JP7151373B2 - 排ガスセンサ - Google Patents

排ガスセンサ Download PDF

Info

Publication number
JP7151373B2
JP7151373B2 JP2018200243A JP2018200243A JP7151373B2 JP 7151373 B2 JP7151373 B2 JP 7151373B2 JP 2018200243 A JP2018200243 A JP 2018200243A JP 2018200243 A JP2018200243 A JP 2018200243A JP 7151373 B2 JP7151373 B2 JP 7151373B2
Authority
JP
Japan
Prior art keywords
heater
state
cover
exhaust gas
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018200243A
Other languages
English (en)
Other versions
JP2020067374A (ja
Inventor
貴司 荒木
祐人 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018200243A priority Critical patent/JP7151373B2/ja
Priority to DE112019005316.7T priority patent/DE112019005316T5/de
Priority to PCT/JP2019/040351 priority patent/WO2020085133A1/ja
Publication of JP2020067374A publication Critical patent/JP2020067374A/ja
Priority to US17/237,248 priority patent/US11927120B2/en
Application granted granted Critical
Publication of JP7151373B2 publication Critical patent/JP7151373B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/20Sensor having heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0602Electrical exhaust heater signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、排ガスに含まれる成分を検出するための排ガスセンサに関する。
車両用エンジン等からの排ガスに含まれる特定のガス成分(例えば、NOx)や粒子状物質(すなわち、Particulate Matter;以下、適宜PMと称する)等を検出するために排ガスセンサが用いられる。排ガスセンサは、通常、ハウジングに支持されるセンサ素子の先端部が、素子カバーに収容された状態で、排ガス通路に位置するように取り付けられる。
近年、車両用エンジンの排ガス規制が厳しくなっており、排ガスセンサについても、その故障を検出することが要求されている。例えば、粒子状物質を捕集するパティキュレートフィルタを含む排ガス浄化システムには、PMセンサが設けられて、パティキュレートフィルタの破損時等に漏れ出る粒子状物質を検出するようになっているが、PMセンサが正常に動作しないと誤検出が生じるおそれがある。そこで、システムの信頼性を確保するために、PMセンサそのものの異常の有無を検出することが必要となっている。
また、センサ機能を低下させる要因の1つに、素子カバーの異常があり、例えば、カバー詰まりや脱落等が生じると、センサ素子へ導入される排ガスの状態が変化して、正常な出力が得られなくなる。これに対して、特許文献1には、PMセンサに、素子カバーの通気孔が目詰まりしたことを検出する目詰まり検出手段を設けることが提案されている。この目詰まり検出手段は、センサ素子が不感帯となる期間においても検出可能とするために、センサ素子の温度を用いており、例えば、センサ素子をヒータ加熱した場合の温度変化の速さや、上流側の排ガス温度との差分が、所定値より大きい場合に目詰まりが生じたと判定するようになっている。
国際公開第2012/032622号
特許文献1のように、例えば、センサ素子の温度に基づいて判定を行う場合には、センサ素子を加熱するためのヒータが正常に機能していることが前提となり、ヒータに劣化等が生じると、判定精度が低下する。また、例えば、エンジンの運転状態に応じて周辺環境が変動すると、センサ素子へのガス当たりの状態が変化し、ヒータ加熱した場合の温度変化に影響するために、誤検出のおそれがある。このように、周辺環境の影響を受けるセンサ素子の温度等を用いて、カバー状態の判定を行うことは容易でなかった。
本発明は、かかる課題に鑑みてなされたものであり、センサ素子を保護する素子カバーの状態診断を精度よく実施可能として、より信頼性の高い排ガスセンサを提供しようとするものである。
本発明の一態様は、
排ガスに含まれる特定成分を検出する検出部(2)を備えるセンサ素子(1)と、
上記センサ素子を内側に収容し排ガスを導入又は導出するためのガス流通孔(31、32)を有する素子カバー(3)と、
通電により発熱して上記センサ素子を加熱するヒータ(4)と、
上記ヒータによる上記センサ素子の加熱を制御するヒータ制御部(5)と、を備える排ガスセンサ(S)であって、
上記ヒータ制御部により上記ヒータを動作させたときのヒータ情報を用いて、上記素子カバーの状態を診断するカバー状態診断部(6)を有しており、
上記カバー状態診断部は、上記ヒータ情報を用いた上記素子カバーの状態の診断に先立ち、上記ヒータの動作状態と上記素子カバーの周辺環境状態とから知られる上記ヒータ情報の確度の有無に基づいて、上記素子カバーの状態の診断が可能か否かを判定する、診断可否判定部(61)を備えており、
上記診断可否判定部は、
上記ヒータが正常動作可能な状態にあるか否かを、上記ヒータの動作状態の指標となる上記ヒータの抵抗値情報又は上記センサ素子の温度情報に基づいて判定すると共に、上記素子カバーの周辺環境が上記素子カバーの状態を診断可能な状態にあるか否かを、上記素子カバーの周辺環境状態の指標となる排ガス情報に基づいて判定し、
これら判定結果から、上記ヒータが正常動作可能な状態にあると共に、上記素子カバーの周辺環境が上記素子カバーの状態を診断可能な状態にあるときに、上記ヒータ情報の確度有りとして、上記素子カバーの状態の診断が可能と判定する、排ガスセンサにある。
上記排ガスセンサにおいて、カバー状態診断部は、センサ素子を加熱するヒータ情報を用いて素子カバーの状態を診断するのに先立ち、診断可否判定部において、素子カバーの診断が可能か否かを判定する。その際に、ヒータの動作状態と素子カバーの周辺環境の両方に基づいてヒータ情報の確度の有無を判断し、例えば、センサ素子を加熱するためのヒータが正常に動作可能であると共に、素子カバーの周辺環境が、ヒータ情報を用いたカバー状態の診断に及ぼす影響が小さいと判断される場合に、診断可能と判定する。これにより、センサ素子及び周辺環境が良好な状態にてカバー状態の診断を実施し、誤検出を防止することが可能になる。
以上のごとく、上記態様によれば、センサ素子を保護する素子カバーの状態診断を精度よく実施可能として、より信頼性の高い排ガスセンサを提供することができる。
なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
実施形態1における、排ガスセンサの全体構成図。 実施形態1における、排ガスセンサのセンサ本体の要部拡大断面図。 実施形態1における、排ガスセンサのセンサ素子の要部拡大斜視図。 実施形態1における、排ガスセンサを含む排ガス浄化システムの全体構成図。 実施形態1における、センサ素子の動作を説明するための模式的な断面図。 実施形態1における、排ガスセンサのカバー状態診断部において実施されるカバー状態診断処理のフローチャート図。 実施形態1における、排ガスセンサのヒータ部による加熱制御とセンサ素子の温度の推移を示すタイムチャート図。 実施形態1における、排ガスセンサのカバー状態診断部において用いられるヒータ情報と診断閾値との関係を、正常品とカバー詰まり品とで比較して示す図。 実施形態2における、排ガスセンサのカバー状態診断部が備える診断可否判定部において実施される診断可否判定処理のフローチャート図。 実施形態2における、カバー状態診断部の診断可否判定部において用いられるヒータ抵抗の正常範囲と抵抗閾値との関係を示す図。 実施形態2の変形例における、排ガスセンサのカバー状態診断部が備える診断可否判定部において実施される診断可否判定処理の一部を示すフローチャート図。 実施形態2の変形例における、カバー状態診断部の診断可否判定部において用いられるヒータ抵抗とセンサ温度との関係を示す図。 実施形態2の変形例における、カバー状態診断部の診断可否判定部において用いられるセンサ温度の正常範囲と抵抗閾値との関係を示す図。 実施形態2における、排ガスセンサのカバー状態診断部が備える診断可否判定部において実施されるヒータ情報判定処理の一部を示すフローチャート図。 実施形態2における、カバー状態診断部の診断可否判定部において用いられるガス流速とガス温度との関係を示す図。 実施形態3における、排ガスセンサのカバー状態診断部が備えるヒータ情報判定部において実施されるヒータ情報判定処理のフローチャート図。 実施形態3における、カバー状態診断部のヒータ情報判定部において用いられる診断閾値Aの設定方法を説明するための図で、ヒータデューティとガス温度との関係を示す図。 実施形態3における、カバー状態診断部のヒータ情報判定部において用いられる診断閾値Aの設定方法を説明するための図で、ヒータデューティとガス流速との関係を示す図。 実施形態4における、排ガスセンサのカバー状態診断部が備えるヒータ情報判定部において実施されるヒータ情報判定処理のフローチャート図。 実施形態4における、カバー状態診断部のヒータ情報判定部において用いられる診断閾値A、Bの設定方法を説明するための図で、ヒータデューティとガス温度との関係を示す図。 実施形態4における、カバー状態診断部のヒータ情報判定部において用いられる診断閾値A、Bの設定方法を説明するための図で、ヒータデューティとガス流速との関係を示す図。 実施形態5における、排ガスセンサのカバー状態診断部が備えるヒータ診断可否診断部において実施されるヒータ情報判定処理のフローチャート図。 試験例1における、排ガスセンサのヒータ部による加熱制御時のヒータデューティとガス温度との関係を、正常品とカバー故障品とで比較して示す図。 試験例1における、排ガスセンサのヒータ部による加熱制御時のセンサ温度及びヒータデューティとガス流速との関係を、正常品とカバー詰まり品とで比較して示す図。 試験例1における、排ガスセンサのヒータ部による加熱制御モードとセンサ素子の温度の推移を示すタイムチャート図。 排ガスセンサのセンサ素子の他の構成例を示す要部拡大断面図。 排ガスセンサのセンサ素子の温度検出部の構成例を示す要部拡大断面図。
(実施形態1)
排ガスセンサに係る実施形態について、図1~図14を参照して説明する。
図1~図3に示すように、排ガスセンサSは、センサ本体S1と制御装置S2とを備えて構成され、例えば、図4に示す車両用の排ガス浄化装置100に適用される。センサ本体S1は、検出部2を備えるセンサ素子1と、センサ素子1を内側に収容する素子カバー3と、通電により発熱してセンサ素子1を加熱するヒータ4とを有しており、制御装置S2は、ヒータ4によるセンサ素子1の加熱を制御するヒータ制御部5と、素子カバー3の状態を診断するカバー状態診断部6とを有している。
センサ素子1は、細長い直方体形状で、センサ本体S1の軸方向Xに延びている。ここでは、図1における上下方向を軸方向Xとし、その下端側をセンサ本体S1の先端側、上端側をセンサ本体S1の基端側としている。検出部2は、軸方向Xにおけるセンサ素子1の先端部に設けられて、排ガスに含まれる特定成分を検出する。特定成分は、例えば、車両用エンジン等から排出される排ガスに含まれる粒子状物質(以下、適宜PMと略称する)や、NOx等のガス成分である。
図4に示す排ガス浄化装置100は、排ガスセンサSを、特定成分としての粒子状物質を検出するPMセンサとして用いた例としている。
素子カバー3は、センサ素子1を排ガス中の被毒物質や凝縮水等から保護するためのものであり、ガス流通孔31、32を有して、内部の空間に排ガスを導入又は導出可能に設けられる。センサ素子1は、センサ素子1を加熱するためのヒータ4を内蔵しており(例えば、図3参照)、ヒータ制御部5を含むセンサ制御部(Sensor Control Unit;以下、SCUと称する)50を介して、カバー状態診断部6を含む車両側の電子制御部(Electronic Control Unit;以下、ECUと称する)60と接続されている。
カバー状態診断部6は、ヒータ4を動作させたときのヒータ情報を用いて、素子カバー3の状態を診断する。カバー状態診断部6には、診断可否判定部61が設けられ、ヒータ4の動作状態と素子カバー3の周辺環境状態とから知られるヒータ情報の確度に基づいて、素子カバー3の状態の診断が可能か否かを判定する。
このとき、診断可否判定部61は、ヒータ情報の確度の有無を、ヒータ4が正常動作可能な状態にあるか否か、及び、周辺環境状態が素子カバー3の状態を診断可能な状態にあるか否か、に基づいて判定することができる。
具体的には、診断可否判定部61は、ヒータ4の抵抗値情報又はセンサ素子1の温度情報に基づいて、ヒータ4が正常動作可能な状態にあると判定されると共に、素子カバー3の周辺の排ガス情報に基づく周辺環境状態が、上記素子カバーの状態を診断可能な状態にあると判定されるときに、素子カバー3の状態の診断が可能と判定する。
そして、カバー状態診断部6は、診断可否判定部61によって診断可能と判定されたときに、ヒータ情報判定部62において、ヒータ情報を、予め設定した診断閾値A、Bと比較する。ヒータ情報は、例えば、ヒータ4へ供給される電力量や、ヒータ制御部5による制御量であり、診断閾値A、Bとの比較判定結果に基づいて、素子カバー3の状態を診断することができる。
次に、排ガスセンサSの詳細構成について、説明する。
図1において、排ガスセンサSのセンサ本体S1は、筒状のハウジング11の内側にセンサ素子S1を収容すると共に、ハウジング11の軸方向Xの先端側に固定される容器状の素子カバー3と、他端側に固定される筒状の大気カバー12を備えている。ハウジング11は、例えば、図4に示す排ガス浄化装置100の排ガス管101に取り付けられて、素子カバー3によって覆われたセンサ素子1の先端側が、排ガス管101内に突出位置している。大気カバー12は、排ガス管101の外部に位置するセンサ素子S1の基端側を覆っており、大気カバー12の基端側から取り出されるリード線13を介して、センサ素子1とセンサ制御部50とが電気的に接続されている。
図2、図3に一例を示すように、センサ素子1は、例えば、積層構造を有する積層型素子であり、偏平な直方体形状の絶縁性基体21の先端面を検出部2としている。検出部2には、一対の検出電極2a、2bとなる複数の線状電極が配置されており、交互に極性の異なる複数の電極対を構成している。検出部2は、例えば、絶縁性基体21となる複数の絶縁性シートの間に、検出電極2a、2bとなる電極膜を交互に配設して積層体とし、焼成して一体化することにより形成される。このとき、絶縁性基体21に少なくとも一部が埋設される電極膜の端縁部が、絶縁性基体21の先端面に線状に露出して、検出電極2a、2bを構成する。絶縁性基体21は、例えば、アルミナ等の絶縁性セラミックス材料を用いて構成することができる。
絶縁性基体21の内部には、一対の検出電極2a、2bに接続される、図示しないリード部が埋設されている。これらリード部は、センサ素子1の基端側に引き出されて、リード線13を介してSCU50のPM検出制御部51に接続される(図1参照)。PM検出制御部51は、例えば、一対の検出電極2a、2b間にPM検出用電圧を印加するための電圧印加回路を備え、所定の検出期間において、一対の検出電極2a、2b間にPMを静電捕集する。
ここで、図5に示す模式図によりPM検出原理を説明する。センサ素子1の検出部2は、絶縁性基体21の表面に一対の検出電極2a、2bが所定間隔をおいて対向配設されており、初期状態において一対の検出電極2a、2bは導通していない。PM検出期間に、PM検出制御部51によって所定の電圧が印加されると、一対の検出電極2a、2b間に発生する電界によってPMが引き寄せられ、徐々に堆積する。これにより、一対の検出電極2a、2b間が導通すると、PM捕集量に応じて一対の検出電極2a、2b間の抵抗値が変化し、したがって、PM検出制御部51において、一対の検出電極2a、2b間の電流を検出することができる。
また、絶縁性基体21の内部には、検出電極2a、2bが形成される先端面の近傍に、ヒータ4の発熱部41を構成するヒータ電極と、発熱部41に通電するための一対のリード部42、43と、検出用リード部44が埋設されている。これらリード部42、43、44は、センサ素子1の基端側に引き出されて、リード線13を介してSCU50のヒータ制御部5に接続される(図1参照)。
ヒータ制御部5は、例えば、ヒータ駆動信号のパルス幅を制御するパルス幅変調回路を備え、パルス信号のデューティ比(以下、ヒータデューティ(ヒータDuty)と称する)によって、発熱部41への通電量を制御することができる。
したがって、ヒータ制御部5によってヒータ4の発熱量を制御し、センサ素子1を、所望の温度に加熱することができる。例えば、PM検出制御部51によるPM検出時には、これに先立って、検出部2をPMの燃焼温度以上に加熱し、捕集されたPMを燃焼除去して初期状態に戻すことができる。
素子カバー3は、例えば、ハウジング11側が開口する二重容器状で、同軸配置されるアウタカバー3aとインナカバー3bからなる。アウタカバー3aは、概略一定径の筒状体とこれを閉鎖する先端面からなり、先端面側の側面に、複数のガス流通孔31が貫通形成されて、排ガス管101から排ガスを導入又は導出可能となっている。インナカバー3bは、先端面にガス流通孔32が貫通形成されて、インナカバー3b内の空間とアウタカバー3a内の空間とを連通している。
また、インナカバー3bの基端側の側面に、複数のガス流通孔32が貫通形成されており、ガス流通孔32には、インナカバー3bの内側へ向けて傾斜するガイド部33が設けられている。これにより、アウタカバー3a内に導入された排ガスは、インナカバー3bの外側面に沿って基端側へ誘導され、ガス流通孔32からインナカバー3b内へ導入される。ガイド部33の先端は、インナカバー3bの軸線上に位置するセンサ素子1の検出部2に向けて配置され、インナカバー3b内へ導入される排ガスは、検出部2に向かった後、先端面のガス流通孔32から導出され、アウタカバー3aから外部へ導出される排ガスの流れに合流する。
アウタカバー3aとインナカバー3bの先端面側のガス流通孔31、32は、例えば、円形孔形状であり、インナカバー3bの基端側のガス流通孔32は、例えば、軸方向Xに細長い長孔形状で、インナカバー3bの側面を切り欠いて形成される細長い板状のガイド部33と一体的に形成される。
なお、アウタカバー3aとインナカバー3bの形状や、ガス流通孔31、32の形状は、上記したものに限らず、任意の構成とすることができる。また、ガス流通孔32にガイド部33を設けない構成であってもよく、ガス流通孔31、32の数や配置も、任意に設定することができる。好適には、ガス流通孔31、32が、アウタカバー3a又はインナカバー3bの側面の全周に均等配置されるようにすると、ガス流れに対する指向性を有しない構成となる。
図4に示すように、本形態における排ガスセンサSは、例えば、ディーゼルエンジン(以下、エンジンと略称する)ENGの排ガス浄化装置100に適用され、センサ本体S1は、ディーゼルパティキュレートフィルタ(以下、DPFと略称する)102の下流側において、排ガス管101の管壁に取り付けられる。排ガスセンサSは、センサ本体S1の軸方向Xの先端側半部が排ガス管101内に位置し、DPF102から漏れ出る粒子状物質を検出して、SCU50に送信する。DPF102とセンサ本体S1の間には、温度センサ103が配設されて、DPF102の下流側における排ガス管101内のガス温度を検出している。温度センサ103の検出信号は、排ガス情報としてECU60へ送信される。
ECU60には、温度センサ103からのガス温度情報の他、SCU50のヒータ制御部5からのヒータデューティ情報やPM検出制御部51からのPM検出情報が入力される。また、ECU60には、DPF102の再生制御を行うDPF再生制御部63やDPF102の故障診断を行うDPF故障診断部64が設けられる(図1参照)。DPF再生制御部63は、例えば、車両の運転状態等からDPF102の再生実施の要否を判定し、DPF故障診断部64は、例えば、PM検出情報に基づいてDPF102の割れ等の故障の有無を判定する。
なお、ECU60には、図示しないエアフローメータにより検出される吸入空気量や、エンジン回転数センサ、アクセル開度センサ等からの検出信号が入力されており、これら入力情報に基づいて、エンジンENGの運転状態を知り、車両全体を制御している。
排ガス情報には、ガス温度の他、排ガス管101内のガス流量等のエンジンENGの運転に関する情報や、DPF102の再生情報が含まれる。これらガス温度やガス流量は、検出値であっても、エンジンENGの運転状態等から推定される推定値であってもよい。
また、エンジンENGは、ディーゼルエンジンに限らず、ガソリンエンジンでもよい。その場合には、DPF102に代えて、ガソリンパティキュレートフィルタ(以下、GPFと略称する)が配置される。
次に、ECU60のカバー状態診断部6の詳細について、説明する。
排ガスセンサSによるPM検出情報は、主に、上述したECU60のDPF故障診断部64におけるDPF102の故障診断に用いられる。このとき、DPF102の故障を確実に検出するには、排ガスセンサSによるPM検出が正常に実施されることが必要であり、そのためには、センサ素子1のみならず、センサ素子1の動作に影響する素子カバー3の状態も重要となる。
例えば、素子カバー3のガス流通孔31、32に粒子状物質等が付着して堆積することにより、または何らかの意図もしくは誤って閉塞されることにより、カバー詰まりが生じた場合には、ガス流通性が低下して、センサ素子1に十分な排ガスが到達しなくなる。
このような場合には、仮にDPF102が故障していても、センサ素子1からPM検出信号が出力されないために、故障判定や乗員への報知がなされず、粒子状物質が車外に排出されるおそれがある。一方、素子カバー3が破損して外れたり、脱落したりした場合には、センサ素子1に導入される排ガスが増加し、誤検出を生じるおそれがある。
そこで、排ガスセンサSには、カバー状態診断部6が設けられて、素子カバー3の状態の診断(以下、適宜、カバー状態診断と称する)を可能とする。カバー状態診断には、ヒータ制御部5によりセンサ素子1を加熱するヒータ4を動作させたときのヒータ情報を用いることができ、ヒータ情報判定部62において、ヒータ情報の閾値判定がなされる。その場合に、ヒータ情報による閾値判定を信頼性よく行うには、ヒータ4が正常に動作していると共に、ヒータ情報が外部の要因等の影響を受けない環境にあることが必要となる。そのために、カバー状態診断部6には、診断可否判定部61が設けられ、ヒータ情報による診断に先立ち、カバー状態診断が可能か否かの判定を行う。
このとき、カバー状態診断部6において実行される手順の概要を、図6を用いて説明する。図6のステップS1~ステップS3は、カバー状態診断部6の診断可否判定部61に対応しており、ステップS4~ステップS7は、ヒータ情報判定部62に対応する。図6において、素子カバー3のカバー状態診断処理が開始されると、まず、ステップS1にて、ヒータ4の動作状態が、正常動作可能な状態にあるか否かを判定する(すなわち、ヒータ:正常動作状態?)。ステップS1が肯定判定された場合には、ステップS2へ進み、ステップS1が否定判定された場合には、診断実施不可と判断されて、本処理を一旦終了する。
ステップS2では、さらに、素子カバー3の周辺環境状態が、カバー状態診断を、良好に実施可能な状態にあるか否かを判定する(すなわち、周辺環境:診断可能状態?)。ステップS2が肯定判定された場合には、ステップS3へ進み、否定判定された場合には、ステップS1へ戻って、実施可能な状態となるまで、以降のステップを繰り返す。
これらステップS1、S2は、センサ本体S1に内蔵されてセンサ素子1を加熱するヒータ4が、正常に機能するか否かを判定すると共に(すなわち、内的要因)、センサ本体S1の周辺環境状態、具体的には、排ガス管101内を流通する排ガスのガス温度やガス流速が、素子カバー3の状態診断に適した所定の状態となっているか否かを判定するものである(すなわち、外的要因)。
本形態では、これら内的要因と外的要因の両方から、排ガスセンサSのヒータ情報の確度を判断することで、より信頼性の高いカバー状態診断が可能になる。
ステップS3では、ステップS1、2の両方が肯定判定されたことにより、カバー状態診断を実施可能と判断する。その後、ステップS4へ進んで、ヒータ制御を開始する。具体的には、ヒータ制御部5によりヒータ4に通電して、センサ素子1の検出部2が所定の目標温度に保持されるように、例えば、測定温度との偏差に基づくPID制御を行い、通電量を制御する。なお、検出部2の温度は、例えば、後述するヒータ抵抗とセンサ温度の関係(例えば、図12参照)に基づいて、測定することができる。
さらに、ステップS5において、ヒータ情報の一例として、ヒータ電力を測定し、ステップS6へ進んで、ヒータ電力の測定値を、診断閾値A及び診断閾値Bと比較する。診断閾値Aは、例えば、カバー詰まりによる異常の有無を判断可能な下限側の閾値であり、診断閾値Bは、例えば、カバー脱落による異常の有無を判断可能な上限側の閾値である。
なお、ヒータ情報としては、ヒータ4の異常を検出可能な情報であればよく、ヒータ4に供給される電圧や電流、ヒータ制御部5による制御量、例えば、ヒータデューティ等を用いることができる。
図7に示すように、エンジンENGの始動後のセンサ素子1の温度(すなわち、センサ温度)は、例えば、PM検出のためのセンサ再生に先立つ一定の期間、凝縮水を除去可能な温度に加熱制御される。このとき、センサ本体Sは、加熱温度より低い排ガス温度に曝されることになり、素子カバー3の状態によってヒータ制御性が変化する。
例えば、図8に示すように、素子カバー3が正常な状態にある正常品と、カバー詰まりがある異常品とでは、加熱制御時にヒータ4の発熱部41に供給されるヒータ電力(又はヒータ電力を制御するヒータデューティ)に差が生じる。これは、素子カバー3のガス流通孔31、32が塞がれた状態では、排ガスが導入されず、センサ素子1が冷やされにくくなるためであり、素子カバー3が正常な状態と比較して、センサ素子1の加熱に必要なヒータ電力は小さくなる。そこで、このヒータ電力の関係に基づいて、例えば、正常品のヒータ電力を、ばらつき下限とし、異常品のヒータ電力を、ばらつき上限としたときに、これらの間のヒータ電力値から、診断閾値Aを、予め設定することができる。
一方、素子カバー3が脱落した状態にある場合には、センサ素子1が直接排ガスに露出して、加熱温度より低い排ガス温度に曝されることになる。その場合には、素子カバー3が正常な状態と比較して、センサ素子1の加熱に必要なヒータ電力は大きくなる。そこで、同様にして、これらヒータ電力の関係に基づいて、診断閾値Bを、予め設定することができる。
したがって、ステップS6において、ヒータ電力の測定値が、下限側の診断閾値Aより大きく、上限側の診断閾値Bより小さい、所定の範囲にあるか否かを判定することで(すなわち、診断閾値A<ヒータ電力測定値<診断閾値B)、素子カバー3が正常な状態にあるか否か診断することができる。すなわち、ステップS6が肯定判定された場合には、ステップS7へ進んで、素子カバー3は正常と診断し、否定判定された場合には、ステップS8へ進んで、素子カバー3は異常と診断する。その後、本処理を一旦終了する。
本形態によれば、カバー状態診断部6が診断可否判定部61を備えるので、ヒータ4が正常に機能し、かつ、周辺環境がヒータ制御に影響しない状態においてのみ、ヒータ情報判定部62に移行する。すなわち、ヒータ電力等のヒータ情報の確度が高い状態で、ヒータ情報に基づくカバー状態の診断を精度よく実施できるので、誤検出を防止することが可能であり、信頼性が向上する。
(実施形態2)
本形態では、図9~図15に示すフローチャートを用いて、診断可否判定部61による判定手順を、より具体的に説明する。
なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
図9は、上記図6のステップS1に対応するものであり、カバー状態診断の診断可否判定処理が開始されると、まず、ステップS11にて、ヒータ4の動作状態を示す指標の1つとして、ヒータ4の発熱部41の抵抗値(以下、適宜、ヒータ抵抗と略称する)を検出する。次いで、ステップS12にて、検出したヒータ抵抗を、所定の抵抗閾値Rth1、Rth2と比較して、図10に示すように、下限側の抵抗閾値Rth1と上限側の抵抗閾値Rth2とで規定される正常範囲内にあるか否かを判定する(すなわち、Rth1<ヒータ抵抗<Rth2)。
なお、ヒータ抵抗は、例えば、図示しないヒータ抵抗検出回路により、検出用リード部44を介して所定の電圧を印加したときに、ヒータ4の発熱部41に流れる電流を検出することにより算出することができる(すなわち、ヒータ抵抗=印加電圧/検出電流)。
ここで、ヒータ4は、貴金属等を含む導電性材料から構成されており、センサ素子1の動作に伴い、連続的又は断続的に加熱されることが繰り返されると、貴金属材料の凝集等により、ヒータ抵抗が変化する。この変化が大きくなるとヒータが正常に機能しなくなり、カバー状態診断の精度も低下する。
そこで、例えば、予め初期状態におけるヒータ抵抗を測定しておき、この初期抵抗に基づく正常範囲の下限値を、抵抗閾値Rth1として記憶する。さらに、この抵抗閾値Rth1に対して、経年劣化等によるヒータ抵抗の変化量から、正常範囲の上限値となる抵抗閾値Rth2を設定することができる。そして、判定時におけるヒータ抵抗の測定値が、抵抗閾値Rth2を超えた場合には、ヒータ4は正常に機能しないと判定して、以降の判定を行わない。
このとき、抵抗閾値Rth2を設定するための変化量は、適宜設定することができ、例えば、初期抵抗に対して所定の割合に相当する変化量として求めてもよい。
ステップS12が肯定判定された場合には、ステップS13へ進んで、ヒータ4の動作状態は正常と判定した後、[1]周辺環境状態の判定へ進む。
一方、ステップS12が否定判定された場合には、ステップS14へ進む。この場合は、ヒータ4の動作状態は異常と判定して、本処理を終了し、カバー状態診断は実施しない。
また、図11に示すように、ヒータ4の動作状態を示す指標の1つとして、ヒータ抵抗に基づくセンサ素子1の温度を用いることもできる。
その場合には、診断可否判定処理を開始すると、まず、ステップS21において、上記図9のステップS11と同様に、ヒータ抵抗を検出する。次いで、ステップS22において、例えば、図12に示すヒータ抵抗とセンサ温度との関係から、検出したヒータ抵抗を用いて、センサ素子1の検出部2の温度を算出する。
このとき、図12に示すように、例えば、周辺環境等の影響を受けてセンサ温度が上昇すると、ヒータ抵抗が上昇する。したがって、これらの関係を予めマップ等として記憶しておくことにより、ヒータ抵抗から、間接的にセンサ温度を検出することができる。
さらに、ステップS23において、算出したセンサ温度を、基準温度に基づく所定の温度閾値Tth1、Tth2と比較して、図13に示すように、下限側の温度閾値Tth1と上限側の温度閾値Tth2とで規定される正常範囲内にあるか否かを判定する(すなわち、Tth1<センサ温度<Tth2)。
ここで、基準温度は、例えば、温度センサ103によって検出される、センサ素子1の周辺の排ガス温度であり、ヒータ制御が実施されておらず、排ガス温度が安定した状態においては、センサ温度は排ガス温度と実質的に同等となる。つまり、ヒータ抵抗に基づくセンサ温度を、温度センサ103による基準温度を比較し、その差が規定範囲内にあるときは、ヒータ4は正常に機能していると判断される。そこで、正常時の両者の差を考慮して、所定の温度閾値Tth1、Tth2を設定することで、ヒータ抵抗に基づくセンサ温度を、温度センサ103による基準温度を比較し、ヒータ4の動作状態を判定することができる。
ステップS23が肯定判定された場合には、ステップS24へ進んで、ヒータ4の動作状態は正常と判定した後、[1]周辺環境状態の判定へ進む。
一方、ステップS23が否定判定された場合には、ステップS25へ進む。この場合は、ヒータ4の動作状態は異常と判定して、本処理を終了し、カバー状態診断は実施しない。
以上のような方法によるヒータ動作状態の判定に際しては、周辺温度環境が安定した状態であることが、検出精度を向上させる上で望ましい。例えば、エンジンENGの始動直後の低負荷環境時や、定速度走行状態のように、排ガスの温度が比較的低く、安定した温度環境において実施されることが望ましく、その後の周辺環境の判定やカバー状態診断へ速やかに移行することができる。
上記図9のステップS13にて正常判定された場合には、次いで、図14の周辺環境状態の判定へ移行する。上記図11のステップS24にて正常判定された場合も同様である。
図14は、上記図6のステップS2に対応するものであり、まず、ステップS14において、周辺環境状態を示す指標となる、ガス温度及びガス流速を検出する。ガス温度は、センサ周辺の排ガスの温度であり、温度センサ103によって検出することができる。ガス流速は、センサ周辺の排ガスの流速であり、例えば、ガス温度の他、上述した図示しないエアフローメータにより検出される吸入空気量や、排ガス管101の断面積情報等から算出することができる。
ステップS15では、検出されたガス温度及びガス流速が、例えば、図15に示す診断実施可能範囲にあるか否かを判定する。一般的には、素子カバー3の故障の有無は、ガス当たりによる温度変動の違いが大きい方が検出しやすい。そのため、カバー状態診断の条件としては、ガス温度が低い方が、また、ガス流速が大きい方が望ましい。例えば、ガス温度が150℃~400℃程度の範囲にあるとき、ガス温度が低いほど、診断実施可能なガス流速の範囲が広くなる(例えば、ガス温度:150℃において、ガス流速:15m/s~40m/s程度)。
そこで、図15に示すガス温度とガス流速の関係を、予めマップ等として記憶しておくことで、検出されたガス温度及びガス流速が、診断実施可能範囲にあるか診断実施可能範囲外にあるかを判定することができる。
ステップS15が肯定判定された場合には、ステップS16へ進んで、周辺環境状態が、カバー状態診断が可能な環境にあり、ヒータ情報の確度が高いと判定される(すなわち、ヒータ情報確度:高)。その場合には、診断実施可と判断されるので、続いて、[2]ヒータ情報判定に基づくカバー状態診断へ移行する。
ステップS15が否定判定された場合には、ステップS17へ進んで、周辺環境状態が、カバー状態診断が可能な環境になく、ヒータ情報の確度が低いと判定される(すなわち、ヒータ情報確度:低)。その場合には、診断実施不可と判断される。
このようにして、センサ素子1が正常な動作状態にあり、周辺環境もカバー状態診断に適した状態であることを確認した上で、以降のカバー状態診断を行うことで、精度良い診断を行うことができる。
(実施形態3)
本形態では、図16~図18に示すフローチャートを用いて、ヒータ情報判定部62による診断手順の他の例について、具体的に説明する。上記実施形態1では、カバー状態診断のためのヒータ情報として、ヒータ電力を用いたが、本形態では、ヒータデューティを用いる。また、カバー状態として、特に、カバー詰まりによる故障診断を行う場合の診断閾値Aの設定方法を説明する。
図16は、上記図6のステップS4以降に対応するものであり、ヒータ情報判定処理(カバー詰まり故障)を開始したら、まず、ステップS31において、ヒータ制御を開始する。
具体的には、上記図7に示したエンジン始動後のセンサ素子1の再生時におけるヒータ加熱を利用することができ、その際のヒータデューティを、ステップS32において測定する。次いで、ステップS33において、ガス温度及びガス流速を検出し、ステップS34に進んで、検出したガス温度及びガス流速に基づいて、カバー詰まり故障に対応する診断閾値Aを算出する。
図17にヒータデューティとガス温度の関係を示すように、ガス流速が一定(例えば、25m/s)の場合、正常品では、ガス温度(例えば、150℃~350℃)が高くなるほど、ヒータデューティが低くなる関係にある。
これに対して、カバー詰まり故障品では、ガス流通孔31、32を通過するガス流量が低下し、センサ素子1に排ガスが当たりにくくなる。そのために、センサ素子1の温度が低下しにくくなり、ヒータデューティが小さくなる方向に特性線がシフトする。また、ガス温度250℃以上の範囲では、ヒータデューティがほぼ一定となる。
また、図18にヒータデューティとガス流速の関係を示すように、ガス温度が一定(例えば、150℃)の場合、正常品では、ガス流速(例えば、15m/s~40m/s)が高くなるほど、ヒータデューティが高くなる関係にある。
これに対して、カバー詰まり故障品では、正常品よりも特性線の傾斜が緩やかとなり、ガス流速の上昇に対するヒータデューティの増加の程度が小さくなる。
そこで、これら関係において、正常品とカバー詰まり故障品の特性線で囲まれる範囲を診断閾値Aの設定可能範囲とし、ガス温度及びガス流速の組み合わせごとに、診断閾値Aとなるヒータデューティを設定することができる。
その一例を、下記表1に示すように、ガス温度が低いほど、また、ガス流速が高いほど、診断閾値Aは大きい値に設定される。この関係は、予め試験等を行って得ることができ(例えば、後述する試験例1参照)、その試験結果に基づく閾値マップや閾値算出式を記憶しておいて、カバー状態診断に用いることができる。
Figure 0007151373000001
次いで、ステップS35において、検出されたヒータデューティが、算出された診断閾値Aより大きいか否かを判定する(すなわち、ヒータデューティ検出値>診断閾値A?)。ステップS35が肯定判定されたら、カバー詰まり故障はないと判断されるので、ステップS36へ進んでカバー正常と判定し、カバー詰まり故障の診断を終了する。
一方、ステップS35が否定判定されたら、カバー詰まり故障はあると判断されるので、ステップS37へ進んでカバー異常と判定し、カバー詰まり故障の診断を終了する。
このようにして、正常な動作状態にあるヒータ4によりヒータ制御を行い、また、診断に適した周辺環境においてガス温度及びガス流速を検出し、診断閾値Aを算出することで、カバー状態診断を精度よく実施することができる。
(実施形態4)
本形態では、図19~図21に示すフローチャートを用いて、ヒータ情報判定部62による診断手順の他の例について、具体的に説明する。本実施形態においても、上記実施形態1と同様に、カバー状態診断のためのヒータ情報として、ヒータデューティを用いる。また、カバー状態としては、カバー詰まりに加えてカバー脱落による故障診断を行うものとし、その場合の診断閾値A、Bの設定方法を説明する。
図19は、上記図6のステップS4以降に対応するものであり、ヒータ情報判定処理(カバー詰まり故障)を開始したら、まず、ステップS41において、ヒータ制御を開始する。
具体的には、上記図7に示したエンジン始動後のセンサ素子1の再生時におけるヒータ加熱を利用することができ、その際のヒータデューティを、ステップS42において測定する。次いで、ステップS43において、ガス温度及びガス流速を検出し、ステップS44に進んで、検出したガス温度及びガス流速に基づいて、カバー詰まり故障に対応する診断閾値Aを算出する。診断閾値Aの設定方法は、上記実施形態3と同様である。
さらに、ステップS45において、検出したガス温度及びガス流速に基づいて、カバー脱落故障に対応する診断閾値Bを算出する。
図20にヒータデューティとガス温度の関係を示すように、ガス流速が一定(例えば、25m/s)の場合、正常品に対して、カバー脱落故障品では、センサ素子1に排ガスが当たりやすくなるために、センサ素子1の温度が低下しやすくなり、ヒータデューティが大きくなる方向に特性線がシフトする。
また、図21にヒータデューティとガス流速の関係を示すように、ガス温度が一定(例えば、150℃)の場合、カバー脱落故障品では、正常品よりも特性線の傾斜が大きくなり、ガス流速の上昇に対するヒータデューティの増加の程度が大きくなる。
そこで、これら関係において、正常品とカバー詰まり故障品の特性線で囲まれる範囲を診断閾値Bの設定可能範囲とし、ガス温度及びガス流速の組み合わせごとに、診断閾値Bとなるヒータデューティを設定することができる。
その一例を、下記表2に示すように、診断閾値Bは、同じガス温度及びガス流速の組み合わせに対する診断閾値Aよりも大きく、ガス温度が低いほど、また、ガス流速が高いほど大きい値に設定される。この関係を、閾値マップや閾値算出式として記憶しておき、カバー状態診断に用いることができる。
Figure 0007151373000002
次いで、ステップS46において、検出されたヒータデューティが、算出された診断閾値Aより大きいか否かを判定する(すなわち、ヒータデューティ検出値>診断閾値A?)。ステップS46が肯定判定されたら、カバー詰まり故障はないと判断されるので、ステップS47へ進む。ステップS46が否定判定されたら、カバー詰まり故障はあると判断されるので、ステップS48へ進んでカバー詰まり故障と判定し、診断を終了する。
ステップS47では、検出されたヒータデューティが、算出された診断閾値Bより小さいか否かを判定する(すなわち、ヒータデューティ検出値<診断閾値B?)。ステップS47が肯定判定されたら、カバー脱落故障はないと判断されるので、ステップS49へ進んでカバー正常と判定し、診断を終了する。ステップS47が否定判定されたら、カバー脱落故障はあると判断されるので、ステップS40へ進んでカバー脱落故障と判定し、診断を終了する。
このようにして、正常な動作状態にあるヒータ4によりヒータ制御を行い、また、診断に適した周辺環境においてガス温度及びガス流速を検出し、診断閾値A及び診断閾値Bを算出することで、カバー状態診断を精度よく実施することができる。
(実施形態5)
本形態では、図22に示すフローチャートを用いて、カバー状態診断部6の診断可否判定部61による判定手順の他の例を説明する。
本形態では、排ガスセンサSのセンサ本体S1の上流側にDPF102(又はGPF)が位置する場合について、周辺環境状態として、DPF102等の再生による温度上昇を考慮して、診断可否判定部61による判定を行うものとする。
図22において、診断可否判定処理が開始されると、まず、ステップS51にて、DPF102が再生中か否かを判定する(すなわち、DPF再生中?)。ステップS51が否定判定された場合には、ステップS52へ進む。ステップS51が肯定判定された場合には、DPF102に堆積したPM燃焼のための再生中であり、下流側に設置されたセンサ素子1の周辺のガス温度が高くなる可能性があるため、診断不可と判定して、以降のカバー状態診断を実施しない。
ステップS52では、ヒータ4の動作状態を示す指標であるヒータ抵抗を検出する。次いで、ステップS53にて、検出したヒータ抵抗が、下限側の抵抗閾値Rth1と上限側の抵抗閾値Rth2とで規定される正常範囲内にあるか否かを判定する(すなわち、Rth1<ヒータ抵抗<Rth2)。ステップS53が肯定判定された場合には、ステップS54へ進んで、ヒータ4の動作状態は正常と判定し、ステップS55へ進む。ステップS53が否定判定された場合には、ステップS59へ進んで、ヒータ抵抗異常により診断不可と判定し、以降のカバー状態診断を実施しない。
ステップS55では、周辺環境状態の判定のために、ガス温度及びガス流速を検出し、ステップS56へ進んで、ガス温度及びガス流速が診断実施可能範囲か否かを判定する。ステップS56が肯定判定された場合には、ステップS57へ進んで、診断可能領域(すなわち、ヒータ情報確度:高)と判定する。その場合には、診断実施可となり、[2]ヒータ情報判定に基づくカバー状態診断へ移行する。ステップS56が否定判定された場合には、ステップS58へ進んで、診断可能領域外(すなわち、ヒータ情報確度:低)判定し、以降のカバー状態診断を実施しない。
このように、診断可否判定部61において、ヒータ情報を検出するのに先立ち、DPF102等の再生を判定することで、以降のカバー状態診断を効率よく実施することができる。
(試験例1)
ここで、図23に示すように、評価用の排ガスセンサSを用いて、所定の周辺環境状態で、ヒータ制御部5によるセンサ素子1の温度制御を行った場合の、ガス流速とヒータデューティの関係を調べた。評価条件は、以下の通りとした。
・PMセンサ: 正常品(カバー詰まりなし)、カバー詰まり品、カバー脱落品
・ガス温度 : 200℃~300℃
・ガス流速:~30m/s
評価は、PM検出用のセンサ素子1と新品の素子カバー3を備えるセンサ本体(n=5)を正常品として、実機試験を行い、図23に示すように、排ガスの状態を変化させたときの、センサ温度とヒータデューティの変化を、カバー詰まり品と比較した。カバー詰まり品は、正常品と同じセンサ本体(n=5)を用い、素子カバー3を、ガス流通孔31、32を目詰まりさせたもの付け替えて、また、カバー脱落品は素子カバー3を外して、同様の試験を行った。また、ヒータ4の発熱部41に劣化があるヒータ異常品についても同様の試験を行った。
図24に示すように、正常品では、ヒータ制御による加熱開始と共に、ヒータデューティが増大し、センサ温度が追従して、所定の温度まで徐々に上昇する。その後、所定の温度を維持するためのヒータデューティは徐々に小さくなって安定し、エンジンENGの加速により、ガス流速が上昇すると、ヒータデューティは再び大きくなる。
これに対して、カバー詰まり品は、正常品と同様の傾向を示すものの、ガス当たりによるセンサ温度への影響が小さく、加熱開始時の立ち上がりが速く、ヒータデューティが全体に正常品より小さくなる。
そのために、図23に示すように、ガス流速の全範囲において、正常品のヒータデューティに対して、カバー詰まり品のヒータデューティは大きくなり、カバー脱落品のヒータデューティは小さくなった。このように、ヒータデューティの大きさから、図中に示す診断閾値A、診断閾値Bを設定することで、カバー状態診断を実施し、カバー詰まりやカバー脱落による故障を検出可能であることがわかる。
なお、ヒータ異常品は、カバー詰まり品に対してヒータデューティの差がほとんどなく、ヒータデューティによるカバー状態診断は実施できない。
図25は、ヒータ制御部によるヒータ制御の一例を示しており、例えば、エンジンENGの始動直後は、センサ素子1の検出部2を、凝縮水を撥水すると共に液相被毒を抑制可能な温度に制御する(300℃~600℃)。その後、PM燃焼し、かつアッシュ成分が融着しない温度に制御し(600℃~800℃)、ヒータ4をオフとして、検出部を冷却しPM捕集を行う。その後は、熱泳動現象を発現して被毒物が付着しない温度に制御する(排ガス温度以上)。
したがって、これら各制御モードにおけるヒータ制御を利用して、カバー状態診断を実施することができる。
上記実施形態では、排ガスセンサSをPMセンサに用いる場合について、説明したが、PMセンサに限らず、NOxセンサ等のガスセンサに用いることもできる。その場合には、図26に示すように、センサ素子1の内部に、固体電解質体201を挟んで、排ガスが導入される被測定ガス室202と大気が導入される大気室203が設けられ、被測定ガス室202に面して、ポンプ電極204とセンサ電極205が、大気室203に面して基準電極206が設けられる。センサ素子1の先端面には、被測定ガス室202と外部とを連通する拡散抵抗層207が設けられ、センサ素子1の先端部の表面を覆って、被毒物質を捕捉するためのトラップ層208が設けられる。
このようなガスセンサに用いた場合にも、センサ素子1に内蔵されるヒータ4を用いて、検出部2のヒータ制御を行う際に、同様にして、図示しない素子カバー3の状態を診断することができる。また、検出部2の温度は、例えば、固体電解質体201を挟んで設置される2つの電極(例えば、センサ電極205と基準電極206)の電極間インピーダンスとセンサ温度の関係(例えば、図12参照)に基づいて、測定することができる。
なお、図27に示す(1)の例のように、PMセンサに用いられるセンサ素子1においても、検出部2の温度を、一対の電極2a、2bの電極間インピーダンスを用いて測定することができる。また、(2)の例のように、センサ素子1内に、温度検出用のサーミスタを埋設して、サーミスタ抵抗とセンサ温度の関係から、検出部2の温度を測定することができる。(3)の例は、上述した実施形態1に示した例であり、センサ素子1に内蔵されるヒータ4のヒータ抵抗とセンサ温度の関係から、検出部2の温度を測定する。
本発明は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。
例えば、上記実施形態では、DPF102を含むエンジンの排ガス浄化システムへの適用例を示したが、エンジンを含むシステム構成は、適宜変更することができる。また、車両用に限らず、各種用途に利用することができ、排ガスセンサSやセンサ素子1の構造も、適宜変更することができる。
S 排ガスセンサ
1 センサ素子
2 検出部
3 素子カバー
31、32 ガス流通孔
4 ヒータ
5 ヒータ制御部
6 カバー状態診断部
61 診断可否判定部

Claims (8)

  1. 排ガスに含まれる特定成分を検出する検出部(2)を備えるセンサ素子(1)と、
    上記センサ素子を内側に収容し排ガスを導入又は導出するためのガス流通孔(31、32)を有する素子カバー(3)と、
    通電により発熱して上記センサ素子を加熱するヒータ(4)と、
    上記ヒータによる上記センサ素子の加熱を制御するヒータ制御部(5)と、を備える排ガスセンサ(S)であって、
    上記ヒータ制御部により上記ヒータを動作させたときのヒータ情報を用いて、上記素子カバーの状態を診断するカバー状態診断部(6)を有しており、
    上記カバー状態診断部は、上記ヒータ情報を用いた上記素子カバーの状態の診断に先立ち、上記ヒータの動作状態と上記素子カバーの周辺環境状態とから知られる上記ヒータ情報の確度の有無に基づいて、上記素子カバーの状態の診断が可能か否かを判定する、診断可否判定部(61)を備えており、
    上記診断可否判定部は、
    上記ヒータが正常動作可能な状態にあるか否かを、上記ヒータの動作状態の指標となる上記ヒータの抵抗値情報又は上記センサ素子の温度情報に基づいて判定すると共に、上記素子カバーの周辺環境が上記素子カバーの状態を診断可能な状態にあるか否かを、上記素子カバーの周辺環境状態の指標となる排ガス情報に基づいて判定し、
    これら判定結果から、上記ヒータが正常動作可能な状態にあると共に、上記素子カバーの周辺環境が上記素子カバーの状態を診断可能な状態にあるときに、上記ヒータ情報の確度有りとして、上記素子カバーの状態の診断が可能と判定する、排ガスセンサ。
  2. 上記診断可否判定部は、上記ヒータの抵抗値情報としてのヒータ抵抗の測定値が、上記ヒータ抵抗の初期値を基準として設定される正常範囲内にあるとき、又は、上記ヒータ抵抗の測定値に基づいて算出される、上記センサ素子の温度情報としてのセンサ温度の算出値が、上記センサ温度の測定値を基準として設定される正常範囲内にあるときに、上記ヒータが正常動作可能な状態にあると判定する、請求項1に記載の排ガスセンサ。
  3. 上記排ガス情報は、ガス温度及びガス流速のうちの少なくとも1つを含む、請求項1又は2に記載の排ガスセンサ。
  4. 上記診断可否判定部は、上記素子カバーの周辺の上記ガス温度及び上記ガス流速の両方に基づいて、上記素子カバーの周辺環境が上記素子カバーの状態を診断可能な状態にあるか否かを判定する、請求項3に記載の排ガスセンサ。
  5. 上記特定成分は、粒子状物質であり、
    上記センサ素子は、排ガスが流通する排ガス管(101)内に、上記素子カバーに覆われた状態で位置し、
    上記素子カバーに対して排ガス流れ方向の上流側には、上記粒子状物質の捕集用フィルタ(102)が配設されており、
    上記排ガス情報は、上記素子カバーの周辺の上記ガス温度と相関を有する上記捕集用フィルタの再生情報をさらにみ、
    上記診断可否判定部は、上記捕集用フィルタが再生中であるときには、上記素子カバーの周辺環境が上記素子カバーの状態を診断可能な状態にないと判定する、請求項3又は4に記載の排ガスセンサ。
  6. 上記ヒータ制御部は、上記センサ素子の目標温度に応じて、上記ヒータへの通電を制御するものであり、
    上記ヒータ情報は、上記ヒータへ供給される電力量又は上記ヒータ制御部による上記ヒータの制御量を含む、請求項1~5のいずれか1項に記載の排ガスセンサ。
  7. 上記カバー状態診断部は、上記診断可否判定部によって診断可能と判定されたときに、上記ヒータへ供給される電力量又は上記ヒータ制御部による上記ヒータの制御量を診断閾値(A、B)と比較して、上記素子カバーの状態を診断する、請求項6に記載の排ガスセンサ。
  8. 上記診断閾値は、上記素子カバーの周辺環境状態に応じて設定される、請求項7に記載の排ガスセンサ。
JP2018200243A 2018-10-24 2018-10-24 排ガスセンサ Active JP7151373B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018200243A JP7151373B2 (ja) 2018-10-24 2018-10-24 排ガスセンサ
DE112019005316.7T DE112019005316T5 (de) 2018-10-24 2019-10-14 Abgassensor
PCT/JP2019/040351 WO2020085133A1 (ja) 2018-10-24 2019-10-14 排ガスセンサ
US17/237,248 US11927120B2 (en) 2018-10-24 2021-04-22 Exhaust gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018200243A JP7151373B2 (ja) 2018-10-24 2018-10-24 排ガスセンサ

Publications (2)

Publication Number Publication Date
JP2020067374A JP2020067374A (ja) 2020-04-30
JP7151373B2 true JP7151373B2 (ja) 2022-10-12

Family

ID=70331143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018200243A Active JP7151373B2 (ja) 2018-10-24 2018-10-24 排ガスセンサ

Country Status (4)

Country Link
US (1) US11927120B2 (ja)
JP (1) JP7151373B2 (ja)
DE (1) DE112019005316T5 (ja)
WO (1) WO2020085133A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7526442B2 (ja) * 2020-04-03 2024-08-01 株式会社大一商会 遊技機
JP7526444B2 (ja) * 2020-04-03 2024-08-01 株式会社大一商会 遊技機
CN114814079A (zh) * 2021-01-20 2022-07-29 长城汽车股份有限公司 传感器堵塞自诊断方法及装置、终端设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231994A (ja) 2007-03-19 2008-10-02 Toyota Motor Corp 排ガスセンサの故障診断装置
US20090319085A1 (en) 2008-06-20 2009-12-24 Gm Global Technology Operations, Inc. Control system and method for oxygen sensor heater control
JP2012159438A (ja) 2011-02-01 2012-08-23 Toyota Motor Corp Pmセンサの故障検出装置
JP5440707B2 (ja) 2010-09-08 2014-03-12 トヨタ自動車株式会社 Pm検出装置
JP2015004285A (ja) 2013-06-19 2015-01-08 株式会社日本自動車部品総合研究所 内燃機関の制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833467B2 (ja) * 2000-11-22 2006-10-11 三菱電機株式会社 排ガスセンサの劣化検出装置
JP5008128B2 (ja) * 2006-03-03 2012-08-22 シチズンファインテックミヨタ株式会社 多孔質カバー及びその製造方法
US7609068B2 (en) 2007-10-04 2009-10-27 Delphi Technologies, Inc. System and method for particulate sensor diagnostic
DE102008031648A1 (de) * 2008-07-04 2010-01-21 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben eines Partikelsensors
JP2011017289A (ja) 2009-07-09 2011-01-27 Honda Motor Co Ltd 排気センサの故障判定装置
DE102009033232A1 (de) 2009-07-14 2011-01-27 Continental Automotive Gmbh Verfahren zur fahrzeugeigenen Funktionsdiagnose eines Rußsensors und/oder zur Erkennung von weiteren Bestandteilen im Ruß in einem Kraftfahrzeug
US8438899B2 (en) 2009-09-02 2013-05-14 Ford Global Technologies, Llc Method for evaluating degradation of a particulate matter sensor
JP5635776B2 (ja) * 2010-01-07 2014-12-03 日本碍子株式会社 粒子状物質検出装置、及び粒子状物質検出装置の検査方法
JP2011247650A (ja) * 2010-05-24 2011-12-08 Denso Corp 粒子状物質検出センサ、及び粒子状物質検出センサユニット
JP5531849B2 (ja) * 2010-08-06 2014-06-25 株式会社デンソー センサ制御装置
US8845798B2 (en) * 2010-12-07 2014-09-30 Toyota Jidosha Kabushiki Kaisha Particulate matter detecting apparatus for internal combustion engine
JP5240679B2 (ja) * 2011-01-20 2013-07-17 株式会社デンソー 検出装置
WO2013042195A1 (ja) * 2011-09-20 2013-03-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9846110B2 (en) * 2015-06-02 2017-12-19 GM Global Technology Operations LLC Particulate matter sensor diagnostic system and method
JP6520898B2 (ja) * 2016-11-17 2019-05-29 トヨタ自動車株式会社 排気浄化システムの異常診断装置
JP2018200243A (ja) 2017-05-29 2018-12-20 株式会社ジャパンディスプレイ 検査装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231994A (ja) 2007-03-19 2008-10-02 Toyota Motor Corp 排ガスセンサの故障診断装置
US20090319085A1 (en) 2008-06-20 2009-12-24 Gm Global Technology Operations, Inc. Control system and method for oxygen sensor heater control
JP5440707B2 (ja) 2010-09-08 2014-03-12 トヨタ自動車株式会社 Pm検出装置
JP2012159438A (ja) 2011-02-01 2012-08-23 Toyota Motor Corp Pmセンサの故障検出装置
JP2015004285A (ja) 2013-06-19 2015-01-08 株式会社日本自動車部品総合研究所 内燃機関の制御装置

Also Published As

Publication number Publication date
JP2020067374A (ja) 2020-04-30
US11927120B2 (en) 2024-03-12
DE112019005316T5 (de) 2021-07-15
US20210239026A1 (en) 2021-08-05
WO2020085133A1 (ja) 2020-04-30

Similar Documents

Publication Publication Date Title
JP6070659B2 (ja) パティキュレートフィルタの異常診断装置
KR101701536B1 (ko) 내연 기관의 배기 가스 영역에 배치된 부품을 모니터링하기 위한 방법 및 장치
JP5338996B2 (ja) 内燃機関の粒子状物質検出装置
JP6137229B2 (ja) パティキュレートフィルタの異常診断装置
JP6520898B2 (ja) 排気浄化システムの異常診断装置
JP2016224054A (ja) 煤センサの機能的能力監視
JP5278615B2 (ja) 内燃機関の粒子状物質検出装置
JP7151373B2 (ja) 排ガスセンサ
EP2407773A1 (en) Failure detection device for exhaust gas purification filter
JP2009144577A (ja) パティキュレートフィルタの故障判定装置
JP6090293B2 (ja) フィルタの機能診断装置
JP6252537B2 (ja) パティキュレートフィルタの異常診断装置
US11512622B2 (en) Exhaust gas sensor
JP7172860B2 (ja) 排ガスセンサ
JP2012062769A (ja) エンジン制御装置
JP7087985B2 (ja) 粒子状物質検出装置
JP7088056B2 (ja) 粒子状物質検出センサ
JP2012036816A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R151 Written notification of patent or utility model registration

Ref document number: 7151373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151