WO2012064004A1 - 환원 슬래그 분말을 이용한 초속경성 수경결합재 및 그 제조방법 - Google Patents

환원 슬래그 분말을 이용한 초속경성 수경결합재 및 그 제조방법 Download PDF

Info

Publication number
WO2012064004A1
WO2012064004A1 PCT/KR2011/004281 KR2011004281W WO2012064004A1 WO 2012064004 A1 WO2012064004 A1 WO 2012064004A1 KR 2011004281 W KR2011004281 W KR 2011004281W WO 2012064004 A1 WO2012064004 A1 WO 2012064004A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
ultra
hydraulic binder
fast
cement
Prior art date
Application number
PCT/KR2011/004281
Other languages
English (en)
French (fr)
Inventor
김진만
곽은구
오상윤
김창학
강기웅
허동철
Original Assignee
주식회사 에코마이스터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코마이스터 filed Critical 주식회사 에코마이스터
Priority to CN201180054009.5A priority Critical patent/CN103201231B/zh
Priority to JP2013536483A priority patent/JP2014500213A/ja
Publication of WO2012064004A1 publication Critical patent/WO2012064004A1/ko
Priority to US13/890,415 priority patent/US8834625B2/en
Priority to ZA2013/04137A priority patent/ZA201304137B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/28Mixtures thereof with other inorganic cementitious materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • C04B7/21Mixtures thereof with other inorganic cementitious materials or other activators with calcium sulfate containing activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00215Mortar or concrete mixtures defined by their oxide composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/026Methods of cooling or quenching molten slag using air, inert gases or removable conductive bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/062Jet nozzles or pressurised fluids for cooling, fragmenting or atomising slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/54Processes yielding slags of special composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention is a technique for high value-added utilization of the reduced slag of electricity that has been discarded because it has a high content of free lime (free-CaO), which has not been utilized in the past. More specifically, the present invention is a super fast-hard hydraulic binder prepared by mixing reduced slag powder, which is pulverized by quenching by reducing the slag with electricity by high pressure gas among the by-products generated during smelting of steel in a steel mill, and a manufacturing method thereof.
  • the steel industry is a representative industry that consumes a large amount of raw materials and energy, and generates a large amount of steel slag as a by-product of steel production in each process through a complicated series of production processes such as steel making, steelmaking, and rolling.
  • Such steel slag is classified into blast furnace slag and steelmaking slag, blast furnace slag is classified into hydrocracking slag and slow cooling slag, steelmaking slag is classified into converter slag and electric furnace slag, and electric furnace slag is also classified into oxidation process slag and reduction process slag.
  • Steelmaking slag is also called Atomizing Steel Slag (ASS) because it is spherical, and it is also called Rapidly Cooled Steel Slag (RCSS) because it is manufactured by a quenching process.
  • ASS Atomizing Steel Slag
  • RCSS Rapidly Cooled Steel Slag
  • Such atomized steel slag has a low risk of expansion and collapse due to the low product of free calcium oxide, and since the granular form has the shape of fine aggregate close to the spherical shape, it has a ball bearing effect when used as a construction material for concrete.
  • the fluidity is increased, the density is higher than other materials constituting the concrete, so the possibility of segregation is high, so there is a problem that it is difficult to apply to general purposes other than concrete for special use.
  • Korea's steel slag generation amounted to 1.63 million tons in 2006, 17.75 million tons in 2007, and 18.76 million tons in 2008, increasing nearly 1 million tons annually.
  • the recent increase in growth is attributable to increased output due to the operation of POSCO Finex facilities and the operation of electric furnaces at Hyundai Steel's hot-rolled steel mills (Steel Association, 2008).
  • blast furnace slag has been endeavored to develop recycling applications for a long time, and more than 80% is used for high value-added uses such as cement raw materials and fertilizers.
  • 80% is still used as low value-added aggregate for the construction industry, and the level of recycling is low.In the case of using aggregate, the cost of recycling is required. High implies a problem.
  • electric furnace slag is an industrial waste discharged from a converter furnace or an electric arc furnace to refine steelmaking materials such as pig iron and scrap metal.
  • KS has recently been enacted with respect to fine oxidized slag aggregates.
  • Furnace reduction slag is not yet classified statistically, but it occupies about 20% of the electric furnace slag, which is estimated to be about 750,000 tons in 2007 and nearly 1 million tons in 2010. It is estimated that this will occur.
  • the furnace-reducing slag only serves as a factor for lowering the recycling rate of the furnace slag without proper use, so it is urgently necessary to establish recycling technology.
  • up to 20% of free lime is present in the furnace-reduction slag, so that no value-added cases have been used.
  • U. S. Patent No. 6033467 discloses a method for producing cement from slag generated in a nickel, copper, lead or zinc smelter, which is not focused on the production of mixed cement, but on the method of using waste to remove environmental pollution sources. The focus is on developing products that do not have unique performance.
  • Korean Patent Laid-Open Publication No. 10-2002-0039520 discloses a technique of manufacturing non-fired cement using blast furnace slag as a main material to replace low port strength cement in order to improve low initial strength of cement.
  • the above patents all focus on reducing slag with electricity sufficiently cooled slowly, and include a step of crushing and processing after cooling, and also securing stability for the site required for cooling and glass lime after cooling.
  • all the problems that must be shared as a means to solve the problem is proposed to use a mixture of other wastes and various additives, but this has a fatal disadvantage that the manufacturing method is complicated and the production cost is increased.
  • cement and cement utilization products aim to be cured in about 28 days, and since expressing various characteristics from this time, fast cement for roads, bridges, harbors, sewer pipes, etc. The product is being used.
  • Korean Patent No. 0310657 proposes a basic fast cement production method
  • Korean Patent No. 0670458 suggests a method for producing mortar using fast cement
  • Korean Patent No. 0755272 proposes a method for manufacturing fast cement. And latex concrete.
  • the above-mentioned hard cements generally react with water in the production of mortar or concrete to cure within a few minutes to several tens of minutes to express strength of 20 MPa or more in 3 to 6 hours, and initially to form a cement structure, thereby prolonging evaporation of water. It can minimize deformation and can make stable structure that hardly cracks, so it is mainly used for emergency repair of structures such as roads and bridges, but most of the mortars currently developed do not use fast cement.
  • a developer specializes in the method of adding functional materials to mortar due to the limitation of technology for fast cement, development of a hydraulic binder having fast curing without containing the functional raw materials has emerged as an urgent problem.
  • the present invention has been invented to develop a hydraulic binder having ultra-high hardness with the recycling of reducing slag with electricity, and has the property of self-differentiating high content of free lime (CaO). High value-added utilization of reducing slag into electricity that has not been used in the past has been a technical task.
  • the reduced slag is produced in a molten state and becomes a solid mass when cooled, but has a high basicity (CaO / SiO 2 ), which increases the vitrification rate of lime during cooling, and thus, when contacted with water after cooling, lime is a hydrate of Ca. Due to the internal separation pressure due to the 1.95-fold increase in volume as it changes to (OH) 2 , the reduced slag has to be used for other purposes after the completion of the hydration of glass lime. Not only was the time too long, but after the hydration was completed, it was differentiated into a powder form, and thus no suitable use was developed.
  • the present invention scatters the molten slag into the air by using a high-pressure gas, and the molten slag scattered into the air is rapidly cooled in a few seconds to become a slag free of glass lime, which has a chemical composition similar to that of the cement cement. It is a technical object of the present invention to provide an ultra-fast hydroponic binder using an electric reducing slag powder and a method of manufacturing the same so that the reducing slag can be used as an added value.
  • the present invention comprises a reducing slag powder prepared so that glass lime does not exist by scattering the molten reduction slag in the furnace through a tundish in order to solve the above technical problems and scattered into the air with high-pressure gas, rapidly cooled to room temperature.
  • An ultra-fast hydroponic binder using reduced slag powder characterized in that the technical solution.
  • the reduced slag powder is characterized in that it has a powder degree of 3,000-12,000 / g of ultra-fast hard hydraulic binder using reduced slag powder as a technical solution.
  • the reduced slag powder content is composed of CaO 40-60w%, SiO 2 5-15w%, Al 2 O 3 15-25w%, there is no free lime (F-CaO) component, the curing is fast
  • the content of alumina (Al 2 O 3 ), a component that improves roughness, corrosion resistance, and fire resistance, is 2 to 7 times higher by weight percent than portland cement or cemented carbide, and accelerates hardening, improves strength, and cracks.
  • Magnesium (MgO, Periclase) content of the preventive component is characterized in that the ultra-fast hard hydraulic binder using reduced slag powder, characterized in that 2-3 times more by weight percent than portland cement or cemented carbide cement.
  • the reduced slag powder is a major hardening compound of Mayenite (C 12 A 7 , 12CaOAl 2 O 3 ) and cement, and ⁇ -C 2 S (Belite, ⁇ -2CaO ⁇ SiO, which contributes greatly to hydraulic properties.
  • ⁇ -C 2 S Belite, ⁇ -2CaO ⁇ SiO, which contributes greatly to hydraulic properties. 2
  • Ultra-fast hard hydraulic binder using reduced slag powder characterized in that it contains a large amount as a technical solution.
  • the ultra-fast hydroponic binder is a technical solution to the ultra-fast hydraulic binder using reduced slag powder, characterized in that further comprises a gypsum selected from anhydrous gypsum, natural gypsum, hemihydrate gypsum for controlling the fast curing reaction rate It is a way.
  • the present invention is the step of quenching the molten reduction slag of the by-products generated during iron smelting in the steelworks through the tundish while flying into the air with high-pressure gas, rapidly cooled to room temperature so that the glass lime does not exist; Pulverizing the quenched reducing slag into a constant powder; Adding a gypsum to the pulverized reducing slag and mixing;
  • the method of manufacturing a super-hard hydraulic binder using a reduced slag powder characterized in that it comprises a.
  • the ultra-fast-rigid hydraulic binder as a production product of the present invention can be used in various fields that require fast-hardening properties, and can also be used as a substitute for ordinary portland cement by adjusting the setting and curing time by mixing with gypsum. Do.
  • the energy consumed in the ultra-fast hydroponic binder which is a product of the present invention, is limited only to the scattering process of molten slag and the crushing process of cooling particles, so that the emission factor of greenhouse gas is very low, thereby replacing ordinary portland cement having high carbon dioxide emission.
  • the energy consumed in the ultra-fast hydroponic binder is limited only to the scattering process of molten slag and the crushing process of cooling particles, so that the emission factor of greenhouse gas is very low, thereby replacing ordinary portland cement having high carbon dioxide emission.
  • Figure 2 is the ternary graph of the reduced slag and Portland cement of the present invention
  • Figure 3 is a reduction slag cooling path graph of the present invention
  • the present invention is configured to include a reduced slag powder prepared so that the molten reduction slag in the electric furnace to fall through the tundish while flying into the air with a high-pressure gas, rapidly cooled to room temperature to eliminate the glass lime in order to solve the above problems.
  • Ultra-fast hard hydraulic binder using reduced slag powder is characterized by a technical configuration.
  • the reduced slag powder content is composed of CaO 40-60w%, SiO 2 5-15w%, Al 2 O 3 15-25w%, there is no free lime (F-CaO) component, the curing is fast
  • the content of alumina (Al 2 O 3 ) a component that improves roughness, corrosion resistance, and fire resistance, is 2 to 7 times higher by weight percent than portland cement or cemented carbide, and accelerates hardening, improves strength, and cracks.
  • Magnesium (MgO, Periclase) content of the preventive component is characterized by the ultra-rigid hydraulic binder using a reduced slag powder 2 to 3 times more by weight percent than ordinary cement or port cement.
  • the ultra-high-speed hydraulic binder is characterized in that the ultra-high-speed hydraulic binder using a reduced slag powder consisting of gypsum selected from anhydrous gypsum, natural gypsum, hemihydrate gypsum for controlling the fast curing reaction rate. .
  • the present invention is the step of dropping the molten reduction slag of the by-product generated during the iron smelting in the steel mill through the tundish to fly into the air with high-pressure gas, rapidly cooled to room temperature to quench the glass lime does not exist; Pulverizing the quenched reducing slag into a constant powder; Mixing by adding gypsum to the pulverized reducing slag; and characterized in that the manufacturing method of the ultra-fast hard hydraulic binder using a reduced slag powder comprising a technical configuration.
  • the quench reduction slag of the present invention passes through this temperature range rapidly so that there is no differentiation of glass lime, and there is almost no generation of glass lime, which is obtained from the chemical composition measured by XRF as shown in FIG. You can check it.
  • the portland cement manufacturing process is very similar when compared with the quenched reducing slag manufacturing process of the molten slag by ionization of the present invention. That is, the melting temperature of iron ore in the iron manufacturing process is 1,500 ° C, which is higher than 1,450 ° C, which is a temperature required for firing cement. Therefore, it is considered that the slag in the electric furnace has been sufficiently fired. Therefore, as shown in FIG. 5, when the slag is rapidly cooled and pulverized at a high temperature, very active powders such as cement clinker can be obtained.
  • the quenching slag is a main hardening compound of fasten hydrate Mayenite (C 12 A 7 , 12CaOAl 2 O 3 ) and cement, and ⁇ -C 2 S (Belite, ⁇ -2CaO, which contributes greatly to hydraulic properties. It was confirmed that SiO 2 ) was contained in a large amount.
  • the quenched reducing slag comprises CaO 50w%, SiO 2 7w%, Al 2 O 3 21w%.
  • Rapidly cooled reducing slag is a major component of Mayenite (C 12 A 7 , 12CaO ⁇ Al 2 O 3 ) and cement and ⁇ -C 2 S (Belite, the ⁇ -2CaO ⁇ SiO 2) contains a large amount. It can be seen that C 12 A 7 has a super-hardening effect because it is a mineral that occurs when it is reacted with water, and ⁇ -C 2 S reacts slowly with water, which can lead to continuous strength enhancement.
  • the measurement was carried out in units of 30 seconds from 10 minutes after the test piece was formed by application of the test method for setting the condensation time of hydraulic cement by KS L 5108 Vicat.
  • condensation test time of the ordinary ordinary portland cement is measured to be measured at intervals of 30 minutes to 15 minutes after forming the test specimen, as shown in FIG. 7, it can be seen that the rapid cooling treatment of the reduced slag of the present invention is occurring. have.
  • the reduced slag powder content of the present invention is CaO 50w%, SiO 2 7w%, Al 2 O 3 comprising: a 21w%, component of the alumina to the curing speed and to improve the crude stiffness, corrosion resistance, fire resistance (Al 2 O 3) content is usually from 2 to 7 weight percent basis than Portland cement or initial velocity environment cement
  • Magnesium (MgO, Periclase) a component that accelerates hardening, improves strength, and prevents cracking, is due to two to three times more weight percent than portland cement or cemented carbide.
  • the quench reduction slag according to the present invention significantly improves the environmental problems such as generation of scattering dust, leachate, and high noise, which are problems of the slag according to the existing slow cooling treatment method, and an ultra-fast hard hydraulic binder as a production product of the present invention. Not only can be used in various fields that require fast hardening properties, but it can also be used as a substitute for ordinary portland cement by adjusting the setting and curing time by mixing with gypsum. As it has the advantage of achieving CO2 emission reduction effect, it is highly industrially applicable in cement replacement field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Details (AREA)

Abstract

본 발명은 유리석회(free-CaO)의 함유량이 높아 자체 분화하는 특성을 가지고 있어 그동안 활용되지 못하고 폐기되었던 전기로 환원슬래그를 고부가가치적으로 활용하기 위한 기술이다. 보다 상세하게는 본 발명은 제철소에서 철 제련 중에 발생되는 부산물 중 전기로 환원 슬래그를 고압가스로 비산시켜 상온으로 급냉처리하여 분쇄한 환원 슬래그 분말을 석고와 혼합하여 제조한 초속경성 있는 수경성 결합제 및 그 제조 방법에 관한 것으로, 속경성 특성을 요구하는 다양한 분야에 활용이 가능할 뿐만 아니라 석고와의 혼합사용으로 응결 및 경화시간을 조정함으로서 보통포틀랜드 시멘트의 대체용으로 사용할 수 있는 전기로 환원슬래그 분말을 이용한 초속경성 수경결합재 및 그 제조방법에 관한 것이다.

Description

환원 슬래그 분말을 이용한 초속경성 수경결합재 및 그 제조방법
본 발명은 유리석회(free-CaO)의 함유량이 높아 자체 분화하는 특성을 가지고 있어 그동안 활용되지 못하고 폐기되었던 전기로 환원슬래그를 고부가가치적으로 활용하기 위한 기술이다. 보다 상세하게는 본 발명은 제철소에서 철 제련 중에 발생되는 부산물 중 전기로 환원 슬래그를 고압가스로 비산시켜 급냉처리하여 분쇄한 환원 슬래그 분말을 석고와 혼합하여 제조한 초속경성 있는 수경성 결합제 및 그 제조 방법에 관한 것으로, 초속경성 특성을 요구하는 다양한 분야에 활용이 가능할 뿐만 아니라 석고와의 혼합사용으로 응결 및 경화시간을 조정함으로서 보통포틀랜드 시멘트의 대체용으로 사용할 수 있는 전기로 환원슬래그 분말을 이용한 초속경성 수경결합재 및 그 제조방법에 관한 것이다.
1960년대 이후 급속한 경제 발전에 따른 철강 수요에 대응하기 위한 제철 및 제강산업의 발전은 매우 급속하게 발전하였다. 철강협회의 자료에 의하면 국내의 조강생산 능력은 1998년 IMF 시기에 다소 주춤하였으나, 매년 꾸준히 증가를 하여 2008년에는 약 5,300만 톤에 이르는 세계 6위의 조강생산국이 되었다.
이러한 철강 산업은 다량의 원료와 에너지를 소비하는 대표적인 업종으로 제선, 제강, 압연 등의 복잡한 일련의 생산 공정을 거치면서 각 공정에서 철강생산에 따른 부산물인 철강 슬래그를 다량 발생시킨다. 이러한 철강 슬래그는 고로슬래그와 제강슬래그로 분류되며, 고로슬래그는 수쇄슬래그와 서냉슬래그로, 제강슬래그는 전로슬래그와 전기로슬래그로 분류되며, 전기로슬래그는 또한 산화공정슬래그와 환원공정슬래그로 분류된다.
최근 제강슬래그는 본질적으로 철보다 가벼운 것이 비중차에 의해 분리된 것이므로 중금속을 거의 함유하지 않고 있어 환경 유해성이 낮으므로 건설 산업용 재료로 사용하고자 하는 연구가 비교적 활발하였다. 그러나 내부에 유리 산화칼슘(f-CaO)을 함유하고 있어 물과 접촉시 화학반응을 일으켜 부피가 팽창하므로 도로용 또는 콘크리트용으로 사용될 경우 균열을 발생하게 되므로, 이와 같은 경우에는 에이징(Aging)과 같은 후처리공정을 두어 화학적으로 안정화시킨 후 사용하는 방법이 제안되고 있으나 아직까지 그 신뢰성이 높지 않아 실제의 적용은 많지 않다.
제강슬래그를 상용하기 위하여 고속의 공기를 이용하여 용융상태의 제강 슬래그를 급냉시키는 방법으로 유리 산화칼슘(f-CaO)의 생성량을 제어하는 방법이 개발되어 상용되고 있는데, 상기의 방법에 의해 생산된 제강슬래그는 구형화되었기 때문에 아토마이징 제강 슬래그(ASS, Atomizing Steel Slag)라고도 하고, 급냉공정에 의해 제조되었으므로 급냉 제강슬래그(RCSS, Rapidly Cooled Steel Slag)라고도 한다.
이와 같은 아토마이징 처리된 제강 슬래그는 유리 산화칼슘의 생성물이 낮아 팽창 붕괴의 위험이 적으며, 입형이 구형에 가까운 잔골재 형태를 갖기 때문에 콘크리트용 건설재료로써 활용할 경우 볼베어링 효과(Ball Bearing Effect)에 의해 유동성이 증가하는 장점이 있으나, 콘크리트를 구성하는 다른 재료에 비하여 밀도가 높아 재료분리(Segregation)의 가능성이 높으므로 특수 용도의 콘크리트 외에는 일반적인 용도로는 적용하기가 곤란한 문제점이 있다.
우리나라 철강슬래그의 발생량은 2006년 1,662만톤, 2007년 1,753만톤, 2008년 1,867만톤으로 거의 매년 100만톤 정도씩 증가하고 있다. 최근 지속적인 증가세는 포스코 파이넥스 설비 가동으로 인한 출선량 증가, 당진 현대제철 열연공장의 전기로 가동 등으로 의한 것이다(철강협회, 2008년도).
철강 슬래그의 재활용량은 2007년도의 경우 발생량의 99.7%인 1,861만톤이 재활용된 것으로 보고되고 있다. 고로 슬래그와 전로슬래그는 각각 950만톤, 540만톤이 발생되어 100% 전량 재활용되었으며, 전기로 슬래그는 98.4%인 3,707천 톤이 재활용되어 재활용이 원만히 진행되고 있는 것처럼 보인다.
그러나 재활용의 수준을 고려하면, 고로슬래그의 경우 오랫동안 재활용 용도를 개발하기 위한 노력이 이루어져 80% 이상을 시멘트 원료, 비료용 등의 고부가가치가 있는 용도로 사용되고 있어 비교적 재활용 수준이 높다고 할 수 있지만, 제강슬래그의 경우에는 아직까지 80% 정도를 저부가가치의 건설 산업용 골재로 활용하고 있어 재활용의 수준이 낮다고 평가할 수 있으며, 골재로 활용하는 경우에도 오랫동안의 에이징 처리를 요구하기 때문에 재활용에 소요되는 비용이 높다는 문제점을 내포하고 있다.
반면, 전기로슬래그는 선철, 고철과 같은 제강원료를 정련하는 전로(Converter Furnace) 또는 전기로(Electric Arc Furnace)에서 배출하는 산업 폐기물로서,이를 활용하지 않고 그대로 폐기시킬 경우 비산먼지, 침출수와 같은 환경문제의 발생은 물론 대규모의 처리장을 확보해야 하는 것에 따른 경제적인 문제 등으로 인하여 이를 활용하기 위한 다양한 연구가 있어 왔다. 이러한 노력의 결과 최근 전기로 산화 슬래그 잔골재에 관해서는 KS가 제정되기에 이르렀다.
전기로 환원 슬래그는 아직 통계적으로 분류되고 있지 않지만, 전기로 슬래그 중에서 약 20%를 점유하고 있으며, 이를 기준으로 추정하면 2007년도에 약 75만톤 정도 발생하였고, 2010년에는 거의 100만톤에 육박하는 양이 발생할 것으로 추정된다. 그러나 전기로 환원 슬래그는 적절한 용처가 없이 전기로 슬래그의 재활용율을 낮추는 요인으로만 작용하고 있어 시급히 재활용 기술을 확립할 필요가 있다. 그러나 전기로 환원 슬래그에는 유리 석회가 최대 20%까지 존재하고 있어 부가가치적으로 활용된 사례는 없는 것으로 보고되고 있다.
이러한 환원슬래그 재활용에 관한 종래기술로는 국내특허공개공보 제10-2009-0070404호에 서냉한 환원슬래그에 플라이애시와 보통 포틀랜드 시멘트를 첨가하여 혼합시멘트를 제조하는 기술이 공지되어 있다.
또한, 미국 특허 제6033467호에는 니켈, 구리, 납 또는 아연 제련소에서 발생되는 슬래그로부터 시멘트를 제조하는 방법으로서, 이는 혼합시멘트의 제조에 중점을 둔 것이 아니라, 환경오염원을 제거하기 위한 폐기물 이용방법에 초점에 맞추어져 있는 것으로 개발 제품이 특유한 성능을 보유하고 있지 않다.
미국 특허 제6776839호에서는 슬래그와 포졸란 반응에 의한 강도 증가를 한 혼합시멘트가 공지되어 있지만, 보통 포틀랜드 시멘트보다 강도가 낮다. 이는 알려진 바와 같이 서냉 슬래그는 초기 수경성을 갖지 못하기 때문에 나타난 현상으로 추정된다.
또한, 한국특허공개공보 제10-2002-0039520에는 시멘트의 낮은 초기 강도를 개선할 목적으로 고로 슬래그를 주재료로 이용하여 비소성 시멘트를 제조하여 보통 포틀랜드 시멘트를 대체하는 기술이 공지되어 있다.
이상의 특허들은 본 발명과는 달리 모두 서서히 충분히 냉각시킨 전기로 환원슬래그를 대상으로 하고 있고, 냉각 후에 분쇄 및 가공하는 공정을 포함하고 있으며, 또한 냉각에 필요한 부지 및 냉각 후의 유리 석회에 대한 안정성을 확보해야 하는 문제점을 모두 공유하고 있는데, 이를 해결하기 위한 수단으로서 기타 폐기물이나 각종 첨가재료 등을 혼합 사용하는 것을 제안하고 있으나, 이는 제조방법이 복잡해 지고 생산원가가 상승되는 치명적인 단점이 있다.
한편, 일반적으로 시멘트 및 시멘트활용 제품은 약 28일 정도에서 경화되는 것을 목표로 하고, 이때부터 제반 특성을 발현하기 때문에, 도로, 교량, 항만, 하수관로 등의 긴급공사에는 속경성 시멘트 및 이를 활용한 제품이 사용되고 있다.
통상의 속경성 시멘트는 CaO·Al2O3, 12CaO·7Al2O3, 11CaO·7Al2O3·CaX (X : 할로겐 원소) 등의 속경성 광물을 함유하는 클링커를 석고와 혼합하여 분쇄하거나 이들 속경성 광물의 분쇄물을 보통 포틀랜드시멘트, 석고 및 기타의 첨가재와 혼합 함으로써 제조하는 방법이 알려져 있다. (대한민국 특허공보 공고번호 제76-397호, 제90-33호, 일본특개소 52-139819, 63-285114, 64-37450)
그러나, 상기의 속경성 시멘트는 고온의 소성로에서 클링커를 제조하는 데에 따른 높은 제조비용과 휘발성분이나 용융성분의 제어가 어려워 제조시기에 따라 시멘트의 물성이 달라지는 등의 문제가 있으며, 특히 Al2O3 성분의 비율이 높아 시멘트가 물과 반응하여 생성되는 수화물 중 속경성을 발현하는 주 수화물인 에트린자이트(3CaO·Al2O3·3CaSO4·32H2O)의 결정전이로 인해 체적변화를 일으키거나 Al(OH)3 겔 수화물이 수분에 대한 안정성이 떨어지고 황산염의 존재시 SO4 이온과의 반응에 의한 부피팽창이 일어나기도 하여 장기적으로는 구조물의 안정성을 저하시키는 것이 문제점으로 인식되어 왔다.
이러한 시멘트의 성능문제를 개선하고 경화 이후의 구조체의 안정성을 향상시키기 위한 개량된 제조방법으로서 칼슘설포알루미네이트를 함유한 아윈계 클링커를 주체로 하여 그의 분쇄물에 보통 포틀랜드시멘트, 석고, 소석회 등을 혼합하여 제조하는 방법도 알려져 있다.(대한민국 특허공보 공고번호 제 97-008685, 10-0220340, 10-0310657)
기타, 국내특허 제0310657호에서는 기본적인 속경성시멘트 제조방법을 제시하고 있고, 국내특허 제0670458호에서는 속경성시멘트를 활용한 모르타르 제조방법을 제시하고 있으며, 국내특허 제0755272호에서는 속경성시멘트 제조방법 및 라텍스콘크리트에 대하여 제시하고 있다.
그러나, 상기의 속경성 시멘트들은 일반적으로 모르타르 혹은 콘크리트의 제조시 물과 반응하여 수분 내지 수십분 이내에 경화하여 3 내지 6시간에 20MPa 이상의 강도를 발현하고, 초기에 시멘트 구조체를 형성함으로써, 장기적인 물의 증발 등에 의한 변형을 최소화할 수 있으며 균열이 거의 발생하지 않는 안정한 구조체를 만들 수 있으므로 도로, 교량 등 구조물의 긴급보수에 주로 사용되지만, 현재 개발된 모르타르는 대부분 속경시멘트를 사용하지 못하고 있으며, 이는 대부분의 모르타르 개발업체가 속경시멘트에 대한 기술의 한계로 모르타르에 기능성원료를 첨가하는 방법으로 제품을 특화시키고 있는 실정이므로 상기 기능성 원료들을 함유하지 않으면서 속경성을 가지는 수경성 결합재 개발이 시급한 과제로 대두되고 있다.
본 발명은 상기와 같은 문제점을 인식하고 전기로 환원슬래그의 재활용과 함께 초속경성을 가지는 수경성 결합재를 개발하기 위해 발명한 것으로, 유리석회(free-CaO)의 함유량이 높아 자체 분화하는 특성을 가지고 있어 그동안 활용되지 못하고 폐기되었던 전기로 환원슬래그를 고부가가치적으로 활용하는 것을 기술적 과제로 한다.
보다 구체적으로, 환원슬래그는 용융상태로 발생되어 냉각되면 고체 덩어리가 되지만, 염기도(CaO/SiO2)가 높아 냉각 중에 석회의 유리화율이 증가함으로서 냉각 후 수분과 접할 경우 유리석회가 석회수화물인 Ca(OH)2로 변화되면서 용적이 1.95배 증가하는 것에 기인한 내부 분리압이 발생하여 자체 분화되는 특성으로 인해 환원슬래그는 유리석회의 수화가 완료된 이후에 다른 용도로 활용하여야 하지만, 수화에 소요되는 시간이 매우 길뿐만 아니라 수화가 완료된 이후는 분말상으로 분화되어 그동안 적절한 용도가 개발되지 못하고 있었다. 이를 해결하기 위하여 본 발명은 고압의 가스로 용융슬래그를 공기중으로 비산시키고, 공기중으로 비산된 용융슬래그는 수초내에 급격히 냉각되어 유리석회가 존재하지 않는 슬래그가 되어 급결시멘트와 유사한 화학적 조성을 가지게 되므로 이를 이용하여 전기로 환원슬래그를 부가가치적으로 활용할 수 있도록 전기로 환원슬래그 분말을 이용한 초속경성 수경결합재 및 그 제조방법을 제공하는 것을 기술적 과제로 한다.
본 발명은 상기 기술적 과제를 해결하기 위하여 전기로 용융환원 슬래그를 턴디쉬를 통하여 낙하시키면서 고압의 가스로 공기중으로 비산, 급격히 상온으로 냉각시켜 유리석회가 존재하지 않도록 제조된 환원슬래그 분말을 포함하여 구성되는 것을 특징으로 하는 환원슬래그 분말을 이용한 초속경성 수경결합재를 기술적 해결방법으로 한다.
또한, 상기 환원 슬래그 분말은 3,000-12,000/g의 분말도를 가지는 것을 특징으로 하는 환원 슬래그 분말을 이용한 초속경성 수경결합재를 기술적 해결방법으로 한다.
또한, 상기 환원슬래그 분말 성분함량은 CaO 40-60w%, SiO2 5-15w%, Al2O3 15-25w%를 포함하여 구성되고, 유리석회(F-CaO) 성분이 없으며, 경화를 빠르게 하고, 조강성, 내식성, 내화성을 향상시키는 성분인 알루미나(Al2O3) 함량이 보통 포틀랜드 시멘트 또는 초속경 시멘트 보다 중량%기준으로 2~7배 많으며, 경화를 빠르게 하고 강도를 향상시키며 균열을 방지하는 성분인 마그네시아(MgO, Periclase) 함량이 보통 포틀랜드 시멘트 또는 초속경 시멘트 보다 중량%기준으로 2~3배 많은 것을 특징으로 하는 환원슬래그 분말을 이용한 초속경성 수경결합재를 기술적 해결방법으로 한다.
또한, 상기 환원슬래그 분말은 속경성 수화물인 Mayenite(C12A7, 12CaO·Al2O3)와 시멘트의 주요 구성 화합물이면서 수경성에 크게 기여하는 β-C2S(Belite, β-2CaO·SiO2)를 다량으로 함유하고 있는 것을 특징으로 하는 환원슬래그 분말을 이용한 초속경성 수경결합재를 기술적 해결방법으로 한다.
또한, 상기 초속경성 수경결합재는 속경성 반응속도 조절을 위하여 무수석고, 천연석고, 반수석고로 부터 선택되는 석고를 더 포함하여 구성되는 것을 특징으로 하는 환원슬래그 분말을 이용한 초속경성 수경결합재를 기술적 해결방법으로 한다.
또한, 본 발명은 제철소에서 철 제련 중에 발생되는 부산물 중 전기로 용융환원 슬래그를 턴디쉬를 통하여 낙하시키면서 고압의 가스로 공기중으로 비산, 급격히 상온으로 냉각시켜 유리석회가 존재하지 않도록 급냉처리하는 단계; 상기 급냉처리된 환원 슬래그를 일정한 분말도로 분쇄하는 단계; 분쇄된 환원 슬래그에 석고를 첨가하여 혼합하는 단계;를 포함하여 구성되는 것을 특징으로 하는 환원슬래그 분말을 이용한 초속경성 수경결합재 제조방법을 기술적 해결방법으로 한다.
기존의 서냉 처리 방식이 에이징에 많은 시간이 소요되고 넓은 야적 공간을 요구하여 생산 단가가 높아질 뿐만 아니라 비산먼지의 발생, 침출수의 발생, 높은 소음의 발생이라는 환경적 문제를 가지고 있지만, 본 발명은 이러한 다양한 문제점을 획기적을 개선한 공정으로서 기술의 우위성이 높다.
또한, 본 발명의 생산 제품인 초속경성 수경결합재는 속경성 특성을 요구하는 다양한 분야에 활용이 가능할 뿐만 아니라 석고와의 혼합사용으로 응결 및 경화시간을 조정함으로서 보통포틀랜드 시멘트의 대체용으로 사용하는 것도 가능하다.
또한, 본 발명의 생산 제품인 초속경성 수경 결합재에 소비되는 에너지는 용융슬래그의 비산 공정과 냉각 입자의 분쇄 공정에만 한정되어 온실가스의 배출계수가 매우 낮으므로 이산화탄소의 배출량이 높은 보통포틀랜드 시멘트를 대체하여 사용할 경우 직접적인 온실가스 저감 효과를 달성할 수 있다는 장점이 있다.
도 1은 본 발명의 환원 슬래그 성분표
도 2는 본 발명의 환원 슬래그와 포틀랜드 시멘트의 삼성분계 그래프
도 3은 본 발명의 환원슬래그 냉각경로 그래프
도 4는 일반적인 포틀랜드 시멘트 제조 공정도
도 5는 본 발명의 환원슬래그 분말 제조공정도
도 6은 본 발명의 환원슬래그 XRD 그래프
도 7은 본 발명의 환원슬래그 응결시험 그래프
본 발명은 상기 과제를 해결하기 위하여 전기로 용융환원 슬래그를 턴디쉬를 통하여 낙하시키면서 고압의 가스로 공기중으로 비산, 급격히 상온으로 냉각시켜 유리석회가 존재하지 않도록 제조된 환원슬래그 분말을 포함하여 구성되는 환원슬래그 분말을 이용한 초속경성 수경결합재를 기술구성의 특징으로 한다.
또한, 상기 환원슬래그 분말은 3,000-12,000/g의 분말도를 가지는 환원슬래그 분말을 이용한 초속경성 수경결합재를 기술구성의 특징으로 한다.
또한, 상기 환원슬래그 분말 성분함량은 CaO 40-60w%, SiO2 5-15w%, Al2O3 15-25w%를 포함하여 구성되고, 유리석회(F-CaO) 성분이 없으며, 경화를 빠르게 하고, 조강성, 내식성, 내화성을 향상시키는 성분인 알루미나(Al2O3) 함량이 보통 포틀랜드 시멘트 또는 초속경 시멘트 보다 중량%기준으로 2~7배 많으며, 경화를 빠르게 하고 강도를 향상시키며 균열을 방지하는 성분인 마그네시아(MgO, Periclase) 함량이 보통 포틀랜드 시멘트 또는 초속경 시멘트 보다 중량%기준으로 2~3배 많은 환원슬래그 분말을 이용한 초속경성 수경결합재를 기술구성의 특징으로 한다.
또한, 상기 환원슬래그 분말은 속경성 수화물인 Mayenite(C12A7, 12CaO·Al2O3)와 시멘트의 주요 구성 화합물이면서 수경성에 크게 기여하는 β-C2S(Belite, β-2CaO·SiO2)를 다량으로 함유하고 있는 환원슬래그 분말을 이용한 초속경성 수경결합재를 기술구성의 특징으로 한다.
또한, 상기 초속경성 수경결합재는 속경성 반응속도 조절을 위하여 무수석고, 천연석고, 반수석고로 부터 선택되는 석고를 더 포함하여 구성되는 환원슬래그 분말을 이용한 초속경성 수경결합재를 기술구성의 특징으로 한다.
또한, 본 발명은 제철소에서 철 제련 중에 발생되는 부산물 중 전기로 용융환원 슬래그를 턴디쉬를 통하여 낙하시키면서 고압의 가스로 공기중으로 비산, 급격히 상온으로 냉각시켜 유리석회가 존재하지 않도록 급냉처리하는 단계; 상기 급냉처리된 환원 슬래그를 일정한 분말도로 분쇄하는 단계; 분쇄된 환원 슬래그에 석고를 첨가하여 혼합하는 단계;를 포함하여 구성되는 환원슬래그 분말을 이용한 초속경성 수경결합재 제조방법을 기술구성의 특징으로 한다.
본 발명은 고압의 공기로 용융슬래그를 공기중으로 비산시켜 수초안에 1400℃에서 600℃로 냉각하고 비산 후에 수분 안에 200℃로 냉각한 것에서 기술적인 특징이 있다. 종래의 환원 슬래그의 조성은 도 1 및 도 2에 도시한 바와 같이 본질적으로 초속경 시멘트와 유사하다.
그러나 염기도(CaO와 SiO2의 몰비)가 높기 때문에 서냉할 경우에는 도 3에 도시한 바와 같이 700℃~1200℃에서 유리석회의 분화가 왕성하게 된다. 따라서, 본 발명의 급냉 환원슬래그는 이 온도 범위를 급속하게 통과하여 유리석회의 분화가 없도록 한 것으로서 유리석회의 발생이 거의 없으며, 이것은 도 1에 도시한 바와 같이 XRF로 측정한 화학 조성 결과로 부터 확인할 수 있다.
한편, 도 4에 도시한 바와 같이, 보통 포틀랜드 시멘트는 주로 석회질 원료와 점토질 원료를 적당한 비율로 혼합하여, 요구되는 성능에 따라 성분을 조절하기 위하여 규산질 원료와 산화철 원료를 첨가한 다음 미분쇄하며, 분쇄된 재료는 용융하기 위하여 킬른에 투여되며 약 1,450℃까지 소성하며 소성된 재료를 클링커라 명한다. 이 클링커를 급냉시킨 후, 응결 조절제로서 약간의 석고를 가하여 미분쇄하여 만들어진다.
이러한 포틀랜드 시멘트 제조 공정과 본 발명의 전리로 용융 슬래그의 급냉처리된 환원슬래그 제조공정을 비교하여 보면 매우 유사하다. 즉, 철 제조 공정에서 철광석을 융해 온도는 1,500℃인데, 이는 시멘트의 소성에 필요한 온도인 1,450℃보다도 높다. 그러므로 전기로 안에서 슬래그는 소성반응이 충분히 완료된 것으로 판단된다. 따라서 도 5에 도시한 바와 같이 이 슬래그를 고온상태에서 급속히 냉각하여 분쇄하면 시멘트의 크링커와 같이 매우 활성도 높은 분말을 얻을 수 있는 것이다.
이와 같은 기술적 사상을 확인하기 위하여 급냉된 전기로환원슬래그를 대상으로 XRD를 이용하여 광물조성을 파악하였다. 도 6에 나타낸 바와 같이 급냉슬래그는 속경성 수화물인 Mayenite(C12A7, 12CaO·Al2O3)와 시멘트의 주요 구성 화합물이면서 수경성에 크게 기여하는 β-C2S(Belite, β-2CaO·SiO2)를 다량으로 함유하고 있는 것을 확인하였다.
이하, 실시 예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 다음의 실시 예는 본 발명의 범위를 한정하는 것은 아니며, 본 발명의 기술적 사상의 범위 내에서 당업자에 의한 통상적인 변화가 가능하다.
실시예 1 : 급냉처리된 환원 슬래그를 기초적 물성측정
1) 급냉처리
철 생산 공정에서 발생된 부산물인 슬래그를 출탕하여 포트에 담은 후 포트를 급냉처리공정이 있는 곳으로 이동한다. 이동된 슬래그는 턴디쉬를 통해 일정한 기울기로 기울여 낙하시키면서 고속의 공기로 분사시켜 비산, 급냉처리된 입자상의 급냉 환원 슬래그를 제조하였다. 이 공정은 도 5에 나타내었다.
2) 급냉처리된 환원 슬래그의 기초 특성
- 물리적 특성 : 진밀도 : 3.17 /g
- 산화물 분석 : 도 1에 나타난 바와 같이 급냉처리된 환원 슬래그는 CaO 50w%, SiO2 7w%, Al2O3 21w%를 포함하여 구성된다.
- 광물 분석 : 급냉처리된 환원 슬래그는 도 6에 나타난 바와 같이 Mayenite(C12A7, 12CaO·Al2O3)와 시멘트의 주요 구성 화합물이면서 수경성에 크게 기여하는 β-C2S(Belite, β-2CaO·SiO2)가 다량 포함되어 있다. C12A7은 물과 반응할 경우 급결이 일어나는 광물이므로 초속경성 효과가 있음을 알 수 있으며 β-C2S는 물과 서서히 반응하므로 지속적인 강도 증진을 가져올 수 있음을 알 수 있다.
실시예 2 : 급냉처리된 환원 슬래그 응결 시험
1) 실험 방법
KS L 5108 비카 침에 의한 수경성 시멘트의 응결 시간 시험 방법의 응용하여 시험체 성형 후 10분 후부터 30초 단위로 측정을 실시하였다.
.
2) 실험 결과
일반 보통포틀랜트 시멘트의 응결 시험 시간은 시험체 성형 후 30분부터 15분간격으로 측정하는 것을 규정하고 있으나, 도 7에 도시한 바와 같이 본 발명의 급냉처리된 환원슬래그는 급결이 일어나고 있음을 알 수 있다.
이러한 결과는 Mayenite(C12A7, 12CaO·Al2O3)의 속경성에 더하여, 도 1에 나타낸 바와 같이, 본 발명의 환원슬래그 분말 성분함량은 CaO 50w%, SiO2 7w%, Al2O3 21w%를 포함하여 구성되고, 경화를 빠르게 하고, 조강성, 내식성, 내화성을 향상시키는 성분인 알루미나(Al2O3) 함량이 보통 포틀랜드 시멘트 또는 초속경 시멘트 보다 중량%기준으로 2~7배 많으며, 경화를 빠르게 하고 강도를 향상시키며 균열을 방지하는 성분인 마그네시아(MgO, Periclase) 함량이 보통 포틀랜드 시멘트 또는 초속경 시멘트 보다 중량%기준으로 2~3배 많은데 기인하는 것이다.
실시예 3 : 본 발명의 환원 슬래그와 포틀랜드 시멘트의 삼성분계 분석
본 발명의 급냉 환원슬래그와 보통 포틀랜드 시멘트의 주 화학성분인 CaO, SiO2, Al2O3에 대하여 화학성분을 검토한 결과 도 2와 같이 나타났다. 즉, 급냉처리된 환원슬래그의 삼성분계는 초속경 시멘트와 거의 유사한 것을 알 수 있다.
본 발명에 따른 급냉환원슬래그은 기존의 서냉 처리 방식에 따른 슬래그의 문제점인 비산먼지의 발생, 침출수의 발생, 높은 소음의 발생이라는 환경적 문제를 획기적으로 개선하고, 본 발명의 생산 제품인 초속경성 수경결합재는 속경성 특성을 요구하는 다양한 분야에 활용이 가능할 뿐만 아니라 석고와의 혼합사용으로 응결 및 경화시간을 조정함으로서 보통포틀랜드 시멘트의 대체용으로 사용하는 것도 가능할 뿐만 아니라, 이산화탄소의 배출량이 높은 보통포틀랜드 시멘트를 대체함에 따라 이산화탄소 배출저감 효과를 달성할 수 있다는 장점이 있으므로 시멘트 대체분야에서 산업상 이용가능성이 매우 높다.

Claims (6)

  1. 제철소에서 철 제련 중에 발생되는 부산물 중 전기로 용융환원 슬래그를 턴디쉬를 통하여 낙하시키면서 고압의 가스로 공기중으로 비산, 급격히 상온으로 냉각시켜 유리석회가 존재하지 않도록 제조된 환원슬래그 분말을 포함하여 구성되는 것을 특징으로 하는 환원슬래그 분말을 이용한 초속경성 수경결합재
  2. 제1항에 있어서,
    상기 환원슬래그 분말은 3,000-12,000/g의 분말도를 가지는 것을 특징으로 하는 환원슬래그 분말을 이용한 초속경성 수경결합재
  3. 제1항에 있어서,
    상기 환원슬래그 분말 성분함량은 CaO 40-60w%, SiO2 5-15w%, Al2O3 15-25w%를 포함하여 구성되고, 유리석회(F-CaO) 성분이 없으며, 속경성, 조강성, 내식성, 내화성을 향상시키는 성분인 알루미나(Al2O3) 함량이 보통 포틀랜드 시멘트 또는 초속경 시멘트 보다 중량%기준으로 2~7배 많으며, 속경성 및 강도를 향상시키며 균열을 방지하는 성분인 마그네시아(MgO, Periclase)) 함량이 보통 포틀랜드 시멘트 또는 초속경 시멘트 보다 중량%기준으로 2~3배 많은 것을 특징으로 하는 환원슬래그 분말을 이용한 초속경성 수경결합재
  4. 제1항에 있어서,
    상기 환원슬래그 분말은 속경성 수화물인 Mayenite(C12A7, 12CaO·Al2O3)와 시멘트의 주요 구성 화합물이면서 수경성에 크게 기여하는 β-C2S(Belite, β-2CaO·SiO2)를 다량으로 함유하고 있는 것을 특징으로 하는 환원슬래그 분말을 이용한 초속경성 수경결합재
  5. 제1항 내지 제4항중 어느 한 항에 있어서,
    상기 초속경성 수경결합재는 속경성 반응속도 조절을 위하여 무수석고, 천연석고, 반수석고로 부터 선택되는 석고를 더 포함하여 구성되는 것을 특징으로 하는 환원슬래그 분말을 이용한 초속경성 수경결합재
  6. 제철소에서 철 제련 중에 발생되는 부산물 중 전기로 용융환원 슬래그를 턴디쉬를 통하여 낙하시키면서 고압의 가스로 공기중으로 비산, 급격히 상온으로 냉각시켜 유리석회가 존재하지 않도록 급냉처리하는 단계; 상기 급냉처리된 환원 슬래그를 일정한 분말도로 분쇄하는 단계; 분쇄된 환원 슬래그에 석고를 첨가하여 혼합하는 단계;를 포함하여 구성되는 것을 특징으로 하는 환원슬래그 분말을 이용한 초속경성 수경결합재 제조방법
PCT/KR2011/004281 2010-11-10 2011-06-10 환원 슬래그 분말을 이용한 초속경성 수경결합재 및 그 제조방법 WO2012064004A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180054009.5A CN103201231B (zh) 2010-11-10 2011-06-10 利用还原渣粉末的超快硬化水硬性结合材料及其制造方法
JP2013536483A JP2014500213A (ja) 2010-11-10 2011-06-10 還元スラグ粉末を用いた超速硬性水硬結合材及びその製造方法
US13/890,415 US8834625B2 (en) 2010-11-10 2013-05-09 Ultra-rapid hardening hydraulic binder using reduced slag powder, and method of preparing the same
ZA2013/04137A ZA201304137B (en) 2010-11-10 2013-06-06 Ultra-rapidly hardening hydraulic binder using reducing slag powders,and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0111768 2010-11-10
KR1020100111768A KR101234787B1 (ko) 2010-11-10 2010-11-10 환원 슬래그 분말을 이용한 초속경성 수경결합재 및 그 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/890,415 Continuation US8834625B2 (en) 2010-11-10 2013-05-09 Ultra-rapid hardening hydraulic binder using reduced slag powder, and method of preparing the same

Publications (1)

Publication Number Publication Date
WO2012064004A1 true WO2012064004A1 (ko) 2012-05-18

Family

ID=46051127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004281 WO2012064004A1 (ko) 2010-11-10 2011-06-10 환원 슬래그 분말을 이용한 초속경성 수경결합재 및 그 제조방법

Country Status (6)

Country Link
US (1) US8834625B2 (ko)
JP (1) JP2014500213A (ko)
KR (1) KR101234787B1 (ko)
CN (1) CN103201231B (ko)
WO (1) WO2012064004A1 (ko)
ZA (1) ZA201304137B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528791A (ja) * 2012-07-25 2015-10-01 コンジュ ナショナル ユニバーシティ インダストリー−ユニバーシティ コオポレイション ファウンデーションKongju Nationaluniversity Industry−University Cooperation Foundation 急冷製鋼還元スラグ粉末を用いた水硬性結合材組成物及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX342715B (es) * 2012-10-31 2016-09-08 Centro De Investigación En Química Aplicada Proceso físico para la recuperación de hierro a partir de partículas esféricas magnéticas-cementantes generadas de los subproductos metalúrgicos.
KR20140001635A (ko) * 2012-06-28 2014-01-07 주식회사 에코마이스터 제강 환원슬래그 볼 조재제 및 그 제조방법
KR101499678B1 (ko) * 2013-04-25 2015-03-06 주식회사 에코마이스터 실리콘망간 슬래그 분말을 이용한 지오폴리머 및 그 제조방법
KR101460632B1 (ko) * 2014-02-28 2014-11-12 공주대학교 산학협력단 급냉 제강환원슬래그 분말을 결합재로 이용한 속경성 도로보수용 콘크리트 조성물 및 이를 이용한 도로보수 방법
KR101460628B1 (ko) * 2014-02-28 2014-11-12 공주대학교 산학협력단 급냉 제강환원슬래그 분말을 포함하는 숏크리트용 급결제 조성물
KR102217174B1 (ko) * 2019-02-26 2021-02-18 주식회사 에코마이스터 급냉 제강환원슬래그분말과 전기로 제강분진을 이용한 초속경 모르타르 조성물
US10759697B1 (en) 2019-06-11 2020-09-01 MSB Global, Inc. Curable formulations for structural and non-structural applications
KR102078343B1 (ko) * 2019-07-10 2020-02-17 정윤산업(주) 칼슘알루미네이트계 비정질 환원슬래그를 활용한 아크릴라텍스 개질 초속경 콘크리트 조성물 및 이를 이용한 보수보강 공법
CN111205060B (zh) * 2020-01-13 2022-03-08 东南大学 一种工业废渣多元复合盾构隧道壁后注浆材料及其制备方法
CN113683320B (zh) * 2021-09-23 2022-06-07 广东华欣环保科技有限公司 一种胶凝材料
KR102422247B1 (ko) * 2021-11-17 2022-07-15 최선미 정련슬래그를 이용한 저탄소 초속경 시멘트 조성물
CN114716169B (zh) * 2022-05-09 2023-06-23 山西太钢不锈钢股份有限公司 降低钢渣中高活度碱性氧化物含量的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890004634B1 (ko) * 1984-06-25 1989-11-21 씨멩 드 샴파그놀레 수경성 시멘트의 제조방법
US20030010060A1 (en) * 2000-01-21 2003-01-16 Jean-Luc Roth Method for treating steel plant slag

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177577A (ko) * 1974-12-28 1976-07-05 Nippon Jiryoku Senko
JPS54145730A (en) * 1978-05-08 1979-11-14 Nippon Steel Corp Inorganic bonding agent
JPS5711859A (en) * 1980-06-27 1982-01-21 Toyoda Chuo Kenkyusho Kk Cement
JPS58137498A (ja) * 1982-02-10 1983-08-15 Nippon Jiryoku Senko Kk 高塩基度製鋼スラグの利用方法
JPS58140350A (ja) * 1982-02-10 1983-08-20 日本磁力選鉱株式会社 高塩基度製鋼スラグの利用方法
JPS6227527A (ja) * 1985-07-26 1987-02-05 Nippon Jiryoku Senko Kk 脱珪スラグの利用方法
CN87102197A (zh) * 1987-03-18 1988-11-02 孙竹良 高炉熔融矿渣直接转换成水泥熟料的新工艺
JPS6437450A (en) 1987-07-31 1989-02-08 Daiichi Cement Co Ltd Quick hardening cement composition
KR900000033B1 (ko) 1987-12-14 1990-01-18 쌍용 양회공업 주식회사 속경성 시멘트 클링커의 제조방법
US5273579A (en) * 1990-06-19 1993-12-28 Mitsubishi Mining And Cement Co., Ltd. Quick setting compositions
JP3338851B2 (ja) * 1990-07-25 2002-10-28 中部鋼板株式会社 電気炉スラグを原料とするクリンカーの製造方法
KR970008685B1 (en) 1994-12-06 1997-05-28 Ssangyong Cement Ind Co Ltd Rapid hardening cement composition having high strength properties
US6033467A (en) 1995-06-26 2000-03-07 Fenicem Minerals Inc. Method of making cement or mine backfill from base metal smelter slag
JP4084432B2 (ja) * 1996-07-01 2008-04-30 中部鋼鈑株式会社 無機材料の製造方法
KR100216432B1 (ko) 1996-10-31 1999-08-16 문정식 속경성 클린커 조성물 및 이의 제조방법
JP2000271924A (ja) * 1999-03-25 2000-10-03 Toyota Motor Corp 無機質成形板の製造方法
KR100310657B1 (ko) 1999-05-14 2001-10-12 실뱅가르노 고강도의 속경성 시멘트 조성물
WO2002028794A2 (de) 2000-10-05 2002-04-11 Ko Suz Chung Schlackenzement
KR100431797B1 (ko) 2000-11-21 2004-05-17 박응모 고로슬래그를 주재료로 하는 비소성 시멘트 제조방법
JP2003212617A (ja) * 2002-01-25 2003-07-30 Denki Kagaku Kogyo Kk 炭酸化硬化体用の水硬性物質組成物及びそれを用いた炭酸化硬化体の製造方法
JP2004238234A (ja) * 2003-02-04 2004-08-26 Jfe Steel Kk 風砕スラグおよびその製造方法および風砕スラグの処理方法およびコンクリート用細骨材
JP4634060B2 (ja) * 2004-03-26 2011-02-16 電気化学工業株式会社 土壌の処理方法
JP4427370B2 (ja) * 2004-03-26 2010-03-03 Jfeスチール株式会社 クロム鉱石溶融還元炉スラグの改質方法
KR100670458B1 (ko) 2004-12-21 2007-01-16 한일시멘트 (주) 보수/보강용 드라이 콘크리트 조성물과 그 제조방법 및 이를 이용한 보수시공방법
JP4181573B2 (ja) * 2005-12-19 2008-11-19 株式会社星野産商 建築物の床材料または屋根材および該床材料または屋根材の加熱方法
KR100755272B1 (ko) 2006-03-03 2007-09-04 쌍용양회공업(주) 라텍스개질 콘크리트용 속경성 시멘트 조성물
CN101460638B (zh) * 2006-06-14 2011-04-27 Ecomaister株式会社 稳定炉渣的方法和由此产生的新材料
JP4781285B2 (ja) * 2007-01-24 2011-09-28 新日本製鐵株式会社 高炉スラグセメント
JP4874880B2 (ja) * 2007-06-27 2012-02-15 太平洋セメント株式会社 土工資材の製造方法
KR100913770B1 (ko) 2007-12-27 2009-08-26 전남대학교산학협력단 환원슬래그를 이용한 혼합시멘트 제조
JP2009227495A (ja) * 2008-03-20 2009-10-08 Jfe Steel Corp スラグ処理方法
CN102264664A (zh) * 2008-09-10 2011-11-30 公州大学校产学协力团 含有雾化钢渣的聚合物混凝土组成物及其制造方法
CN101831516A (zh) * 2010-05-28 2010-09-15 张登山 钢铁熔渣干法处理装置及处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890004634B1 (ko) * 1984-06-25 1989-11-21 씨멩 드 샴파그놀레 수경성 시멘트의 제조방법
US20030010060A1 (en) * 2000-01-21 2003-01-16 Jean-Luc Roth Method for treating steel plant slag

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KIM, KIL HEE ET AL.: "The Present Situation of Production and It's Utilization of Electronic Arc Furnace Oxidizing Slag in Korea and Other Countries.", JOURNAL OF KCI., vol. 19, no. 6, 2007, pages 51 - 57 *
REDDY, A. SRINNASA ET AL.: "Utilization of Basic Oxygen Furance (BOF) Slag in the Production of a Hydraulic Cement Binder.", INT. J. MINER. PROCESS., vol. 79, 2006, pages 98 - 105 *
SHI, CAIJUN ET AL., ALKALI-ACTIVATED CEMENTS AND CONCRETES., 2006, NEW YORK, pages 46 *
ZONG, YAN-BING ET AL.: "Component Modification of Steel Slag in Air Quenching Process to Improve Grindability.", TRANS. NONFERROUS MET. SOC., vol. 19, 2009, CHINA, pages S834 - S839 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528791A (ja) * 2012-07-25 2015-10-01 コンジュ ナショナル ユニバーシティ インダストリー−ユニバーシティ コオポレイション ファウンデーションKongju Nationaluniversity Industry−University Cooperation Foundation 急冷製鋼還元スラグ粉末を用いた水硬性結合材組成物及びその製造方法

Also Published As

Publication number Publication date
US20130269573A1 (en) 2013-10-17
CN103201231A (zh) 2013-07-10
CN103201231B (zh) 2015-12-02
KR101234787B1 (ko) 2013-02-20
KR20120050329A (ko) 2012-05-18
JP2014500213A (ja) 2014-01-09
ZA201304137B (en) 2014-02-26
US8834625B2 (en) 2014-09-16

Similar Documents

Publication Publication Date Title
WO2012064004A1 (ko) 환원 슬래그 분말을 이용한 초속경성 수경결합재 및 그 제조방법
Wu et al. Utilization of nickel slag as raw material in the production of Portland cement for road construction
Shi Steel slag—its production, processing, characteristics, and cementitious properties
Shih et al. Characteristics of bricks made from waste steel slag
JP5747407B2 (ja) 高活性セメントクリンカ、高活性セメント及び早強セメント組成物
CN103764588B (zh) 中性化抑制型早强水泥组合物
JPWO2002022518A1 (ja) セメント組成物
RU2732386C1 (ru) Бетонная композиция и способ ее получения
JP2013047154A (ja) 高炉セメント組成物
KR20090120879A (ko) 고온 용융상태의 슬래그를 이용한 무기시멘트 클링커와 그제조방법 및 상기 클링커를 함유하는 무기시멘트
JPWO2008050484A1 (ja) セメントクリンカー及びセメント
Pribulova et al. Comparison of cupola furnace and blast furnace slags with respect to possibilities of their utilization
JP2004292285A (ja) コンクリート
JP5398236B2 (ja) セメントクリンカの製造方法
LI et al. Progress and trend of bulk utilization technology of metallurgical solid wastes in China
WO2023090878A1 (ko) 정련슬래그를 이용한 저탄소 초속경 시멘트 조성물
KR20120048403A (ko) 칼슘설포알루미네이트계 클링커 조성물,이를 포함하는 시멘트 및 이의 제조방법
KR101845274B1 (ko) 고활성 시멘트 클링커, 고활성 시멘트 및 조강 시멘트 조성물
WO2023075512A1 (ko) 정련슬래그를 이용한 저탄소 슬래그 분말 제조방법, 상기 방법으로 제조된 슬래그 분말을 이용한 급결제 및 시멘트 조성물
KR101168681B1 (ko) 포틀랜드 시멘트 클링커 및 이의 제조방법
US20180305254A1 (en) Activator having a low ph value for supplementary cementitious material
WO2007013087A1 (en) A process for conversion of basic oxygen furnace slag into construction materials
KR102221329B1 (ko) 동슬래그와 아연슬래그로부터 유가금속을 회수한 후 발생하는 2차 슬래그를 급냉 및 미분쇄하여 제조한 시멘트 콘크리트 및 시멘트 콘크리트 제품에 사용되는 수열합성용 시멘트 콘크리트 혼화재
Zhang Introductory chapter: metallurgical solid waste
WO2015060667A1 (ko) 초속경 도로보수용 몰탈 조성물 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536483

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840478

Country of ref document: EP

Kind code of ref document: A1