WO2012063303A1 - 内燃機関の粒子状物質検出装置 - Google Patents

内燃機関の粒子状物質検出装置 Download PDF

Info

Publication number
WO2012063303A1
WO2012063303A1 PCT/JP2010/069824 JP2010069824W WO2012063303A1 WO 2012063303 A1 WO2012063303 A1 WO 2012063303A1 JP 2010069824 W JP2010069824 W JP 2010069824W WO 2012063303 A1 WO2012063303 A1 WO 2012063303A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
particulate matter
internal combustion
combustion engine
amount
Prior art date
Application number
PCT/JP2010/069824
Other languages
English (en)
French (fr)
Inventor
西嶋 大貴
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/515,669 priority Critical patent/US8925370B2/en
Priority to CN201080057593.5A priority patent/CN102656438B/zh
Priority to DE112010004519.4T priority patent/DE112010004519B4/de
Priority to JP2012521820A priority patent/JP5278615B2/ja
Priority to PCT/JP2010/069824 priority patent/WO2012063303A1/ja
Publication of WO2012063303A1 publication Critical patent/WO2012063303A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor

Definitions

  • the present invention relates to a particulate matter detection device for an internal combustion engine.
  • Japanese Unexamined Patent Publication No. 2009-144777 discloses a particulate filter provided in an exhaust passage of an internal combustion engine, an electrical insulating material provided downstream of the particulate filter to which particulate matter (PM) adheres, and this When a plurality of electrodes spaced apart from each other on the electrical insulating material and an index correlating with the electrical resistance value between the plurality of electrodes are measured, and it is detected that the measured index is smaller than a predetermined reference, There is disclosed a particulate filter failure determination device comprising a control means for determining a failure of a curative filter.
  • an electric field is generated by applying a voltage between the electrodes, and charged particulate matter in the exhaust gas is attracted and collected by the electric field. Then, the amount of the particulate matter in the exhaust gas is detected by utilizing the fact that the electrical resistance between the electrodes decreases when the particulate matter is deposited between the electrodes.
  • This PM sensor is provided with a heater for burning and removing the accumulated particulate matter. When the particulate matter deposited on the PM sensor reaches a predetermined amount, the heater is energized to burn and remove the deposited particulate matter, that is, the PM sensor is reset.
  • the amount of particulate matter discharged per hour varies greatly depending on the operating conditions of the internal combustion engine. For example, the particulate matter discharge amount is small when the fluctuation of the engine load is moderate, but the particulate matter discharge amount increases when the sudden fluctuation of the engine load is large.
  • the amount of particulate matter discharged per time is small, it takes time for the amount of particulate matter deposited between the electrodes to reach the above-mentioned constant amount, so the dead zone time becomes long. For this reason, the time required for one detection becomes long, and the state in which the discharge amount of the particulate matter cannot be grasped continues for a long time, which is not preferable.
  • the present invention has been made in view of the above points, and is an internal combustion engine capable of maintaining an appropriate balance between shortening of the time required for one detection and suppression of heater power consumption for sensor reset.
  • An object of the present invention is to provide a particulate matter detection device.
  • a first invention is a particulate matter detection device for an internal combustion engine, A sensor disposed in an exhaust passage of an internal combustion engine and having a pair of electrodes for collecting particulate matter; Voltage applying means for applying a voltage between the pair of electrodes; An emission index acquisition means for acquiring a predetermined index related to the amount of emission of the particulate matter; Based on the index acquired by the emission index acquisition means, the voltage applied between the pair of electrodes is lower when the particulate matter discharge is large than when the particulate discharge is small. Voltage adjusting means for adjusting the voltage; It is characterized by providing.
  • the second invention is the first invention, wherein
  • the index is a value representing the rate of change in load of the internal combustion engine.
  • the third invention is the first invention, wherein The index is a time until a change appears in the output of the sensor after the particulate matter deposited on the sensor is removed.
  • Average operating time calculating means for calculating an average operating time which is an average operating time of the internal combustion engine;
  • correction means for correcting in a direction to increase the voltage applied between the pair of electrodes compared to when the average operation time is long; It is characterized by providing.
  • the applied voltage between the electrodes can be relatively lowered to weaken the electric field. For this reason, the rate at which the particulate matter is deposited between the electrodes can be suppressed.
  • the applied voltage between the electrodes can be made relatively high to increase the electric field.
  • the second aspect of the invention it is possible to accurately estimate the amount of particulate matter discharge by using as an index the value indicating the rate of load fluctuation of the internal combustion engine.
  • the amount of particulate matter discharged can be accurately determined by using the time (dead zone time) until the change of the sensor output appears after removing the particulate matter deposited on the sensor as an index. I can guess well.
  • the applied voltage between the electrodes can be corrected to be higher than when the average operating time is long. For this reason, even in an internal combustion engine that is used under a usage condition where one operation time is short, at least one particulate matter discharge amount detection can be reliably completed before the engine is stopped.
  • FIG. 4 is a schematic cross-sectional view taken along line AB in FIG. 3. It is a figure which shows typically a mode that PM accumulates between electrodes. It is a figure which shows the relationship between the sensor output of PM sensor, and PM discharge amount. It is a figure which shows the relationship between the sensor output of PM sensor, and PM discharge amount. It is a flowchart of the routine performed in Embodiment 1 of the present invention. It is a map which shows the relationship between an accelerator opening change rate integrated value and the correction coefficient of an applied voltage.
  • FIG. 1 is a diagram for explaining a system configuration according to the first embodiment of the present invention.
  • the system of the present embodiment includes an internal combustion engine 20.
  • the internal combustion engine 20 is mounted on a vehicle as a power source, for example.
  • a particulate filter 24 having a function of trapping particulate matter (hereinafter also abbreviated as “PM”) in the exhaust gas is installed in the exhaust passage 22 of the internal combustion engine 20.
  • a PM sensor 2 capable of detecting particulate matter is installed in the exhaust passage 22 on the downstream side of the particulate filter 24.
  • the system of this embodiment further includes an ECU (Electronic Control Unit) 50.
  • the ECU 50 includes an air flow meter 26 that detects the intake air amount of the internal combustion engine 20, a crank angle sensor 28 that detects the rotation angle of the output shaft of the internal combustion engine 20, and the operation of a vehicle equipped with the internal combustion engine 20.
  • Various engine control sensors such as an accelerator opening sensor 30 for detecting the amount of depression of the accelerator pedal of the seat (hereinafter referred to as “accelerator opening”), and various engine control actuators such as a fuel injector (not shown) Electrically connected.
  • the amount of PM discharged to the downstream side of the particulate filter 24 can be detected.
  • the PM removal rate by the particulate filter 24 decreases, so the amount of PM discharged to the downstream side of the particulate filter 24 greatly increases.
  • the presence or absence of a failure of the particulate filter 24 can be accurately detected based on the PM discharge amount on the downstream side of the particulate filter 24 detected by the PM sensor 2.
  • the installation location of the PM sensor 2 in the present invention is not limited to the downstream side of the particulate filter 24.
  • the PM sensor 2 may be provided at a position where the PM discharged from the internal combustion engine 20 is directly detected.
  • FIG. 2 is a cross-sectional view showing the PM sensor 2
  • FIG. 3 is an enlarged view of a part of the sensor element portion of the PM sensor 2.
  • the PM sensor 2 includes a cover 4 and an element portion 6 installed in a space in the cover 4.
  • the cover 4 has a plurality of holes through which gas passes. Exhaust gas flows into the cover 4 from the plurality of holes of the cover 4, and the element portion 6 comes into contact with the exhaust gas.
  • the element portion 6 has a pair of electrodes 8 and 10 on the surface thereof.
  • the pair of electrodes 8 and 10 are arranged at a certain distance from each other without being in contact with each other.
  • Each of the electrodes 8 and 10 has a dense region in which the electrodes are arranged more densely than other portions. More specifically, each of the electrodes 8 and 10 is formed with conductive portions 8a and 10a extending in the longitudinal direction of the element portion 6 in a region other than the dense region.
  • conductive portions 8a and 10a and a plurality of conductive portions 8b and 10b formed in a direction perpendicular to the conductive portions 8a and 10b are formed in a dense region near the tip of the element portion 6. That is, each of the electrodes 8 and 10 has conductive portions 8b and 10b arranged in a comb-like shape in the dense region of the element portion 6, and the comb-like portions are arranged so as to be engaged with each other. .
  • FIG. 4 is a schematic cross-sectional view taken along line AB in FIG. The upper side of FIG. 4 corresponds to the surface side of the element portion 6 of FIG.
  • FIG. 5 is a diagram schematically showing how PM is deposited between the electrodes 8 and 10.
  • the electrodes 8 and 10 are disposed in contact with the insulating layer 12.
  • the insulating layer 12 has a function of attaching PM.
  • a temperature sensor 14 temperature detection means such as a thermocouple corresponding to each of the electrodes 8 and 10 is embedded in the vicinity of the electrodes 8 and 10 inside the insulating layer 12.
  • the electrodes 8 and 10 are each connected to a power source (not shown) via a power circuit or the like. Thereby, a voltage is applied between the electrode 8 and the electrode 10. By applying this voltage, an electric field is generated between the electrodes 8 and 10, and the charged PM in the exhaust gas is attracted by this electric field, and PM is deposited between the electrodes 8 and 10 (see FIG. 5). .
  • the detector (not shown) which detects the electromotive force which arises to each temperature sensor 14 is connected via the predetermined
  • the heater 16 (heating means) is embedded in the lower layer of the temperature sensor 14.
  • the heater 16 is formed such that the center of heat generation is located immediately below the dense region of the electrodes 8 and 10, and is particularly configured to efficiently heat the dense region.
  • the heater 16 can be energized via a power supply circuit or the like.
  • the above-described detector, power supply circuit, and the like are electrically connected to the ECU 50 and controlled by the ECU 50.
  • the PM sensor 2 emits a sensor output corresponding to the electrical resistance between the electrodes 8 and 10.
  • the ECU 50 can detect the PM discharge amount (the amount of PM that has passed through the installation location of the PM sensor 2) based on the sensor output of the PM sensor 2.
  • the PM deposited between the electrodes 8 and 10 can be burned and removed by energizing the heater 16 to heat the element portion 6. Removing the PM accumulated between the electrodes 8 and 10 by energizing the heater 16 is referred to as “reset”.
  • FIG. 6 is a diagram illustrating the relationship between the sensor output of the PM sensor 2 and the PM discharge amount when the PM discharge amount is detected.
  • the PM discharge amount on the horizontal axis in FIG. 6 is the integrated amount of PM that has passed through the installation position of the PM sensor 2 after reset.
  • the electrodes 8 and 10 are insulated.
  • the sensor output is zero.
  • FIG. 6 the sensor output is zero at the beginning of detection.
  • the diagram on the left side of FIG. 5 shows a state in which PM starts to be deposited between the electrodes 8 and 10 but a conduction path is not yet formed. In this state, since the electrodes 8 and 10 are insulated, the sensor output remains zero.
  • PM is further deposited between the electrodes 8 and 10 and reaches a certain deposition amount, a conductive path is formed between the electrodes 8 and 10 by the deposited PM as shown in the right side of FIG. .
  • the PM in the exhaust gas passing through the location where the PM sensor 2 is installed is attracted to the PM sensor 2 at a constant rate and is between the electrodes 8 and 10. accumulate. For this reason, there is a correlation between the amount of PM that has passed through the installation location of the PM sensor 2 (PM discharge amount) and the amount of PM deposited between the electrodes 8 and 10. Further, the PM accumulation amount between the electrodes 8 and 10 and the sensor output have the relationship described above. That is, when the PM deposition amount between the electrodes 8 and 10 reaches a predetermined amount, a conduction path is formed and sensor output starts to be output. The sensor output increases as the PM accumulation amount further increases. Therefore, the sensor output and the PM emission amount have a relationship as shown in FIG. Therefore, the PM emission amount can be obtained based on the sensor output.
  • the PM discharge amount when the sensor output starts to be output becomes a certain value ⁇ (for example, 30 mg). Therefore, after resetting the PM sensor 2 and starting detection, the ECU 50 can determine that the PM discharge amount from the reset time to the time point has reached the above ⁇ at the time when the sensor output starts to be output. Further, as shown in FIG. 6, when the sensor output becomes Y, the ECU 50 may determine that the PM emission amount from the reset time to that time has reached ⁇ .
  • for example, 30 mg
  • the ECU 50 determines whether or not the PM accumulation amount between the electrodes 8 and 10 has reached the amount to be reset based on the sensor output or the like. When the ECU 50 determines that the PM accumulation amount has reached the amount to be reset, the ECU 50 resets the PM sensor 2. When the reset of the PM sensor 2 is completed, detection of the next PM discharge amount is started.
  • the PM discharge amount when the sensor output starts to be output is referred to as “detection lower limit PM amount”.
  • the sensor output remains zero until the reset PM discharge amount reaches the detection lower limit PM amount ⁇ . Therefore, a range where the PM discharge amount is less than the detection lower limit PM amount ⁇ is a dead zone where the sensor output does not react to the PM discharge amount.
  • the sensor output remains zero, so the PM discharge amount cannot be detected.
  • the time until the sensor output starts to be output after resetting is referred to as “dead zone time”. That is, the dead zone time is the time until the PM discharge amount after reset reaches the detection lower limit PM amount ⁇ .
  • the dead zone time is the time until the PM discharge amount after reset reaches the detection lower limit PM amount ⁇ .
  • the amount of PM discharged from the internal combustion engine 20 per hour varies greatly depending on the operating conditions of the internal combustion engine 20, it greatly depends on how the vehicle driver operates. For example, in the case of a driver who tends to frequently accelerate and open / close the accelerator pedal, the engine load suddenly fluctuates, so the PM emission amount per hour increases. On the other hand, in the case of a driver who performs gentle driving without sudden acceleration or opening / closing of the accelerator pedal as much as possible, the fluctuation of the engine load becomes gentle, so that the PM emission amount per hour decreases.
  • the particulate filter 24 normally traps PM in the exhaust gas at a certain rate. For this reason, the amount of PM discharged per hour from the internal combustion engine 20 and the amount of PM discharged per hour on the downstream side of the particulate filter 24 show the same tendency.
  • the dead zone time becomes long.
  • the time required for one detection becomes long, and the state where the ECU 50 cannot grasp the PM discharge amount continues for a long time. For this reason, when a failure of the particulate filter 24 occurs, it may not be possible to immediately detect this, which is not preferable.
  • FIG. 7 is a diagram for explaining the influence of the applied voltage between the electrodes 8 and 10.
  • FIG. 7 shows the relationship between the sensor output of the PM sensor 2 and the PM discharge amount when the PM discharge amount is detected under different applied voltages.
  • the applied voltage between the electrodes 8 and 10 is set to be relatively high. Thereby, since the dead zone time can be shortened, it is possible to prevent the time required for one PM discharge amount detection from becoming too long even when the PM discharge amount is small. Further, when it is estimated that the PM emission amount is large, the applied voltage between the electrodes 8 and 10 is set to be relatively low. Thereby, since the increase rate of the PM deposition amount between the electrodes 8 and 10 can be reduced, the frequency of resetting the PM sensor 2 can be reduced. For this reason, even if it is a case where PM discharge
  • the amount of PM emission is estimated as follows. As described above, in the case of a driver who tends to frequently accelerate and open / close the accelerator pedal, it can be estimated that the amount of PM discharged from the internal combustion engine 20 per hour is large. A value obtained by temporally integrating the change rate of the accelerator opening when the accelerator opening changes to the plus side (hereinafter referred to as an “accelerator opening change rate integrated value”) is used for sudden acceleration or acceleration during the integrated period. This is an indicator of whether the pedal is frequently opened or closed. Therefore, when the accelerator opening change speed integrated value is large, it can be determined that rapid acceleration and opening / closing of the accelerator pedal are frequent and that the PM emission amount is large.
  • the accelerator opening change rate integrated value when the accelerator opening change rate integrated value is small, it can be determined that there is little sudden acceleration or accelerator pedal opening and closing, and that the PM emission amount is small. Therefore, in the present embodiment, when the accelerator opening change rate integrated value is large, the applied voltage between the electrodes 8 and 10 is corrected to decrease, and when the accelerator opening change rate integrated value is small, the electrode is changed. The applied voltage between 8 and 10 was corrected to increase.
  • FIG. 8 is a flowchart of a routine executed by the ECU 50 when detecting the PM emission amount in the present embodiment.
  • the routine shown in FIG. 8 first, resetting of the PM sensor 2 is started (step 100). When the PM deposited between the electrodes 8 and 10 can be removed, the resetting of the PM sensor 2 is finished (step 102).
  • step 104 a process of setting an applied voltage between the electrodes 8 and 10 is performed (step 104).
  • the ECU 50 Based on the output history of the accelerator opening sensor 30, the ECU 50 sequentially calculates the accelerator opening change rate integrated value in the past predetermined period. As described above, it can be estimated that the larger the accelerator opening change rate integrated value is, the larger the amount of PM discharged from the internal combustion engine 20 per hour tends to be. The smaller the accelerator opening change rate integrated value is, the smaller the internal combustion engine 20 is. It can be estimated that the amount of PM discharged from the engine 20 per hour tends to be small.
  • step 104 the accelerator opening change speed integrated value is read. FIG.
  • step 104 the applied voltage used for detection of the current PM discharge amount is calculated by multiplying the standard applied voltage by the correction coefficient obtained based on the map shown in FIG. After the applied voltage is set in this way, detection of the PM discharge amount is started (step 106). In step 106, the voltage set in step 104 is applied between the electrodes 8 and 10.
  • the correction coefficient is increased. Therefore, the applied voltage between the electrodes 8 and 10 can be made higher than the standard. Thereby, since the dead zone time can be shortened, it is possible to prevent the time required for one PM discharge amount detection from becoming too long.
  • the correction coefficient is reduced, so the applied voltage between the electrodes 8 and 10 is Can be lower than standard. For this reason, the frequency of reset of the PM sensor 2 can be reduced, and the power consumption of the heater 16 can be suppressed.
  • the accelerator opening change speed integrated value corresponds to the “index” in the first and second inventions.
  • the “voltage applying means” in the first invention calculates the accelerator opening change rate integrated value in the past predetermined period.
  • the “emission index obtaining unit” in the first invention realizes the “voltage adjusting unit” in the first invention by executing the processing of step 104 above.
  • Embodiment 2 FIG. Next, the second embodiment of the present invention will be described with reference to FIG. 10. The description will focus on the differences from the first embodiment described above, and the same matters will be simplified or described. Omitted.
  • the amount of PM emission is estimated based on the accelerator opening change rate integrated value.
  • PM based on a value obtained by temporally integrating the amount of change of the air flow rate detected by the air flow meter 26 to the plus side (hereinafter referred to as “air flow rate change integrated value”), PM Estimate the amount of emissions.
  • air flow rate change integrated value a value obtained by temporally integrating the amount of change of the air flow rate detected by the air flow meter 26 to the plus side
  • PM Estimate the amount of emissions.
  • the air flow rate change integrated value in a certain period is relatively large, it indicates that there are many sudden fluctuations in the engine load in that period, so it can be estimated that the PM emission amount is large.
  • the integrated value of the air flow rate during that period is relatively small, it indicates that the fluctuation of the engine load during that period is moderate, so it can be estimated that the PM emission amount is small.
  • FIG. 10 is a map showing the relationship between the air flow rate change integrated value and the correction coefficient of the applied voltage.
  • the correction coefficient decreases as the air flow rate change integrated value increases.
  • the ECU 50 Based on the output history of the air flow meter 26, the ECU 50 sequentially calculates the air flow rate change integrated value in the past predetermined period.
  • step 104 of FIG. 8 a correction coefficient is obtained based on the map shown in FIG. 10 instead of the map shown in FIG. 9, and the obtained correction coefficient is multiplied by the standard applied voltage, whereby the electrode 8 , 10 is set.
  • the correction coefficient is increased, and therefore, between the electrodes 8 and 10.
  • the applied voltage can be made higher than the standard. Therefore, since the dead zone time can be shortened, it is possible to prevent the time required for one PM discharge amount detection from becoming too long.
  • the correction coefficient is reduced, so that the applied voltage between the electrodes 8 and 10 is made to be higher than the standard. Can be lowered. For this reason, the frequency of reset of the PM sensor 2 can be reduced, and the power consumption of the heater 16 can be suppressed.
  • the integrated air flow rate change value corresponds to the “index” in the first and second inventions.
  • Embodiment 3 FIG. Next, a third embodiment of the present invention will be described with reference to FIG. 11. The description will focus on the differences from the first embodiment described above, and the same matters will be simplified or described. Omitted.
  • the amount of PM emission is estimated based on the accelerator opening change rate integrated value.
  • the amount of PM emission is estimated based on the dead zone time in the PM emission detection performed in the past.
  • the rate at which PM is deposited between the electrodes 8 and 10 is high, so it can be estimated that the PM emission amount tends to be large.
  • the dead zone time in the PM emission amount detection performed in the past is long, the rate at which PM is deposited between the electrodes 8 and 10 will be slow, so it is assumed that the PM emission amount tends to be small. Can do.
  • FIG. 11 is a map showing the relationship between the dead zone time and the correction coefficient of the applied voltage.
  • the correction coefficient is determined to increase as the dead zone time increases.
  • the ECU 50 calculates a dead zone time (for example, an average value of a predetermined number of times in the past) that serves as a guideline for PM emission detection performed in the past.
  • the correction coefficient is obtained based on the map shown in FIG. 11 instead of the map shown in FIG. 9, and the obtained correction coefficient is multiplied by the standard applied voltage to thereby obtain the electrode 8. , 10 is set.
  • the correction coefficient is increased.
  • the applied voltage between the electrodes 8 and 10 can be made higher than the standard. Therefore, since the dead zone time can be shortened, it is possible to prevent the time required for one PM discharge amount detection from becoming too long.
  • the correction coefficient is reduced, so that the applied voltage between the electrodes 8 and 10 should be lower than the standard. Can do. For this reason, the frequency of reset of the PM sensor 2 can be reduced, and the power consumption of the heater 16 can be suppressed.
  • the dead zone time corresponds to the “index” in the first and third inventions.
  • Embodiment 4 FIG. Next, the fourth embodiment of the present invention will be described with reference to FIG. 12. The description will focus on the differences from the above-described embodiments, and the description of the same matters will be simplified or omitted. To do.
  • the following control is executed in combination with any of the first to third embodiments described above.
  • one operation time time from start to stop
  • the dead zone time is too long in relation to one operation time, there is a possibility that the internal combustion engine 20 is stopped before the PM emission amount detection is completed once. If such a situation occurs, the ECU 50 cannot grasp information such as the PM emission amount or the presence or absence of a failure of the particulate filter 24, which is not preferable.
  • the ECU 50 learns and calculates an average operation time that is a past average one-time operation time. For example, the average operation time is calculated by dividing the total operation time of the internal combustion engine 20 by the number of start times.
  • FIG. 12 is a map showing the relationship between the average operation time and the correction coefficient of the applied voltage. In the map shown in FIG. 12, the correction coefficient is determined to increase as the average operation time becomes shorter.
  • the applied voltage calculated by any one of the methods of the first to third embodiments is further multiplied by the correction coefficient obtained based on the map shown in FIG. The final applied voltage is calculated.
  • the applied voltage between the electrodes 8 and 10 is corrected so as to be increased, so that the dead zone time can be shortened. For this reason, even in the internal combustion engine 20 that is used under a use condition in which one operation time is short, at least one PM emission amount detection can be reliably completed before the engine is stopped. Therefore, it is possible to make the ECU 50 surely grasp information such as the PM emission amount and the presence or absence of a failure of the particulate filter 24.
  • the ECU 50 calculates the average driving time based on the past driving history so that the “average driving time calculating means” in the fourth invention is based on the map shown in FIG.
  • the “correcting means” in the fourth aspect of the present invention is realized.

Abstract

 本発明は、内燃機関の粒子状物質検出装置において、1回の検出に要する時間の短縮と、センサリセットのためのヒータの消費電力の抑制とのバランスを適正に保つことのできる内燃機関の粒子状物質検出装置を提供することを目的とする。 本発明の内燃機関の粒子状物質検出装置は、内燃機関の排気通路に配置され、粒子状物質を捕集する一対の電極を有するセンサと、一対の電極間に電圧を印加する電圧印加手段と、粒子状物質の排出量の多寡と関連する所定の指標を取得する排出量指標取得手段と、排出量指標取得手段により取得された指標に基づき、粒子状物質排出量が多い場合には粒子状物質排出量が少ない場合に比して一対の電極間に印加する電圧が低くなるように電圧を調節する電圧調節手段と、を備える。

Description

内燃機関の粒子状物質検出装置
 本発明は、内燃機関の粒子状物質検出装置に関する。
 日本特開2009-144577号公報には、内燃機関の排気通路に設けられたパティキュレートフィルタと、パティキュレートフィルタの下流に設けられた、パティキュレートマター(PM)が付着する電気絶縁材と、この電気絶縁材に相互に離間して設けられた複数の電極と、この複数の電極間の電気抵抗値に相関する指標を計測し、計測した指標が所定基準より小さくなったことを検出すると、パティキュレートフィルタの故障を判定する制御手段とを備えたパティキュレートフィルタの故障判定装置が開示されている。
日本特開2009-144577号公報
 上記公報に開示されたようなPMセンサでは、電極間に電圧を印加することによって電界を発生させ、排気ガス中の帯電した粒子状物質を、その電界によって引き寄せて捕集する。そして、電極間に粒子状物質が堆積すると電極間の電気抵抗が低下することを利用して、排気ガス中の粒子状物質の量を検出する。このPMセンサには、堆積した粒子状物質を燃焼除去するためのヒータが設けられている。PMセンサに堆積した粒子状物質が所定量に達した場合には、このヒータに通電し、堆積した粒子状物質を燃焼除去すること、すなわちPMセンサのリセットが行われる。
 このようなPMセンサでは、リセット後、電極間の粒子状物質の堆積量が一定の量に達するまでの間は、電極間の電気抵抗に変化が現れない。PMセンサのリセット後、電極間の電気抵抗(センサ出力)に変化が現れるまでの時間を、以下、「不感帯時間」と称する。1回の検出が終了するには、少なくとも不感帯時間以上の時間が必要となる。
 時間当たりの粒子状物質の排出量は、内燃機関の運転状況などによって大きく異なる。例えば、機関負荷の変動が緩やかな場合には粒子状物質排出量は少ないが、機関負荷の急な変動が多い場合には粒子状物質排出量が多くなる。時間当たりの粒子状物質排出量が少ないときには、電極間の粒子状物質の堆積量が上記一定の量に到達するまでに時間がかかるので、不感帯時間が長くなる。このため、1回の検出に要する時間が長くなり、粒子状物質の排出量を把握できない状態が長時間に渡って続くこととなり、好ましくない。逆に、時間当たりの粒子状物質排出量が多いときには、電極間の粒子状物質の堆積量が、短時間のうちに、リセットを行うべき量に到達する。このため、PMセンサのリセットが頻繁に行われることとなり、ヒータの消費電力が大きくなるという問題がある。
 本発明は、上記の点に鑑みてなされたものであり、1回の検出に要する時間の短縮と、センサリセットのためのヒータの消費電力の抑制とのバランスを適正に保つことのできる内燃機関の粒子状物質検出装置を提供することを目的とする。
 第1の発明は、上記の目的を達成するため、内燃機関の粒子状物質検出装置であって、
 内燃機関の排気通路に配置され、粒子状物質を捕集する一対の電極を有するセンサと、
 前記一対の電極間に電圧を印加する電圧印加手段と、
 前記粒子状物質の排出量の多寡と関連する所定の指標を取得する排出量指標取得手段と、
 前記排出量指標取得手段により取得された指標に基づき、粒子状物質排出量が多い場合には粒子状物質排出量が少ない場合に比して前記一対の電極間に印加する電圧が低くなるように電圧を調節する電圧調節手段と、
 を備えることを特徴とする。
 また、第2の発明は、第1の発明において、
 前記指標は、前記内燃機関の負荷変動の緩急を表す値であることを特徴とする。
 また、第3の発明は、第1の発明において、
 前記指標は、前記センサに堆積した粒子状物質を除去した後、前記センサの出力に変化が現れるまでの時間であることを特徴とする。
 また、第4の発明は、第1乃至第3の発明の何れかにおいて、
 前記内燃機関の平均的な1回の運転時間である平均運転時間を算出する平均運転時間算出手段と、
 前記平均運転時間算出手段により算出された平均運転時間が短い場合には該平均運転時間が長い場合に比して前記一対の電極間に印加する電圧を高くする方向に補正する補正手段と、
 を備えることを特徴とする。
 第1の発明によれば、粒子状物質排出量が多い場合には、電極間の印加電圧を比較的低くして電界を弱くすることができる。このため、電極間に粒子状物質が堆積する速度を抑制することができる。これにより、粒子状物質排出量が多い場合であっても、電極間に堆積した粒子状物質を除去するためのセンサリセットが頻繁に生ずることを確実に防止することができ、センサリセットに要するヒータの消費電力を低減することができる。一方、粒子状物質排出量が少ない場合には、電極間の印加電圧を比較的高くして電界を強くすることができる。このため、電極間に粒子状物質が堆積する速度を上昇させることができるので、粒子状物質排出量の1回の検出に要する時間を短縮することができる。これにより、粒子状物質排出量が少ない場合であっても、1回の検出に要する時間が長くなりすぎることを確実に防止することができる。
 第2の発明によれば、内燃機関の負荷変動の緩急を表す値を指標とすることにより、粒子状物質排出量の多寡を精度良く推測することができる。
 第3の発明によれば、センサに堆積した粒子状物質を除去した後、センサの出力に変化が現れるまでの時間(不感帯時間)を指標とすることにより、粒子状物質排出量の多寡を精度良く推測することができる。
 第4の発明によれば、内燃機関の平均運転時間が短い場合には該平均運転時間が長い場合に比して電極間の印加電圧を高くする方向に補正することができる。このため、1回の運転時間が短い使用条件で用いられる内燃機関においても、機関停止前に少なくとも1回の粒子状物質排出量検出を確実に完了させることができる。
本発明の実施の形態1のシステム構成を説明するための図である。 PMセンサを示す断面図である。 PMセンサのセンサ素子部の一部を拡大した図である。 図3中のA-B線での模式的な断面図である。 電極間にPMが堆積する様子を模式的に示す図である。 PMセンサのセンサ出力とPM排出量との関係を示す図である。 PMセンサのセンサ出力とPM排出量との関係を示す図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 アクセル開度変化速度積算値と、印加電圧の補正係数との関係を示すマップである。 空気流量変化積算値と、印加電圧の補正係数との関係を示すマップである。 不感帯時間と、印加電圧の補正係数との関係を示すマップである。 平均運転時間と、印加電圧の補正係数との関係を示すマップである。
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。
実施の形態1.
 図1は、本発明の実施の形態1のシステム構成を説明するための図である。図1に示すように、本実施形態のシステムは、内燃機関20を備えている。内燃機関20は、例えば車両に動力源として搭載される。内燃機関20の排気通路22の途中には、排気ガス中の粒子状物質(Particulate Matter、以下「PM」と略記することもある。)をトラップする機能を有するパティキュレートフィルタ24が設置されている。パティキュレートフィルタ24の下流側の排気通路22には、粒子状物質を検出可能なPMセンサ2が設置されている。
 本実施形態のシステムは、更に、ECU(Electronic Control Unit)50を備えている。ECU50には、PMセンサ2のほか、内燃機関20の吸入空気量を検出するエアフローメータ26、内燃機関20の出力軸の回転角度を検出するクランク角センサ28、内燃機関20を搭載した車両の運転席のアクセルペダルの踏み込み量(以下、「アクセル開度」と称する)を検出するアクセル開度センサ30等の各種のエンジン制御用センサ、並びに、図示しない燃料インジェクタ等の各種のエンジン制御用アクチュエータが電気的に接続されている。
 本実施形態では、パティキュレートフィルタ24の下流側にPMセンサ2を設けたことにより、パティキュレートフィルタ24の下流側に排出されたPMの量を検出することができる。パティキュレートフィルタ24に故障が生じた場合には、パティキュレートフィルタ24によるPM除去率が低下するので、パティキュレートフィルタ24の下流側に排出されるPMの量が大きく増加する。本実施形態では、PMセンサ2で検出されるパティキュレートフィルタ24の下流側のPM排出量に基づいて、パティキュレートフィルタ24の故障の有無を精度良く検出することができる。
 ただし、本発明におけるPMセンサ2の設置箇所は、パティキュレートフィルタ24の下流側に限定されるものではない。例えば、内燃機関20から排出されるPMを直接検出する位置にPMセンサ2を設けてもよい。
 図2は、PMセンサ2を示す断面図、図3は、PMセンサ2のセンサ素子部の一部を拡大した図である。図2に示すように、PMセンサ2は、カバー4と、カバー4内の空間に設置された素子部6とを備えている。カバー4は、気体を通過させる複数の孔を有している。カバー4の複数の孔からカバー4内部に排気ガスが流入し、素子部6が排気ガスに接した状態となる。
 図3に示されるように、素子部6は、その表面に一対の電極8,10を有している。一対の電極8,10は、互いに接触しない状態で、互いに一定の間隔を開けて配置されている。電極8,10は、それぞれ電極が他の部分より密に配置された密領域を有している。より具体的には、電極8,10のそれぞれは、密領域以外の領域には、素子部6の長手方向にのびる導電部8a,10aが形成されている。一方、素子部6の先端付近の密領域には、導電部8a,10aと、導電部8a、10bに垂直な方向に形成された複数の導電部8b、10bとが形成されている。すなわち、電極8,10それぞれは、素子部6の密領域に櫛歯形状に配置された導電部8b,10bを有し、この櫛歯形状の部分は、互いに噛み合わされるように配置されている。
 図4は、図3中のA-B線での模式的な断面図である。図4の上側が、図3の素子部6の表面側に対応している。図5は、電極8,10間にPMが堆積する様子を模式的に示す図である。
 図4に示すように、電極8,10は、絶縁層12に接して配置されている。絶縁層12は、PMを付着させる機能を有する。絶縁層12内部の電極8,10の近傍には、電極8,10のそれぞれ対応する熱電対などの温度センサ14(温度検出手段)が埋め込まれている。
 電極8と電極10とは、それぞれ、電源回路等を介して電源(図示せず)に接続される。これにより、電極8と電極10との間に電圧が印加される。この電圧を印加することにより、電極8,10間に電界が発生し、この電界によって排気ガス中の帯電したPMが引き寄せられ、電極8,10間にPMが堆積していく(図5参照)。
 温度センサ14にはそれぞれに生じる起電力を検出する検出器(図示せず)が所定の回路を介して接続されている。温度センサ14の起電力を検出することで、電極8,10近傍の温度を検出することができる。
 温度センサ14の下層にはヒータ16(加熱手段)が埋め込まれている。ヒータ16は、その発熱の中心が、電極8,10の密領域のすぐ下層にくるように形成されており、特にこの密領域が効率的に加熱するように構成されている。このヒータ16には、電源回路等を介して通電可能になっている。
 上記の検出器や電源回路等は、ECU50に電気的に接続され、ECU50によって制御される。PMセンサ2は、電極8,10間の電気抵抗に応じたセンサ出力を発する。ECU50は、PMセンサ2のセンサ出力に基づいて、PM排出量(PMセンサ2の設置箇所を通過したPMの量)を検出することができる。
 電極8,10間に堆積したPMの量が、ある一定の限度を超えた場合には、その堆積したPMを除去する必要がある。本実施形態では、ヒータ16に通電して素子部6を加熱することにより、電極8,10間に堆積したPMを燃焼させて除去することができる。ヒータ16に通電して電極8,10間に堆積したPMを除去することを「リセット」と称する。
 PM排出量の検出は、PMセンサ2をリセットした状態から開始される。図6は、PM排出量の検出を行った際のPMセンサ2のセンサ出力と、PM排出量との関係を示す図である。図6の横軸のPM排出量とは、リセット後にPMセンサ2の設置位置を通過したPMの積算量である。
 PMセンサ2をリセットした状態では、電極8,10間は絶縁されている。電極8,10間が絶縁されているときには、センサ出力はゼロとなる。このため、図6に示すように、検出開始当初、センサ出力は、ゼロとなる。図5の左側の図は、電極8,10間にPMが堆積し始めたが、導通パスがまだ形成されていない状態を表している。この状態では、電極8,10間が絶縁されているので、センサ出力はゼロのままとなる。電極8,10間にPMが更に堆積していき、ある一定の堆積量に達すると、図5の右側の図に示すように、堆積したPMによって電極8,10間に導通パスが形成される。このような導通パスが形成されると、電極8,10間の電気抵抗が下がり、センサ出力が出始める。そして、PM堆積量が更に多くなるほど、導通パスが大きくなり、電極8,10間の電気抵抗が更に下がる。このようにして電極8,10間の電気抵抗が小さくなるにつれて、センサ出力が大きくなる。
 電極8,10間に印加された電圧によって発生した電界により、PMセンサ2の設置箇所を通過する排気ガス中のPMは、一定の割合で、PMセンサ2に引き寄せられて電極8,10間に堆積する。このため、PMセンサ2の設置箇所を通過したPMの量(PM排出量)と、電極8,10間のPM堆積量とは、相関がある。また、電極8,10間のPM堆積量と、センサ出力とは、上述した関係がある。すなわち、電極8,10間のPM堆積量が所定量に到達すると、導通パスが形成され、センサ出力が出始める。そして、PM堆積量が更に多くなるにつれて、センサ出力が大きくなる。このため、センサ出力とPM排出量とは、図6に示すような関係となる。よって、センサ出力に基づいて、PM排出量を求めることができる。
 図6に示すように、センサ出力が出始めたとき(導通パスが形成されたとき)のPM排出量は、ある一定の値α(例えば30mg)となる。したがって、ECU50は、PMセンサ2をリセットして検出を開始した後、センサ出力が出始めた時点で、リセット時からその時点までのPM排出量が上記αに達したと判定することができる。また、ECU50は、図6に示すように、センサ出力がYになった時点で、リセット時からその時点までのPM排出量がβに達したと判定するようにしてもよい。
 また、ECU50は、電極8,10間のPM堆積量が、リセットを行うべき量に到達したかどうかを、センサ出力等に基づいて判断する。そして、ECU50は、リセットを行うべき量にPM堆積量が到達したと判定した場合には、PMセンサ2をリセットする。PMセンサ2のリセットが終了すると、次回のPM排出量の検出を開始する。
 以下の説明では、センサ出力が出始めるときのPM排出量を「検出下限PM量」と称する。図6に示すように、リセット後のPM排出量が検出下限PM量αに達するまでの間は、センサ出力がゼロのままとなる。したがって、PM排出量が検出下限PM量α未満の範囲は、センサ出力がPM排出量に反応しない不感帯となる。このように、リセット後のPM排出量が検出下限PM量αに達するまでの間は、センサ出力がゼロのままであるので、PM排出量を検出することができない。
 リセット後、センサ出力が出始めるまでの時間を以下「不感帯時間」と称する。すなわち、不感帯時間は、リセット後のPM排出量が検出下限PM量αに達するまでの時間である。時間当たりのPM排出量が多い場合には、リセット後のPM排出量が短時間のうちに検出下限PM量αに到達するので、不感帯時間は短くなる。逆に、時間当たりのPM排出量が少ない場合には、リセット後のPM排出量が検出下限PM量αに到達するまでに長い時間がかかるので、不感帯時間は長くなる。
 内燃機関20から時間当たりに排出されるPMの量は、内燃機関20の運転状況によって大きく異なるので、車両の運転者の運転の仕方に大きく依存する。例えば、急加速やアクセルペダルの開閉を頻繁にしがちな運転者の場合には、機関負荷の急な変動が多くなるので、時間当たりのPM排出量は多くなる。一方、急加速やアクセルペダルの開閉をなるべくしない、穏やかな運転を行う運転者の場合には、機関負荷の変動が緩やかになるので、時間当たりのPM排出量は少なくなる。パティキュレートフィルタ24は、通常、排気ガス中のPMを一定の割合でトラップする。このため、内燃機関20から時間当たりに排出されるPMの量と、パティキュレートフィルタ24の下流側における時間当たりのPM排出量とは、同様の傾向を示す。
 以上のようなことから、内燃機関20から時間当たりに排出されるPMの量が少ない場合には、PMセンサ2のリセット後のPM排出量が検出下限PM量αに到達するまでに長い時間がかかるので、不感帯時間が長くなる。不感帯時間が長すぎる場合には、1回の検出に要する時間が長くなり、ECU50がPM排出量を把握できない状態が長時間に渡って続くことになる。このため、パティキュレートフィルタ24の故障が生じた場合などに、そのことを直ちに検出することができないおそれがあり、好ましくない。
 逆に、内燃機関20から時間当たりに排出されるPMの量が多い場合には、電極8,10間にPMが堆積する速度が速くなるので、電極8,10間のPM堆積量が、短時間のうちに、リセットを行うべき量に到達する。このため、PMセンサ2のリセットが頻繁に行われることとなり、ヒータ16の消費電力が大きくなるという問題がある。
 上述したような点を改善するためには、PM排出量の多寡を推測し、その推測結果に応じて、電極8,10間の印加電圧を変更することが望ましい。図7は、電極8,10間の印加電圧の影響を説明するための図である。図7には、異なる印加電圧の下でPM排出量の検出を行った際のPMセンサ2のセンサ出力とPM排出量との関係が示されている。電極8,10間の印加電圧を高くすると、発生する電界が強くなるので、排気ガス中のPMを引き寄せる力が強くなる。したがって、電極8,10間の印加電圧が高い場合には、排気ガス中のPMが電極8,10間に堆積する割合が高くなる。このため、電極8,10間の印加電圧が高い場合ほど、電極8,10間のPM堆積量の増加速度が速くなり、導通パスが早期に形成される。よって、電極8,10間の印加電圧が高い場合ほど、不感帯時間は短くなり、また、検出下限PM量αは小さくなる。
 一方、電極8,10間の印加電圧が低い場合には、発生する電界が弱くなるので、排気ガス中のPMを引き寄せる力が弱くなる。したがって、排気ガス中のPMが電極8,10間に堆積する割合が低くなる。このため、電極8,10間の印加電圧が低い場合には、電極8,10間のPM堆積量の増加速度が遅くなるので、不感帯時間は長くなり、また、検出下限PM量αは大きくなる。
 上記の事項に鑑み、本実施形態では、PM排出量が少ないと推測される場合には電極8,10間の印加電圧を比較的高くすることとした。これにより、不感帯時間を短縮することができるので、PM排出量が少ない場合であっても、1回のPM排出量検出に要する時間が長くなりすぎることを防止することができる。また、PM排出量が多いと推測される場合には、電極8,10間の印加電圧を比較的低くすることとした。これにより、電極8,10間のPM堆積量の増加速度を低下させることができるので、PMセンサ2のリセットの頻度を低下させることができる。このため、PM排出量が多い場合であっても、ヒータ16の消費電力を抑制することができる。
 また、本実施形態では、PM排出量の多寡を次のようにして推測することとした。前述したように、急加速やアクセルペダルの開閉を頻繁にしがちな運転者の場合には、内燃機関20から時間当たりに排出されるPMの量が多いと推測することができる。アクセル開度がプラス側に変化するときのアクセル開度の変化速度を時間的に積算した値(以下、「アクセル開度変化速度積算値」と称する)は、その積算した期間において急加速やアクセルペダルの開閉が多いかどうかの指標となる。したがって、アクセル開度変化速度積算値が大きい場合には、急加速やアクセルペダルの開閉が頻繁であり、PM排出量が多いと判断できる。逆に、アクセル開度変化速度積算値が小さい場合には、急加速やアクセルペダルの開閉が少なく、PM排出量は少ないと判断できる。そこで、本実施形態では、アクセル開度変化速度積算値が大きい場合には、電極8,10間の印加電圧を低くする方向に補正し、アクセル開度変化速度積算値が小さい場合には、電極8,10間の印加電圧を高くする方向に補正することとした。
 図8は、本実施形態においてPM排出量を検出する際にECU50が実行するルーチンのフローチャートである。図8に示すルーチンによれば、まず、PMセンサ2のリセットを開始する(ステップ100)。そして、電極8,10間に堆積したPMが除去できたら、PMセンサ2のリセットを終了する(ステップ102)。
 続いて、PM排出量の検出開始に先立ち、電極8,10間の印加電圧を設定する処理が行われる(ステップ104)。ECU50は、アクセル開度センサ30の出力の履歴に基づいて、過去所定期間におけるアクセル開度変化速度積算値を逐次算出している。前述したように、アクセル開度変化速度積算値が大きいほど、内燃機関20から時間当たりに排出されるPMの量が多い傾向にあると推測でき、アクセル開度変化速度積算値が小さいほど、内燃機関20から時間当たりに排出されるPMの量が少ない傾向にあると推測できる。ステップ104では、このアクセル開度変化速度積算値が読み込まれる。図9は、アクセル開度変化速度積算値と、印加電圧の補正係数との関係を示すマップである。図9に示すマップでは、アクセル開度変化速度積算値が大きくなるにつれて補正係数が小さくなるように定められている。ステップ104では、図9に示すマップに基づいて求められた補正係数を、標準の印加電圧に乗ずることにより、今回のPM排出量の検出に用いる印加電圧が算出される。このようにして印加電圧が設定された後、PM排出量の検出が開始される(ステップ106)。このステップ106では、ステップ104で設定された電圧が電極8,10間に印加される。
 以上説明した図8に示すルーチンの処理によれば、アクセル開度変化速度積算値が比較的小さい場合、すなわち、PM排出量が少ない傾向にあると推測される場合には、補正係数が大きくされるので、電極8,10間の印加電圧を標準より高くすることができる。これにより、不感帯時間を短縮することができるので、1回のPM排出量検出に要する時間が長くなりすぎることを防止することができる。
 また、アクセル開度変化速度積算値が比較的大きい場合、すなわち、PM排出量が多い傾向にあると推測される場合には、補正係数が小さくされるので、電極8,10間の印加電圧を標準より低くすることができる。このため、PMセンサ2のリセットの頻度を低下させることができ、ヒータ16の消費電力を抑制することができる。
 上述した実施の形態1においては、アクセル開度変化速度積算値が前記第1および第2の発明における「指標」に相当している。また、ECU50が、電源回路等を介して電極8,10間に電圧を印加することにより前記第1の発明における「電圧印加手段」が、過去所定期間におけるアクセル開度変化速度積算値を算出することにより前記第1の発明における「排出量指標取得手段」が、上記ステップ104の処理を実行することにより前記第1の発明における「電圧調節手段」が、それぞれ実現されている。
実施の形態2.
 次に、図10を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同様の事項については、その説明を簡略化または省略する。
 前述した実施の形態1では、アクセル開度変化速度積算値に基づいて、PM排出量の多寡を推測している。これに対し、本実施形態では、エアフローメータ26で検出される空気流量のプラス側への変化量を時間的に積算した値(以下、「空気流量変化積算値」と称する)に基づいて、PM排出量の多寡を推測する。ある期間の空気流量変化積算値が比較的大きい場合には、その期間における機関負荷の急な変動が多いことを示しているので、PM排出量が多いと推測することができる。一方、その期間の空気流量変化積算値が比較的小さい場合には、その期間における機関負荷の変動が緩やかであることを示しているので、PM排出量は少ないと推測することができる。
 図10は、空気流量変化積算値と、印加電圧の補正係数との関係を示すマップである。図10に示すマップでは、空気流量変化積算値が大きくなるにつれて補正係数が小さくなるように定められている。ECU50は、エアフローメータ26の出力の履歴に基づいて、過去所定期間における空気流量変化積算値を逐次算出している。本実施形態では、図8のステップ104において、図9に示すマップに代えて図10に示すマップに基づいて補正係数を求め、その求めた補正係数を標準の印加電圧に乗ずることにより、電極8,10間の印加電圧が設定される。
 本実施形態によれば、空気流量変化積算値が比較的小さい場合、すなわち、PM排出量が少ない傾向にあると推測される場合には、補正係数が大きくされるので、電極8,10間の印加電圧を標準より高くすることができる。これにより、不感帯時間を短縮することができるので、1回のPM排出量検出に要する時間が長くなりすぎることを防止することができる。
 また、空気流量変化積算値が比較的大きい場合、すなわち、PM排出量が多い傾向にあると推測される場合には、補正係数が小さくされるので、電極8,10間の印加電圧を標準より低くすることができる。このため、PMセンサ2のリセットの頻度を低下させることができ、ヒータ16の消費電力を抑制することができる。
 上述した実施の形態2においては、空気流量変化積算値が前記第1および第2の発明における「指標」に相当している。
実施の形態3.
 次に、図11を参照して、本発明の実施の形態3について説明するが、上述した実施の形態1との相違点を中心に説明し、同様の事項については、その説明を簡略化または省略する。
 前述した実施の形態1では、アクセル開度変化速度積算値に基づいて、PM排出量の多寡を推測している。これに対し、本実施形態では、過去に行ったPM排出量検出における不感帯時間に基づいて、PM排出量の多寡を推測する。過去に行ったPM排出量検出における不感帯時間が短い場合は、電極8,10間にPMが堆積する速度が速いことになるので、PM排出量が多い傾向にあると推測することができる。逆に、過去に行ったPM排出量検出における不感帯時間が長い場合には、電極8,10間にPMが堆積する速度が遅いことになるので、PM排出量が少ない傾向にあると推測することができる。
 図11は、不感帯時間と、印加電圧の補正係数との関係を示すマップである。図11に示すマップでは、不感帯時間が長くなるにつれて補正係数が大きくなるように定められている。ECU50は、過去に行われたPM排出量検出における目安となる不感帯時間(例えば、過去所定回数の平均値)を算出している。本実施形態では、図8のステップ104において、図9に示すマップに代えて図11に示すマップに基づいて補正係数を求め、その求めた補正係数を標準の印加電圧に乗ずることにより、電極8,10間の印加電圧が設定される。
 本実施形態によれば、過去に行われたPM排出量検出における不感帯時間が比較的長い場合、すなわち、PM排出量が少ない傾向にあると推測される場合には、補正係数が大きくされるので、電極8,10間の印加電圧を標準より高くすることができる。これにより、不感帯時間を短縮することができるので、1回のPM排出量検出に要する時間が長くなりすぎることを防止することができる。
 また、不感帯時間が比較的短い場合、すなわち、PM排出量が多い傾向にあると推測される場合には、補正係数が小さくされるので、電極8,10間の印加電圧を標準より低くすることができる。このため、PMセンサ2のリセットの頻度を低下させることができ、ヒータ16の消費電力を抑制することができる。
 上述した実施の形態3においては、不感帯時間が前記第1および第3の発明における「指標」に相当している。
実施の形態4.
 次に、図12を参照して、本発明の実施の形態4について説明するが、上述した実施の形態との相違点を中心に説明し、同様の事項については、その説明を簡略化または省略する。
 本実施形態は、以下のような制御を前述した実施の形態1~3の何れかと組み合わせて実行する。例えば、平均的な1回の走行距離が短い用途に使用される車両のように、内燃機関20の1回の運転時間(始動から停止までの時間)が短い傾向を示す場合がある。このような場合に、1回の運転時間との関係において不感帯時間が長すぎると、PM排出量検出が1回も完了しないうちに内燃機関20が停止されてしまう事態が生ずる可能性がある。このような事態が生ずると、ECU50がPM排出量やパティキュレートフィルタ24の故障の有無などの情報を把握できなくなり、好ましくない。
 上記のような点を改善するため、本実施形態では、内燃機関20の1回の運転時間が短い傾向にある場合には、電極8,10間の印加電圧を高くする方向に補正することにより、不感帯時間を短縮することとした。ECU50は、過去の内燃機関20の運転履歴に基づいて、過去の平均的な1回の運転時間である平均運転時間を学習して算出する。例えば、内燃機関20の総運転時間を始動回数で除することにより、平均運転時間を算出する。図12は、平均運転時間と、印加電圧の補正係数との関係を示すマップである。図12に示すマップでは、平均運転時間が短くなるにつれて補正係数が大きくなるように定められている。本実施形態では、図8のステップ104において、実施の形態1~3の何れかの方法で算出された印加電圧に、図12に示すマップに基づいて求められた補正係数を更に乗ずることにより、最終的な印加電圧を算出する。
 本実施形態によれば、平均運転時間が短い場合には、電極8,10間の印加電圧を高くする方向に補正するので、不感帯時間を短縮することができる。このため、1回の運転時間が短い使用条件で用いられる内燃機関20においても、機関停止前に少なくとも1回のPM排出量検出を確実に完了させることができる。よって、PM排出量やパティキュレートフィルタ24の故障の有無などの情報をECU50に確実に把握させることができる。
 上述した実施の形態4においては、ECU50が、過去の運転履歴に基づいて平均運転時間を算出することにより前記第4の発明における「平均運転時間算出手段」が、図12に示すマップに基づいて電極8,10間の印加電圧を補正することにより前記第4の発明における「補正手段」が、それぞれ実現されている。
2  PMセンサ
6  素子部
8,10 電極
12  絶縁層
14  温度センサ
16  ヒータ
20  内燃機関
22  排気通路
24  パティキュレートフィルタ
50  ECU

Claims (4)

  1.  内燃機関の排気通路に配置され、粒子状物質を捕集する一対の電極を有するセンサと、
     前記一対の電極間に電圧を印加する電圧印加手段と、
     前記粒子状物質の排出量の多寡と関連する所定の指標を取得する排出量指標取得手段と、
     前記排出量指標取得手段により取得された指標に基づき、粒子状物質排出量が多い場合には粒子状物質排出量が少ない場合に比して前記一対の電極間に印加する電圧が低くなるように電圧を調節する電圧調節手段と、
     を備えることを特徴とする内燃機関の粒子状物質検出装置。
  2.  前記指標は、前記内燃機関の負荷変動の緩急を表す値であることを特徴とする請求項1記載の内燃機関の粒子状物質検出装置。
  3.  前記指標は、前記センサに堆積した粒子状物質を除去した後、前記センサの出力に変化が現れるまでの時間であることを特徴とする請求項1記載の内燃機関の粒子状物質検出装置。
  4.  前記内燃機関の平均的な1回の運転時間である平均運転時間を算出する平均運転時間算出手段と、
     前記平均運転時間算出手段により算出された平均運転時間が短い場合には該平均運転時間が長い場合に比して前記一対の電極間に印加する電圧を高くする方向に補正する補正手段と、
     を備えることを特徴とする請求項1乃至3の何れか1項記載の内燃機関の粒子状物質検出装置。
PCT/JP2010/069824 2010-11-08 2010-11-08 内燃機関の粒子状物質検出装置 WO2012063303A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/515,669 US8925370B2 (en) 2010-11-08 2010-11-08 Particulate matter detecting apparatus for internal combustion engine
CN201080057593.5A CN102656438B (zh) 2010-11-08 2010-11-08 内燃机的粒状物质检测装置
DE112010004519.4T DE112010004519B4 (de) 2010-11-08 2010-11-08 Partikelerfassungsvorrichtung für eine Brennkraftmaschine
JP2012521820A JP5278615B2 (ja) 2010-11-08 2010-11-08 内燃機関の粒子状物質検出装置
PCT/JP2010/069824 WO2012063303A1 (ja) 2010-11-08 2010-11-08 内燃機関の粒子状物質検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069824 WO2012063303A1 (ja) 2010-11-08 2010-11-08 内燃機関の粒子状物質検出装置

Publications (1)

Publication Number Publication Date
WO2012063303A1 true WO2012063303A1 (ja) 2012-05-18

Family

ID=46050486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069824 WO2012063303A1 (ja) 2010-11-08 2010-11-08 内燃機関の粒子状物質検出装置

Country Status (5)

Country Link
US (1) US8925370B2 (ja)
JP (1) JP5278615B2 (ja)
CN (1) CN102656438B (ja)
DE (1) DE112010004519B4 (ja)
WO (1) WO2012063303A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169085A (ja) * 2014-03-05 2015-09-28 トヨタ自動車株式会社 内燃機関の排気浄化システム及び、内燃機関の排気浄化システムのフィルタ故障判定方法
JP2015225022A (ja) * 2014-05-29 2015-12-14 株式会社日本自動車部品総合研究所 粒子状物質検出装置及び粒子状物質検出方法
KR20160042893A (ko) * 2013-08-14 2016-04-20 로베르트 보쉬 게엠베하 입자 센서 및 입자 센서의 제조 방법
JP2017173052A (ja) * 2016-03-22 2017-09-28 株式会社Soken 粒子状物質検出装置及び内燃機関の排ガス浄化装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308265B2 (en) 2006-03-20 2019-06-04 Ge Global Sourcing Llc Vehicle control system and method
US9733625B2 (en) 2006-03-20 2017-08-15 General Electric Company Trip optimization system and method for a train
US9950722B2 (en) 2003-01-06 2018-04-24 General Electric Company System and method for vehicle control
US9828010B2 (en) 2006-03-20 2017-11-28 General Electric Company System, method and computer software code for determining a mission plan for a powered system using signal aspect information
JP2011247650A (ja) * 2010-05-24 2011-12-08 Denso Corp 粒子状物質検出センサ、及び粒子状物質検出センサユニット
JP5542007B2 (ja) * 2010-08-26 2014-07-09 日本碍子株式会社 粒子状物質検出装置
US9669851B2 (en) 2012-11-21 2017-06-06 General Electric Company Route examination system and method
JP6438847B2 (ja) * 2014-07-08 2018-12-19 日本特殊陶業株式会社 粒子検知システム
JP6367735B2 (ja) * 2015-02-20 2018-08-01 株式会社Soken 粒子状物質数量推定システム
GB2550811B (en) 2015-03-11 2021-02-10 Cummins Emission Solutions Inc System and method for monitoring particulate filter condition in an aftertreatment system
JP6477303B2 (ja) * 2015-06-30 2019-03-06 株式会社デンソー 粒子状物質検出システム
US9951672B2 (en) * 2015-11-10 2018-04-24 Ford Global Technologies, Llc Method and system for exhaust particulate matter sensing
JP6492035B2 (ja) * 2016-03-22 2019-03-27 株式会社Soken 粒子状物質検出装置
JP6601977B2 (ja) * 2016-10-12 2019-11-06 株式会社Soken 粒子状物質検出センサ、及び粒子状物質検出装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502892A (ja) * 2004-06-16 2008-01-31 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング センサ上の煤堆積の制御のための方法
JP2008139294A (ja) * 2006-11-08 2008-06-19 Honda Motor Co Ltd 検知装置及び方法
JP2009144577A (ja) * 2007-12-13 2009-07-02 Mitsubishi Motors Corp パティキュレートフィルタの故障判定装置
JP2010151554A (ja) * 2008-12-24 2010-07-08 Honda Motor Co Ltd 粒子状物質検出装置
JP2010151553A (ja) * 2008-12-24 2010-07-08 Honda Motor Co Ltd 粒子状物質検出装置
JP2010190615A (ja) * 2009-02-16 2010-09-02 Honda Motor Co Ltd 粒子状物質検出装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109070A1 (ja) * 2003-06-03 2004-12-16 Hino Motors, Ltd. 排気浄化装置
DE102006047927A1 (de) * 2006-10-10 2008-04-17 Robert Bosch Gmbh Sensor zur resistiven Bestimmung von Konzentrationen leitfähiger Partikel in Gasströmen
US20100072055A1 (en) * 2006-11-20 2010-03-25 Kabushiki Kaisha Toshiba Gas purifying device, gas purifying system and gas purifying method
JP5123686B2 (ja) * 2008-02-08 2013-01-23 三菱重工業株式会社 Dpf堆積量推定装置
DE102009000077B4 (de) * 2009-01-08 2011-04-07 Robert Bosch Gmbh Partikelsensor mit Referenzmesszelle und Verfahren zur Detektion von leitfähigen Partikeln

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502892A (ja) * 2004-06-16 2008-01-31 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング センサ上の煤堆積の制御のための方法
JP2008139294A (ja) * 2006-11-08 2008-06-19 Honda Motor Co Ltd 検知装置及び方法
JP2009144577A (ja) * 2007-12-13 2009-07-02 Mitsubishi Motors Corp パティキュレートフィルタの故障判定装置
JP2010151554A (ja) * 2008-12-24 2010-07-08 Honda Motor Co Ltd 粒子状物質検出装置
JP2010151553A (ja) * 2008-12-24 2010-07-08 Honda Motor Co Ltd 粒子状物質検出装置
JP2010190615A (ja) * 2009-02-16 2010-09-02 Honda Motor Co Ltd 粒子状物質検出装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160042893A (ko) * 2013-08-14 2016-04-20 로베르트 보쉬 게엠베하 입자 센서 및 입자 센서의 제조 방법
JP2016530513A (ja) * 2013-08-14 2016-09-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 粒子センサ、及び、粒子センサの製造方法
JP2015169085A (ja) * 2014-03-05 2015-09-28 トヨタ自動車株式会社 内燃機関の排気浄化システム及び、内燃機関の排気浄化システムのフィルタ故障判定方法
JP2015225022A (ja) * 2014-05-29 2015-12-14 株式会社日本自動車部品総合研究所 粒子状物質検出装置及び粒子状物質検出方法
JP2017173052A (ja) * 2016-03-22 2017-09-28 株式会社Soken 粒子状物質検出装置及び内燃機関の排ガス浄化装置

Also Published As

Publication number Publication date
CN102656438B (zh) 2015-02-25
US8925370B2 (en) 2015-01-06
DE112010004519B4 (de) 2021-03-04
US20120247181A1 (en) 2012-10-04
CN102656438A (zh) 2012-09-05
JP5278615B2 (ja) 2013-09-04
JPWO2012063303A1 (ja) 2014-05-12
DE112010004519T5 (de) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5278615B2 (ja) 内燃機関の粒子状物質検出装置
JP5338996B2 (ja) 内燃機関の粒子状物質検出装置
US9316574B2 (en) Sensor controller
US9255873B2 (en) Sensor controller
JP5107973B2 (ja) 排気浄化フィルタの故障検知装置
JP6137229B2 (ja) パティキュレートフィルタの異常診断装置
JP5408069B2 (ja) センサ制御装置及びこれを備える排気処理システム
US9528419B2 (en) Particulate matter controller for an internal combustion engine
US20120031169A1 (en) Sensor controller
JP6061203B2 (ja) フィルタの故障検出装置
JP2016056701A (ja) パティキュレートフィルタの異常診断装置
JP6361918B2 (ja) フィルタの故障検出装置
JP6201822B2 (ja) 内燃機関の排気浄化システム及び、内燃機関の排気浄化システムのフィルタ故障判定方法
JP5924546B2 (ja) フィルタの故障検出装置
JP7172860B2 (ja) 排ガスセンサ
JP2015098823A (ja) 内燃機関の排気微粒子濃度検出装置
JP7172861B2 (ja) 排ガスセンサ
WO2016052734A1 (ja) フィルタの故障検出装置、粒子状物質検出装置
JP7151373B2 (ja) 排ガスセンサ
WO2020129505A1 (ja) 粒子状物質検出装置
US10890517B2 (en) Particulate matter detection device
CN108474280B (zh) 传感器控制装置
US10125655B2 (en) Filter abnormality determination system
US20180187623A1 (en) Apparatus for determining whether there is malfunction in filter device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057593.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012521820

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13515669

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100045194

Country of ref document: DE

Ref document number: 112010004519

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859426

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10859426

Country of ref document: EP

Kind code of ref document: A1