch ungesättigten C3-C8-Carbonsäure, eines Anhydrids oder eines Salzes derselben. Geeignete wasserlösliche Salze sind beispielsweise die Natrium- und Kalium- salze der Carbonsäuren.
Geeignete ungesättigte C3-C8-Carbonsäuren sind insbesondere Acrylsäure, Methacrylsäure, Eth acrylsäure, Vinylessigsäure, Allylessigsäure, Crotonsäure, Maleinsäure, Fumarsäure, Mesaconsäure und Itaconsäure sowie deren wasserlösliche Salze. Soweit die genannten ungesättigten C3-C8-Carbonsäuren Anhydride bilden können, sind auch diese als Monomere a1) geeignet, beispielsweise Maleinsäureanhydrid, Itaconsäureanhydrid und Methacrylsäureanhydrid.
Bevorzugte enthält das Copolymer als Komponente a1) Acrylsäure, Methacrylsäure oder deren wasserlösliche Salze. Wasserlösliche Salze sind beispielsweise die Natrium- und Kaliumsalze.
Als Komponente a2) enthält das Copolymer 3 bis 60 Gew.-% eines Sulfonsäuregruppen enthaltenden Monomers.
Bevorzugte Monomere a2) sind 2-Acrylamido-2-methylpropansulfonsäure, Allylsulfonsäure oder deren Salze.
Geeignete Salze sind im Allgemeinen wasserlösliche Salze, bevorzugt die Natrium-, Kali- um und Ammoniumsalze der genannten Säuren.
Als Komponente a3) enthält das Copolymer 3 bis 60 Gew.- % mindestens eines nichtionischen Monomers der Formel (I) H2C=C(R1)COO-[R2-0]0-R3 (I), in der R1 für Wasserstoff oder Methyl, R2 gleiche oder verschiedene, lineare oder verzweigte C2-C6-Alkylenreste, die blockweise oder statistisch angeordnet sein können, und R3 für Wasserstoff oder einen geradkettigen oder verzweigten C C4-Alkylrest und o für eine na- türliche Zahl von 3 bis 50 stehen. Die Alkylenreste können auch blockweise und statistisch angeordnet sein, also in ein oder mehreren Blöcken aus gleichen Alkylenoxidresten blockweise und daneben in ein oder mehreren Blöcken aus zwei oder mehr verschiedenen Alkylenoxidresten statistisch angeordnet sein. Dieser wird von der Formulierung„blockweise oder statistisch angeordnet" mit umfasst.
Das nichtionische Monomer a3) enthält im Mittel 3 bis 50, bevorzugt 8 bis 45, besonders bevorzugt 10 bis 45, speziell 20 bis 45 Alkylenoxid-Einheiten. Beispielsweise kann es im Mittel 22 oder 44 Alkylenoxid-Einheiten enthalten. Der Index o bezieht sich auf die mittlere Zahl der Alkylenoxid-Einheiten.
Bevorzugte Alkylenoxideinheiten R2-0 sind Ethylenoxid, 1 ,2-Propylenoxid und 1 ,2- Butylenoxid, besonders bevorzugt sind Ethylenoxid und 1 ,2-Propylenoxid. In einer speziellen Ausführungsform enthalten die nichtionischen Monomere a3) nur Ethylenoxid-Einheiten.
Bevorzugt ist R3 Methyl. Als Komponente a4) kann das Copolymer 0 bis 30 Gew.-% von einem oder mehreren weiteren ethylenisch ungesättigten Monomeren enthalten, die mit a1), a2) und a3) polymeri- sierbar sind.
Als weitere ethylenisch ungesättigte Monomere a4) kommen beispielsweise Acrylamid, t- Butylacrylamid, Vinylacetat, Vinylmethylether, Hydroxybutylvinylether, 1-Vinylpyrrolidon, 1- Vinylcaprolactam, 1-Vinylimidazol, 2-Vinylpyridin, 4-Vinylpyridin, Methylmethacrylat, Ethylacrylat, Isobuten, Diisobuten, Isoprenol, 1-Alkene wie 1-Octen, N,N-Dimethylacrylamid und Styrol in Betracht. Bevorzugt beträgt der Anteil an einpolymerisierten Monomeren a1), insbesondere an einpolymerisierter Acrylsäure, Methacrylsäure oder eines wasserlöslichen Salzes dieser Säuren, 40 bis 85 Gew.-% und besonders bevorzugt 47 bis 83 Gew.-%. Der Anteil an einpolymerisierter 2-Acrylamido-2-methylpropansulfonsäure a2) liegt vorzugsweise bei 4 bis 40 Gew.-%, vorzugsweise bei 6 bis 35 Gew.-% und besonders bevorzugt bei 8 bis 32 Gew.-%. Der Anteil an Monomereinheiten a3) der Formel (I) liegt vorzugsweise bei 4 bis 35 Gew.-%, besonders bevorzugt bei 6 bis 30 Gew.-%.
Falls Monomere a4) in den erfindungsgemäßen Copolymeren enthalten sind, beträgt ihr Anteil bevorzugt bis zu 20 Gew.-%, besonders bevorzugt bis zu 15 Gew.-% und speziell bis zu 10 Gew.-%. Die erfindungsgemäßen Copolymere a) weisen im Allgemeinen ein mittleres Molekulargewicht Mw von 2000 bis 200 000 g/mol, bevorzugt von 3000 bis 100 000 g/mol, besonders bevorzugt von 10 000 bis 50 000 g/mol auf, bestimmt durch Gelpermeationschromatographie bei Raumtemperatur mit Wasser als Elutionsmittel gegen Polyacrylat-Standards.
Ihre K-Werte liegen bei 15 bis 100, vorzugsweise bei 20 bis 80, besonders bevorzugt bei 30 bis 50, gemessen bei pH 7,0 in 1 gew.-%iger wässriger Lösung bei 25 °C nach H. Fi- kentscher, Cellulose-Chemie Band 13, Seiten 58 bis 64 und 71 bis 74 (1932).
Die erfindungsgemäßen Copolymere können durch radikalische Polymerisation der Monomere hergestellt werden. Dabei kann nach allen bekannten radikalischen Polymerisationsverfahren gearbeitet werden. Neben der Polymerisation in Substanz sind insbesondere die Verfahren der Lösungspolymerisation und der Emulsionspolymerisation zu nennen, wobei die Lösungspolymerisation bevorzugt ist.
Die Polymerisation wird vorzugsweise in Wasser als Lösungsmittel durchgeführt. Sie kann jedoch auch in alkoholischen Lösungsmitteln, insbesondere CrC4-Alkoholen, wie Methanol, Ethanol und Isopropanol, oder Mischungen dieser Lösungsmittel mit Wasser vorge- nommen werden.
Als Polymerisationsinitiatoren eignen sich sowohl thermisch als auch photochemisch (Photoinitiatoren) zerfallende und dabei Radikale bildende Verbindungen. Häufig werden auch Redoxinitiator-Systeme verwendet, welche aus einer Peroxoverbindung, einem Metallsalz und einem Reduktionsmittel bestehen. Beispiele für geeignete Peroxoverbindungen sind Wasserstoffperoxid, Peroxodisulfat (als Ammonium-, Natrium- oder Kaliumsalz), Peroxosulfate, sowie organische Peroxoverbindungen wie tert.- Butylhydroperoxid, Cumolhydroperoxid oder Dibenzoylperoxid. Geeignete Metallsalze sind vor allem Eisen(ll)-salze wie Eisen(ll)-sulfatheptahydrat. Als Reduktionsmittel sind geeignet Natriumsulfit, das Dinatriumsalz der 2-Hydroxy-2-sulfinatoessigsäure, das Dinatriumsalz der 2-Hydroxy-2-sulfonatoessigsäure, Natriumhydroxymethansulfinat, Ascorbinsäure, Iso- Ascorbinsäure oder Mischungen davon. Unter den thermisch aktivierbaren Polymerisationsinitiatoren sind Initiatoren mit einer Zerfallstemperatur im Bereich von 20 bis 180°C, insbesondere von 50 bis 90°C, bevorzugt. Beispiele für geeignete thermische Initiatoren sind anorganische Peroxoverbindungen, wie Peroxodisulfate (Ammonium- und vorzugsweise Natriumperoxoxdisulfat), Peroxosulfate, Percarbonate und Wasserstoffperoxid; organische Peroxoverbindungen, wie Diacetylperoxid, Di-tert.-butylperoxid, Diamylperoxid, Dioctanoylperoxid, Didecanoylperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis(o-toloyl)peroxid, Succinylperoxid, tert.-Butylperneodecanoat, tert.-Butylperbenzoat, tert.-Butylperisobutyrat, tert.-Butylperpivalat, tert.-Butylperoctoat, tert.-Butylperneodecanoat, tert.-Butylperbenzoat, tert.-Butylperoxid, tert.-Butylhydroperoxid, Cumolhydroperoxid, tert.-Butylperoxi-2- ethylhexanoat und Diisopropylperoxidicarbamat; Azoverbindungen, wie 2,2'- Azobisisobutyronitril, 2,2'-Azobis(2-methylbutyronitril) und Azobis(2- amidopropan)dihydrochlorid.
Diese Initiatoren können in Kombination mit reduzierenden Verbindungen als Star- ter/Regler-Systeme zum Einsatz kommen. Als Beispiele für derartige reduzierende Verbindungen seien phosphorhaltige Verbindungen, wie phosphorige Säure, Hypophosphite und Phosphinate, schwefelhaltige Verbindungen, wie Natriumhydrogensulfit, Natriumsulfit und Natriumformaldehydsulfoxilat, sowie Hydrazin genannt. Beispiele für geeignete Photoinitiatoren sind Benzophenon, Acetophenon, Benzyldialkylketone und deren Derivate.
Vorzugsweise werden thermische Initiatoren eingesetzt, wobei anorganische Peroxoverbindungen, insbesondere Natriumperoxodisulfat, bevorzugt sind. Besonders vor- teilhaft kommen die Peroxoverbindungen in Kombination mit schwefelhaltigen Reduktionsmitteln, insbesondere Natriumhydrogensulfit, als Redoxinitiatorsystem zum Einsatz. Bei Verwendung dieses Starter/Regler-Systems werden Copolymere erhalten, die als Endgruppen -S03 "Na+ und/oder -S04 "Na+ enthalten und sich durch besondere Reinigungskraft und belagsinhibierende Wirkung auszeichnen.
Alternativ können auch phosphorhaltige Starter/Regler-Systeme verwendet werden, z.B. Hypophosphite/Phosphinate.
Die Mengen an Photoinitiator bzw. Starter/Regler-System sind auf die jeweils verwendeten Substanzen abzustimmen. Wird beispielsweise das bevorzugte System Peroxodisulfat/Hydrogensulfit verwendet, so werden üblicherweise 2 bis 6 Gew.-%, vorzugsweise 3 bis 5 Gew.-%, Peroxodisulfat und in der Regel 5 bis 30 Gew.-%, vorzugsweise 5 bis 10 Gew.-%, Hydrogensulfit, jeweils bezogen auf die Monomere a1), a2) a3) und gegebenenfalls a4), eingesetzt.
Gewünschtenfalls können auch Polymerisationsregler zum Einsatz kommen. Geeignet sind z.B. Schwefelverbindungen, wie Mercaptoethanol, 2-Ethylhexylthioglykolat, Thioglykolsäure und Dodecylmercaptan. Wenn Polymerisationsregler verwendet werden, beträgt ihre Einsatzmenge in der Regel 0,1 bis 15 Gew.-%, bevorzugt 0, 1 bis 5 Gew.-% und besonders bevorzugt 0, 1 bis 2,5 Gew.-%, bezogen auf Monomere a1), a2) a3) und gegebenenfalls a4).
Die Polymerisationstemperatur liegt in der Regel bei 20 bis 200°C, bevorzugt bei 20 bis 150°C und besonders bevorzugt bei 20 bis 120°C.
Die Polymerisation kann unter atmosphärischem Druck durchgeführt werden, vorzugsweise wird sie jedoch in geschlossenem System unter dem sich entwickelnden Eigendruck vorgenommen.
Die Copolymere können im sauren Zustand anfallen, sie können aber auch, falls für die Anwendung gewünscht, durch Zugabe von Basen, insbesondere von Natronlauge, bereits während der Polymerisation oder nach Beendigung der Polymerisation, neutralisiert oder teilneutralisiert werden. Der bevorzugte pH-Wert der wässrigen Copolymerlösungen liegt im Bereich von 3 bis 8,5.
Die erfindungsgemäß verwendeten Copolymere können direkt in Form der bei der Herstellung mittels Lösungsmittelpolymerisation in Wasser anfallenden wässrigen Lösungen oder in getrockneter Form (erhalten z. B. durch Sprühtrocknung, Sprühgranulierung, Fluidized Spray Drying, Walzentrocknung oder Gefriertrocknung) zum Einsatz kommen.
Neben der Komponente a) können die erfindungsgemäßen Reinigungsformulierungen als Komponente b) 0 bis 20 Gew.-% von Komponente a) verschiedene Polycarboxylate enthalten. Diese können hydrophil oder hydrophob modifiziert sein. Falls von Komponente a) verschiedene Polycarboxylate enthalten sind, sind diese im Allgemeinen in Mengen von 0, 1 bis 20 Gew.-% enthalten.
Geeignet sind Alkalimetallsalze von Homo- und Copolymeren der Acrylsäure oder der Methacrylsäure. Zur Copolymerisation eignen sich monoethylenisch ungesättigte Dicarbonsäuren wie Maleinsäure, Fumarsäure, Maleinsäureanhydrid, Itaconsäure und Citraconsäure. Ein geeignetes Polymer ist insbesondere Polyacrylsäure, die bevorzugt eine Molmasse von 2000 bis 40 000 g/mol aufweist. Aufgrund ihrer überlegenen Löslichkeit kann aus dieser Gruppe die kurzkettige Polyacrylsäure, die Molmassen von 2000 bis 10 000 g/mol, insbesondere 3000 bis 8000 g/mol, aufweist, bevorzugt sein. Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure und/oder Fumarsäure.
Es können auch Copolymere aus mindestens einem Monomeren aus der Gruppe beste- hend aus monoethylenisch ungesättigten C3-Ci0-Mono- oder Dicarbonsäuren oder deren Anhydriden, wie Maleinsäure, Maleinsäureanhydrid, Acrylsäure, Methacrylsäure, Fumarsäure, Itaconsäure und Citraconsäure mit mindestens einem hydrophil oder hydrophob modifizierten Monomeren wie nachfolgend aufgezählt eingesetzt werden. Geeignete hydrophobe Monomere sind beispielsweise Isobuten, Diisobuten, Buten, Penten, Hexen und Styrol, Olefine mit 10 oder mehr Kohlenstoffatomen oder deren Gemische wie beispielsweise 1-Decen, 1-Dodecen, 1-Tetradecen, 1-Hexadecen, 1-Octadecen, 1-Eicosen, 1-Docosen, 1-Tetracosen und 1-Hexacosen, C22-alpha-Olefin, ein Gemisch aus C2o-C24-alpha-Olefinen und Polyisobuten mit im Mittel 12 bis 100 C-Atomen.
Geeignete hydrophile Monomere sind Monomere mit Sulfonat- oder Phosphonatgruppen, sowie nichtionische Monomere mit Hydroxyfunktion oder Alkylenoxidguppen. Beispielsweise seien genannt: Allylalkohol, Isoprenol, Methoxypolyethylenglykol(meth)acrylat, Methoxypolypropylenglykol(meth)acrylat, Methoxypolybutylenglykol(meth)acrylat, Methoxypoly(propylenoxid-co-ethylenoxid)(meth)acrylat,
Ethoxypolyethylenglykol(meth)acrylat, Ethoxypolypropylenglykol(meth)acrylat, Ethoxy- polybutylenglykol(meth)acrylat und Ethoxypoly(propylenoxid-co-ethylenoxid)(meth)acrylat. Die Polyalkylenglykole enthalten dabei 3 bis 50, insbesondere 5 bis 40 und vor allem 10 bis 30 Alkylenoxideinheiten.
Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acryl-amido-1- propansulfonsäure, 2-Acrylamido-2-propansulfonsäure, 2-Acrylamido-2- methylpropansulfonsäure, 2-Methacrylamido-2-methylpropansulfonsäure, 3-Meth-acryl- amido-2-hydroxypropansulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Allyloxy- benzolsulfonsäure, Methallyloxybenzolsulfonsäure, 2-Hydroxy-3-(2-propenyl- oxy)propansulfonsäure, 2-Methyl-2-propen-1-sulfonsäure, Styrolsulfonsäure, Vinyl- sulfonsäure, 3-Sulfopropylacrylat, 2-Sulfoethylmethacrylat, 3-Sulfopropylmethacrylat, Sulfomethacrylamid, Sulfomethylmethacrylamid sowie Salze der genannten Säuren, wie deren Natrium-, Kalium- oder Ammoniumsalze.
Besonders bevorzugte Phosphonatgruppen-haltige Monomere sind die Vinylphosphonsäure und ihre Salze.
Darüber hinaus können auch amphotere und kationische Polymere zusätzlich eingesetzt werden.
Als Komponente c) können die erfindungsgemäßen Reinigungsformulierungen 0 bis 50 Gew.-% eines oder mehrerer Komplexbildner enthalten. Falls Komplexbildner enthalten sind, sind diese in Mengen von 0, 1 bis 50 Gew.-%, bevorzugt 1 bis 45 Gew.-% und beson- ders bevorzugt 1 bis 40 Gew.-% enthalten. Bevorzugte Komplexbildner sind ausgewählt aus der Gruppe bestehend aus Nitrilotriessigsäure, Ethylendiamintetraessigsäure, Diethylentriaminpentaessigsäure, Hydroxyethylethylendiamintriessigsäure und Methylglycindiessigsäure, Glutaminsäurediessigsäure, Iminodibernsteinsäure, Hydroxy- iminodibernsteinsäure, Ethylendiamindibernsteinsäure, Asparaginsäurediessigsäure sowie deren Salzen. Besonders bevorzugte Komplexbildner c) sind Methylglycindiessigsäure und deren Salze.
Als Komponente d) kann das erfindungsgemäße Reinigungsmittel 0 bis 70 Gew.-% Phosphate enthalten. Enthält das Reinigungsmittel Phosphate, enthält es diese im Allgemeinen in Mengen von 1 bis 70 Gew.-%, bevorzugt von 5 bis 60 Gew.-%, besonders bevorzugt von 20 bis 55 Gew.-%.
Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
Als Phosphate für Geschirrreinigungsmittel geeignet sind insbesondere Alkalimetallphosphate und polymere Alkalimetallphosphate, die in Form ihrer alkalischen, neutralen oder sauren Natrium- oder Kaliumsalze zugegen sein können. Beispiele derartiger Phosphate sind Trinatriumphosphat, Tetranatriumdiphosphat, Dinatriumdihydrogendiphosphat, Pentanatriumtripolyphosphat, sogenanntes Natriumhexametaphosphat, oligomeres Trinatriumphosphat mit einem Oligomerisierungsgrad von 5 bis 1000, bevorzugt 5 bis 50, und die entsprechenden Kaliumsalze, oder Gemische von Natriumhexametaphosphat und den entsprechenden Kaliumsalzen, oder Gemische der Natrium- und Kaliumsalze. Insbesondere bevorzugt sind Tripolyphosphatsalze.
Als Komponente e) kann das erfindungsgemäße Reinigungsmittel 0 bis 60 Gew.-% Builder und Cobuilder enthalten. Enthält das Reinigungsmittel Builder und Cobuilder, enthält es diese im Allgemeinen in Mengen von 0,1 bis 60 Gew.-%. Builder und Cobuilder sind wasserlösliche oder wasserunlösliche Substanzen, deren Hauptaufgabe im Binden von Calcium- und Magnesiumionen besteht.
Dies können niedermolekulare Carbonsäuren sowie deren Salze wie Alkalicitrate, insbe- sondere wasserfreies Trinatriumcitrat oder Trinatriumcitratdihydrat, Alkalisuccinate, Alkali- malonate, Fettsäuresulfonate, Oxydisuccinat, Alkyl- oder Alkenyldisuccinate, Gluconsäuren, Oxadiacetate, Carboxymethyloxysuccinate, Tartratmonosuccinat, Tartratdisuccinat, Tartratmonoacetat, Tartratdiacetat und α-Hydroxypropionsäure sein. Eine weitere Substanzklasse mit Cobuildereigenschaften, welche in den erfindungsgemäßen Reinigungsmitteln enthalten sein können, stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1 , 1-diphosphonat (HEDP) von beson- derer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natrium- salze, z.B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Eine weitere Substanzklasse im Buildersystem sind die Silikate. Enthalten sein können kristalline schichtförmige Silikate mit der allgemeinen Formel NaMSix02x+i yH20, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 22, vorzugsweise von 1 ,9 bis 4, wobei besonders bevorzugte Werte für x 2, 3 oder 4 sind und y eine Zahl von 0 bis 33, vorzugsweise 0 bis 20 ist. Daneben können amorphe Natriumsilikate mit einem Si02 : Na20- Verhältnis von 1 bis 3,5, vorzugsweise von 1 ,6 bis 3 und insbesondere von 2 bis 2,8 zum Einsatz kommen. Weiterhin werden Carbonate und Hydrogencarbonate eingesetzt, von denen die Alkalimetallsalze, insbesondere Natriumsalze bevorzugt werden.
Als Komponente f) enthalten die erfindungsgemäßen Reinigungsformulierungen 0,1 bis 20 Gew.-% nichtionische Tenside, üblicher Weise schwach oder niedrig schäumende nichtio- nische Tenside. Diese sind bevorzugt in Anteilen von 0, 1 bis 15 Gew.-%, besonders bevorzugt von 0,25 bis 10 Gew.-% enthalten.
Geeignete nichtionische Tenside umfassen die Tenside der allgemeinen Formel (III) R18-0-(CH2CH20)p-(CHR17CH20)m-R19 (III) worin R18 ein linearer oder verzweigter Alkylrest mit 8 bis 22 C-Atomen ist,
R17 und R19 unabhängig voneinander Wasserstoff oder ein linearer oder verzweigter Alkylrest mit 1-10 C-Atomen oder H sind, wobei R17 bevorzugt Methyl ist, und
p und m unabhängig voneinander 0 bis 300 sind. Bevorzugt ist p = 1 - 100 und m = 0 - 30.
Die Tenside der Formel (III) können sowohl statistische Copolymere als auch Block- Copolymere sein, bevorzugt sind sie Block-Copolymere.
Weiterhin können Di- und Multiblockcopolymerisate, aufgebaut aus Ethylenoxid und Propylenoxid, eingesetzt werden, die beispielsweise unter der Bezeichnung Pluronic® (BASF SE) oder Tetronic® (BASF Corporation) kommerziell erhältlich sind. Weiterhin können Umsetzungsprodukte aus Sorbitanestern mit Ethylenoxid und/oder Propylenoxid ver- wendet werden. Ebenfalls eignen sich Aminoxide oder Alkylglycoside. Eine Übersicht geeigneter nichtionischer Tenside gibt die EP-A 851 023 sowie die DE-A 198 19 187.
Es können auch Gemische mehrerer verschiedener nichtionischer Tenside enthalten sein. Als Komponente g) können die erfindungsgemäßen Reinigungsformulierungen 0 bis 30 Gew.-% Bleichmittel, gegebenenfalls Bleichaktivatoren und gegebenenfalls Bleichkatalysatoren enthalten. Falls die Reinigungsformulierungen Bleichmittel, Bleichaktivatoren oder Bleichkatalysatoren enthält, enthält sie diese in Mengen von insgesamt 0, 1 bis 30 Gew.-%, bevorzugt 1 bis 30 Gew.-% und besonders bevorzugt 5 bis 30 Gew.-%.
Bleichmittel unterteilen sich in Sauerstoffbleichmittel und chlorhaltige Bleichmittel. Verwendung als Sauerstoffbleichmittel finden Alkalimetallperborate und deren Hydrate sowie Alkalimetallpercarbonate. Bevorzugte Bleichmittel sind hierbei Natriumperborat in Form des Mono- oder Tetrahydrats, Natriumpercarbonat oder die Hydrate von Natriumpercarbonat.
Ebenfalls als Sauerstoffbleichmittel einsetzbar sind Persulfate und Wasserstoffperoxid.
Typische Sauerstoffbleichmittel sind auch organische Persäuren wie beispielsweise Perbenzoesäure, Peroxy-alpha-Naphthoesäure, Peroxylaurinsäure, Peroxystearinsäure, Phthalimidoperoxycapronsäure, 1 ,12-Diperoxydodecandisäure, 1 ,9-Diperoxyazelainsäure, Diperoxoisophthalsäure oder 2-Decyldiperoxybutan-1 ,4-disäure.
Außerdem können auch folgende Sauerstoffbleichmittel in der Reinigerformulierung Verwendung finden:
Kationische Peroxysäuren, die in den Patentanmeldungen US 5,422,028, US 5,294,362 sowie US 5,292,447 beschrieben sind, und Sulfonylperoxysäuren, die in der Patentanmeldung US 5,039,447 beschrieben sind. Chlorhaltige Bleichmittel sowie die Kombination von chlorhaltigen Bleichmittel mit per- oxidhaltigen Bleichmitteln können ebenfalls verwendet werden. Bekannte chlorhaltige Bleichmittel sind beispielsweise 1 ,3-Dichloro-5,5-dimethylhydantoin, N-Chlorosulfamid, Chloramin T, Dichloramin T, Chloramin B, Ν,Ν'-Dichlorbenzoylharnstoff, p-Toluol- sulfondichloroamid oder Trichlorethylamin. Bevorzugte chlorhaltige Bleichmittel sind Natriumhypochlorit, Calciumhypochlorit, Kaliumhypochlorit, Magnesiumhypochlorit, Kaliumdichloroisocyanurat oder Natriumdichloroisocyanurat.
Chlorhaltige Bleichmittel werden in Mengen von im Allgemeinen 0, 1 bis 20 Gew.-%, bevor- zugt von 0,2 bis 10 Gew.-%, besonders bevorzugt von 0,3 bis 8 Gew.-%, bezogen auf die gesamte Reinigerformulierung, eingesetzt.
Weiterhin können in geringen Mengen Bleichmittelstabilisatoren wie beispielsweise Phosphonate, Borate, Metaborate, Metasilikate oder Magnesiumsalze zugegeben werden.
Bleichaktivatoren sind Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 Kohlenstoffatomen, insbesondere 2 bis 4 Kohlenstoffatomen, und/oder substituierte Perbenzoesäure ergeben. Geeignet sind Verbindungen, die eine oder mehrere N- bzw. O-Acylgruppen und/oder gegebenenfalls substi- tuierte Benzoylgruppen enthalten, beispielsweise Substanzen aus der Klasse der Anhydride, Ester, Imide, acylierten Imidazole oder Oxime. Beispiele sind Tetraacetylethylendiamin (TAED), Tetraacetylmethylendiamin (TAMD), Tetraacetylglykoluril (TAGU), Tetraacetylhexylendiamin (TAHD), N-Acylimide, wie beispielsweise N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, wie beispielsweise n-Nonanoyl- oder Isononanoyloxybenzolsulfonate (n- bzw. iso-NOBS), Pentaacetylglucose (PAG), 1 ,5- Diacetyl-2,2-dioxohexahydro-1 ,3,5-triazin (DADHT) oder Isatosäureanhydrid (ISA). Ebenfalls als Bleichaktivatoren eignen sich Nitrilquats wie beispielsweise N-Methyl- Morpholinium-Acetonitril-Salze (MMA-Salze) oder Trimethylammoniumacetonitril-Salze (TMAQ-Salze).
Bevorzugt eignen sich Bleichaktivatoren aus der Gruppe bestehend aus mehrfach acylierten Alkylendiaminen, besonders bevorzugt TAED, N-Acylimide, besonders bevorzugt NOSI, acylierte Phenolsulfonate, besonders bevorzugt n- oder iso-NOBS, MMA und TMAQ.
Bleichaktivatoren werden in Mengen von im Allgemeinen 0, 1 bis 10 Gew.-%, bevorzugt von 1 bis 9 Gew.-%, besonders bevorzugt von 1 ,5 bis 8 Gew.-%, bezogen auf die gesamte Reinigerformulierung, eingesetzt. Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren enthalten sein. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Salenkomplexe oder carbonylkomplexe. Auch Mangan-, Eisen-, Cobalt-, Ruthenium-, Molybdän-, Titan-, Vanadium- und Kupfer- Komplexe mit stickstoffhaltigen Tripod-Liganden sowie Cobalt-, Eisen-, Kupfer- und Ruthenium-Aminkomplexe sind als Bleichkatalysatoren verwendbar.
Als Komponente h) können die erfindungsgemäßen Reinigungsformulierungen 0 bis 8 Gew.-% Enzyme enthalten. Falls die Reinigungsformulierungen Enzyme enthalten, enthalten sie diese im Allgemeinen in Mengen von 0, 1 bis 8 Gew.-%. Dem Reinigungsmittel können Enzyme zugesetzt werden, um die Leistung der Reinigungsmittel zu steigern oder unter milderen Bedingungen die Reinigungsleistung in gleicher Qualität zu gewährleisten. Zu den am häufigsten verwendeten Enzymen gehören Lipasen, Amylasen, Cellulasen und Proteasen. Weiterhin können beispielsweise auch Esterasen, Pectinasen, Lactasen und Peroxidasen eingesetzt werden.
Des Weiteren können die erfindungsgemäßen Reinigungsmittel als Komponente i) 0 bis 50 Gew.-% einen oder mehrere weitere Zusatzstoffe wie anionische oder zwitterionische Ten- side, Alkaliträger, Korrosionsinhibitoren, Entschäumer, Farbstoffe, Duftstoffe, Füllstoffe, organische Lösungsmittel, Tablettierhilfsmittel, Disintegrationsmittel, Verdicker, Löslich- keitsvermittler und Wasser enthalten. Falls die Reinigungsformulierung weitere Zusatzstoffe enthält, sind diese im Allgemeinen in Mengen von 0, 1 bis 50 Gew.-% enthalten. Die Formulierungen können anionische oder zwitterionische Tenside enthalten, bevorzugt in Abmischung mit nichtionischen Tensiden. Geeignete anionische und zwitterionischer Tenside sind in EP-A 851 023 sowie DE-A 198 19 187 genannt.
Als weitere Bestandteile der Reinigerformulierung können Alkaliträger zugegen sein. Ne- ben den bereits bei den Buildersubstanzen genannten Ammonium- oder Alkalimetallcarbo- nate, Ammonium- oder Alkalimetallhydrogencarbonate und Ammonium- oder Alkalimetallsesquicarbonate können als Alkaliträger auch Ammonium- oder Alkalimetall- hydroxide, Ammonium- oder Alkalisilikate und Ammonium- oder Alkalimetasilikate sowie Gemische der vorgenannten Stoffe eingesetzt werden.
Als Korrosionsinhibitoren können Silberschutzmittel aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder- komplexe eingesetzt werden. Zur Verhinderung von Glaskorrosion, das sich durch Trübungen, Irisieren, Schlieren und Linien auf den Gläsern bemerkbar macht, werden Glaskorrosionsinhibitoren eingesetzt. Bevorzugte Glaskorrosionsinhibitoren sind aus der Gruppe der Magnesium- Zink und Bismuth-Salze und Komplexe.
Paraffinöle und Silikonöle können optional als Entschäumer und zum Schutz von Kunststoff- und Metalloberflächen eingesetzt werden. Entschäumer werden generell in Anteilen von 0,001 Gew.-% bis 5 Gew.-% eingesetzt. Außerdem können Farbstoffe wie beispielsweise Patentblau, Konservierungsmittel wie beispielsweise Kathon CG, Parfüme und sons- tige Duftstoffe der erfindungsgemäßen Reinigungsformulierung zugesetzt werden.
Ein geeigneter Füllstoff ist beispielsweise Natriumsulfat.
Die erfindungsgemäßen Reinigungsformulierungen können in flüssiger oder fester Form, ein- oder mehrphasig, als Tabletten oder in Form anderer Dosiereinheiten, verpackt oder unverpackt bereitgestellt werden.
Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert. Beispiele
Die Bestimmung der Molekulargewichte erfolge in allen Fällen mittels Gelpermeationschromatographie (GPC). Dabei wurden 2 Säulen (Suprema Linear M) und eine Vorsäule (Suprema Vorsäule) alle der Marke Suprema-Gel (HEMA) von der Firma Polymer Standard Services (Mainz, Deutschland) bei 35°C mit einer Flußrate von 0,8 ml/min betrieben. Der Eluent waren die mit TRIS bei pH 7 gepufferten wässrigen Lösung, die mit 0, 15 M NaCI und 0,01 M NaN3 versetzt waren. Die Kalibrierung erfolgte mit einem Na-PAA Standard, deren integrale Molekulargewichtsverteilungskurve durch SEC- Laserlichtstreukopplung bestimmt worden war, nach dem Kalibrierverfahren von M.J.R. Cantow u.a. (J.Polym.Sci. ,A-1 , 5(1967)1391-1394), allerdings ohne die dort vorgeschlagene Konzentrationskorrektur. Alle Proben wurden mit einer 50%igen Natronlauge auf pH 7 eingestellt, ein Teil dieser Lösung wurde mit VE-Wasser auf einen Feststoffgehalt von 1 ,5 mg/mL verdünnt, und 12 Stunden lang gerührt. Anschließend wurden die Proben filtriert. Jeweils 100 wurden mittels einer Sartorius Minisart RC 25 (0.2 μηι) eingespritzt.
Vergleichsbeispiel V1
In einem Reaktor wurden 503,9 g VE-Wasser zusammen mit 2,36 g einer 50 gew.-%igen wässrigen Lösung von Phosphoriger Säure vorgelegt. Anschließend wurde unter Stickstoff- Atmosphäre auf 100 °C Innentemperatur erhitzt. Bei dieser Temperatur wurden gleichzeitig 58,9 g einer 10,0 gew.-%igen wässrigen Natriumperoxodisulfat-Lösung, 39,2 g einer 40 gew.-%igen wässrigen Natriumbisulfit-Lösung und 394,0 g eines Gemischs bestehend aus 10,9 Gew.-% destillierter Acrylsäure, 11 ,2 Gew.-% Methoxypolyethylenglykolmethacrylat (Mw = 1086 g/mol), 1 1 ,9 Gew.-% destillierter Methacrylsäure, 4,5 Gew.-% 2- Sulfoethylmethacrylsäure-Natriumsalz und 61 ,5% Gew.-% VE-Wasser, separat und parallel unter Rühren zudosiert. Das Monomer-Gemisch wurde innerhalb von 5 Stunden, Natriumperoxodisulfat innerhalb von 5,25 Stunden und Natriumbisulfit innerhalb von 5 Stunden zudosieren. Anschließend wurde noch 2 Stunden bei 100 °C nachpolymerisiert. Danach wurde auf Raumtemperatur abgekühlt und danach mit 87,0 g einer 50 gew.-%igen wässrigen Natronlauge auf einen pH -Wert von 7,2 eingestellt. pH- und K-Wert, Molekulargewichte Mn und Mw sowie der Feststoffgehalt wurden bestimmt und das Produktgemisch visuell beurteilt.
Vergleichsbeispiel V2
In einem Reaktor wurden 904,6 g VE-Wasser zusammen mit 2,36 g einer 50 gew.-%igen wässrigen Lösung von Phosphoriger Säure vorgelegt. Anschließend wurde unter Stickstoff- Atmosphäre auf 100 °C Innentemperatur erhitzt. Bei dieser Temperatur wurden gleichzeitig 1 17,8 g einer 10,2 gew.-%igen wässrigen Natriumperoxodisulfat-Lösung, 78,4 g einer 40 gew.-%igen wässrigen Natriumbisulfit-Lösung und 647,2 g eines Gemischs bestehend aus 13,3 Gew.-% destillierter Acrylsäure, 13,7 Gew.-% Methoxypolyethylenglykolmethacrylat (Mw = 1086 g/mol), 14,5 Gew.-% destillierter Methacrylsäure und 58,5 Gew.-% VE-Wasser und 140,8 g einer 25 gew.-%igen Natriumvinylsulfonat-Lösung, separat und parallel unter Rühren zudosiert. Das Monomer-Gemisch wurde innerhalb von 5 Stunden, Natriumperoxodisulfat innerhalb von 5,25 Stunden und Natriumbisulfit innerhalb von 5 Stunden zudosiert. Anschließend wurde noch 2 Stunden bei 100 °C nachpolymerisiert. Danach wurde auf Raumtemperatur abgekühlt und danach mit 178,8 g einer 50 gew.- %igen wässrigen Natronlauge auf einen pH -Wert von 7,2 eingestellt. pH- und K-Wert, Molekulargewichte Mn und Mw sowie der Feststoffgehalt wurden bestimmt und das Pro- duktgemisch visuell beurteilt.
Beispiel 1
In einem Reaktor wurden 375,0 g VE-Wasser vorgelegt und unter Stickstoff-Atmosphäre auf 90°C Innentemperatur erhitzt. Bei dieser Temperatur wurden gleichzeitig 321 ,0 g einer 7 gew.-%igen wässrigen Natriumperoxodisulfat-Lösung, 60,0 g einer 40 gew.-%igen wässrigen Natriumbisulfit-Lösung, 150,0 g eines Gemischs bestehend aus 12,0 Gew.-% destillierter Methacrylsäure, 38,0 Gew.-% Methoxypolyethylenglykolmethacrylat (Mw = 1086 g/mol) und 50,0 Gew.-% VE-Wasser, 1004,0 g eines Gemischs bestehend aus 44,8 Gew.- % destillierter Acrylsäure, 22,4 Gew.-% 2-Acrylamido-2-methylpropansulfonsäure, 0,002 Gew.-% 4-Methoxyphenol, 17,5 Gew.-% einer 25 gew.-%igen wässrigen Natronlauge und 15,3 Gew.-% VE-Wasser, separat und parallel unter Rühren zudosiert. Die Monomere wurden innerhalb von 4 Stunden, Natriumperoxodisulfat innerhalb von 4,75 Stunden und Natriumbisulfit innerhalb von 4 Stunden zudosiert. Nach Ende des Acrylsäure-Zulaufs wur- den 150,0 g einer 25 gew.-%igen wässrigen Natriumhydroxid-Lösung innerhalb von 2 Stunden bei 90° C Innentemperatur zugegeben. Nachfolgend wurde noch 1 Stunde bei 90 °C nachpolymerisiert. Danach wurde auf Raumtemperatur abgekühlt und mit 1 15,5 g einer 50 gew.-%igen wässrigen Natronlauge die Polymer-Lösung auf pH 4,5 eingestellt. pH- und K-Wert, Molekulargewichte Mn und Mw sowie der Feststoffgehalt wurden bestimmt und das Produktgemisch visuell beurteilt.
Beispiel 2
In einem Reaktor wurden 375,0 g VE-Wasser vorgelegt. Anschließend wurde unter Stick- stoff-Atmosphäre auf 90 °C Innentemperatur erhitzt. Bei dieser Temperatur wurden gleichzeitig 321 ,4 g einer 7 gew.-%igen wässrigen Natriumperoxodisulfat-Lösung, 60,0 g einer 40 gew.-%igen wässrigen Natriumbisulfit-Lösung, 300,0 g eines Gemischs bestehend aus 18,0 Gew.-% destillierter Methacrylsäure, 57,0 Gew.-% Methoxypoly- ethylenglykolmethacrylat (Mw = 1086 g/mol) und 25,0 Gew.-% VE-Wasser, 853,0 g eines Gemischs bestehend aus 35,2 Gew.-% destillierter Acrylsäure, 26,4 Gew.-% 2-Acrylamido- 2-methylpropansulfonsäure, 0,002 Gew.-% 4-Methoxyphenol, 20,4 Gew.-% einer 25 gew.- %igen wässrigen Natronlauge und 18,0 Gew.-% VE-Wasser separat und parallel unter Rühren zudosiert. Die Monomere wurden innerhalb von 4 Stunden, Natriumperoxodisulfat innerhalb von 4,75 Stunden und Natriumbisulfit innerhalb von 4 Stunden zudosiert. Nach Ende des Acrylsäure-Zulaufs wurden 150,0 g einer 25 gew.-%igen wässrigen Natriumhydroxid-Lösung in 2 Stunden bei 90° C Innentemperatur zugeben. Nachfolgend wurde 1 Stunde bei 90 °C nachpolymerisiert. Danach wurde die Polymer-Lösung auf Raumtemperatur abgekühlt und mit 67,3 g einer 50 gew.-%igen wässrigen Natronlauge auf pH 4,5 eingestellt. pH- und K-Wert, Molekulargewichte Mn und Mw sowie der Feststoffgehalt wurden bestimmt und das Produktgemisch visuell beurteilt.
Beispiel 3
In einem Reaktor wurden 375,0 g VE-Wasser vorgelegt. Anschließend wurde unter Stick- stoff-Atmosphäre auf 90 °C Innentemperatur erhitzt. Bei dieser Temperatur wurden gleichzeitig 321 ,0 g einer 7 gew.-%igen wässrigen Natriumperoxodisulfat-Lösung, 60,0 g einer 40 gew.-%igen wässrigen Natriumbisulfit-Lösung, 225,0 g eines Gemischs bestehend aus 15,8 Gew.-% destillierter Methacrylsäure, 50,2 Gew.-% Methoxypolyethylenglykolmetha- crylat (Mw = 1086 g/mol) und 33,0 Gew.-% VE-Wasser, 869,4 g eines Gemischs bestehend aus 51 ,8 Gew.-% destillierter Acrylsäure, 17,2 Gew.-% 2-Acrylamido-2- methylpropansulfonsäure, 0,002 Gew.-% 4-Methoxyphenol, 13,4 Gew.-% einer 25 gew.- %igen wässrigen Natronlauge und 17,6 Gew.-% VE-Wasser separat und parallel unter Rühren zudosiert. Die Monomere wurden innerhalb von 4 Stunden, Natriumperoxodisulfat innerhalb von 4,75 Stunden und Natriumbisulfit innerhalb von 4 Stunden zudosiert. Nach Ende des Acrylsäure-Zulaufs wurden 150,0 g einer 25 gew.-%igen wässrigen Natriumhydroxid-Lösung in 2 Stunden bei 90 °C Innentemperatur zugegeben. Nachfolgend wurde 1 Stunde bei 90 °C nachpolymerisiert. Danach wurde die Polymer-Lösung auf Raumtemperatur abkühlt und mit 1 15,5 g einer 50 gew.-%igen wässrigen Natronlauge auf pH 4,5 eingestellt. pH- und K-Wert, Molekulargewichte Mn und Mw sowie der Feststoffgehalt wurden bestimmt und das Produktgemisch visuell beurteilt.
Beispiel 4
In einem Reaktor wurden 375,0 g VE-Wasser vorgelegt und unter Stickstoff-Atmosphäre auf 90°C Innentemperatur erhitzt. Bei dieser Temperatur wurden gleichzeitig 321 ,0 g einer 7 gew.-%igen wässrigen Natriumperoxodisulfat-Lösung, 60,0 g einer 40 gew.-%igen wässrigen Natriumbisulfit-Lösung, 113,0 g eines Gemischs bestehend aus 15,8 Gew.-% destillierter Methacrylsäure, 50,2 Gew.-% Methoxypolyethylenglykolmethacrylat (Mw = 1086 g/mol) und 33,0 Gew.-% VE-Wasser, 809,7 g eines Gemischs bestehend aus 74, 1 Gew.-% destillierter Acrylsäure, 9,4 Gew.-% 2-Acrylamido-2-methylpropansulfonsäure, 0,002 Gew.- % 4-Methoxyphenol, 7,2 Gew.-% einer 25 gew.-%igen wässrigen Natronlauge und 9,3 Gew.-% VE-Wasser, separat und parallel unter Rühren zudosieren. Die Monomere wurden innerhalb von 4 Stunden, Natriumperoxodisulfat innerhalb von 4,75 Stunden und Natriumbisulfit innerhalb von 4 Stunden zudosiert. Nach Ende des Acrylsäure-Zulaufs wur- den 150,0 g einer 25 gew.-%igen wässrigen Natronlauge innerhalb von 2 Stunden bei 90° C Innentemperatur zugegeben. Nachfolgend wurde 1 Stunde bei 90 °C nachpolymerisiert. Danach wurde die Polymer-Lösung auf Raumtemperatur abgekühlt und mit 1 15,5 g einer 50 gew.-%igen Natronlauge auf pH 4,5 eingestellt. pH- und K-Wert, Molekulargewichte Mn und Mw sowie der Feststoffgehalt wurden bestimmt und das Produktgemisch visuell beur- teilt.
Beispiel 5
In einem Reaktor wurden 375,0 g VE-Wasser vorgelegt und unter Stickstoff-Atmosphäre auf 90 °C Innentemperatur erhitzt. Bei dieser Temperatur wurden gleichzeitig 321 ,0 g einer 7 gew.-%igen wässrigen Natriumperoxodisulfat-Lösung, 60,0 g einer 40 gew.-%igen wässrigen Natriumbisulfit-Lösung, 150,0 g einer 50 gew.-%igen wässrigen Methoxypolyethylenglykolmethacrylat (Mw = 1086 g/mol)-Lösung und 1004,0 g eines Gemischs bestehend aus 44,8 Gew.-% destillierter Acrylsäure, 22,4 Gew.-% 2-Acrylamido-2- methylpropansulfonsäure, 0,001 Gew.-% 4-Methoxyphenol, 17,5 Gew.-% einer 25 gew.- %igen wässrigen Natronlauge und 15,3 Gew.-% VE-Wasser, separat und parallel unter Rühren zudosiert. Die Monomere wurden innerhalb von 4 Stunden, Natriumperoxodisulfat innerhalb von 4,75 Stunden und Natriumbisulfit innerhalb von 4 Stunden zudosiert. Nach Ende des Starter-Zulaufs wurden 150,0 g einer 25 gew.-%igen wässrigen Natriumhydroxid- Lösung in 2 Stunden bei 90° C Innentemperatur zugegeben. Nachfolgend wurde 1 Stunde bei 90 °C nachpolymerisiert. Danach wurde die Polymer-Lösung auf Raumtemperatur abgekühlt und mit 1 15,5 g einer 50 gew.-%igen wässrigen Natronlauge auf pH 4,5 eingestellt. pH- und K-Wert, Molekulargewichte Mn und Mw sowie der Feststoffgehalt wurden bestimmt und das Produktgemisch visuell beurteilt.
Beispiel 6
In einem Reaktor wurden 375,0 g VE-Wasser vorgelegt. Anschließend wurde unter Stickstoff-Atmosphäre auf 90 °C Innentemperatur erwärmt. Bei dieser Temperatur wurden gleichzeitig 321 ,0 g einer 7 gew.-%igen wässrigen Natriumperoxodisulfat-Lösung, 60,0 g einer 40 gew.-%igen wässrigen Natriumbisulfit-Lösung, 150,0 g von einer 50 gew.-%igen wässrigen Methoxypolyethylenglykolmethacrylat-Lösung (Mw = 2086 g/mol) und 1004,0 g von einem Gemisch bestehend aus 44,8 Gew.-% destillierter Acrylsäure, 22,4 Gew.-% 2- Acrylamido-2-methylpropansulfonsäure, 0,002 Gew.-% 4-Methoxyphenol, 17,5 Gew.-% einer 25 gew.-%igen wässrigen Natronlauge und 15,3 Gew.-% VE-Wasser, separat und parallel unter Rühren zudosiert. Die Monomere wurden innerhalb von 4 Stunden, Natriumperoxodisulfat innerhalb von 4,75 Stunden und Natriumbisulfit innerhalb von 4 Stunden zudosiert. Nach Ende des Acrylsäure-Zulaufs wurden 150,0 g einer 25 gew.- %igen wässrigen Natriumhydroxid-Lösung innerhalb von 2 Stunden bei 90° C Innentempe- ratur zugeben. Nachfolgend wurde 1 Stunde bei 90 °C nachpolymerisiert. Danach wurde auf Raumtemperatur abgekühlt und mit 115,5 g einer 50 gew.-%igen wässrigen Natronlauge die Polymerlösung auf pH 4,5 eingestellt. pH- und K-Wert, Molekulargewichte Mn und Mw sowie der Feststoffgehalt wurden bestimmt und das Produktgemisch visuell beurteilt. Beispiel 7
In einem Reaktor wurden 375,0 g VE-Wasser vorgelegt und unter Stickstoff-Atmosphäre auf 90 °C Innentemperatur erhitzt. Bei dieser Temperatur wurden gleichzeitig 321 ,0 g einer 7 gew.-%igen wässrigen Natriumperoxodisulfat-Lösung, 60,0 g einer 40 gew.-%igen wäss- rigen Natriumbisulfit-Lösung, 150,0 g einer 50 gew.-%igen wässrigen Methoxypolyethylenglykolmethacrylat (Mw = 1086 g/mol)-Lösung und 1004,0 g eines Ge- mischs bestehend aus 44,8 Gew.-% destillierter Acrylsäure, 22,4 Gew.-% 2-Acrylamido-2- methylpropansulfonsäure, 0,001 Gew.-% 4-Methoxyphenol, 17,5 Gew.-% einer 25 gew.- %igen wässrigen Natronlauge und 15,3 Gew.-% VE-Wasser, separat und parallel unter Rühren zudosiert. Die Monomere wurden innerhalb von 4 Stunden, Natriumperoxodisulfat innerhalb von 4,75 Stunden und Natriumbisulfit innerhalb von 4 Stunden zudosiert. Nach Ende des Starter-Zulaufs wurden 150,0 g einer 25 gew.-%igen wässrigen Natriumhydroxid- Lösung innerhalb von 2 Stunden bei 90 °C Innentemperatur zugegeben. Anschließend wurde 1 Stunde bei 90 °C nachpolymerisiert. Danach wurde die Polymer-Lösung auf Raumtemperatur abgekühlt und mit 115,5 g einer 50 gew.-%igen wässrigen Natronlauge auf pH 4,5 eingestellt. pH- und K-Wert, Molekulargewichte Mn und Mw sowie der Feststoffgehalt wurden bestimmt und das Produktgemisch visuell beurteilt.
Beispiel 8
In einem Reaktor wurden 375,0 g VE-Wasser vorgelegt und unter Stickstoff-Atmosphäre auf 90 °C Innentemperatur erwärmt. Bei dieser Temperatur wurden gleichzeitig 321 ,0 g einer 7 gew.-%igen wässrigen Natriumperoxodisulfat-Lösung, 60,0 g einer 40 gew.-%igen wässrigen Natriumbisulfit-Lösung, 150,0 g einer 50 gew.-%igen wässrigen Methoxypolyethylenglykolmethacrylat-Lösung (Mw = 2086 g/mol) und 1004,0 g eines Ge- mischs bestehend aus 44,8 Gew.-% destillierter Acrylsäure, 22,4 Gew.-% 2-Acrylamido-2- methylpropansulfonsäure, 0,002 Gew.-% 4-Methoxyphenol, 17,5 Gew.-% einer 25 gew.- %igen wässrigen Natronlauge und 15,3 Gew.-% VE-Wasser, separat und parallel unter Rühren zudosiert. Die Monomere wurden innerhalb von 4 Stunden, Natriumperoxodisulfat innerhalb von 4,75 Stunden und Natriumbisulfit innerhalb von 4 Stunden zudosiert. Nach Zulaufende von Acrylsäure wurden 150,0 g einer 25 gew.-%igen wässrigen Natriumhydroxid-Lösung in 2 Stunde bei 90 °C Innentemperatur zugegeben. Nachfolgend wurde 1 Stunde bei 90 °C nachpolymerisiert. Danach wurde auf Raumtemperatur abgekühlt und mit 1 15,5 g einer 50 gew.-%igen wässrigen Natronlauge die Polymerlösung auf pH 4,5 einge- stellt. pH- und K-Wert, Molekulargewichte Mn und Mw sowie der Feststoffgehalt wurden bestimmt und das Produktgemisch visuell beurteilt.
Die Zusammensetzung der Polymere ist in Tabelle 1 wiedergegeben. Tabelle 1
BeiMonomerzusammensetzung Monomer-Anteile
spiel des Copolymers [Gew%]
V1 AS/MAS/SEMA/MPEGMA(1000) 28,3 : 31 ,0 : 29,2 : 1 1 ,6
V2 AS/MAS/VS/MPEGMA(1000) 28,3 : 31 ,0 : 29,2 : 1 1 ,6
1 AS/MAS/AMPS/MPEGMA(1000) 60,0 : 2,4 : 30,0 : 7,6
2 AS/MAS/AMPS/MPEGMA(1000) 40,0 : 7,2 : 30,0 : 22,8 3 AS/MAS/AMPS/MPEGMA(1000) 60,0 : 4,8 : 20,0 : 15,2
4 AS/MAS/AMPS/MPEGMA(1000) 80,0 : 2,4 : 10,0 : 7,6
5 AS/AMPS/MPEGMA(1000) 60 : 30 : 10
6 AS/AM PS/M PEGMA(2000) 60 : 30 : 10
AS = Acrylsäure
MAS = Methacrylsäure
AM PS = 2-Acrylamido-2-methylpropylsulfonsäure
MPEGMA(1000)= Methylpolyethylenglykolether mit im Mittel 22 Ethylenoxid-Einheiten. MPEGMA(2000)= Methylpolyethylenglykolether mit im Mittel 44 Ethylenoxid-Einheiten
Die Analytischen Daten der Polymere sind in Tabelle 2 wiedergegeben. Tabelle 2
BeiFeststoffK Wert pH Mwc Visuelle Beurteilung
spiel gehalt (pH 7)
(tq)
[%]a
V1 18, 1 31 ,9 7,2 14.80 klare, leicht gelbliche, viskose
0 Lösung
V2 18,8 22,3 7,2 5.930 klare, leicht gelbliche, viskose
Lösung
1 41 , 1 42,6 4,5 22.40 klare, gelbliche, viskose Lösung
0
2 41 ,2 40,6 4,5 19.90 klare, gelbliche viskose Lösung
0
3 41 ,6 45,9 4,6 26.40 klare, gelbliche, viskose Lösung
0
4 44,2 48, 1 4,5 27.90 klare, gelbliche, viskose Lösung
0
5 40,3 40,0 4,5 n.b. klare, farbloses, viskose Lösung 6 40,8 41 ,0 4,5 n.b. klare, hell gelbliche, viskose Lösung a) ISO 3251 , (0.25 g, 150°C, 2h)
b) bestimmt durch Fikentscher Methode mit einer 1 %iger Lösung in VE-Wasser
c) bestimmt durch Gel Permeation Chromatographie
Die Polymere wurden in den folgenden Phosphat-freien Formulierungen PF1 und PF2, sowie in der Phosphat-basierten Formulierung P1 getestet. Die Zusammensetzung der Prüf-Formulierungen ist in Tabelle 3 (Angaben in Gew.-%) wiedergegeben. Tabelle 3
Figure imgf000024_0001
Angaben in Gew.-%
Dabei wurden folgende Versuchbedingungen eingehalten:
Geschirrspüler: Miele G 1222 SCL
Programm: 65°C (mit Vorspülen)
Spülgut: 3 Messer (WMF Tafelmesser Berlin, Monoblock)
3 Trinkglas Amsterdam 0,2L
3 FRÜHSTÜCKSTELLER "OCEAN BLAU" (MELAMIN) 3 Porzellanteller: FAHNENTELLER FLACH 19 CM Anordnung: Messer in der Besteckschublade, Gläser im oberen Korb, Teller im unteren Korb einsortiert
Geschirrspülmittel: 21 g
Schmutzzugabe: 50 g Ballastschmutz wird aufgetaut mit der Formulierung nach dem Vorspülen dosiert, Zusammensetzung siehe unten
Klarspültemperatur: 65°C
Wasserhärte: 21 °dH (Ca/Mg): HC03 (3: 1):1.35
Spülcyclen: 15; dazwischen jeweils 1 h Pause (10 min geöffnete Tür, 50 min geschlossene Tür)
Auswertung: Visuell nach 15 Spülcyclen
Die Bewertung des Spülguts erfolgte nach 15 Cyclen in einer abgedunkelten Kammer unter Licht hinter einer Lochblende unter Verwendung einer Notenskala von 10 (sehr gut) bis 1 (sehr schlecht). Vergeben wurden sowohl Noten von 1 - 10 für Spotting (sehr viele, intensi- ve spots = 1 bis keine Spots = 10) als auch für Belag die Noten 1 - 10 (1 = sehr starker Belag, 10 = kein Belag).
Zusammensetzung des Ballastschmutzes:
Stärke: 0,5 % Kartoffelstärke, 2,5 % Bratensoße
Fett: 10,2 % Margarine
Protein: 5,1 % Eigelb, 5,1 % Milch
Andere: 2,5 % Tomatenketchup, 2,5 % Senf, 0,1 % Benzoesäure, 71 ,4 % Wasser
Ergebnis:
Insbesondere auf Glas und Messer zeigten die erfindungsgemäßen Copolymere eine gegenüber den Vergleichsbeispielen verbesserte Wrksamkeit.
In den nachfolgenden Tabellen sind die addierten Noten für Belagsbildung und Spotting auf Messern und Trinkgläsern aufgeführt.
Phosphatfreie Formulierung PF 1
Polymer Messer (S + B) Gläser (S + B) Summe (max 40)
V1 12 12 24
V2 1 1 1 1 22
1 13 13 26
2 13 15 28
3 14 14 28
4 16 14 30 5 15 14 29
6 15 15 30
S = Spotting
B = Belag Phosphathaltige Formulierung P1
Figure imgf000026_0001
Die erfindungsgemäßen Polymere wurden auch in der Formulierung PF2 getestet. Auch mit der Formulierung PF2 schnitten die erfindungsgemäßen Copolymere besser als die Vergleichspolymere ab.

Claims

Patentansprüche
Copolymere, welche a1) 30 bis 90 Gew.-% mindestens einer monoethylenisch ungesättigten C3-C8- Carbonsäure, eines Anhydrids oder wasserlöslichen Salzes derselben, a2) 3 bis 60 Gew.-% mindestens eines Sulfonsäuregruppen enthaltenden Monomers, a3) 3 bis 60 Gew.- % mindestens eines nichtionischen Monomers der Formel (I) H2C=C(R1)COO-[R2-0]0-R3 (I), in der R1 für Wasserstoff oder Methyl, R2 für gleiche oder verschiedene, lineare oder verzweigte C2-C6-Alkylenreste, die blockweise oder statistisch angeordnet sein können, und R3 für Wasserstoff oder einen geradkettigen oder verzweigten CrC4-Alkylrest und o für eine natürliche Zahl von 3 bis 50 stehen, a4) 0 bis 30 Gew.-% eines oder mehrerer weiterer ethylenisch ungesättigter Monomere, die mit a1), a2) und a3) polymerisierbar sind, wobei die Summe aus a1), a2), a3) und a4) 100 Gew.-% ergibt, einpolymerisiert enthalten.
Copolymere nach Anspruch 1 , dadurch gekennzeichnet, dass Monomer a1) ausgewählt ist aus der Gruppe bestehend aus Acrylsäure, Methacrylsäure und wasserlöslichen Salzen der Acrylsäure und Methacrylsäure.
Copolymere nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Sulfonsäuregruppen enthaltende Monomer a2) ausgewählt ist aus 2-Acrylamido-2- methylpropansulfonsäure, Allylsulfonsäure und deren wasserlöslichen Salzen.
4. Copolymere nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass o 5 bis 40 ist.
5. Copolymere nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in Formel (I) R1 = H ist.
6. Copolymere nach Anspruch 5, dadurch gekennzeichnet, dass in Formel (I) R1 = Methyl ist.
7. Copolymere nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in Formel (I) R2 Ethylen ist.
8. Copolymere nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in Formel (I) R3 Methyl ist.
9. Copolymere nach einem der Ansprüche 1 bis 8 enthaltend 45 bis 85 Gew.-% a1), 4 bis 40 Gew.-% a2) und 4 bis 35 Gew.-% a3).
10. Copolymere nach Anspruch 9, enthaltend 47 bis 83 Gew.-% a1), 6 bis 35 Gew.-% a2) und 6 bis 30 Gew.-% a3).
1 1. Verwendung der Copolymere nach einem der Ansprüche 1 bis 10 als belagsinbibierender Zusatz in Wasch- und Reinigungsmitteln.
12. Verwendung nach Anspruch 1 1 in phosphatfreien oder phosphathaltigen Reinigungs- formulierungen für die maschinelle Geschirrreinigung.
13. Reinigungsformulierung für die maschinelle Geschirrreinigung enthaltend als Komponenten: a) 1 bis 20 Gew.-% mindestens eines Copolymeren wie in einem der Ansprüche 1 bis 10 definiert, b) 0 bis 20 Gew.-% von Komponente a) verschiedene Polycarboxylate, c) 0 bis 50 Gew.-% Komplexbildner, d) 0 bis 70 Gew.-% Phosphate, e) 0 bis 60 Gew.-% weitere Builder und Cobuilder, f) 0,1 bis 20 Gew.-% nichtionische Tenside, g) 0 bis 30 Gew.-% Bleichmittel und gegebenenfalls Bleichaktivatoren und Bleichkatalysatoren, h) 0 bis 8 Gew.-% Enzyme, i) 0 bis 50 Gew.-% einer oder mehrerer weiterer Zusatzstoffe wie anionische oder zwitterionische Tenside, Alkaliträger, Korrosionsinhibitoren, Entschäumer, Farbstoffe, Duftstoffe, Füllstoffe, organische Lösungsmittel, Tablettierhilfsmittel, Disintegrationsmittel, Verdicker, Löslichkeitsvermittler und Wasser, wobei die Summe der Komponenten a) bis i) 100 Gew.-% ergibt.
PCT/EP2011/070616 2010-11-23 2011-11-22 Copolymere, die carbonsäuregruppen, sulfonsäuregruppen und polyalkylenoxidgruppen enthalten, als belagsinhibierender zusatz zu wasch- und reinigungsmitteln WO2012069440A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PL11784708T PL2643368T3 (pl) 2010-11-23 2011-11-22 Kopolimery zawierające grupy karboksylowe, sulfonowe i polioksyalkilenowe jako hamujący powstawanie osadów dodatek do środków piorących i czyszczących
MX2013005692A MX340486B (es) 2010-11-23 2011-11-22 Copolimeros que contienen grupos acido carboxilico, grupos sulfo y grupos polioxido de alquileno como aditivo inhibidor de la incrustacion en productos para lavado y limpieza.
ES11784708.7T ES2556408T3 (es) 2010-11-23 2011-11-22 Copolímeros que contienen grupos de ácido carboxílico, grupos de ácido sulfónico y grupos de poli(óxido de alquileno) como aditivo inhibidor de la incrustación en detergentes
EP11784708.7A EP2643368B1 (de) 2010-11-23 2011-11-22 Copolymere, die carbonsäuregruppen, sulfonsäuregruppen und polyalkylenoxidgruppen enthalten, als belagsinhibierender zusatz zu wasch- und reinigungsmitteln
CN201180065659.XA CN103492436B (zh) 2010-11-23 2011-11-22 作为洗涤和清洁产品的水垢抑制添加剂的包含羧酸基团、磺基和聚氧化烯基团的共聚物
BR112013012695-7A BR112013012695B1 (pt) 2010-11-23 2011-11-22 copolímero inibidor de incrustação em produtos de lavagem e limpeza, uso de um copolímero, e, formulação detergente para a lavagem de pratos em máquina
JP2013540318A JP6125428B2 (ja) 2010-11-23 2011-11-22 洗剤及び清浄剤へのスケール防止添加剤として使用するカルボン酸基、スルホン酸基及びポリアルキレンオキシド基を含有するコポリマー
CA2818703A CA2818703A1 (en) 2010-11-23 2011-11-22 Copolymers comprising carboxylic acid groups, sulfo groups and polyalkylene oxide groups as a scale-inhibiting additive to washing and cleaning products
RU2013128412/04A RU2576325C2 (ru) 2010-11-23 2011-11-22 Сополимеры, которые содержат группы карбоновых кислот, группы сульфокислот и полиалкиленоксидные группы, в качестве препятствующей отложениям добавки к моющим и чистящим средствам
KR1020137013149A KR101859790B1 (ko) 2010-11-23 2011-11-22 세탁 및 세정 제품에 대한 스케일-억제 첨가제로서의 카르복실산기, 술포기 및 폴리알킬렌 옥시드기를 함유하는 공중합체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10192171 2010-11-23
EP10192171.6 2010-11-23

Publications (1)

Publication Number Publication Date
WO2012069440A1 true WO2012069440A1 (de) 2012-05-31

Family

ID=44993595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/070616 WO2012069440A1 (de) 2010-11-23 2011-11-22 Copolymere, die carbonsäuregruppen, sulfonsäuregruppen und polyalkylenoxidgruppen enthalten, als belagsinhibierender zusatz zu wasch- und reinigungsmitteln

Country Status (11)

Country Link
EP (1) EP2643368B1 (de)
JP (1) JP6125428B2 (de)
KR (1) KR101859790B1 (de)
CN (1) CN103492436B (de)
BR (1) BR112013012695B1 (de)
CA (1) CA2818703A1 (de)
ES (1) ES2556408T3 (de)
MX (1) MX340486B (de)
PL (1) PL2643368T3 (de)
RU (1) RU2576325C2 (de)
WO (1) WO2012069440A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015000971A1 (de) * 2013-07-03 2015-01-08 Basf Se Gelförmige polymerzusammensetzung, erhalten durch polymerisation eines säuregruppenhaltigen monomers in gegenwart einer polyetherverbindung
US9382377B2 (en) 2011-08-10 2016-07-05 Basf Se Polymer mixtures as deposit inhibitors in water-bearing systems
EP2700703B1 (de) * 2012-08-24 2018-05-02 The Procter and Gamble Company Geschirrspülverfahren
EP2700704B1 (de) * 2012-08-24 2018-05-09 The Procter and Gamble Company Geschirrspülverfahren
WO2019178245A1 (en) * 2018-03-13 2019-09-19 Riehm David Alexander Alkaline warewash detergent composition comprising a terpolymer

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5952825B2 (ja) * 2010-11-23 2016-07-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 洗剤及び清浄剤へのスケール防止添加剤として使用するカルボン酸基、スルホン酸基及びポリアルキレンオキシド基を含有するコポリマー
WO2013035329A1 (ja) * 2011-09-09 2013-03-14 出光興産株式会社 有機エレクトロルミネッセンス素子
AU2016236080A1 (en) * 2015-03-24 2017-11-02 Rohm And Haas Company Control of scale in warewash applications
EP3307796B1 (de) * 2015-06-15 2020-11-04 Union Carbide Corporation Polymermischung in granulatform und verfahren zur herstellung davon
US10590010B2 (en) * 2015-11-06 2020-03-17 Solenis Technologies, L.P. Processes for the separation of water from aqueous systems
JP6721417B2 (ja) * 2016-05-31 2020-07-15 株式会社日本触媒 硫黄含有重合体組成物およびその製造方法
US20190141989A1 (en) * 2017-11-16 2019-05-16 Dow Global Technologies Llc Stabilization of complexed silver ion on soft surfaces
JPWO2019244951A1 (ja) * 2018-06-20 2021-07-08 住友精化株式会社 漂白剤成分を含む組成物及びその製造方法
WO2023018345A1 (ru) * 2021-08-09 2023-02-16 Общество с ограниченной ответственностью "Научно-производственное объединение "Квантовые технологии" Реагент для очистки сточных вод и способ его получения

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039447A (en) 1988-12-12 1991-08-13 Monsanto Company Pourable sulfone peracid compositions
US5292447A (en) 1988-06-14 1994-03-08 Ausimont S.R.L. Heterocyclic peroxides having n-amidic heteroatoms
US5294362A (en) 1987-11-13 1994-03-15 Ausimont S.R.L. Peroxy carboxylic amino-derivatives
US5422028A (en) 1993-03-22 1995-06-06 Lever Brothers Company, Division Of Conopco, Inc. Peroxyacids
EP0778340A2 (de) 1995-12-06 1997-06-11 Basf Corporation Phosphatfreie Geschirreinigungsmittelzusammensetzungen, enthaltend Copolymere von Alkylenoxid-Addukten von Allylalkohol und Acrylsäure
EP0851023A2 (de) 1996-12-23 1998-07-01 Unilever N.V. Peracid enthaltende automatische Geschirrspülmitteltabletten
DE19819187A1 (de) 1998-04-30 1999-11-11 Henkel Kgaa Festes maschinelles Geschirrspülmittel mit Phosphat und kristallinen schichtförmigen Silikaten
WO2002008527A1 (fr) 2000-07-21 2002-01-31 Hitachi Construction Machinery Co., Ltd. Dispositif de transmission d'informations destine a une machine de construction
DE10225794A1 (de) 2002-06-10 2003-12-18 Basf Ag Verwendung von sulfonsäuregruppenhaltigen Copolymeren als Zusatz in Wasch- und Reinigungsmitteln
WO2005042684A1 (de) 2003-10-28 2005-05-12 Basf Aktiengesellschaft Verwendung von alkylenoxideinheiten enthaltenden copolymeren als belagsinhibierende additive im klarspülgang des maschinellen geschirrspülers
DE102007019458A1 (de) * 2007-04-25 2008-10-30 Basf Se Phosphatfreies Maschinengeschirrspülmittel mit ausgezeichneter Klarspülleistung
WO2008132131A1 (de) 2007-04-25 2008-11-06 Basf Se Maschinengeschirrspülmittel mit ausgezeichneter klarspülleistung
WO2010024468A1 (en) 2008-09-01 2010-03-04 The Procter & Gamble Company Sulfonate group-containing copolymers and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA849394B (en) * 1983-12-21 1985-09-25 Goodrich Co B F Lime soap dispersing compositions and their use
DE4300772C2 (de) * 1993-01-14 1997-03-27 Stockhausen Chem Fab Gmbh Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
JPH07118046A (ja) * 1993-10-19 1995-05-09 Dai Ichi Kogyo Seiyaku Co Ltd セメント混和剤
US6384111B1 (en) * 1996-12-20 2002-05-07 Basf Aktiengesellschaft Polymers containing carboxyl groups and polyalkylene ether side- chains as additives in mineral building materials
JP2000007734A (ja) * 1998-06-23 2000-01-11 Jsr Corp 水溶性共重合体(塩)およびスケール防止剤
JP4247587B2 (ja) * 1999-06-23 2009-04-02 Jsr株式会社 半導体部品用洗浄剤、半導体部品の洗浄方法、研磨用組成物、および研磨方法
JP4115716B2 (ja) 2002-03-04 2008-07-09 昭和電工建材株式会社 コンクリート用材料分離低減剤
JP4367842B2 (ja) * 2004-03-25 2009-11-18 太平洋セメント株式会社 粉末状セメント分散剤の製造方法
CN101885888A (zh) 2009-05-13 2010-11-17 上海瑞礼冶金炉料有限公司 缓释型不定形耐火材料外加剂的制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294362A (en) 1987-11-13 1994-03-15 Ausimont S.R.L. Peroxy carboxylic amino-derivatives
US5292447A (en) 1988-06-14 1994-03-08 Ausimont S.R.L. Heterocyclic peroxides having n-amidic heteroatoms
US5039447A (en) 1988-12-12 1991-08-13 Monsanto Company Pourable sulfone peracid compositions
US5422028A (en) 1993-03-22 1995-06-06 Lever Brothers Company, Division Of Conopco, Inc. Peroxyacids
EP0778340A2 (de) 1995-12-06 1997-06-11 Basf Corporation Phosphatfreie Geschirreinigungsmittelzusammensetzungen, enthaltend Copolymere von Alkylenoxid-Addukten von Allylalkohol und Acrylsäure
EP0851023A2 (de) 1996-12-23 1998-07-01 Unilever N.V. Peracid enthaltende automatische Geschirrspülmitteltabletten
DE19819187A1 (de) 1998-04-30 1999-11-11 Henkel Kgaa Festes maschinelles Geschirrspülmittel mit Phosphat und kristallinen schichtförmigen Silikaten
WO2002008527A1 (fr) 2000-07-21 2002-01-31 Hitachi Construction Machinery Co., Ltd. Dispositif de transmission d'informations destine a une machine de construction
DE10225794A1 (de) 2002-06-10 2003-12-18 Basf Ag Verwendung von sulfonsäuregruppenhaltigen Copolymeren als Zusatz in Wasch- und Reinigungsmitteln
WO2005042684A1 (de) 2003-10-28 2005-05-12 Basf Aktiengesellschaft Verwendung von alkylenoxideinheiten enthaltenden copolymeren als belagsinhibierende additive im klarspülgang des maschinellen geschirrspülers
DE102007019458A1 (de) * 2007-04-25 2008-10-30 Basf Se Phosphatfreies Maschinengeschirrspülmittel mit ausgezeichneter Klarspülleistung
WO2008132131A1 (de) 2007-04-25 2008-11-06 Basf Se Maschinengeschirrspülmittel mit ausgezeichneter klarspülleistung
WO2010024468A1 (en) 2008-09-01 2010-03-04 The Procter & Gamble Company Sulfonate group-containing copolymers and manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. FIKENTSCHER, CELLULOSE-CHEMIE, vol. 13, 1932, pages 58 - 64,71-74
M.J.R. CANTOW, J.POLYM.SCI. ,A, vol. 1, no. 5, 1967, pages 1391 - 1394

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382377B2 (en) 2011-08-10 2016-07-05 Basf Se Polymer mixtures as deposit inhibitors in water-bearing systems
EP2700704B1 (de) * 2012-08-24 2018-05-09 The Procter and Gamble Company Geschirrspülverfahren
EP2700703B1 (de) * 2012-08-24 2018-05-02 The Procter and Gamble Company Geschirrspülverfahren
CN105555817A (zh) * 2013-07-03 2016-05-04 巴斯夫欧洲公司 可通过在聚醚化合物的存在下聚合含有酸基团的单体而得到的凝胶状聚合物组合物在机洗餐具用配制剂中的用途
RU2678838C2 (ru) * 2013-07-03 2019-02-04 Басф Се Применение гелеобразной полимерной композиции, полученной с помощью полимеризации содержащего кислотные группы мономера в присутствии соединения простого полиэфира, в композициях для машинного мытья посуды
WO2015000971A1 (de) * 2013-07-03 2015-01-08 Basf Se Gelförmige polymerzusammensetzung, erhalten durch polymerisation eines säuregruppenhaltigen monomers in gegenwart einer polyetherverbindung
CN105358593A (zh) * 2013-07-03 2016-02-24 巴斯夫欧洲公司 通过含酸基团的单体在聚醚化合物存在下聚合得到的凝胶状聚合物组合物
JP2016530351A (ja) * 2013-07-03 2016-09-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリエーテル化合物の存在下で酸基を含有するモノマーを重合することによって得られるゲル様ポリマー組成物
US20160369209A1 (en) * 2013-07-03 2016-12-22 Basf Se Solid polymer composition obtained by polymerization of an acid group containing monomer in the presence of a polyether compound
WO2015000969A3 (de) * 2013-07-03 2015-05-07 Basf Se Verwendung einer gelförmigen polymerzusammensetzung, erhältlich durch polymerisation eines säuregruppenhaltigen monomers in gegenwart einer polyetherverbindung in formulierungen für die maschinelle geschirrreinigung
WO2015000970A1 (de) * 2013-07-03 2015-01-08 Basf Se Feste polymerzusammensetzung, erhalten durch polymerisation eines säuregruppenhaltigen monomers in gegenwart einer polyetherverbindung
CN105358593B (zh) * 2013-07-03 2018-06-22 巴斯夫欧洲公司 通过含酸基团的单体在聚醚化合物存在下聚合得到的凝胶状聚合物组合物
CN105518038A (zh) * 2013-07-03 2016-04-20 巴斯夫欧洲公司 通过含酸基单体在聚醚化合物的存在下聚合而得到的固体聚合物组合物
RU2687271C2 (ru) * 2013-07-03 2019-05-13 Басф Се Твердая полимерная композиция, получаемая полимеризацией содержащего кислотные группы мономера в присутствии простого полиэфира
US10323215B2 (en) 2013-07-03 2019-06-18 Basf Se Solid polymer composition obtained by polymerization of an acid group containing monomer in the presence of a polyether compound
US10344249B2 (en) 2013-07-03 2019-07-09 Basf Se Gel-like polymer composition obtained by polymerizing a monomer containing acid groups in the presence of a polyether compound
RU2696500C2 (ru) * 2013-07-03 2019-08-02 Басф Се Гелеподобная полимерная композиция, получаемая полимеризацией содержащего кислотные группы мономера в присутствии простого полиэфира
CN105555817B (zh) * 2013-07-03 2019-09-03 巴斯夫欧洲公司 可通过在聚醚化合物的存在下聚合含有酸基团的单体而得到的凝胶状聚合物组合物在机洗餐具用配制剂中的用途
US10655088B2 (en) 2013-07-03 2020-05-19 Basf Se Solid polymer composition obtained by polymerization of an acid group-containing monomer in the presence of a polyether compound
RU2696500C9 (ru) * 2013-07-03 2019-10-31 Басф Се Гелеподобная полимерная композиция, получаемая полимеризацией содержащего кислотные группы мономера в присутствии простого полиэфира
US10647945B2 (en) 2013-07-03 2020-05-12 Basf Se Use of a gel-like polymer composition which can be obtained by polymerizing an acid group-containing monomer in the presence of a polyether compound in formulations for automatic dishwashing
WO2019178245A1 (en) * 2018-03-13 2019-09-19 Riehm David Alexander Alkaline warewash detergent composition comprising a terpolymer
US11746309B2 (en) 2018-03-13 2023-09-05 Ecolab Usa Inc. Alkaline warewash detergent composition comprising a terpolymer and methods to prevent foaming, filming and/or redeposition

Also Published As

Publication number Publication date
JP6125428B2 (ja) 2017-05-10
ES2556408T3 (es) 2016-01-15
EP2643368A1 (de) 2013-10-02
MX340486B (es) 2016-07-08
KR20140001220A (ko) 2014-01-06
BR112013012695A2 (pt) 2016-09-06
PL2643368T3 (pl) 2016-03-31
EP2643368B1 (de) 2015-09-23
JP2014503007A (ja) 2014-02-06
RU2576325C2 (ru) 2016-02-27
BR112013012695A8 (pt) 2017-12-05
CA2818703A1 (en) 2012-05-31
KR101859790B1 (ko) 2018-05-18
MX2013005692A (es) 2013-08-27
RU2013128412A (ru) 2014-12-27
CN103492436B (zh) 2016-01-20
CN103492436A (zh) 2014-01-01
BR112013012695B1 (pt) 2020-12-22

Similar Documents

Publication Publication Date Title
EP2643370B1 (de) Copolymere, die carbonsäuregruppen, sulfonsäuregruppen und polyalkylenoxidgruppen enthalten, als belagsinhibierender zusatz zu wasch- und reinigungsmitteln
EP2643368B1 (de) Copolymere, die carbonsäuregruppen, sulfonsäuregruppen und polyalkylenoxidgruppen enthalten, als belagsinhibierender zusatz zu wasch- und reinigungsmitteln
US9670435B2 (en) Copolymers comprising carboxylic acid groups, sulfo groups and polyalkylene oxide groups as a scale-inhibiting additive to washing and cleaning products
US20120129749A1 (en) Copolymers comprising carboxylic acid groups, sulfo groups and polyalkylene oxide groups as a scale-inhibiting additive to washing and cleaning products
JP5940630B2 (ja) 疎水基含有共重合体及びその製造方法
US8106149B2 (en) Amino group-containing water-soluble copolymer
US20110183880A1 (en) (meth) acrylic acid-based copolymer, method for producing the same and detergent composition using the same
WO2015036325A1 (de) Verwendung modifizierter polyasparaginsäuren in spülmitteln
EP2841549A1 (de) Formulierungen, ihre verwendung als oder zur herstellung von geschirrspülmitteln und ihre herstellung
WO2013160259A1 (de) Formulierungen, ihre verwendung als oder zur herstellung von geschirrspülmitteln und ihre herstellung
WO2013160132A1 (de) Feste formulierungen, ihre herstellung und verwendung
EP2788466A1 (de) Verwendung von zubereitungen für die maschinelle geschirrreinigung
WO2018095913A1 (de) Copolymer enthaltendes maschinelles geschirrspülmittel
US20070238637A1 (en) Method for Producing Granulated or Powdery Detergent Compounds
WO2014173473A1 (de) Formulierungen, ihre verwendung als oder zur herstellung von geschirrspülmitteln und ihre herstellung
WO2012098177A1 (de) Verwendung von talgfettalkoholethoxylaten in der maschinellen geschirrreinigung
RU2574395C2 (ru) Сополимеры, содержащие группы карбоновой кислоты, сульфокислотные группы и полиалкиленоксидные группы, в качестве добавки к моющим и чистящим средствам, ингибирующей образование отложений
US20120190605A1 (en) Use of tallow fatty alcohol ethoxylates in machine dishwashing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11784708

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/005692

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013540318

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2818703

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137013149

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011784708

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013128412

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013012695

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013012695

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130522