WO2012065364A1 - 一种联合生产低辛烷值汽油和高辛烷值汽油的方法 - Google Patents

一种联合生产低辛烷值汽油和高辛烷值汽油的方法 Download PDF

Info

Publication number
WO2012065364A1
WO2012065364A1 PCT/CN2011/001909 CN2011001909W WO2012065364A1 WO 2012065364 A1 WO2012065364 A1 WO 2012065364A1 CN 2011001909 W CN2011001909 W CN 2011001909W WO 2012065364 A1 WO2012065364 A1 WO 2012065364A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasoline
low
octane
octane number
components
Prior art date
Application number
PCT/CN2011/001909
Other languages
English (en)
French (fr)
Inventor
周向进
Original Assignee
Zhou Xiangjin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2817848A priority Critical patent/CA2817848C/en
Priority to JP2013539113A priority patent/JP6428995B2/ja
Application filed by Zhou Xiangjin filed Critical Zhou Xiangjin
Priority to EP11841525.6A priority patent/EP2641959A4/en
Priority to UAA201307597A priority patent/UA109561C2/uk
Priority to EA201370119A priority patent/EA025230B1/ru
Priority to NZ611907A priority patent/NZ611907A/en
Priority to KR1020137015479A priority patent/KR20140020238A/ko
Priority to AU2011331840A priority patent/AU2011331840A1/en
Priority to MX2013005408A priority patent/MX349341B/es
Priority to AP2013006929A priority patent/AP2013006929A0/xx
Priority to US13/885,276 priority patent/US9428697B2/en
Priority to BR112013012067A priority patent/BR112013012067A2/pt
Publication of WO2012065364A1 publication Critical patent/WO2012065364A1/zh
Priority to CU2013000070A priority patent/CU20130070A7/es
Priority to IL226396A priority patent/IL226396A0/en
Priority to ZA2013/04067A priority patent/ZA201304067B/en
Priority to MA36007A priority patent/MA34733B1/fr
Priority to ECSP13012688 priority patent/ECSP13012688A/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • C07C7/05Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds
    • C07C7/06Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/08Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one sorption step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/12Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/10Use of additives to fuels or fires for particular purposes for improving the octane number
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/543Distillation, fractionation or rectification for separating fractions, components or impurities during preparation or upgrading of a fuel

Definitions

  • the invention belongs to the technical field of petroleum refining.
  • the compression ratio is the ratio of the maximum volume to the smallest volume of gas present in the cylinder when the piston moves in the cylinder.
  • the gas volume in the cylinder When the piston is at the lowest point, the gas volume in the cylinder is the largest. When the piston is at the highest point, the gas volume in the cylinder is the smallest.
  • the former is called the total cylinder volume, and the latter is called the cylinder combustion chamber volume.
  • Compression ratio total cylinder volume I combustion chamber volume.
  • the compression ratio is an important indicator of the internal combustion engine. The larger the compression ratio, the higher the cylinder pressure and the higher the temperature.
  • the compression ratio of a gasoline engine is generally 4 to 6.
  • the compression ratio of the gasoline engine used in the passenger car is increased to 7 to 9.5, and the compression ratio of the gasoline engine used in the high-end passenger car is said to have reached 12.5.
  • High compression ratio gasoline engines need to use high-energy (high-grade) gasoline, otherwise the gasoline will spontaneously ignite in the high-temperature and high-pressure environment of the cylinder during engine operation, resulting in knocking.
  • the compression ratio of a diesel engine is generally 15 to 18, so the thermal efficiency of a diesel engine is about 30% higher than that of a gasoline engine.
  • the greenhouse effect of emissions is about 45% lower than that of a gasoline engine, and the carbon oxide and hydrocarbon emissions are also low.
  • the diesel engine uses a compression ignition method, so there is no problem of knocking. Of course, because the cylinder is limited by the strength of the material, the compression ratio of the diesel engine cannot be too large.
  • motor method To assess the anti-knock performance of fuels, two methods are generally used: motor method and research method.
  • the octane number of the same fuel motor method is 85, it is equivalent to a research value of 92.
  • the motor method is 90, the research method is 97.
  • the octane numbers described in this specification are all research methods.
  • the peak value of common gasoline is above 90, and the ignition temperature is relatively high. It cannot be normally ignited by compression ignition. Therefore, the current gasoline engines are all ignited gasoline engines.
  • the compression-ignition low-octane gasoline engine works like a diesel engine.
  • low-octane gasoline is injected into the cylinder's compressed high-temperature, high-pressure air, it can be automatically ignited and burned.
  • the compression ratio of the compression-ignition low-octane gasoline engine can be higher than that of the ignition-type gasoline engine. Therefore, the compression-ignition low-octane gasoline engine has higher thermal efficiency than the ignition gasoline engine, and the greenhouse effect caused by the emission. low.
  • low-xin-degraded gasoline is the same as that of Gaoxin-valued gasoline.
  • the labels are No. 40, No. 30, No. 20 (40#, 30#, 20#) equivalent to 40%, 30%, 20% anti-explosion.
  • "Xin Geng” which has a strong shock resistance, and 60%, 70%, and 80% of the "positive Geng”.
  • the low octane gasoline may also be numbered 42, 33, 0, 10, etc. as needed.
  • this new gasoline product can be compressed and burned, which is different from current gasoline.
  • the fraction of this new gasoline product is similar or similar to the current gasoline fraction, generally C7-C11, and can be expanded to C6-C12 or even C5-C 19 if necessary.
  • this specification refers to gasoline with a Xin Xin value below 50 as low octane gasoline, and the gasoline (now commonly used) with a Xin Xin value above 90 is collectively referred to as high octane gasoline.
  • Low-octane gasoline engines have both the advantages of diesel engines and the advantages of gasoline engines, especially when the compression ratio is selected in the range of 10-15.
  • This type of engine has the advantages of "small size, small vibration, stable operation" of the gasoline engine. It has the advantages of high efficiency, high horsepower and low greenhouse effect due to emissions.
  • the compression ratio of a compression ignition type low-energy gasoline engine should be higher than that of a spark-ignition gasoline engine, so its efficiency is high and the greenhouse effect of emissions is low.
  • Low-octane gasoline has a relatively short carbon chain and is relatively easy to burn, so black particulate impurities (black smoke) in the exhaust of low-octane gasoline engines are rare. Tests have shown that low-octane-value gasoline can hardly see black smoke from exhaust gases when applied to engines with a compression ratio of 18.
  • the minimum necessary compression ratio for each of the various grades of low-octane gasoline can be obtained by an experimental method familiar to those skilled in the art (method for testing the sensible value).
  • Crude oil is a black liquid. It is called oil.
  • This liquid contains aliphatic hydrocarbons, or hydrocarbons consisting only of hydrogen and carbon, which are linked together to form carbon chains of different lengths.
  • the current petroleum refining technology includes atmospheric distillation, vacuum distillation, hydrocracking, catalytic cracking, residue cracking, etc.
  • the petroleum light component petroleum light oil
  • the heavy components Long chain hydrocarbons, long chain unsaturated hydrocarbons are converted to light components for distillation.
  • the gasoline, aviation gasoline (aviation kerosene), kerosene and diesel oil are extracted in stages according to the different boiling points of different components of light oil.
  • the petroleum distillation process can also cut off the raw materials of chemical products according to a certain condensation temperature range, which is also called "naphtha".
  • the petroleum refining process also has processes such as reforming and catalytic cracking. Under the action of a catalyst, a linear alkane having a low octane number is converted into an aromatic hydrocarbon having a high octane number.
  • the light oil obtained in these processes also needs to be distilled or rectified, and gasoline, kerosene and diesel oil are extracted in stages according to the temperature of the condensation point.
  • the current distillation method is based on the condensation temperature of petroleum light components, and the components of different condensation temperature intervals are segmented as gasoline, kerosene, diesel and other products. Generally, one fraction corresponds to one product.
  • these components are separately "point-extracted", and according to the principle that one component corresponds to one fraction extraction point, different structures are The components are extracted one by one, and then the group with a low octane number is combined into a low octane gasoline product, and the components with a high octane number are blended into a high octane gasoline product. This method has not seen industrial application so far, and no research reports have been reported.
  • Non-primary components or fractions that are not extracted one by one are also added to low-octane gasoline products or high-octane gasoline products, depending on their Xinxin values.
  • Not suitable as a component or fraction of a gasoline component such as: olefins, alkynes, benzene, for other uses.
  • the octane number of low octane gasoline is not low enough, it can be formulated with a long carbon chain low octane fraction of C12 or higher. Alkanes with a carbon chain length of 12 or more, even if they are not linear hydrocarbons, have low octane numbers, so the addition of long-chain hydrocarbons is an effective measure to reduce the octane number of gasoline. .
  • the mixed components can be extracted by rectification and then subjected to secondary separation by other methods.
  • the boiling points of the components blended into the two combinations of low octane gasoline and high octane gasoline are discontinuous and hopping.
  • the current petroleum rectification mainly extracts diesel, kerosene, aviation kerosene, and gasoline in the order of temperature from high to low, and the boiling temperature inside each product ( ⁇ ) is continuous.
  • Pentamidine has a boiling point of 36 ° C and a Xin Xin value of 61, which is generally not used as a group of gasoline (high-energy gasoline). Minute. However, in low temperature seasons (eg winter, or in applications below 15°C), pentamidine can be added to low-octane gasoline as a component of low-octane gasoline as a new gasoline. Fuel composition. Hexane is also a raw material for low-octane gasoline. Second, the technical problems solved:
  • Low octane gasoline is a low cost, clean, environmentally friendly, high quality internal combustion engine fuel.
  • the present invention only separates the components of the gasoline fraction in the crude oil, and redistributes, that is, high-octane gasoline and low-octane gasoline can be obtained, and the respective groups are not required.
  • the mutual conversion between points is a relatively natural method, a simple method, a low-cost method, and an environmentally friendly method.
  • n-undecane, n-decane, n-decane, n-octane, n-glycol, n-hexane, octene-1, ethylcyclohexanide, etc. for blending No. 35 gasoline, No. 0 gasoline or other Labeled low octane gasoline; cyclohexamidine, octene-4, 1, 1-dimethylcyclohexanene, etc., can be added to high-energy or low-xin gasoline according to needs and permits.
  • Another fixed-point extraction method If 10 major components of the distillation feedstock are to be spotted, 10 small distillation columns are attached to the distillation column, and the temperature control of the top of the small tower is respectively 10 groups. The boiling point of the fraction, except for the required components, all of the other fractions are refluxed into the main column and are distilled off at the other distillation ends of the main column.
  • C12-C14 (even longer carbon chain hydrocarbons, eg C15-C19) components can be added to low-octane gasoline, in which case other components of low-xin gasoline
  • the octane number can be appropriately increased, for example: ethyl cyclohexane, pentamidine, 1, 1-dimethylcyclohexane, even octene-4, cyclohexanone, etc. can be used as a group of low octane gasoline. Minute.
  • n-heptane Since the boiling point of n-heptane is 98.5 ⁇ and the boiling point of isooctane is 99.2 ° C, the two are very close together and difficult to separate by atmospheric distillation and vacuum distillation, so the present invention first simultaneously Extracted. (For example, a fraction of 92-105 Torr is taken at atmospheric distillation), and then n-heptane and isooctane are separated by gas phase adsorption or by azeotropic distillation. Then use Zheng Geng ⁇ to mix low octane gasoline, and use ⁇ ⁇ ⁇ to blend high ⁇ ⁇ value gasoline.
  • 5A molecular sieve is usually used as an adsorbent for linear indole hydrocarbons such as n-glycol, and steam is usually used as a desorbent.
  • n-heptane can be extracted to separate n-heptane from isooctane.
  • methanol is usually used as an entrainer for n-glycol as a method for separating and extracting n-glycan. This method can be used to separate n-gum and iso-xin.
  • n-gum and iso-indole can simultaneously obtain a high octane component having a octane number of 100 and a low octane component having an octane number of 0, for the co-production of low octane gasoline and high in the present invention.
  • fraction extraction point can be reduced. For example: Reduce the number of "high-content components" from 30 to 28, or 24, or 20, and so on. 2.
  • the fractions other than the fractions extracted one by one can be extracted according to the principle that the octane number is close to the extraction point of the high-temperature side "one by one" or the extraction point of the low temperature side "one by one".
  • Xylene contains three isomers, their boiling points are close to each other, and the enthalpy values are also close to each other, and can be extracted as a fraction as a mixed component of high-octane gasoline.
  • Xylene and ethylbenzene can be extracted as a fraction as a high-octane gasoline component.
  • the boiling point contains a fractional fraction (for example: 1, 1-dimethylcyclohexanide has a boiling point of 119. 5 ° C, the boiling point of n-octane is 126.7 ° C), and the distillation column is Set the fraction extraction point to the temperature position of one digit after the decimal point (for example: set the fraction extraction point at 115.9'C and 126.7°C respectively).
  • a fractional fraction for example: 1, 1-dimethylcyclohexanide has a boiling point of 119. 5 ° C, the boiling point of n-octane is 126.7 ° C
  • the distillation column is Set the fraction extraction point to the temperature position of one digit after the decimal point (for example: set the fraction extraction point at 115.9'C and 126.7°C respectively).
  • the method of the present invention is used to produce high octane gasoline, and the antiknock agent can be added to the maximum extent. Adding antiknock agents to gasoline is generally uneconomical and environmentally unfriendly.
  • the present invention does not exclude the method of adding ethanol to a high-energy value-added gasoline product, or adding an antiknock agent such as MBTE or MMT. Under the premise of meeting the octane standard, low-xin-value gasoline can also be added with ethanol as a mixed fuel.
  • one of the extracted components may not be pure, as long as most of the target component is extracted, and The majority of the target components in the actual extracted components are successful.
  • the extraction technique is improved, for example, the number of theoretical plates is increased, and the boiling point range of the rectified extract is narrower and narrower, the content of the target component in each extraction component is determined by the method (spot extraction or one by one extraction) ( Concentration) will get higher and higher.
  • Isooctane and n-heptane are separated by liquid phase adsorption separation.
  • the liquid phase adsorption separation method is also a commonly used industrial production method, for example, the main method of extracting para-xylene (PX) from mixed xylene is this method.
  • PX para-xylene
  • the design and production of adsorbents is a specialized area where they can easily provide the adsorbent needed to adsorb and separate n-heptane and isooctane.
  • the adsorbent of this method may be adsorbed with n-heptane or may be adsorbed with isooctane.
  • the sorbent technology itself is not included in the scope of the claims of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

一种联合生产低辛烷值汽油和高辛烷值汽油的方法 技术领域
本发明属于石油炼制技术领域。
背景技术
1、 发动机压缩比与热工效率
压缩比是指活塞在气缸中运动时,气缸中出现气体的最大体积和最小体积之 比。活塞在最低点时气缸中气体体说积最大,活塞在最高点时气缸中气体体积最小, 前者叫气缸总容积,后者叫气缸燃烧室容积。压縮比 =汽缸总容积 I燃烧室容积。 压缩比是内燃机的重要指标, 压缩比越大, 其汽缸压强越大, 温度越高。
从理论上讲, 压缩比越大, 发动机效率越书高。
汽油机的压缩比一般为 4〜6。 乘用车使用的汽油机为了获得更高的体积动 力比, 压缩比增加到 7〜9.5, 高档乘用车使用的汽油机的压缩比据说已经达到 12.5。 高压缩比汽油机需要使用高辛垸值 (高标号) 汽油, 否则发动机运行过程 中汽油容易在汽缸内高温高压的环境下自燃, 从而产生爆震。
柴油机的压缩比一般为 15〜18, 所以柴油机的热工效率比汽油机高大约 30%, 排放产生的温室效应比汽油机低大约 45%, —氧化碳与碳氢排放也低。 柴 油机采用压燃点火方式, 所以不存在爆震的问题。 当然, 因为气缸受材料强度的 限制, 柴油机的压缩比不能太大。 ,
2、 汽油的辛烷值与爆震 ·
市场上常见的汽油标号(研究法)是 90号、 93号、 95号、 97号、 98号(90#、 93#、 95#、 91 98#) 无铅汽油, 据说有些地方有 100#汽油。 所谓 90 号、 93 号、 97 号是指汽油的 "辛垸值"含量指标, 相当于它们分别含有 90%、 93%、 97%的抗爆震能力强的 "异辛垸", 以及 10%、 7%、 3%的抗爆震能力差的 "正庚 烷"。 于是辛烷值的高低就成了汽油发动机对抗爆震能力高低的指标。 应该用 97 号汽油的发动机, 如果使用 90号汽油, 就容易产生爆震。
评定燃油的抗爆震性能, 一般采用两种方法: 马达法和研究法。 同一种燃油 用马达法测出的辛烷值为 85时, 相当于研究法辛垸值为 92; 马达法为 90时, 研究法为 97。 本说明书所述的辛烷值均为研究法。
常用汽油的辛垸值在 90以上, 燃点温度比较高, 不能采用压燃的方法正常 点火。 因此, 现在的汽油发动机都是点燃式汽油机。
为了提高汽油机的热工效率, 同时为了避免爆震,汽油的生产者想方设法增 加汽油的辛烷值。 因此, 汽油的生产过程日益复杂, 生产成本不断增加。
3、 低辛垸值汽油
为了进一步提高汽油机的压缩比, 提高汽油机的效率, 有人提出了低辛垸值 汽油和压燃式低辛垸值汽油发动机的概念。压燃式低辛烷值汽油机的工作原理与 柴油机相似, 当低辛垸值汽油被喷入汽缸中经过压缩的高温高压空气中的时候, 能够自动点火燃烧。压燃式低辛烷值汽油机的汽缸压缩比可以比点燃式汽油机的 汽缸压缩比高, 所以压燃式低辛烷值汽油机与点燃式汽油机相比, 热工效率高, 排放所产生的温室效应低。
低辛垸值汽油的定义与高辛垸值汽油一样,其标号为 40号、 30号、 20号 (40#、 30#、 20#)相当于含有 40%、 30%、 20%的抗爆震能力强的 "异辛垸", 以及 60%、 70%、 80%的抗爆震能力差的 "正庚垸"。 根据需要, 低辛烷值汽油的标号还可 以有 42号、 33号、 0号、 一 10号, 等等。
低辛垸值汽油的两个特征: 一是这种汽油新产品可以被压燃, 区别于现在的 汽油。 二是这种汽油新产品的馏分与现在汽油的馏分相近或者相似, 一般为 C7-C11 , 必要时可以扩大到 C6-C12 , 甚至 C5-C 19。
为了便于区别, 本说明书把辛垸值低于 50的汽油统称为低辛烷值汽油, 把 辛琮值在 90以上的 (现在常用的) 汽油统称为高辛烷值汽油。
4、 低辛垸值汽油发动机
低辛烷值汽油发动机同时具有柴油发动机的优点和汽油发动机的优点,尤其 是当压缩比选择在 10-15范围时, 这种发动机具有汽油机 "体积小、 震动小、 运 行平稳 "的优点, 同时具有柴油机"效率高、马力大、排放所产生的温室效应低" 的优点。
对于压燃式汽油发动机, 汽油标号越低, 发动机的压缩比可以越低(选择范 围为 10-15, 也可以选择在 7-22), 对发动机的机械强度的要求越低, 发动机结 构可以做得更轻巧简便, 发动机的运行更加轻柔平稳。 一般说来, 压燃式低辛垸 值汽油发动机的压缩比即使很低, 也应该比点燃式汽油发动机的压缩比高,所以 它的效率高, 排放所产生的温室效应低。
低辛垸值汽油的碳链比较短,燃烧比较容易, 所以低辛烷值汽油发动机的尾 气中黑色颗粒状杂质 (黑烟) 很少。 试验证明, 低辛垸值汽油在压缩比为 18的 发动机上应用时几乎看不到尾气的黑烟。
各种标号的低辛垸值汽油所对应的必须的最低压缩比,可以通过业内人士所 熟悉的实验方法 (测试辛垸值的方法) 得到。
5、 部分碳氢化合物的辛垸值和沸点数据列表 1。 烃类结构与辛垸值和沸点的关系
Figure imgf000005_0001
6、 石油炼制
原油是一种黑色的液 ., 称为石油。 这种液体包含脂肪族碳氢化合物, 或者 仅由氢和碳组成的碳氢化合物, 碳原子链接在一起, 形成不同长度的碳链。
现在的石油炼制技术, 主要工艺流程包括常压蒸馏、 减压蒸馏、 加氢裂化、 催化裂化、渣油裂解等等,把石油的轻组分(石油轻油)蒸馏出来,把重组分(长 链垸烃、长链不饱和烃)转化为轻组分蒸馏出来。轻组分在被蒸馏出来的过程中, 根据轻油蒸汽的冷凝点不同, 实际是根据轻油各个不同组分的沸点不同, 分段提 取汽油、 航空汽油 (航空煤油)、 煤油、 柴油。 根据用途不同, 石油蒸馏过程还 可以按照一定的冷凝点温度范围, 截取出化工产品的原料一一 "化工轻油", 又 称为 "石脑油"。
为了提高汽油的辛垸值, 石油炼制工艺还有重整、催化裂化等工艺, 在催化 剂的作用下, 把辛垸值低的直链烷烃转化为辛烷值高的芳烃。这些工艺过程得到 的轻油也需要经过蒸馏或者精馏,根据冷凝点温度不同,分段提取出汽油、煤油、 柴油。
7、 本发明创新的方法 现在的蒸馏方法是根据石油轻组分冷凝温度的高低,分段截取不同冷凝温度 区间的组分作为汽油、 煤油、 柴油等产品, 一般情况是一个馏分对应一个产品。 本发明不同,在石油蒸馏过程中根据石油轻油的各个组分的辛烷值不同,将这些 组分分别 "定点抽提"出来, 按照一个组分对应一个馏分提取点的原则, 将不同 结构的组分逐一提取出来, 然后将辛烷值低的组分 配组合成低辛烷值汽油产 品, 将辛垸值高的组分调配组合成高辛烷值汽油产品。这种方法迄今为止未见工 业化应用, 也未见研究报道。
发明内容
一、 技术措施:
在石油精馏或者石油轻油 (例如: 石脑油、 重整生成油、 催化(加氢)裂化 生成油、 催化裂解生成油、 芳烃抽余油)常压蒸馏或者减压蒸馏的过程中, 细分 馏出液的提取点, 缩小馏分提取温度区间, 按照含量优先的原则, 把碳 6到碳 12 ( C6-C12 ) 中含量高的低辛垸值的组分与含量高的高辛垸值的组分逐一提取 出来, 然后把低辛烷值的组分组合成压燃式低辛烷值汽油产品, 把高辛垸值组分 组合成高辛烷值汽油产品, 剩余的 C6-C12的各个馏分, 按照其辛垸值的高低分 别补充进入低辛烷值汽油或者进入高辛垸值汽油。 "含量高的组分"的概念是指: 含量排序在前 30位以内的组分, 或者包括在 90%含量以内的组分。
或者将碳 5到碳 12 ( C5-C12) 范围中的各个组分逐一提取出来, 按照这些 组分的辛垸值高低, 根据目标产品的辛垸值指标,用于调配组成低辛烷值汽油产 品和高辛烷值汽油产品, 分别作为压燃式汽油机和点燃式汽油机的燃料。
非主要含量的组分或者非逐一提取的馏分, 也根据其辛垸值的高低, 分别添 加进入低辛垸值汽油产品或者高辛烷值汽油产品。不适合作为汽油成分的组分或 者馏分, 例如: 烯烃类、 炔烃类、 苯, 用作其它用途。
当低辛烷值汽油的辛烷值不够低的时候, 可以采用 C12 以上的长碳链低辛 烷值馏分调配之。碳链长度在 12或者 13以上的烷烃, 即使不是直链垸烃, 其辛 烷值也偏低, 所以添加长碳链垸烃是降低汽油辛烷值的有效措施。 .
对于沸点接近的组分 (例如.: 正庚垸与异辛烷), 无法通过简单精馏方法分 离的, 可以先通过精馏将混合组分提取出来, 再采用其它方法进行二次分离。
显然,调配进入低辛烷值汽油和高辛烷值汽油这两个组合内的各组分的沸点 是不连续的、 跳跃的。 与此不同, 现在的石油精馏, 主要是按照温度从高到低的 顺序, 依次提取柴油、 煤油、 航空煤油、 汽油, 每一个产品 (镏分) 内部的沸点 温度是连续的。
戊垸的沸点为 36°C, 辛垸值为 61, 一般不作为汽油 (高辛垸值汽油) 的组 分。 但是, 在气温较低的季节 (例如: 冬季, 或者温度低于 15'°C的应用环境), 戊垸可以作为低辛垸值汽油的组分添加到低辛垸值汽油, 作为新的汽油燃料组 成。 ,己烷也是低辛垸值汽油的原料。 二、 解决的技术问题:
1、 解决了将汽油组分细分、 逐一提取、 择优选用的技术问题。
2、解决了目前生产高辛垸值汽油(9( ^以上汽油)高能耗高成本的问题和资 源缺乏的问题。
3、 解决了低辛垸值汽油辛烷值不够低的问题。
4、 解决了正庚烷与异辛垸分离的技术问题。
5、 解决了戊垸、 己垸因为辛垸值低不可以作为汽油燃料的问题。
三、 取得的效果:
1、 低成本获取低辛垸值汽油产品, 为高效、 环保、 低排放的压燃式低辛烷 值汽油发动机提供廉价的燃料。
以往, 汽油低辛烷值组分一直是汽油生产者的累赘和负担, 现在则变成了宝 贝。 低辛烷值汽油是一种低成本的、 清洁的、 环保的优质内燃机燃料。
2、 不但获得低成本的低辛烷值汽油, 而且低成本获得了高辛垸值汽油, 简 化了汽油生产过程, 使得汽油生产的原料易得, 产品结构简单, 成本低廉。
长期以来, 汽油生产者想方设法提高汽油的辛烷值, 例如采用重整工艺、催 化裂化工艺等, 增加了汽油产品的成本和能源消耗。 为了提高辛烷值, 甚至不得 不向汽油中添加 MBTE、 MMT等抗爆剂, 降低了汽油产品的环境友好性, 使得 汽油及其燃烧尾气的有害成分增加。
3、 与现有的生产方法相比, 本发明只是将原油中汽油馏分的各个组分分离 开来, 重新调配, 即可以得到高辛垸值汽油和低辛垸值汽油, 不需要进行各个组 分之间的相互转换, 是一种相对自然的方法、 简单的方法、 低成本的方法、 环境 友好的方法。
具体实施方式
、 一般实施方式:
1、 首先分析和测试所加工 (蒸馏) 原料 (石油或者石油轻油) 的组成, 再 按照各组分的沸点(如表 1所示), 在石油轻油蒸馏的过程中将它们分别(逐一) 提取出来, 按照各个组分的辛烷值,根据目标产品的辛垸值指标进行多种方式的 组合(调配), 分别得到低辛垸值汽油产品和高辛烷值汽油产品。 例如: 二甲苯、 异辛垸、 乙苯、 己烯 -1等用于调配 97号汽油、 93号汽油或者其它标号的高辛烷 值汽油; 正十一烷、 正癸烷、 正壬烷、 正辛垸、 正庚垸、 正己烷、 辛烯 -1、 乙基 环己垸等用于调配 35号汽油、 0号汽油或者其它标号的低辛烷值汽油; 环己垸、 辛烯 -4、 1, 1-二甲基环己垸等, 可以根据需要和许可分别添加进入高辛垸值汽 油或者低辛垸值汽油。
另外一种定点抽提方法: 如果要将蒸馏原料中 10个主要含量的组分定点抽 提出来, 在蒸馏塔外挂 10个小的蒸馏塔, 小塔的塔顶温度控制分别为这 10个组 分的沸点, 除了所需要的组分外, 其它馏分全部回流进入主塔, 在主塔的其它馏 出口馏出。
2、 根据需要, C12-C14 (甚至更长的碳链垸烃, 例如: C15-C19 ) 组分可以 添加进入低辛垸值汽油,在这种情况下,低辛垸值汽油的其它组分的辛烷值可以 适当提高, 例如: 乙基环己烷、 戊垸、 1, 1-二甲基环己烷, 甚至辛烯 -4、 环己 垸等都可以作为低辛烷值汽油的组分。
3、 表 1 中没有列出的组分, 根据其辛垸值高低不同, 分别调配进入高辛烷 值汽油或者低辛烷值汽油。
4、 正庚烷和异辛垸的分离:
由于正庚烷的沸点是 98.5 Ό , 异辛烷的沸点是 99.2°C, 两者相距很近, 难以 通过常压蒸馏和减压蒸馏的方 分离,所以本发明先将这两个组分同时提取出来 . (例如, 常压蒸馏时截取 92-105 Ό的馏分), 然后采用气相吸附的方法, 或者采 用共沸精馏的方法将正庚垸和异辛烷分离。 再将正庚垸用于调配低辛烷值汽油, 将异辛垸用于调配高辛垸值汽油。
工业生产中, 通常采用 5A分子筛作为正庚垸等直链垸烃的吸附剂, 通常采 用蒸汽作为脱附剂。 采用这种方法可以提取正庚垸, 从而分离正庚烷与异辛烷。
工业生产中, 通常采用甲醇作为正庚垸的共沸剂, 作为分离和提取正庚垸的 方法。 采用这种方法可以分离正庚垸与异辛垸。
现有的炼油工业生产过程中, 没有见到专门分离正庚垸和异辛烷的工艺流 程。 所以, 这项技术是本发明的创新之一。
正庚垸和异辛垸的分离可以同时得到辛垸值为 100 的高辛烷值组分和辛烷 值为 0的低辛垸值组分,对于本发明联产低辛烷值汽油和高辛烷值汽油具有重要 贡献 <=
二、 简化的实施方式:
1、 为了降低石油轻油 "定点抽提"(逐一提取)过程的复杂性, 可以根据实 际情况省略一些提取点, 减少馏分提取点。 例如: 把 "含量高的组分"的序列数 从 30降低到 28, 或者 24, 或者 20 , 等等。 2、 在 "逐一提取" 的馏分之外的馏分, 可以分别按照辛烷值就近的原则靠 近高温侧 "逐一提取" 的提取点或者低温侧 "逐一提取" 的提取点加以提取。― 举例说明:假设 C7-C11中某一组分的含量排序为 31位,它的辛烷值为 34.7, 沸点为 121.3 °C, 它邻近的高温熘分提取点 131.8°C, 辛垸值 44; 邻近的低温馏 分提取点 119.5 °C, 辛垸值 62。 则该组分与 131.8 °C馏分提取点合并, 因为它们 的辛烷值分别是 34.7和 44 (相差 9.3 ), 比 34.7和 62 (相差 27.3 ) 更接近。
3、 二甲苯包含三种异构体, 它们的沸点彼此接近, 辛垸值也彼此接近, 可 以作为一个馏分提取出来, 作为高辛垸值汽油的混合组分。
4、 二甲苯和乙苯可以作为一个馏分提取出来, 作为高辛垸值汽油组分。
5、 · 甲苯和二甲苯、 乙苯可以作为一个馏分提取出来, 作为高辛垸值汽油组 分。
6、 在石油或者石油轻油蒸馏塔上高密度均匀设置馏分提取点, 例如, 按照 每隔 C间隔(或者 2°C间隔, 或者 0.5 °C间隔, 或者其它温度区间间隔)设置一 个馏分提取出口, 提取不同冷凝点的馏分, 测试(分析)各馏分的轻油构成或者 辛烷值, 按照各馏分辛烷值的高低, 分别用于调配组成低辛^值汽油产品或者高 辛烷值汽油产品, 或者用作其它用途。 对于构成复杂的馏分(例如: 正庚烷与异 辛垸的混合物馏分), 必要时采用其它方法进行二次分离。这个方法看起来很笨, 蒸馏设备也复杂, 但是生产组织简单, 对原料来源不同的情况适应性强。 ·
对于确定的、 并且沸点包含小数的组分 (例如: 1, 1-二甲基环己垸的沸点是 119. 5 °C , 正辛垸的沸点是 126. 7°C ), 精馏塔在精确到小数点后一位数的温度位 置设置馏分提取点 (例如: 在 119. 5'C和 126. 7°C分别设置馏分提取点)。
在积累经验的基础上,多数馏分可以直接经过管道输送到低辛烷值汽油储罐 或者高辛垸值汽油储罐。
7、 对于精熘抽提 (定点抽提) 的剩余部分, 按照馏分沸'点的高低分为两部 分,一般情况下,高温段馏分进入低辛垸值汽油,低温段馏 进入高辛烷值汽油。 这个做法只是一个经验法, 具体是否进入或者进入多少, 需要根据实际的辛烷值 的测试结果决定。 :
三、 补充说明:
1、 采用本发明方法生产高辛烷值汽油, 可以最大限度地不添加抗爆剂。 汽 油添加抗爆剂一般说来不经济, 对环境不友好。
2、 本说明书仅提供了生产高辛垸值汽油和低辛烷值汽油的技术方案, 至于 各有关组分能否作为汽油产品的安全和环保组分,根据有关国家的汽油产品标准 执行。 3、使用各个辛烷值不同的馏分调配不同标号汽油的工作不需要创造性劳动。
4、 本发明不排斥在高辛垸值汽油产品中添加乙醇, 或者添加 MBTE、 MMT 等抗爆剂的方法。在满足辛烷值标准的前提下,低辛垸值汽油也可以添加乙醇作 混合燃料。
5、 在本说明书所述的 "定点抽提"或者 "逐一提取" 的精馏抽提方法中, 某一个被抽提组分也许并不纯粹, 只要这个目标组分的大部分被抽出, 而且实际 抽出组分中目标组分占大部分, 就是成功的。 随着抽提技术的提高, 例如, 理论 塔板数增加,精馏提取物的沸点范围越来越窄,本方法(定点抽提或者逐一提取) 各抽提组分中目标组分的含量 (浓度) 会越来越高。
6、 为了分离正庚烷和异辛烷, 可以通过减压和增加理论塔板数的方法。
7、 采用液相吸附分离的方法分离异辛烷与正庚烷。 液相吸附分离的方法也 是一种常用的工业生产方法, 例如: 从混合二甲苯中提取对二甲苯 (PX) 主要 采取的就是这种方法。吸附剂的设计和生产是一个专业技术领域, 他们能够方便 地提供吸附分离正庚烷与异辛烷所需要的吸附剂。这种方法的吸附剂可以是吸附 正庚烷的, 也可以是吸附异辛烷的。吸附剂技术本身并不包括在本发明的权利要 求范围之内。

Claims

权 利 要 求 书
1、 一种联合生产低辛垸值汽油和高辛烷值汽油的方法, 在石油或者重整生 成油、 催化(加氢)裂化生成油、 裂解生成油、 芳烃抽余油的常压蒸馏或者减压 蒸馏过程中, 将碳 5到碳 12范围中的各个组分逐一提取出来, 或者按照含量优' 先的原则,将各主要含量的组分逐一提取出来,然后按照这些组分的辛烷值高低, 根据目标产品的辛垸值指标,分别用于调配组成低辛垸值汽油产品和高辛垸值汽 油产品, 分别作为压燃式汽油机和点燃式汽油机的燃料;
为了将蒸熘原料中 N多个主要含量的组分定点抽提出来,在蒸馏主塔外挂 N 多个小的蒸馏塔, 小塔的塔顶温度控制分别为这 N多个组分的沸点, 在小塔内 部除了所需要的组分外,其它熘分全部回流进入主塔,从主塔的其它馏出口馏出。
2、 根据权利要求 1, 先通过蒸馏方法将正庚垸与异辛垸的混合馏分提取出 来,再采用吸附分离的方法分离正庚烷与异辛垸;作为吸附分离方法的替代方案, 采用共沸精馏的方法分离正庚垸与异辛垸。
3、 根据权利要求 1, 为了进一步降低 "低辛垸值汽油" 的辛垸值, 可以采 用向低辛烷值汽油添加长碳链直链烷烃的方法, 例如, 添加 C13-C14直链烷烃, 甚至添加 C13-C19直链烷烃 (或者非直链烷烃) 中的任意组分, 即采用添加煤 油或者轻柴油组分作为降低辛垸值的调配剂。
4、 根据权利要求 1, 在石油或者石油轻油蒸馏塔, 每隔 1 °C (或者 2°C, 或 者 0. 5°C ) 设置一个馏分提取出口, 提取不同的镏分, 测试 (分析) 各馏分的轻 油构成或者辛垸值, 按照各馏分辛烷值的高低, 分别用于调配组成低辛垸值汽油 产品或者高辛烷值汽油产品, 对于构成复杂的馏分(例如: 正庚垸与异辛烷的混 合物馏分), 必要时采用其它方法进行二次分离;
对于确定的、 并且沸点包含小数的组分 (例如: 1, 1-二甲基环己烷的沸点是 119. 5 °C , 正辛烷的沸点是 126. 7 °C ), 精馏塔在精确到小数点后一位数的温度位 置设置馏分提取点 (例如: 在 119. 5 °C和 126. 7Ό分别设置馏分提取点)。
PCT/CN2011/001909 2010-11-15 2011-11-15 一种联合生产低辛烷值汽油和高辛烷值汽油的方法 WO2012065364A1 (zh)

Priority Applications (17)

Application Number Priority Date Filing Date Title
MX2013005408A MX349341B (es) 2010-11-15 2011-11-15 Un método de produccion conjunta de gasolina de la gasolina de bajo octanaje y de alto octanaje.
AU2011331840A AU2011331840A1 (en) 2010-11-15 2011-11-15 Method for joint production of low octane number gasoline and high octane number gasoline
EP11841525.6A EP2641959A4 (en) 2010-11-15 2011-11-15 PROCESS FOR THE JOINT PRODUCTION OF LOW OCTANE INDEX AND HIGH OCTANE INDEX ESSENCE
UAA201307597A UA109561C2 (uk) 2010-11-15 2011-11-15 Спосіб спільного одержання бензину з низьким октановим числом та бензину з високим октановим числом
EA201370119A EA025230B1 (ru) 2010-11-15 2011-11-15 Способ совместного получения бензина с низким октановым числом и бензина с высоким октановым числом
NZ611907A NZ611907A (en) 2010-11-15 2011-11-15 Method for joint production of low octane number gasoline and high octane number gasoline
KR1020137015479A KR20140020238A (ko) 2010-11-15 2011-11-15 저옥탄가 가솔린과 고옥탄가 가솔린의 공동 생산방법
CA2817848A CA2817848C (en) 2010-11-15 2011-11-15 Method for joint production of low octane number gasoline and high octane number gasoline
JP2013539113A JP6428995B2 (ja) 2010-11-15 2011-11-15 低オクタン価ガソリンと高オクタン価ガソリンとを併産する方法
US13/885,276 US9428697B2 (en) 2010-11-15 2011-11-15 Method for joint production of low octane number gasoline and high octane number gasoline
AP2013006929A AP2013006929A0 (en) 2010-11-15 2011-11-15 Method for joint production of low octane number gasoline and high octane number gasoline
BR112013012067A BR112013012067A2 (pt) 2010-11-15 2011-11-15 método para produção conjunta de gasolina de baixa octanagem e gasolina de alta octanagem
CU2013000070A CU20130070A7 (es) 2010-11-15 2013-05-15 Método para la producción conjunta de gasolina de bajo octanaje y gasolina de alto octanaje
IL226396A IL226396A0 (en) 2010-11-15 2013-05-16 A method of low octane fuel and high octane fuel
ZA2013/04067A ZA201304067B (en) 2010-11-15 2013-05-31 Method for joint production of low octane number gasoline and high octane numbe gasoline
MA36007A MA34733B1 (fr) 2010-11-15 2013-06-11 Procédé pour la production conjointe d'essence à faible indice d'octane et d'essence à indice d'octane élevé
ECSP13012688 ECSP13012688A (es) 2010-11-15 2013-06-14 Un metodo de produccion conjunta de la gasolina de bajo octanaje y de alto octanaje

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010542892.X 2010-11-15
CN201010542892.XA CN102465044B (zh) 2010-11-15 2010-11-15 一种联合生产低辛烷值汽油和高辛烷值汽油的方法

Publications (1)

Publication Number Publication Date
WO2012065364A1 true WO2012065364A1 (zh) 2012-05-24

Family

ID=46069171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001909 WO2012065364A1 (zh) 2010-11-15 2011-11-15 一种联合生产低辛烷值汽油和高辛烷值汽油的方法

Country Status (22)

Country Link
US (1) US9428697B2 (zh)
EP (1) EP2641959A4 (zh)
JP (1) JP6428995B2 (zh)
KR (1) KR20140020238A (zh)
CN (1) CN102465044B (zh)
AP (1) AP2013006929A0 (zh)
AU (1) AU2011331840A1 (zh)
BR (1) BR112013012067A2 (zh)
CA (1) CA2817848C (zh)
CL (1) CL2013001369A1 (zh)
CO (1) CO6731094A2 (zh)
CU (1) CU20130070A7 (zh)
EA (1) EA025230B1 (zh)
EC (1) ECSP13012688A (zh)
IL (1) IL226396A0 (zh)
MA (1) MA34733B1 (zh)
MX (1) MX349341B (zh)
MY (1) MY170313A (zh)
NZ (1) NZ611907A (zh)
UA (1) UA109561C2 (zh)
WO (1) WO2012065364A1 (zh)
ZA (1) ZA201304067B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839021A (zh) * 2011-06-22 2012-12-26 北京金伟晖工程技术有限公司 一种低成本制造低硫高辛烷值汽油的装置及其方法
SG11201705473XA (en) * 2015-01-05 2017-08-30 Saudi Arabian Oil Co Relative valuation method for naphtha streams
US10370596B2 (en) * 2015-08-13 2019-08-06 Virent, Inc. Production of alternative gasoline fuels
CN105717272B (zh) * 2016-04-06 2018-08-10 成都天丰清洁能源发展有限公司 一种汽油辛烷值的测试方法
FI20165785A (fi) 2016-10-13 2018-04-14 Neste Oyj Alkylaattibensiinikoostumus
WO2020190785A1 (en) 2019-03-15 2020-09-24 Lummus Technology Llc Configuration for olefins and aromatics production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2043388C1 (ru) * 1993-04-27 1995-09-10 Производственное объединение "Киришинефтеоргсинтез" Способ выделения высокооктанового компонента моторного топлива
RU2106392C1 (ru) * 1996-12-18 1998-03-10 Открытое акционерное общество "Киришинефтеоргсинтез" Способ получения экологически чистого высокооктанового бензина и бензольного концентрата из катализата риформинга
RU2113453C1 (ru) * 1997-08-20 1998-06-20 Общество с ограниченной ответственностью "Производственное объединение "Киришинефтеоргсинтез" Способ получения низкооктановых и высокооктановых бензинов и бензола из катализатов риформинга широких бензиновых фракций
CN1710030A (zh) * 2005-07-07 2005-12-21 华东理工大学 石脑油的优化利用方法
CN101134703A (zh) * 2007-10-12 2008-03-05 南京工业大学 变压吸附提取正庚烷联产正辛烷产品工艺

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826387B2 (ja) * 1979-04-18 1983-06-02 三井造船株式会社 原油常圧蒸留方法及びその装置
JPS59216602A (ja) * 1983-05-26 1984-12-06 ザ・シ−・ダブリユ−・ノフシンガ−・カンパニ− 熱的連結抽出蒸溜法
US4975178A (en) * 1988-05-23 1990-12-04 Exxon Research & Engineering Company Multistage reforming with interstage aromatics removal
CN1040225C (zh) * 1992-01-30 1998-10-14 国际壳牌研究有限公司 提高烃质原料品位的方法
RU2102432C1 (ru) 1994-12-08 1998-01-20 Алексей Александрович Кондратьев Способ получения компонентов бензина
EP1190019A1 (en) * 2000-02-16 2002-03-27 Indian Oil Corporation Limited A multi stage selective catalytic cracking process and a system for producing high yield of middle distillate products from heavy hydrocarbon feedstocks
KR100322663B1 (ko) * 2000-03-20 2002-02-07 곽호준 폐플라스틱을 이용한 휘발유, 등유 및 경유의 연속식제조방법 및 그 시스템
US6552242B1 (en) * 2001-09-07 2003-04-22 Uop Llc Fractionation in light paraffin isomerization process
US7582203B2 (en) * 2004-08-10 2009-09-01 Shell Oil Company Hydrocarbon cracking process for converting gas oil preferentially to middle distillate and lower olefins
US20110163002A1 (en) * 2008-09-15 2011-07-07 Patent Department Process for enhanced propylene yield from cracked hydrocarbon feedstocks and reduced benzene in resulting naphtha fractions
CN101475826B (zh) * 2008-11-21 2012-07-18 华东理工大学 一种轻质原油的常减压蒸馏工艺
JP4687784B2 (ja) * 2008-12-22 2011-05-25 トヨタ自動車株式会社 移乗支援装置及びその制御方法
MX2013012222A (es) * 2011-04-22 2013-11-01 Univ North Dakota Produccion de aromaticos a partir de aceites a base de acidos grasos craqueados no cataliticamente.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2043388C1 (ru) * 1993-04-27 1995-09-10 Производственное объединение "Киришинефтеоргсинтез" Способ выделения высокооктанового компонента моторного топлива
RU2106392C1 (ru) * 1996-12-18 1998-03-10 Открытое акционерное общество "Киришинефтеоргсинтез" Способ получения экологически чистого высокооктанового бензина и бензольного концентрата из катализата риформинга
RU2113453C1 (ru) * 1997-08-20 1998-06-20 Общество с ограниченной ответственностью "Производственное объединение "Киришинефтеоргсинтез" Способ получения низкооктановых и высокооктановых бензинов и бензола из катализатов риформинга широких бензиновых фракций
CN1710030A (zh) * 2005-07-07 2005-12-21 华东理工大学 石脑油的优化利用方法
CN101134703A (zh) * 2007-10-12 2008-03-05 南京工业大学 变压吸附提取正庚烷联产正辛烷产品工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN, ZHIXIONG, PETROLEUM REFINING ENGINEERING, 2ND EDITION, JUNE 1988, 3RD PRINTING, SEPTEMBER 1994, vol. 1, June 1988 (1988-06-01), pages 132 - 139, 221-224, XP008171435 *
See also references of EP2641959A4 *

Also Published As

Publication number Publication date
KR20140020238A (ko) 2014-02-18
CN102465044A (zh) 2012-05-23
US9428697B2 (en) 2016-08-30
MY170313A (en) 2019-07-17
AU2011331840A1 (en) 2013-07-04
AP2013006929A0 (en) 2013-06-30
CA2817848A1 (en) 2012-05-24
CL2013001369A1 (es) 2013-10-11
EP2641959A1 (en) 2013-09-25
CU20130070A7 (es) 2013-09-27
MA34733B1 (fr) 2013-12-03
JP6428995B2 (ja) 2018-11-28
IL226396A0 (en) 2013-07-31
EP2641959A4 (en) 2014-12-03
ZA201304067B (en) 2014-01-29
US20130237739A1 (en) 2013-09-12
CO6731094A2 (es) 2013-08-15
EA025230B1 (ru) 2016-12-30
CN102465044B (zh) 2014-05-07
ECSP13012688A (es) 2013-10-31
MX349341B (es) 2017-07-21
UA109561C2 (uk) 2015-09-10
MX2013005408A (es) 2013-12-06
BR112013012067A2 (pt) 2016-08-16
JP2014500351A (ja) 2014-01-09
EA201370119A1 (ru) 2013-09-30
NZ611907A (en) 2015-05-29
CA2817848C (en) 2019-01-22

Similar Documents

Publication Publication Date Title
US10260015B2 (en) Fuel composition for GCI engines and method of production
WO2012065364A1 (zh) 一种联合生产低辛烷值汽油和高辛烷值汽油的方法
US11248181B2 (en) Method of producing a fuel additive
CA2806279A1 (en) Clean, high efficient and environmentally friendly gasoline product
US20160017246A1 (en) Fuel oil
CN102453554A (zh) 一种能够防止相分离的甲醇燃料
CN115287106A (zh) 一种用于压燃发动机的汽油类燃料
JP5383618B2 (ja) 過給エンジン用燃料組成物
Farkha et al. Gasoline octane number improvement by ethanol as an oxygenated compound
JP5346159B2 (ja) ガソリン基材及びそれを含有するガソリン組成物
JP4659380B2 (ja) ガソリン組成物
JP5537767B2 (ja) ガソリン基材及びそれを含有するガソリン組成物
JP5383619B2 (ja) 過給エンジン用燃料組成物
JP6448688B2 (ja) 燃料油を内燃機関において使用する方法
JP5378773B2 (ja) 改質器付き火花点火エンジン用燃料油組成物
CN111704940A (zh) 一种轻质煤焦油制备车用燃料的方法
JP2017122239A (ja) 燃料油
JP2014169367A (ja) 燃料油
BR102013011587A2 (pt) Mistura de solventes aromáticos, destilados de petróleo, particularmente idealizada para utilização como aditivo aumentador de octanagem e combustível
JP2010126692A (ja) 改質器付き火花点火エンジン用燃料油組成物
CN101392198A (zh) 复合燃料
JP2011178862A (ja) 予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2817848

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13885276

Country of ref document: US

Ref document number: MX/A/2013/005408

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013539113

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013001369

Country of ref document: CL

Ref document number: 12013500977

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 226396

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2011841525

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137015479

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201307597

Country of ref document: UA

Ref document number: 13142750

Country of ref document: CO

Ref document number: 201370119

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2011331840

Country of ref document: AU

Date of ref document: 20111115

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013012067

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013012067

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130515