WO2012067283A1 - 전자 회로용 반도체 박막의 제조방법 - Google Patents

전자 회로용 반도체 박막의 제조방법 Download PDF

Info

Publication number
WO2012067283A1
WO2012067283A1 PCT/KR2010/008124 KR2010008124W WO2012067283A1 WO 2012067283 A1 WO2012067283 A1 WO 2012067283A1 KR 2010008124 W KR2010008124 W KR 2010008124W WO 2012067283 A1 WO2012067283 A1 WO 2012067283A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
semiconductor thin
precursor solution
electronic circuit
manufacturing
Prior art date
Application number
PCT/KR2010/008124
Other languages
English (en)
French (fr)
Inventor
손하영
임은희
이성구
이경균
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to PCT/KR2010/008124 priority Critical patent/WO2012067283A1/ko
Publication of WO2012067283A1 publication Critical patent/WO2012067283A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure

Definitions

  • the present invention relates to a method for manufacturing a semiconductor thin film for an electronic circuit, and more particularly, to a method for manufacturing a semiconductor thin film for an electronic circuit in which coarse crystal grains are formed by supplying a precursor solution onto a metal island formed on a substrate and then performing heat treatment. It is about.
  • a method for manufacturing a semiconductor thin film used for manufacturing an electronic circuit for example, a semiconductor thin film used as a gate insulating film of a thin film transistor, is a vacuum deposition process such as chemical vapor deposition (CVD), atomic layer deposition (ALD) (vacuum deposition process) or a solution process using a sol-gel method (hydrolytic sol-gel), nanoparticle colloidal solution, and the like.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • sol-gel hydrolytic sol-gel
  • nanoparticle colloidal solution and the like.
  • a method of forming a semiconductor thin film using a precursor solution having fluidity after applying the precursor solution on the substrate, and undergoes a temporary curing process of supplying thermal energy or light energy to the precursor solution first.
  • the liquid precursor is solidified and formed into an amorphous thin film.
  • the semiconductor thin film having coarse crystal grains is subjected to a curing process of additionally supplying energy to the amorphous thin film. Is formed.
  • crystallization is carried out using local molten state by heat transfer from the surface to which heat is supplied, and gradually.
  • Solid-Phase-Crystallization Solid-Phase-Crystallization
  • MILC metal-induced lateral crystallization
  • MIC metal-induced crystallization
  • the present invention has been made to solve the above-mentioned conventional problems, and in the manufacture of a semiconductor thin film by heat treatment of the precursor solution, by performing the first (temporary hardening) and secondary (hardening) heat treatment process simultaneously, a relatively short It is an object of the present invention to provide a method for manufacturing a semiconductor thin film for an electronic circuit which enables the production of a semiconductor thin film at low cost within a time.
  • Another object of this invention is to make it possible to manufacture the semiconductor thin film for electronic circuits of which quality was improved by forming the crystal grain of a semiconductor thin film further.
  • Method for manufacturing a semiconductor thin film for an electronic circuit for solving the above object, the first step of forming a metal island on a substrate; Supplying a precursor solution onto the metal island; Heat treating the precursor solution to obtain a thin film; Characterized in that it comprises a.
  • the present invention is characterized in that the metal island is formed in the process of forming a metal line on the substrate.
  • the precursor solution is characterized in that the first band gap is made of 0.1eV ⁇ 5eV and has a structure in which a solute capable of moving electrons or holes is dispersed in a solvent.
  • the present invention having the above configuration, by heating the precursor solution on a metal island to obtain a semiconductor thin film, it is not necessary to separately perform the first (temporary hardening) and the second (hardening) heat treatment processes, so that a relatively short time
  • the semiconductor thin film can be manufactured at low cost.
  • the crystal grains of the semiconductor thin film formed on the metal island can be formed larger, the semiconductor thin film for electronic circuits with improved quality can be manufactured.
  • 1 to 4 are exemplary views showing a method of manufacturing a semiconductor thin film for an electronic circuit according to the present invention.
  • 5 and 6 are photographs showing the experimental results of the manufacturing method of a semiconductor thin film for an electronic circuit according to the present invention.
  • a metal island is formed on a substrate.
  • a separate process of forming a metal island on the substrate may be performed, but it is more preferable that the metal island is formed together with the metal line in the process of forming a metal line on the substrate.
  • each metal island may be formed over the substrate, or a plurality of metal islands may be formed over the substrate.
  • the size of each metal island is preferably made of 0.1nm ⁇ 1m. However, smaller than 0.1 nm is physically impossible because it must be made in atomic units, and larger than 1m is very difficult due to problems such as equipment.
  • each metal island is arranged at an interval of at least 50 nm or more. This is because the process is too expensive to apply the liquid phase process with a patterning of 50 nm or less.
  • the material that can be used as the material of the metal island in the present invention metals, transition metals, distributed in groups 1 to 12 of the International Union of Pure and Applied Chemistry (IUPAC) nomenclature of the periodic table, Metalloid, or an alloy-type conductive material made of a combination of the above metals and other metal groups may be included.
  • IUPAC International Union of Pure and Applied Chemistry
  • the precursor solution is supplied to the metal islands.
  • the precursor solution is one in which a solute for producing a semiconductor thin film for an electronic circuit is dispersed in a solvent.
  • the solute of the precursor solution may have a first band gap of 0.1 eV to 5 eV, and may correspond to a material capable of moving electrons or holes, for example, silicon, germanium, or silicon-germanium mixture, an oxide semiconductor, and the like.
  • the solute of the precursor solution reaches 0.1 eV, it cannot be a semiconductor thin film because it is close to a metal, and when it becomes 5 eV or more, it cannot be a semiconductor thin film because it is close to an insulator.
  • a hydrocarbon solvent containing carbon and hydrogen, an organic solvent containing carbon and oxygen, or a hydrogen oxide solvent containing oxygen and hydrogen may be used.
  • This precursor solution represents a flowable substance having a viscosity ranging from 0.1 centipoise to 5000 poise, including sol-gel method or colloidal nanoparticles, in particular at or below 100 ° C. It must be possible to maintain the solution form.
  • the precursor solution as described above may be supplied in various forms to the metal islands on the substrate.
  • the precursor solution may be supplied only to the center of the surface of the single metal island, and as shown in FIG. 2, the precursor solution may be supplied over both the surface of the single metal island and the surface of the substrate. have.
  • the precursor solution may be supplied to a portion where the metal island and the substrate overlap between the plurality of metal islands as shown in FIGS. 3 and 4.
  • the precursor solution After supplying the precursor solution to the metal islands on the substrate as described above, the precursor solution is subjected to a heat treatment to obtain a thin film.
  • the precursor solution is cured through the heat treatment to form a semiconductor thin film.
  • the metal atoms on the surface of the metal island help to align the atoms forming the semiconductor thin film, the grains are larger than those cured on the substrate instead of the metal island. It is possible to obtain a semiconductor thin film having a.
  • the heat treatment process for curing the precursor solution is preferably made for 1 minute to 24 hours in the temperature range of 30 ⁇ 2000 °C.
  • the heat treatment is performed at less than 30 °C can be cured at room temperature, there is a difficulty in storage, if the heat treatment is performed at 2000 °C or more may melt the substrate.
  • the hardening of the semiconductor thin film becomes incomplete, and the substrate may be deformed when the heat treatment is performed for 24 hours or more.
  • a metal island made of aluminum is formed on the substrate. At this time, a pair of left and right aluminum metal islands are formed on the substrate, and each metal island has a size of 10 mm in width and 2 mm in length.
  • the precursor solution is fed onto this aluminum metal island.
  • the precursor solution is a solution in which 5 nm-sized silicon particles are dispersed in hexane (Hexane) as a solvent, and the weight of the silicon particles occupies 10% or more of the weight of the solution.
  • a metal island made of aluminum is formed on the substrate.
  • 26 metal islands having a leg of 0.8 mm are formed on a quadrangle having a size of 1 mm in width and 1 mm in length on the substrate.
  • the precursor solution is fed onto this aluminum metal island.
  • the precursor solution is a solution in which 5 nm-sized silicon particles are dispersed in hexane (Hexane) as a solvent, and the weight of the silicon particles occupies 10% or more of the weight of the solution.
  • the photo is overlapped in 26 places.
  • the present invention can be used in a method for manufacturing a semiconductor thin film for an electronic circuit which enables the production of a semiconductor thin film at low cost within a short time.

Abstract

본 발명은, 기판 위에 금속 섬을 형성하는 제1단계, 금속 섬 위에 전구체 용액을 공급하는 제2단계 및 전구체 용액을 열처리하여 박막을 수득하는 제3단계를 포함하는 것을 특징으로 하는 전자 회로용 반도체 박막의 제조방법에 관한 것이다. 이러한 본 발명에 의하면, 금속 섬 위에서 전구체 용액을 열처리하여 반도체 박막을 수득함으로써, 1차(가경화) 및 2차(경화) 열처리 공정을 별도로 진행할 필요가 없게 되어, 비교적 짧은 시간 내에 저비용으로 반도체 박막의 제조가 이루어질 수 있고, 또한 반도체 박막의 결정립을 더욱 크게 형성할 수 있으므로, 품질이 향상된 전자 회로용 반도체 박막을 제조할 수 있게 된다.

Description

전자 회로용 반도체 박막의 제조방법
본 발명은 전자 회로용 반도체 박막의 제조방법에 관한 것으로, 더욱 상세하게는 기판 위에 형성되는 금속 섬 위에 전구체 용액을 공급한 후 열처리 함으로써 조대한 결정립이 형성되도록 하는 전자 회로용 반도체 박막의 제조방법에 관한 것이다.
일반적으로 전자 회로의 제조에 이용되는 반도체 박막, 예를 들면 박막 트랜지스터의 게이트 절연막으로 이용되는 반도체 박막을 제조하는 방법으로는, 화학기상증착법(CVD), 원자층 증착법(ALD)과 같은 진공증착 공정(vacuum deposition process), 또는 졸-겔법(hydrolytic sol-gel), 나노파티클 콜로이드 용액 등을 이용한 용액 공정(solution process) 등이 있다.
그러나 진공증착 방법은 고가의 장비를 필요로 하고, 고온 고진공의 조건에서 수행되어야 하므로, 최근에는 저비용으로 실시가능한 용액 공정인 용액 공정이 주목을 받고 있다.
일반적으로 유동성을 가지는 전구체 용액을 이용하여 반도체 박막을 형성하는 방법은, 기판 위에 전구체 용액을 도포한 후, 1차적으로 전구체 용액에 열 에너지 또는 빛 에너지를 공급하는 가경화 과정을 거치게 된다.
이러한 가경화 과정을 통해 액상의 전구체는 고체화되면서 비정질 형태의 박막으로 형성되고, 이후 2차적으로 비정질 형태의 박막에 다시 에너지를 추가로 공급하는 경화 과정을 거치면서, 조대한 결정립을 가지는 반도체 박막이 형성된다.
한편, 상기 2차적인 경화 공정의 예로서는, 열 에너지를 추가로 공급하여 결정립의 면적을 크게 하고 전하 이동도를 높이기 위해서 열이 공급되는 표면에서부터 열전달에 의해서 국부적인 용융 상태를 이용해서 결정화시키고, 점진적으로 넓은 면적에서 결정화를 진행시키는 고상결정화(Solid-Phase-Crystallization) 방법이 있으나, 이러한 고상결정화 방법은 고온 공정에서 이루어져야 하고, 오랜 시간 동안 진행되어야 한다는 문제가 있다.
또한 상기 2차적인 경화 공정의 예로서, UV-레이저를 이용하여 레이저가 조사되는 부분의 주변에 고에너지로 용융 상태를 만들고, 인접한 주변으로 점진적으로 넓은 면적에서 결정화를 진행시킴으로써 국부적인 용융을 반복 실시하는 방법도 있으나, 이러한 방법 역시 장치 가격이 비싸고, 결정립의 면적을 크게 하여 대형화하는 데에 어려움이 있다.
그 이외에도 상기 2차적인 경화 공정의 예로서, 금속을 이용한 유도 결정화 방법(Metal-Induced Lateral Crystallization(MILC) 또는 Metal-Induced Crystallization(MIC))은 비정질 형태의 박막을 형성한 뒤에 금속을 도포(또는 증착)하는 공정 이후에, 추가로 열을 공급하여 금속과 박막의 계면에서부터 결정화가 진행되는 방식이지만, 이러한 방법 역시 다수의 공정이 필요하고 비용이 많이 소요된다는 문제가 있다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출한 것으로서, 전구체 용액을 열처리하여 반도체 박막을 제조함에 있어서, 1차(가경화) 및 2차(경화) 열처리 공정을 동시에 진행함으로써, 비교적 짧은 시간 내에 저비용으로 반도체 박막의 제조가 이루어질 수 있게 하는 전자 회로용 반도체 박막의 제조방법을 제공하는 것을 본 발명의 목적으로 한다.
또한 본 발명은, 반도체 박막의 결정립을 더욱 크게 형성함으로써, 품질이 향상된 전자 회로용 반도체 박막을 제조할 수 있게 하는 것을 또 다른 목적으로 한다.
상기와 같은 목적을 해결하기 위한 본 발명에 따른 전자 회로용 반도체 박막의 제조방법은, 기판 위에 금속 섬을 형성하는 제1단계; 금속 섬 위에 전구체 용액을 공급하는 제2단계; 전구체 용액을 열처리하여 박막을 수득하는 제3단계; 를 포함하는 것을 특징으로 한다.
또한 본 발명은, 기판 위에 금속 라인을 형성하는 과정에서 금속 섬이 형성되는 것을 특징으로 한다.
또한 본 발명에서, 상기 전구체 용액은, 첫 번째 밴드 갭이 0.1eV ~ 5eV로 이루어지고 전자 또는 정공의 이동이 가능한 용질이 용매에 분산되어 있는 구조로 이루어지는 것을 특징으로 한다.
상기와 같은 구성을 가지는 본 발명에 의하면, 금속 섬 위에서 전구체 용액을 열처리하여 반도체 박막을 수득함으로써, 1차(가경화) 및 2차(경화) 열처리 공정을 별도로 진행할 필요가 없게 되어, 비교적 짧은 시간 내에 저비용으로 반도체 박막의 제조가 이루어질 수 있게 된다.
또한 본 발명에 의하면, 금속 섬 위에서 형성되는 반도체 박막의 결정립을 더욱 크게 형성할 수 있으므로, 품질이 향상된 전자 회로용 반도체 박막을 제조할 수 있게 된다.
도 1 내지 도 4는 본 발명에 따른 전자 회로용 반도체 박막의 제조방법을 나타내는 예시도.
도 5 및 도 6은 본 발명에 따른 전자 회로용 반도체 박막의 제조방법의 실험 결과를 나타내는 사진.
이하에서는 첨부된 도면을 참조하여 본 발명에 따른 전자 회로용 반도체 박막의 제조방법의 바람직한 실시 예에 대해 살펴본다.
우선, 본 발명에 따른 전자 회로용 반도체 박막을 제조하기 위해, 기판 위에 금속 섬(Metal island)을 형성하는 과정을 거친다. 이때, 기판 위에 금속 섬을 형성하는 별도의 과정을 거칠 수도 있으나, 기판 위에 금속 라인(Metal Line)을 형성하는 과정에서 금속 섬이 금속 라인과 함께 형성되도록 하는 것이 더욱 바람직하다.
그리고 단일의 금속 섬이 기판 위에 형성되도록 구성될 수도 있고, 또는 다수의 금속 섬이 기판 위에 형성되도록 구성될 수도 있다. 이때, 상기 각 금속 섬의 크기는 0.1nm ~ 1m로 이루어지는 것이 바람직하다. 한데, 0.1nm보다 작게 하는 것은 원자 단위에서 이루어져야 하기 때문에 물리적으로 불가능하고, 1m보다 크게 하는 것은 장비 등의 문제로 인해 매우 어렵기 때문이다.
한편, 다수의 금속 섬이 기판 위에 형성되는 경우, 각 금속 섬은 적어도 50nm 이상의 간격으로 배치되는 것이 바람직하다. 패터닝을 50nm 간격 이하로 하여 액상 공정을 적용하기에는 너무 고가의 공정이 되기 때문이다.
한편, 본 발명에서 금속 섬의 소재로 사용될 수 있는 소재에는, 주기율표의 IUPAC(International Union of Pure and Applied Chemistry; 국제 순수 및 응용화학연맹) 명명법의 1그룹에서 12그룹에 분포하는 금속, 전이금속, 메탈로이드, 또는 상기의 금속과 기타 금속군을 조합하여 이루어진 합금 형태의 전도성 물질이 모두 포함될 수 있다.
그리고 상기와 같이 기판 위에 금속 섬을 형성한 후, 금속 섬 위에 전구체 용액을 공급하는 과정을 거친다.
상기 전구체 용액은 전자 회로용 반도체 박막을 제조하기 위한 용질이 용매에 분산되어 있는 것이다. 여기서, 상기 전구체 용액의 용질은 첫 번째 밴드 갭이 0.1eV ~ 5eV로 이루어지고, 전자 또는 정공의 이동이 가능한 물질, 예를 들어 실리콘, 게르마늄, 또는 실리콘-게르마늄 혼합물, 산화물 반도체 등이 해당된다. 상기 전구체 용액의 용질이 0.1eV가 되면 금속에 가깝기 때문에 반도체 박막이 될 수 없고, 또한 5eV 이상이 되면 절연체에 가깝기 때문에 역시 반도체 박막이 될 수 없게 된다. 그리고 상기 전구체 용액의 용매로는 탄소와 수소를 포함하는 탄화수소용매 또는 탄소와 산소를 포함 하는 유기 용매 또는 산소와 수소를 포함하는 산화수소용매 등이 이용될 수 있다.
이러한 전구체 용액은, 졸-겔(Sol-Gel)법 또는 콜로이드(colloid) 형태의 나노 입자 등을 포함한 점도가 0.1 센티포아즈에서 5000 포아즈의 분포를 가지는 유동성 물질을 나타내고, 특히 100℃ 이하에서 용액 형태를 유지할 수 있어야 한다.
상기와 같은 전구체 용액을 기판 위의 금속 섬에 공급하는 형태는 다양하게 이루어질 수 있다.
예를 들어, 도 1에 도시된 바와 같이 단일 금속 섬의 표면 중심부에만 전구체 용액이 공급되도록 할 수도 있고, 도 2와 같이 단일 금속 섬의 표면과 기판의 표면 모두에 걸쳐서 전구체 용액이 공급되도록 할 수도 있다. 또는 도 3 및 도 4와 같이 다수의 금속 섬 사이에서 금속 섬과 기판이 겹쳐지는 부위에 전구체 용액이 공급되도록 할 수도 있다.
그리고 상기와 같이 기판 위의 금속 섬에 전구체 용액을 공급한 후, 전구체 용액을 열처리하여 박막을 수득하는 과정을 거친다.
이처럼 열처리 과정을 통해 전구체 용액이 경화되면서 반도체 박막을 형성하게 되는데, 이때 금속 섬 표면의 금속 원자가 반도체 박막을 이루는 원자의 정렬을 도와주기 때문에, 금속 섬이 아닌 기판 위에서 경화되는 경우에 비해 더 큰 결정립을 가지는 반도체 박막을 수득할 수 있게 된다.
한편, 전구체 용액을 경화시키기 위한 열처리 공정은 30 ~ 2000℃의 온도 범위 내에서 1분에서 24시간 동안 이루어지는 것이 바람직하다.
30℃ 이하에서 열처리가 이루어질 경우 상온에서 경화가 될 수 있어서 보관에 어려움이 있고, 2000 ℃ 이상에서 열처리가 이루어지면 기판이 녹아버릴 수가 있다.
그리고 이러한 열처리 공정을 1분 이하 동안 실시하면 반도체 박막의 경화가 불완전하게 되고, 또한 24시간 이상 동안 열처리가 이루어지면 기판이 변형될 수 있다.
이하에서는 상기와 같이 구성되는 반도체 박막 제조방법의 실험 예를 살펴본다.
[실험예 1]
기판 위에 알루미늄으로 이루어지는 금속 섬을 형성한다. 이때, 기판 위에는 좌우 한 쌍의 알루미늄 금속 섬이 형성되고, 각 금속 섬의 크기는 가로 10mm, 세로 2mm의 크기로 이루어진다.
이러한 알루미늄 금속 섬 위에 전구체 용액을 공급한다. 이때, 상기 전구체 용액은 5nm 크기의 실리콘 입자가 용매인 헥산(Hexane)에 분산이 되어 있는 용액으로서, 용액 무게의 10% 이상을 실리콘 입자의 무게가 차지한다.
이처럼 알루미늄으로 이루어진 금속 섬 위에 전구체 용액을 도포하고, 그 전구체 용액에 열에너지를 직접 공급하여 경화시키게 되면, 도 5에 도시된 바와 같은 반도체 박막이 형성된다.
이때, 도 5를 참조하여 수득된 반도체 박막의 결정립을 살펴보면, 알루미늄 금속 섬의 표면 또는 그 인접한 부분에서 형성되는 결정립이, 금속 섬이 없는 기판 위에서 형성된 결정립보다 더 크게 형성되는 것을 확인할 수 있다.
[실험예 2]
실험예 1과 마찬가지로, 기판 위에 알루미늄으로 이루어지는 금속 섬을 형성한다. 이때, 기판 위에는 가로 1mm 및 세로 1mm의 크기를 갖는 사각형에 0.8 mm의 다리를 가지는 26개의 금속 섬이 형성된다.
이러한 알루미늄 금속 섬 위에 전구체 용액을 공급한다. 이때, 상기 전구체 용액은 5nm 크기의 실리콘 입자가 용매인 헥산(Hexane)에 분산이 되어 있는 용액으로서, 용액 무게의 10% 이상을 실리콘 입자의 무게가 차지한다.
이처럼 알루미늄으로 이루어진 금속 섬 위에 전구체 용액을 도포하고, 그 전구체 용액에 열에너지를 직접 공급하여 경화시키게 되면, 도 6에 도시된 바와 같은 반도체 박막이 형성된다.
금속섬의 일부와 반도체 박막이 3곳 이상에서 겹쳐진 형태의 커다란 조각의 결정 영역(Crystal Domain)으로 박막이 형성된 예로서, 사진은 26 곳에 겹쳐져 있음을 확인할 수 있다.
이때, 도 6을 참조하여 수득된 반도체 박막의 결정립을 살펴보면, 금속 섬과 26곳에서 겹쳐진 형태의 조대한 결정립을 갖는 반도체 박막이 형성됨을 확인할 수 있다. 이처럼 반도체 박막이 금속 섬과 3곳 이상에서 겹쳐지면서 형성될 때, 더욱 큰 결정립이 형성된다.
또한 이상의 설명에서 본 발명은 특정의 실시 예와 관련하여 도시 및 설명하였지만, 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능하다는 것을 당 업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.
본 발명은 짧은 시간 내에 저비용으로 반도체 박막의 제조가 이루어질 수 있게 하는 전자 회로용 반도체 박막의 제조방법에 사용될 수 있다.

Claims (10)

  1. 기판 위에 금속 섬을 형성하는 제1단계;
    금속 섬 위에 전구체 용액을 공급하는 제2단계;
    전구체 용액을 열처리하여 박막을 수득하는 제3단계;
    를 포함하는 것을 특징으로 하는 전자 회로용 반도체 박막의 제조방법.
  2. 제1항에 있어서,
    상기 제1단계에서, 기판 위에 금속 라인을 형성하는 과정에서 금속 섬이 형성되는 것을 특징으로 하는 전자 회로용 반도체 박막의 제조방법.
  3. 제1항 또는 제2항에 있어서,
    제1단계에서, 기판 위에 다수의 금속 섬이 형성되는 것을 특징으로 하는 전자 회로용 반도체 박막의 제조방법.
  4. 제3항에 있어서,
    상기 각 금속 섬의 크기는 0.1nm ~ 1m로 이루어지는 것을 특징으로 하는 전자 회로용 반도체 박막의 제조방법.
  5. 제3항에 있어서,
    상기 각 금속 섬은 적어도 50nm 이상의 간격으로 배치되는 것을 특징으로 하는 전자 회로용 반도체 박막의 제조방법.
  6. 제1항 또는 제2항에 있어서,
    상기 전구체 용액은, 첫 번째 밴드 갭이 0.1eV ~ 5eV로 이루어지고 전자 또는 정공의 이동이 가능한 용질이 용매에 분산되어 있는 구조로 이루어지는 것을 특징으로 하는 전자 회로용 반도체 박막의 제조방법.
  7. 제6항에 있어서,
    상기 전구체 용액의 용질은, 실리콘, 게르마늄, 또는 실리콘-게르마늄 혼합물, 산화물 반도체 중 적어도 하나가 포함되는 것을 특징으로 하는 전자 회로용 반도체 박막의 제조방법.
  8. 제6항에 있어서,
    상기 전구체 용액의 용매는 구성원자로서 탄소와 수소를 포함하는 탄화수소용매, 탄소와 산소를 포함하는 유기 용매 및 산소와 수소로 이루어지는 산화수소용매 중 어느 하나인 것을 특징으로 하는 전자 회로용 반도체 박막의 제조방법.
  9. 제1항 또는 제2항에 있어서,
    상기 제2단계에서, 금속 섬의 표면 중심부에 전구체 용액이 공급되는 것을 특징으로 하는 전자 회로용 반도체 박막의 제조방법.
  10. 제1항 또는 제2항에 있어서,
    상기 제2단계에서, 금속 섬과 기판이 겹쳐지는 부위에 전구체 용액이 공급되는 것을 특징으로 하는 전자 회로용 반도체 박막의 제조방법.
PCT/KR2010/008124 2010-11-17 2010-11-17 전자 회로용 반도체 박막의 제조방법 WO2012067283A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/008124 WO2012067283A1 (ko) 2010-11-17 2010-11-17 전자 회로용 반도체 박막의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/008124 WO2012067283A1 (ko) 2010-11-17 2010-11-17 전자 회로용 반도체 박막의 제조방법

Publications (1)

Publication Number Publication Date
WO2012067283A1 true WO2012067283A1 (ko) 2012-05-24

Family

ID=46084189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008124 WO2012067283A1 (ko) 2010-11-17 2010-11-17 전자 회로용 반도체 박막의 제조방법

Country Status (1)

Country Link
WO (1) WO2012067283A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060046268A (ko) * 2004-07-19 2006-05-17 세이코 엡슨 가부시키가이샤 반도체 입자의 분산체로 반도체 소자를 제조하는 방법
KR20070035704A (ko) * 2005-09-28 2007-04-02 엘지.필립스 엘시디 주식회사 금속박막 패턴 형성방법 및 그를 이용한 액정표시장치의제조 방법
US20080160761A1 (en) * 2006-11-22 2008-07-03 Seiko Epson Corporation Method of modifying a surface and a method of forming an area of a functional liquid on the modified surface
KR20090102899A (ko) * 2008-03-27 2009-10-01 연세대학교 산학협력단 산화물 반도체 박막 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060046268A (ko) * 2004-07-19 2006-05-17 세이코 엡슨 가부시키가이샤 반도체 입자의 분산체로 반도체 소자를 제조하는 방법
KR20070035704A (ko) * 2005-09-28 2007-04-02 엘지.필립스 엘시디 주식회사 금속박막 패턴 형성방법 및 그를 이용한 액정표시장치의제조 방법
US20080160761A1 (en) * 2006-11-22 2008-07-03 Seiko Epson Corporation Method of modifying a surface and a method of forming an area of a functional liquid on the modified surface
KR20090102899A (ko) * 2008-03-27 2009-10-01 연세대학교 산학협력단 산화물 반도체 박막 및 그 제조 방법

Similar Documents

Publication Publication Date Title
WO2012043971A2 (ko) 롤 형상의 모기판을 이용한 플렉서블 전자소자의 제조방법, 플렉서블 전자소자 및 플렉서블 기판
CN105489552B (zh) Ltps阵列基板的制作方法
WO2016122082A1 (ko) 금속 칼코게나이드 소자 및 그 제조 방법
TW201017774A (en) Method and apparatus for making a field effect type transistor
TWI322446B (en) Mask for polycrystallization and method of manufacturing thin film transistor using polycrystallization mask
WO2015115769A1 (ko) 게르마늄 응축 공정을 이용한 기판 제조 방법 및 이를 이용한 반도체 소자의 제조 방법
TW201108419A (en) Methods of fabricating thin film transistor and organic light emitting diode display device having the same
JP2010145984A (ja) 有機電界発光表示装置及びその製造方法
CN105679705B (zh) 阵列基板的制作方法
CN103996655B (zh) 一种阵列基板及其制备方法,显示面板、显示装置
WO2012067283A1 (ko) 전자 회로용 반도체 박막의 제조방법
WO2009134078A1 (ko) 박막트랜지스터 및 그의 제조방법
WO2017034203A1 (ko) 산화물 트랜지스터 및 그 제조 방법
WO2023191403A1 (ko) 탄소계 박막 쉐도우 마스크 및 그 제조방법
TW200426950A (en) Laser re-crystallization method of low temperature polysilicon thin film transistor
WO2019056447A1 (zh) 一种阵列基板及其制造方法
KR20110024634A (ko) 전자 회로용 반도체 박막의 제조방법
WO2016138715A1 (zh) 低温多晶硅薄膜及薄膜晶体管的制备方法、薄膜晶体管、显示面板及显示装置
US20050079294A1 (en) Method of controlling polysilicon crystallization
CN101202218A (zh) 应用于连续性侧向长晶技术的掩膜以及激光结晶方法
WO2014059713A1 (zh) 薄膜晶体管阵列制作方法
WO2021040183A1 (ko) 빅스비아이트 결정을 함유하는 금속 산화물 채널층을 구비하는 박막트랜지스터 및 수직형 비휘발성 메모리 소자
WO2009131379A9 (ko) 다결정 실리콘막, 이를 포함하는 박막트랜지스터, 및 이의 제조방법
US11244964B2 (en) Display device, array substrate and manufacturing method thereof
KR101753182B1 (ko) 도전성 잉크를 이용한 어레이 기판의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859625

Country of ref document: EP

Kind code of ref document: A1