WO2012065378A1 - 一种半导体器件及其形成方法 - Google Patents

一种半导体器件及其形成方法 Download PDF

Info

Publication number
WO2012065378A1
WO2012065378A1 PCT/CN2011/071348 CN2011071348W WO2012065378A1 WO 2012065378 A1 WO2012065378 A1 WO 2012065378A1 CN 2011071348 W CN2011071348 W CN 2011071348W WO 2012065378 A1 WO2012065378 A1 WO 2012065378A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
contact
gate
forming
combination
Prior art date
Application number
PCT/CN2011/071348
Other languages
English (en)
French (fr)
Inventor
骆志炯
尹海洲
朱慧珑
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Priority to US13/380,362 priority Critical patent/US8722524B2/en
Publication of WO2012065378A1 publication Critical patent/WO2012065378A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular to a semiconductor device and a method of forming the same.
  • a method of forming a conventional semiconductor device includes: forming a gate electrode 14 and a sidewall spacer 16 on a semiconductor substrate 10, and the gate electrode 14 is formed on the semiconductor substrate 10 via a gate dielectric layer 12, as shown in FIG.
  • the sidewall spacer 16 covers opposite sides of the gate electrode 14, and then forms a source/drain region 20 and a contact region 18 (such as a metal silicide layer); as shown in FIG. 2, a planarized dielectric layer 22 is formed.
  • the planarized dielectric layer 22 covers the gate electrode 14 and the sidewall spacers 16; then, the dielectric layer 22 is etched using a mask to form a contact plug.
  • the step of forming the contact plug includes: first, as shown in FIG. 3, a contact hole 30 is formed in the dielectric layer 22, and the contact hole 30 exposes a portion of the contact region 18; subsequently, as shown in FIG.
  • the contact layer 32 is formed to cover the bottom wall and the sidewall of the contact hole 30.
  • a conductive layer 34 is formed, and the conductive layer 34 is formed on the contact layer.
  • the contact hole 30 is filled and filled.
  • FIG. 6 after planarizing the conductive layer 34 and the contact layer 32 to expose the dielectric layer 22, subsequent operations are continued.
  • the present invention provides a semiconductor device and a method of forming the same, which are advantageous in expanding a process window in forming a contact plug.
  • a method of forming a semiconductor device provided by the present invention includes:
  • each of the gate stack substrates being formed on the active region and the isolation region, each of the gate stack substrates including a gate dielectric layer and a dummy gate, the dummy gate via
  • the gate dielectric layer is formed on the semiconductor substrate, the sidewall spacer surrounds the dummy gate and a material forming layer, and the material layer exposes the dummy gate and the sidewall spacer and is sandwiched between each of the gate stacks Between the stacked substrates, the material layer material is the same as the dummy gate material;
  • the active region is connected only to one side of the peripheral wall of the sidewall spacer, and a gate stack structure and a first contact plug are formed.
  • the present invention provides a semiconductor device including a first contact plug and at least two gate stack structures, each of the gate stack structures being formed on an active region and an isolation region, each of the gate stack structures including a metal gate, the first contact plug being sandwiched between each of the gate stack structures, the first contact plug material being the same as the metal gate material.
  • a method of forming a semiconductor device provided by the present invention includes:
  • each of the gate stack substrates being formed on the active region and the isolation region, each of the gate stack substrates including a gate dielectric layer and a dummy gate, the dummy gate passing through the gate a dielectric layer is formed on the semiconductor substrate;
  • Forming a material layer the material layer filling the contact region and exposing the dummy gate and the mask layer, the material layer material being the same as the dummy gate material;
  • the conductive material is planarized to expose the mask layer, and a gate stack structure and a first contact plug are formed.
  • the technical solution provided by the present invention has the following advantages:
  • the replacement gate process is adopted, by using the same material layer as the dummy gate material, the material layer can be synchronously removed when the dummy gate is removed. Forming a groove; then, after filling the groove with a conductive material, planarizing the conductive material, the sidewall spacer may be exposed and a gate stack structure and a first contact plug may be formed; All of the conductive material is filled in the space occupied by the spacing to form the contact plug, that is, the contact plug can be formed by a self-aligning process, which is advantageous for expanding the process window when the contact plug is formed;
  • the dummy gate and the material layer facilitate the simplification of the process and reduce damage to the semiconductor substrate by the removal operation.
  • FIGS. 1 to 6 are cross-sectional views showing respective intermediate structures in the prior art in forming a semiconductor device; and FIGS. 7 to 13 are cross-sectional views showing respective intermediate structures obtained in an embodiment of a method of forming a semiconductor device of the present invention;
  • FIG. 14 is a schematic structural view of an embodiment of a semiconductor device of the present invention.
  • 15 to 19 are cross-sectional views showing respective intermediate structures obtained in another embodiment of the method of forming a semiconductor device of the present invention.
  • the present invention may repeat reference numerals and/or letters in different embodiments. This repetition is for the purpose of simplification and clarity and is not intended to indicate the relationship between the various embodiments and/or arrangements discussed.
  • the present invention provides a method of forming a semiconductor device, including:
  • each of the gate stack substrates includes a gate dielectric layer 102 and a dummy gate 104.
  • the dummy gate 104 is formed on the semiconductor substrate 100 via the gate dielectric layer 102, and the sidewall spacers 106 are surrounded by the spacers.
  • the dummy gate 104 and the gate dielectric layer 102 (this embodiment; facilitating reduction of parasitic capacitance), or the sidewall spacers 106 are formed on the gate dielectric layer 102 and surround the dummy gate 104 (other embodiments) .
  • the semiconductor substrate 100 may be a silicon substrate, preferably, the semiconductor substrate 100 is a silicon epitaxial layer, the semiconductor substrate 100 may also be a silicon-on-insulator the gate 0 (SOI)
  • the dielectric layer 102 may be selected from a ruthenium-based material such as one of Hf0 2 , HfS iO, HfS iON, HfTaO, HfTiO, HfZrO or a combination thereof, or alternatively, A1 2 0 3 , La 2 0 3 , Zr0 2 or LaAlO may be used. One or a combination thereof and its combination with a sulfhydryl-based material.
  • the sidewall 106 may include silicon nitride, silicon oxide, One of silicon oxynitride, silicon carbide, or a combination thereof.
  • the side wall 106 can have a multi-layered structure.
  • the dummy gate 104 may be doped or undoped polysilicon or amorphous silicon (the doping element may be B, P or As, etc.), preferably doped or undoped polysilicon, to facilitate precise control of the The size of the dummy gate 104, in turn, facilitates precise control of the size of the subsequently formed gate.
  • the dummy gate 104 may also be other insulating material different from the material of the sidewall spacer 106, other semiconductor materials different from the material of the semiconductor substrate 100, or a conductive material.
  • Source and drain regions 120 are also formed prior to forming a subsequent layer of material.
  • the source and drain regions 120 may be formed after implanting ions (eg, doped with boron, phosphorus, or arsenic) into the silicon substrate, and the source and drain regions 120 may be N-type or P-type. Silicon material. And forming a contact layer 122 (such as a metal silicide layer) on the surface of the source and drain region 120.
  • the step of forming the source and drain regions 120 may further include: first, forming a trench on the semiconductor substrate 100 to expose the semiconductor substrate by using the gate stack substrate as a mask 100 material; subsequently, the exposed semiconductor substrate 100 material is seeded to form a semiconductor material to fill the trench.
  • the semiconductor material is S iwGex, and the value of X is from 0.1 to 0.7, such as 0. 2, 0. 3, 0.4, 0.5 or 0.6.
  • the semiconductor material can be directly formed by incorporating a reactant containing a dopant ion component into the silicon-generating reactant.
  • a metal silicide layer is formed on the exposed source and drain regions 120 (the metal silicide layer is also formed on the dummy gate 104), which is advantageous for reducing the subsequently formed first contact plug and the semiconductor Contact resistance between the substrates 100.
  • the metal silicide layer may also be formed prior to filling the conductive material after removing the dummy gate 104 and the material layer.
  • a material layer 140 is formed which exposes the dummy gate 104 and the spacer 106 and is sandwiched between each of the gate stack substrates.
  • a material layer 140 is formed, the material layer 140 covers the gate stack substrate and fills a gap between each of the gate stack substrates; subsequently, the material layer 140 is planarized to expose the dummy gate 104 and the side wall 106.
  • the material layer 140 material may be the same as the dummy gate 104 material, and the material layer 140 may be removed synchronously when the dummy gate 104 is subsequently removed, which facilitates the process and reduces the damage of the semiconductor substrate by the removal operation.
  • the planarization operation can be performed using a chemical mechanical polishing (CMP) process. Thereafter, as shown in FIG. 9, the dummy gate 104 and the material layer 140 are removed to form a recess 142.
  • the removal operation may be performed using an anisotropic etching process such as reactive ion etching (RIE).
  • the conductive material is planarized to expose the sidewall, and then the conductive material on the periphery of the sidewall is broken to form At least two electrical conductors, each of the electrical conductors being connected only to the active region on a peripheral side of the sidewall spacer, and forming a gate stack structure and a first contact plug.
  • the step of filling the recess includes: first, forming a first contact layer 144, the first contact layer 144 covering a bottom wall and a sidewall of the recess 142; subsequently, forming a first conductive layer 146, The first conductive layer 146 covers the contact layer 144 and fills the recess 142.
  • the first contact layer 144 may include one or a combination of TiN, TiAIN, and at this time, the first conductive layer 146 includes one or a combination of W, Al, TiAl, and W, A1 or TiAl. Combination with Cu.
  • ⁇ , A1 or a combination of TiAl and Cu means: the bottom wall and the side wall of the groove 142 are first covered with a W, A1 or TiAl layer, and the Cu layer is formed on the I A1 or TiAl layer. Above, it is advantageous to reduce the diffusion of Cu into the semiconductor substrate 100.
  • a second contact plug is formed, the second contact being plugged to the first contact plug.
  • the step of forming the second contact plug includes: first, as shown in FIG. 11, a planarized dielectric layer 180 is formed, the planarized dielectric layer 180 covering the gate stack structure and the first contact plug; As shown in FIG. 12, a contact hole 182 is formed in the planarized dielectric layer 180, the contact hole 182 exposing a portion of the first contact plug; then, the second contact layer 184 and the second conductive layer are sequentially formed.
  • the second contact layer 184 covers the bottom wall and the sidewall of the contact hole 182, and the second conductive layer 186 covers the second contact layer 184 and fills the contact hole 182.
  • FIG. 13 after planarizing the second contact layer 184 and the second conductive layer 186, the subsequent operations are continued.
  • the second contact layer 184 may include one or a combination of TiN, TiAIN, TaN, TaAlN, and TaC.
  • the second conductive layer 186 includes one of I Al, Cu, TiAl, or a combination thereof. .
  • the dummy gate 104, the material layer 140 and the dielectric layer 180 may each be subjected to chemical vapor deposition (CVD), physical vapor deposition (PVD), pulsed laser deposition (PLD), atomic layer deposition (ALD). , Plasma Enhanced Atomic Layer Deposition (PEALD) or other suitable process formation.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • PLAD pulsed laser deposition
  • ALD atomic layer deposition
  • PEALD Plasma Enhanced Atomic Layer Deposition
  • the dummy gate 104, the material layer 140 and the dielectric layer 180 may each comprise silicon oxide (USG), doped silicon oxide (such as fluorosilicate glass, borosilicate glass, phosphosilicate glass, borophosphosilicate glass).
  • low-k dielectric materials eg, black diamond, cora l, etc.
  • the dummy gate 104, the material layer 140, and the dielectric layer 180 may each have a multilayer structure.
  • the dielectric layer 180 material and the dummy gate 104 may be the same or different.
  • the planarization operation can be performed using a chemical mechanical polishing (CMP) process.
  • the material layer material can be synchronously removed to form a groove when the dummy gate is removed; and then, after filling the groove with a conductive material, Flattening the conductive material, exposing the sidewall spacers and forming a gate stack structure and a first contact plug; facilitating full use of a limited pitch, filling the conductive material in a space occupied by the pitch to form the
  • the contact plug that is, the contact plug can be formed by a self-aligning process, which is advantageous for expanding the process window when the contact plug is formed; in addition, the dummy gate and the material layer are synchronously removed, which facilitates the process and reduces the removal operation. Damage to the semiconductor substrate.
  • the present invention also provides a semiconductor device formed on a semiconductor substrate 200, the semiconductor device including a first contact plug 220 and at least two gate stack structures, each of the gate stacks
  • the structure is formed on the active region (on which the active drain region 240 and the metal silicide layer 242 are formed, the metal silicide layer 242 is formed by reacting the surface layer of the source and drain region 240 with the metal) and the isolation region 201.
  • Each of the gate stack structures includes a metal gate 204, wherein the first contact plug is sandwiched between each of the gate stack structures, and the first contact plug 220 material is the same as the metal gate 204 material.
  • the gate stack structure includes a gate dielectric layer 202, a metal gate 204, and a sidewall spacer 206.
  • the metal gate 204 is formed on the semiconductor substrate 200 via the gate dielectric layer 202, and the sidewall spacers 206 surround the A metal gate 204 and the gate dielectric layer 202, or the sidewall spacers 206 are formed on the gate dielectric layer 202 and surround the metal gate 204.
  • the gate stack structure is the same as that described in the foregoing embodiment except for the reference numerals, and details are not described herein again.
  • the first contact plug 220 may include a first contact layer and a first conductive layer, the first conductive layer is formed on the first contact layer, and the first contact layer includes T i N, T i One or a combination of AIN; the first conductive layer comprises one or a combination of IA l, T iA l , and a combination of W, A 1 or T i A l and Cu.
  • the semiconductor device further includes a second contact plug, the second contact plug including the second a contact layer and a second conductive layer, the second conductive layer being formed on the first contact plug via the second contact layer, wherein the second contact layer comprises T iN, T iAlN, TaN, TaAlN, TaC One or a combination thereof; the second conductive layer comprises one of W, Al, Cu, T iAl or a combination thereof.
  • the present invention also provides a method of forming a semiconductor device, comprising:
  • each of the gate stack substrates being formed on the active region 103 and the isolation region 101, each of the gate stack substrates including a gate dielectric layer 122 and a dummy gate 120, the dummy gate 120 is formed on the semiconductor substrate via the gate dielectric layer 122;
  • a mask layer 140 is formed, the mask layer 140 surrounding the gate stack substrate and exposing at least a portion of the active region 103 (in this embodiment, the outside of the gate stack substrate is exposed All of the active regions, in other embodiments, a portion of the active regions may be exposed to form contact regions 142;
  • a material layer 144 is formed, the material layer 144 filling the contact region 142 and exposing the dummy gate 120 and the mask layer 144, the material layer 144 material and the dummy The gate 120 is the same material;
  • the dummy gate 120 (exposing the gate dielectric layer 122) and the material layer 144 are removed to form the recess 146;
  • the conductive material 160 is planarized to expose the mask layer 140, and a gate stack structure and a first contact plug are formed.
  • the mask layer 140 may be any insulating material such as silicon nitride, silicon oxynitride, silicon carbide or silicon oxynitride or a combination thereof (as may be a multilayer structure).
  • the mask layer 140 can be formed using a deposition-etch process.
  • the material layer material and the dummy gate material may be doped or undoped polysilicon or amorphous silicon.
  • the step of filling the recess includes: forming a first contact layer, the first contact layer covering a bottom wall and a sidewall of the recess; forming a first conductive layer, the first conductive layer covering the first Contact layer.
  • the first conductive layer includes one or a combination of W, A l , T iAl , and W, A 1 or T A combination of iAl and Cu.
  • the method can also include: First, a planarized dielectric layer is formed, the planarized dielectric layer covering the gate stack structure and the first contact plug; subsequently, a contact hole is formed in the planarized dielectric layer, the contact hole being exposed a part of the first contact plug; and then, forming a second contact layer, the second contact layer covering the bottom wall and the sidewall of the contact hole; finally, forming a second conductive layer, the second conductive layer covering The second contact layer fills the contact hole to form a second contact plug.
  • the second contact layer comprises one of T iN, T iAlN, TaN, TaAlN, TaC or a combination thereof
  • the second conductive layer comprises one of W, Al, Cu, T iAl or combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

一种半导体器件及其形成方法 技术领域
本发明涉及半导体技术领域, 具体来说, 涉及一种半导体器件及其形 成方法。
背景技术
现有的半导体器件的形成方法包括: 如图 1所示, 在半导体衬底 10上 形成栅极 14和侧墙 16 , 所述栅极 14经栅介质层 12形成于所述半导体衬 底 10上, 所述侧墙 16覆盖所述栅极 14 中相对的侧面, 继而形成源漏区 20 和接触区 18 (如金属硅化物层) ; 如图 2 所示, 形成平坦化的介质层 22 , 所述平坦化的介质层 22覆盖所述栅极 14和侧墙 16 ; 然后, 利用掩模, 刻蚀所述介质层 22 , 以形成接触塞。
其中, 形成所述接触塞的步骤包括: 首先, 如图 3所示, 在所述介质 层 22中形成接触孔 30 , 所述接触孔 30暴露部分所述接触区 18 ; 随后, 如 图 4所示, 形成接触层 32 , 所述接触层 32覆盖所述接触孔 30的底壁和侧 壁; 再后, 如图 5所示, 形成导电层 34 , 所述导电层 34形成于所述接触 层 32上且填充所述接触孔 30。 如图 6所示, 在平坦化所述导电层 34和所 述接触层 32以暴露所述介质层 22后, 继续后续操作。
然而, 随着半导体器件之间间距 (pitch )越来越小, 导致形成接触塞 时的工艺窗口越来越小。 需要一种新的半导体器件制造工艺, 以扩大所述 工艺窗口。
发明内容
为了解决上述问题, 本发明提供了一种半导体器件及其形成方法, 利 于扩大形成接触塞时的工艺窗口。
本发明提供的一种半导体器件的形成方法, 包括:
在半导体基底上形成至少两个栅堆叠基体和侧墙, 各所述栅堆叠基体 形成于有源区和隔离区上, 各所述栅堆叠基体包括栅介质层和伪栅, 所述 伪栅经所述栅介质层形成于所述半导体基底上, 所述侧墙环绕所述伪栅和 形成材料层, 所述材料层暴露所述伪栅和所述侧墙并夹于各所述栅堆 叠基体之间, 所述材料层材料与所述伪栅材料相同;
去除所述伪栅和所述材料层, 以形成凹槽;
以导电材料填充所述凹槽后, 平坦化所述导电材料, 以暴露所述侧墙; 断开所述侧墙外围的所述导电材料, 以形成至少两个导电体, 各所述 导电体只接于所述侧墙外围一侧的所述有源区, 并形成栅堆叠结构和第一 接触塞。
本发明提供的一种半导体器件, 所述半导体器件包括第一接触塞和至 少两个栅堆叠结构, 各所述栅堆叠结构形成于有源区和隔离区上, 各所述 栅堆叠结构均包括金属栅极,所述第一接触塞夹于各所述栅堆叠结构之间, 所述第一接触塞材料与所述金属栅极材料相同。
本发明提供的一种半导体器件的形成方法, 包括:
在半导体基底上形成至少两个栅堆叠基体, 各所述栅堆叠基体形成于 有源区和隔离区上, 各所述栅堆叠基体包括栅介质层和伪栅, 所述伪栅经 所述栅介质层形成于所述半导体基底上;
形成掩膜层, 所述掩膜层环绕所述栅堆叠基体并暴露所述有源区的至 少一部分, 以形成接触区;
形成材料层, 所述材料层填充所述接触区并暴露所述伪栅和所述掩膜 层, 所述材料层材料与所述伪栅材料相同;
去除所述伪栅和所述材料层, 以形成凹槽;
以导电材料填充所述凹槽后, 平坦化所述导电材料, 以暴露所述掩膜 层, 并形成栅堆叠结构和第一接触塞。
与现有技术相比, 采用本发明提供的技术方案具有如下优点: 采用替代栅工艺时, 通过使材料层与所述伪栅材料相同, 可在去除伪 栅时, 同步去除所述材料层, 以形成凹槽; 继而, 以导电材料填充所述凹 槽后, 平坦化所述导电材料, 可暴露所述侧墙并形成栅堆叠结构和第一接 触塞; 利于充分利用有限的间距, 在所述间距所占据的空间内全部填充所 述导电材料以形成所述接触塞, 即, 可采用自对准工艺形成所述接触塞, 利于扩大形成接触塞时的工艺窗口; 此外, 同步去除所述伪栅和所述材料 层, 利于简化工艺及减小去除操作对半导体基底的损伤。
附图说明 图 1至图 6所示为现有技术中形成半导体器件时各中间结构的剖视图; 图 7至图 13所示为本发明半导体器件的形成方法的一个实施例中获得的 各中间结构的剖视图;
图 14所示为本发明半导体器件实施例的结构示意图;
图 15至图 19所示为本发明半导体器件的形成方法的另一个实施例中获得 的各中间结构的剖视图。
具体实施方式
下文的公开提供了许多不同的实施例或例子用来实现本发明提供的技 术方案。 虽然下文中对特定例子的部件和设置进行了描述, 但是, 它们仅 仅为示例, 并且目的不在于限制本发明。
此外, 本发明可以在不同实施例中重复参考数字和 /或字母。 这种重复 是为了简化和清楚的目的, 其本身不指示所讨论的各种实施例和 /或设置之 间的关系。
本发明提供了各种特定工艺和 /或材料的例子, 但是, 本领域普通技术 人员可以意识到的其他工艺和 /或其他材料的替代应用, 显然未脱离本发明 要求保护的范围。 需强调的是, 本文件内所述的各种区域的边界包含由于 工艺或制程的需要所作的必要的延展。
本发明提供了一种半导体器件的形成方法, 包括:
首先, 如图 7所示, 在半导体基底 100上形成至少两个栅堆叠基体和 侧墙 106 , 所述栅堆叠基体形成于有源区和隔离区 101 上 (各所述有源区 由所述隔离区 101隔离),各所述栅堆叠基体包括栅介质层 102和伪栅 104 , 所述伪栅 104经所述栅介质层 102形成于所述半导体基底 100上, 所述侧 墙 106环绕所述伪栅 104和所述栅介质层 102 (本实施例; 利于减小寄生 电容),或者所述侧墙 106形成于所述栅介质层 102上且环绕所述伪栅 104 (其他实施例) 。
其中, 在本实施例中, 所述半导体基底 100可为硅衬底, 优选地, 所述 半导体基底 100为硅外延层,所述半导体基底 100也可为绝缘体上硅( SOI )0 所述栅介质层 102可以选用铪基材料,如 Hf02、 HfS iO、 HfS iON、 HfTaO、 HfTiO、 HfZrO中的一种或其组合, 或者, 可以选用 A1203、 La203、 Zr02或 LaAlO中的 一种或其组合及其与铪基材料的组合。 侧墙 106可以包括氮化硅、 氧化硅、 氮氧化硅、 碳化硅中的一种或其组合。 侧墙 106可以具有多层结构。 所述 伪栅 104可为掺杂或未掺杂的多晶硅或非晶硅(掺杂元素可为 B、 P或 As 等) , 优选为掺杂或未掺杂的多晶硅, 利于精确地控制所述伪栅 104的尺 寸, 继而, 利于精确地控制后续形成的栅极的尺寸。 在其他实施例中, 所 述伪栅 104也可为异于所述侧墙 106材料的其他绝缘材料、 异于所述半导 体基底 100材料的其他半导体材料, 或者, 为导电材料。
在形成后续材料层之前, 还需形成源漏区 120。 在本实施例中, 所述 源漏区 120可在向所述硅衬底中注入离子(如, 掺杂硼、 磷或砷)后形成, 所述源漏区 120可以是 N型或 P型的硅材料。 并在所述源漏区 120表面形 成接触层 122 (如金属硅化物层) 。
此外, 在其他实施例中, 形成所述源漏区 120的步骤也可包括: 首先, 以所述栅堆叠基体为掩膜, 在所述半导体基底 100上形成沟槽, 以暴露所 述半导体基底 100材料; 随后, 以暴露的所述半导体基底 100材料为籽晶, 生成半导体材料, 以填充所述沟槽。
对于 PM0S器件,所述半导体材料为 S iwGex, X的取值范围为 0. 1 ~ 0. 7 , 如 0. 2、 0. 3、 0. 4、 0. 5或 0. 6; 对于丽 OS器件, 所述半导体材料为 S i : C , C 的原子数百分比的取值范围为 0. 2% ~ 2%, 如 0. 5%、 1%或 1. 5%。 可在生成 硅的反应物中掺入包含掺杂离子成分的反应物而直接形成所述半导体材 料。 随后, 在暴露的所述源漏区 120上形成金属硅化物层(在所述伪栅 104 上也形成有所述金属硅化物层) , 利于减小后续形成的第一接触塞与所述 半导体基底 100之间的接触电阻。 在其他实施例中, 所述金属硅化物层还 可形成于去除所述伪栅 104和所述材料层之后、 填充所述导电材料之前。
随后, 如图 8所示, 形成材料层 140 , 所述材料层 140暴露所述伪栅 104和所述侧墙 106并夹于各所述栅堆叠基体之间。
具体地: 首先, 形成材料层 140 , 所述材料层 140覆盖所述栅堆叠基 体并填充各所述栅堆叠基体之间的空隙; 随后, 平坦化所述材料层 140 , 以暴露所述伪栅 104和所述侧墙 106。
所述材料层 140材料可与所述伪栅 104材料相同, 可在后续去除伪栅 104时, 同步去除所述材料层 140, 利于简化工艺及减小去除操作对半导体 基底的损伤。 可采用化学机械研磨 (CMP ) 工艺执行平坦化操作。 再后, 如图 9所示, 去除所述伪栅 104和所述材料层 140, 以形成凹 槽 142。 可采用反应离子刻蚀 (RIE)等各向异性刻蚀工艺执行所述去除操 作。
然后, 如图 10所示, 在以导电材料填充所述凹槽 142后, 平坦化所述 导电材料, 以暴露所述侧墙, 再断开所述侧墙外围的所述导电材料, 以形 成至少两个导电体,各所述导电体只接于所述侧墙外围一侧的所述有源区, 并形成栅堆叠结构和第一接触塞。
其中, 填充所述凹槽的步骤包括: 首先, 形成第一接触层 144, 所述 第一接触层 144覆盖所述凹槽 142的底壁和侧壁; 随后, 形成第一导电层 146, 所述第一导电层 146覆盖所述接触层 144并填充所述凹槽 142。
所述第一接触层 144可包括 TiN、 TiAIN中的一种或其组合, 此时, 所 述第一导电层 146包括 W、 Al、 TiAl中的一种或其组合、以及 W、 A1或 TiAl 与 Cu的组合。 本文件中, "Ψ、 A1或 TiAl与 Cu的组合" 意指: 先以 W、 A1或 TiAl层覆盖所述凹槽 142的底壁和侧壁, 再以 Cu层形成于 I A1或 TiAl层上, 利于减少 Cu向所述半导体基底 100扩散。
再后, 形成第二接触塞, 所述第二接触塞接于所述第一接触塞。 形成 所述第二接触塞的步骤包括: 首先, 如图 11 所示, 形成平坦化的介质层 180, 所述平坦化的介质层 180覆盖所述栅堆叠结构和所述第一接触塞; 随 后, 如图 12所示, 在平坦化的所述介质层 180中形成接触孔 182, 所述接 触孔 182暴露部分所述第一接触塞; 然后, 顺次形成第二接触层 184和第 二导电层 186, 所述第二接触层 184覆盖所述接触孔 182的底壁和侧壁, 所述第二导电层 186覆盖所述第二接触层 184并填充所述接触孔 182。 如 图 13所示, 在平坦化所述第二接触层 184和所述第二导电层 186后, 继续 后续操作。
所述第二接触层 184可包括 TiN、 TiAIN, TaN、 TaAlN、 TaC中的一种 或其组合, 此时, 所述第二导电层 186包括 I Al、 Cu、 TiAl 中的一种或 其组合。
所述伪栅 104、 所述材料层 140和所述介质层 180均可采用化学气相淀 积( CVD )、物理气相淀积( PVD )、脉冲激光沉积( PLD )、原子层淀积( ALD )、 等离子体增强原子层淀积 (PEALD) 或其他适合的工艺形成。 所述伪栅 104、 所述材料层 140 和所述介质层 180 均可包括氧化硅 ( USG )、掺杂的氧化硅(如氟硅玻璃、硼硅玻璃、磷硅玻璃、硼磷硅玻璃 )、 低 k电介质材料(如黑钻石、 cora l等)中的一种或其组合。 所述伪栅 104、 所述材料层 140和所述介质层 180均可具有多层结构。 所述介质层 180材 料和所述伪栅 104可相同或不同。 可采用化学机械研磨 (CMP ) 工艺执行 所述平坦化操作。
采用替代栅工艺时, 通过使材料层材料与所述伪栅材料相同, 可在去 除伪栅时, 同步去除所述材料层, 以形成凹槽; 继而, 以导电材料填充所 述凹槽后, 平坦化所述导电材料, 可暴露所述侧墙并形成栅堆叠结构和第 一接触塞; 利于充分利用有限的间距, 在所述间距所占据的空间内全部填 充所述导电材料以形成所述接触塞, 即, 可采用自对准工艺形成所述接触 塞, 利于扩大形成接触塞时的工艺窗口; 此外, 同步去除所述伪栅和所述 材料层, 利于简化工艺及减小去除操作对半导体基底的损伤。
如图 14所示, 本发明还提供了一种半导体器件, 所述半导体器件形成 于半导体基底 200上, 所述半导体器件包括第一接触塞 220和至少两个栅 堆叠结构, 各所述栅堆叠结构形成于有源区 (其上形成有源漏区 240及金 属硅化物层 242 , 所述金属硅化物层 242 由所述源漏区 240的表层与金属 反应后形成) 和隔离区 201 上, 各所述栅堆叠结构均包括金属栅极 204 , 其中, 所述第一接触塞夹于各所述栅堆叠结构之间, 所述第一接触塞 220 材料与所述金属栅极 204材料相同。
所述栅堆叠结构包括栅介质层 202、 金属栅极 204和侧墙 206 , 所述金 属栅极 204经所述栅介质层 202形成于所述半导体基底 200上, 所述侧墙 206环绕所述金属栅极 204和所述栅介质层 202 ,或者所述侧墙 206形成于 所述栅介质层 202上且环绕所述金属栅极 204。 其中, 除标号外, 所述栅 堆叠结构与前述实施例中描述的相同, 不再赘述。
其中, 所述第一接触塞 220可包括第一接触层和第一导电层, 所述第 一导电层形成于所述第一接触层上, 所述第一接触层包括 T i N、 T i A I N中的 一种或其组合; 所述第一导电层包括 I A l、 T iA l 中的一种或其组合、 以 及 W、 A 1或 T i A l与 Cu的组合。
此外, 所述半导体器件还包括第二接触塞, 所述第二接触塞包括第二 接触层和第二导电层, 所述第二导电层经所述第二接触层形成于所述第一 接触塞上, 所述第二接触层包括 T iN、 T iAlN、 TaN、 TaAlN、 TaC 中的一种 或其组合; 所述第二导电层包括 W、 A l、 Cu、 T iAl中的一种或其组合。
本发明还提供了一种半导体器件的形成方法, 包括:
首先, 如图 15所示, 在半导体基底上形成至少两个栅堆叠基体, 各所 述栅堆叠基体形成于有源区 103和隔离区 101上, 各所述栅堆叠基体包括 栅介质层 122和伪栅 120 , 所述伪栅 120经所述栅介质层 122形成于所述 半导体基底上;
随后, 如图 16所示, 形成掩膜层 140 , 所述掩膜层 140环绕所述栅堆 叠基体并暴露所述有源区 103 的至少一部分 (本实施例中暴露所述栅堆叠 基体外的全部有源区, 在其他实施例中, 可暴露部分所述有源区) , 以形 成接触区 142;
再后, 如图 17所示, 形成材料层 144 , 所述材料层 144填充所述接触 区 142并暴露所述伪栅 120和所述掩膜层 144, 所述材料层 144材料与所 述伪栅 120材料相同;
然后, 如图 18所示, 去除所述伪栅 120 (暴露所述栅介质层 122 ) 和 所述材料层 144, 以形成凹槽 146;
最后, 如图 19所示, 以导电材料 160填充所述凹槽 146后, 平坦化所 述导电材料 160,以暴露所述掩膜层 140,并形成栅堆叠结构和第一接触塞。
其中, 所述掩膜层 140可为任一绝缘材料, 如氮化硅、 氮氧化硅、 碳 化硅或氮碳化硅中的一种或其组合 (如可为多层结构) 。 所述掩膜层 140 可采用沉积-刻蚀工艺形成。
其中, 所述材料层材料与所述伪栅材料可为掺杂或非掺杂的多晶硅或 非晶硅。
填充所述凹槽的步骤包括: 形成第一接触层, 所述第一接触层覆盖所 述凹槽的底壁和侧壁; 形成第一导电层, 所述第一导电层覆盖所述第一接 触层。
所述第一接触层包括 T iN、 T iAIN中的一种或其组合时, 所述第一导电 层包括 W、 A l、 T iAl中的一种或其组合、 以及 W、 A 1或 T iAl与 Cu的组合。
该方法还可包括: 首先, 形成平坦化的介质层, 所述平坦化的介质层覆盖所述栅堆叠结 构和所述第一接触塞; 随后, 在所述平坦化的介质层中形成接触孔, 所述 接触孔暴露部分所述第一接触塞; 再后, 形成第二接触层, 所述第二接触 层覆盖所述接触孔的底壁和侧壁; 最后, 形成第二导电层, 所述第二导电 层覆盖所述第二接触层并填充所述接触孔, 以形成第二接触塞。
其中, 所述第二接触层包括 T iN、 T iAlN、 TaN、 TaAlN、 TaC 中的一种 或其组合时, 所述第二导电层包括 W、 Al、 Cu、 T iAl中的一种或其组合。
涉及的其他材料的组成及形成方法同前述实施例中所述, 不再赘述。 此外, 本发明的应用范围不局限于说明书中描述的特定实施例的工艺、 结 构、 制造、 物质组成、 手段、 方法及步骤。 根据本发明的公开内容, 本领域技 术人员将容易地理解, 对于目前已存在或者以后即将开发出的工艺、机构、 制 造、 物质组成、 手段、 方法或步骤, 它们在执行与本发明描述的对应实施例大 体相同的功能或者获得大体相同的结果时,依照本发明的教导, 可以对它们进 行应用, 而不脱离本发明所要求保护的范围。

Claims

权 利 要 求
1、 一种半导体器件的形成方法, 包括:
在半导体基底上形成至少两个栅堆叠基体和侧墙, 各所述栅堆叠基体 形成于有源区和隔离区上, 各所述栅堆叠基体包括栅介质层和伪栅, 所述 伪栅经所述栅介质层形成于所述半导体基底上, 所述侧墙环绕所述伪栅和 形成材料层, 所述材料层暴露所述伪栅和所述侧墙并夹于各所述栅堆 叠基体之间, 所述材料层材料与所述伪栅材料相同;
去除所述伪栅和所述材料层, 以形成凹槽;
以导电材料填充所述凹槽后, 平坦化所述导电材料, 以暴露所述侧墙; 断开所述侧墙外围的所述导电材料, 以形成至少两个导电体, 各所述 导电体只接于所述侧墙外围一侧的所述有源区, 并形成栅堆叠结构和第一 接触塞。
2、 根据权利要求 1所述的方法, 其特征在于: 所述材料层材料与所述 伪栅材料为掺杂或非掺杂的多晶硅或非晶硅。
3、 根据权利要求 2所述的方法, 其特征在于, 填充所述凹槽的步骤包 括:
形成第一接触层, 所述第一接触层覆盖所述凹槽的底壁和侧壁; 形成第一导电层, 所述第一导电层覆盖所述第一接触层。
4、 根据权利要求 3 所述的方法, 其特征在于: 所述第一接触层包括 T iN、 T iA I N中的一种或其组合时, 所述第一导电层包括 W、 A l、 T iA l中的 一种或其组合、 以及 I A 1或 T iA l与 Cu的组合。
5、 根据权利要求 1所述的方法, 其特征在于, 还包括:
形成平坦化的介质层, 所述平坦化的介质层覆盖所述栅堆叠结构和所 述第一接触塞;
在所述平坦化的介质层中形成接触孔, 所述接触孔暴露部分所述第一 接触塞;
形成第二接触层, 所述第二接触层覆盖所述接触孔的底壁和侧壁; 形成第二导电层, 所述第二导电层覆盖所述第二接触层并填充所述接 触孔, 以形成第二接触塞。
6、 根据权利要求 5 所述的方法, 其特征在于: 所述第二接触层包括 T iN、 T iA lN、 TaN、 TaA lN、 TaC 中的一种或其组合时, 所述第二导电层包 括 W、 Al、 Cu、 T iAl中的一种或其组合。
7、 一种半导体器件, 所述半导体器件包括第一接触塞和至少两个栅堆 叠结构, 各所述栅堆叠结构形成于有源区和隔离区上, 各所述栅堆叠结构 均包括金属栅极, 其特征在于: 所述第一接触塞夹于各所述栅堆叠结构之 间, 所述第一接触塞材料与所述金属栅极材料相同。
8、 根据权利要求 7所述的半导体器件, 其特征在于: 所述第一接触塞 包括第一接触层和第一导电层,所述第一导电层形成于所述第一接触层上, 所述第一接触层包括 T iN、 T iAlN中的一种或其组合; 所述第一导电层包括 W、 Al、 T iA l中的一种或其组合、 以及 W、 A1或 T iAl与 Cu的组合。
9、 根据权利要求 7或 8所述的半导体器件, 其特征在于: 所述半导体 器件还包括第二接触塞, 所述第二接触塞包括第二接触层和第二导电层, 所述第二导电层经所述第二接触层形成于所述第一接触塞上, 所述第二接 触层包括 T iN、 T iAlN, TaN、 TaAlN、 TaC 中的一种或其组合; 所述第二导 电层包括 W、 A l、 Cu、 T iA l中的一种或其组合。
10、 一种半导体器件的形成方法, 包括:
在半导体基底上形成至少两个栅堆叠基体, 各所述栅堆叠基体形成于 有源区和隔离区上, 各所述栅堆叠基体包括栅介质层和伪栅, 所述伪栅经 所述栅介质层形成于所述半导体基底上;
形成掩膜层, 所述掩膜层环绕所述栅堆叠基体并暴露所述有源区的至 少一部分, 以形成接触区;
形成材料层, 所述材料层填充所述接触区并暴露所述伪栅和所述掩膜 层, 所述材料层材料与所述伪栅材料相同;
去除所述伪栅和所述材料层, 以形成凹槽;
以导电材料填充所述凹槽后, 平坦化所述导电材料, 以暴露所述掩膜 层, 并形成栅堆叠结构和第一接触塞。
11、 根据权利要求 10所述的方法, 其特征在于: 所述材料层材料与所 述伪栅材料为掺杂或非掺杂的多晶硅或非晶硅。
12、 根据权利要求 11所述的方法, 其特征在于, 填充所述凹槽的步骤 包括:
形成第一接触层, 所述第一接触层覆盖所述凹槽的底壁和侧壁; 形成第一导电层, 所述第一导电层覆盖所述第一接触层。
13、 根据权利要求 12所述的方法, 其特征在于: 所述第一接触层包括 TiN、 TiAlN中的一种或其组合时, 所述第一导电层包括 W、 Al、 TiAl中的 一种或其组合、 以及 I A1或 TiAl与 Cu的组合。
14、 根据权利要求 10所述的方法, 其特征在于, 还包括:
形成平坦化的介质层, 所述平坦化的介质层覆盖所述栅堆叠结构和所 述第一接触塞;
在所述平坦化的介质层中形成接触孔, 所述接触孔暴露部分所述第一 接触塞;
形成第二接触层, 所述第二接触层覆盖所述接触孔的底壁和侧壁; 形成第二导电层, 所述第二导电层覆盖所述第二接触层并填充所述接 触孔, 以形成第二接触塞。
15、 根据权利要求 14所述的方法, 其特征在于: 所述第二接触层包括 TiN、 TiAlN, TaN、 TaAlN、 TaC 中的一种或其组合时, 所述第二导电层包 括 W、 Al、 Cu、 TiAl中的一种或其组合。
PCT/CN2011/071348 2010-11-18 2011-02-27 一种半导体器件及其形成方法 WO2012065378A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/380,362 US8722524B2 (en) 2010-11-18 2011-02-27 Method for forming a semiconductor device including replacing material of dummy gate stacks with other conductive material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010548655.4A CN102468174B (zh) 2010-11-18 2010-11-18 一种半导体器件及其形成方法
CN201010548655.4 2010-11-18

Publications (1)

Publication Number Publication Date
WO2012065378A1 true WO2012065378A1 (zh) 2012-05-24

Family

ID=46071649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071348 WO2012065378A1 (zh) 2010-11-18 2011-02-27 一种半导体器件及其形成方法

Country Status (3)

Country Link
US (1) US8722524B2 (zh)
CN (1) CN102468174B (zh)
WO (1) WO2012065378A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715133B (zh) * 2012-09-29 2016-01-06 中芯国际集成电路制造(上海)有限公司 Mos晶体管及其形成方法
CN103915384B (zh) * 2013-01-08 2016-08-10 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN104241107A (zh) * 2013-06-06 2014-12-24 中国科学院微电子研究所 一种半导体结构及其制造方法
US9478636B2 (en) * 2014-05-16 2016-10-25 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming semiconductor device including source/drain contact having height below gate stack
US10177133B2 (en) 2014-05-16 2019-01-08 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device including source/drain contact having height below gate stack
CN105633004A (zh) * 2014-10-27 2016-06-01 中国科学院微电子研究所 自对准接触制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163047A (en) * 1999-07-12 2000-12-19 Vanguard International Semiconductor Corp. Method of fabricating a self aligned contact for a capacitor over bitline, (COB), memory cell
US20040115890A1 (en) * 2002-10-28 2004-06-17 Tomohiro Saito Semiconductor device having low resistivity source and drain electrodes
US20040175909A1 (en) * 2003-03-05 2004-09-09 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
CN101345240A (zh) * 2007-07-09 2009-01-14 台湾积体电路制造股份有限公司 Mos晶体管的接触结构、毗连的接触结构及半导体sram单元

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5950090A (en) * 1998-11-16 1999-09-07 United Microelectronics Corp. Method for fabricating a metal-oxide semiconductor transistor
KR100350056B1 (ko) * 2000-03-09 2002-08-24 삼성전자 주식회사 다마신 게이트 공정에서 자기정렬콘택패드 형성 방법
KR100425457B1 (ko) * 2001-08-13 2004-03-30 삼성전자주식회사 자기 정렬 콘택 패드를 구비하는 반도체 소자 및 그 제조방법
US20020142531A1 (en) * 2001-03-29 2002-10-03 Hsu Sheng Teng Dual damascene copper gate and interconnect therefore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163047A (en) * 1999-07-12 2000-12-19 Vanguard International Semiconductor Corp. Method of fabricating a self aligned contact for a capacitor over bitline, (COB), memory cell
US20040115890A1 (en) * 2002-10-28 2004-06-17 Tomohiro Saito Semiconductor device having low resistivity source and drain electrodes
US20040175909A1 (en) * 2003-03-05 2004-09-09 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
CN101345240A (zh) * 2007-07-09 2009-01-14 台湾积体电路制造股份有限公司 Mos晶体管的接触结构、毗连的接触结构及半导体sram单元

Also Published As

Publication number Publication date
CN102468174B (zh) 2014-01-01
US20120181623A1 (en) 2012-07-19
US8722524B2 (en) 2014-05-13
CN102468174A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
US9722038B2 (en) Metal cap protection layer for gate and contact metallization
KR101908854B1 (ko) 반도체 디바이스 및 이의 제조 방법
CN102244098B (zh) 半导体装置及其制造方法
KR101815527B1 (ko) 반도체 소자 및 그 제조 방법
US8710556B2 (en) Semiconductor device comprising a Fin and method for manufacturing the same
CN106941096B (zh) 具有金属栅电极的半导体器件及其制造方法
KR101187309B1 (ko) 콘택 플러그 형성을 위한 레이아웃 및 공정
US20140103404A1 (en) Replacement gate with an inner dielectric spacer
WO2011124088A1 (zh) 一种栅堆叠结构、半导体器件及二者的制造方法
WO2013166632A1 (zh) 半导体器件及其制造方法
KR102293884B1 (ko) 반도체 소자의 제조 방법
WO2011066747A1 (zh) 半导体器件及其形成方法
US8669155B2 (en) Hybrid channel semiconductor device and method for forming the same
WO2012006881A1 (zh) 半导体器件结构及其制造方法
US8969189B2 (en) Contact structure employing a self-aligned gate cap
WO2012055199A1 (zh) 一种半导体结构及其制造方法
WO2012065378A1 (zh) 一种半导体器件及其形成方法
TW202234526A (zh) 半導體裝置及其形成方法
WO2011140850A1 (zh) 一种接触孔、半导体器件和二者的形成方法
WO2012022108A1 (zh) 一种半导体器件及其形成方法
WO2013170477A1 (zh) 半导体器件及其制造方法
WO2013044581A1 (zh) 一种半导体结构及其制造方法
WO2011160422A1 (zh) 一种半导体器件及其形成方法
JP2006339597A (ja) 半導体装置およびその製造方法
JP6085803B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13380362

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841098

Country of ref document: EP

Kind code of ref document: A1