WO2012060402A1 - 全固体電池およびその製造方法 - Google Patents

全固体電池およびその製造方法 Download PDF

Info

Publication number
WO2012060402A1
WO2012060402A1 PCT/JP2011/075270 JP2011075270W WO2012060402A1 WO 2012060402 A1 WO2012060402 A1 WO 2012060402A1 JP 2011075270 W JP2011075270 W JP 2011075270W WO 2012060402 A1 WO2012060402 A1 WO 2012060402A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
solid
solid electrolyte
negative electrode
layer
Prior art date
Application number
PCT/JP2011/075270
Other languages
English (en)
French (fr)
Inventor
充 吉岡
倍太 尾内
剛司 林
邦雄 西田
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2012060402A1 publication Critical patent/WO2012060402A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention generally relates to an all-solid battery and a method for manufacturing the same, and more specifically, includes a positive electrode layer, a solid electrolyte layer containing a solid electrolyte, and a negative electrode layer, and at least one of a positive electrode layer or a negative electrode layer;
  • the present invention relates to an all-solid battery in which a solid electrolyte layer is bonded by firing and a method for manufacturing the same.
  • the battery having the above configuration has a risk of leakage of the electrolyte.
  • the organic solvent etc. which are used for electrolyte solution are combustible substances. For this reason, it is required to further increase the safety of the battery.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-258148 proposes an all-solid battery in which all components are made of solid using a nonflammable solid electrolyte.
  • this all solid state battery a stacked type solid state battery in which an electrode layer (positive electrode layer, negative electrode layer) and a solid electrolyte layer are joined by firing is described.
  • An electrode paste was prepared by mixing Li 3 V 2 (PO 4 ) 3 as an electrode active material with acetylene black as a conductive agent so as to be 25% by mass, and Li 1.5 Al 0.5 Ge 1.5 as a solid electrolyte layer. (PO 4 ) 3
  • Electrode paste is screen-printed on both surfaces of the sintered body, and then baked at a temperature of 700 ° C. to produce a solid battery laminate.
  • an object of the present invention is to have sufficient laminate strength even when an electrode material in which a carbon material is added as a conductive agent to an electrode active material is used and the electrode layer and the solid electrolyte layer are joined by integral firing.
  • An all-solid-state battery and a method for manufacturing the same are provided.
  • An all solid state battery comprises a positive electrode layer, a solid electrolyte layer containing a solid electrolyte, and a negative electrode layer, wherein at least one of the positive electrode layer or the negative electrode layer and the solid electrolyte layer are joined by firing.
  • at least one of the positive electrode layer or the negative electrode layer includes an electrode active material and a conductive agent containing a carbon material, and the content of the carbon material contained in at least one starting material of the positive electrode layer or the negative electrode layer is It is 1 mass% or more and less than 25 mass%.
  • At least one of the solid electrolyte and the electrode active material contains a lithium-containing phosphate compound.
  • the solid electrolyte contains a lithium-containing phosphate compound having a NASICON type structure.
  • the manufacturing method of an all-solid battery according to the present invention is a manufacturing method of an all-solid battery having the above-described features, and includes the following steps.
  • At least one of the positive electrode layer or negative electrode layer slurry contains an electrode active material and a conductive agent containing a carbon material, and is contained in at least one of the positive electrode layer or negative electrode layer slurry.
  • the content of the carbon material is 1% by mass or more and less than 25% by mass.
  • the content of the carbon material contained in at least one of the positive electrode layer or the negative electrode layer slurry is based on the total amount of the inorganic material including the electrode active material, the solid electrolyte, the conductive agent, and other sintering aids. Refers to the mass ratio.
  • the electrode layer and the solid electrolyte layer are integrally fired. Can be obtained with good sinterability and sufficient strength of the laminate, and can impart electronic conductivity in the positive electrode layer or the negative electrode layer. Discharge characteristics can be obtained.
  • FIG. 1 is a perspective view schematically showing an all-solid battery as one embodiment of the present invention. It is a perspective view which shows typically an all-solid-state battery as another embodiment of this invention. It is sectional drawing which shows typically the cross-section of the laminated body which comprises the all-solid-state battery produced in Example 1 and 2 of this invention. It is sectional drawing which shows typically the cross-section of the laminated body which comprises the all-solid-state battery produced in Example 3 of this invention. It is a figure which shows the charging / discharging curve of the all-solid-state battery produced in Example 1 of this invention.
  • the all-solid battery stack 10 of the present invention includes a positive electrode layer 11, a solid electrolyte layer 13, and a negative electrode layer 12.
  • the all-solid battery stack 10 is formed in a rectangular parallelepiped shape, and is configured by a stack including a plurality of flat layers having a rectangular plane.
  • the all-solid-state battery stack 10 is formed in a cylindrical shape and is formed of a stack made of a plurality of disk-shaped layers.
  • Each of the positive electrode layer 11 and the negative electrode layer 12 includes an electrode active material, or includes a solid electrolyte and an electrode active material, and the solid electrolyte layer 13 includes a solid electrolyte. At least one of the positive electrode layer 11 or the negative electrode layer 12 includes a conductive agent including a carbon material.
  • the positive electrode layer 11 or the negative electrode layer 12 and the solid electrolyte layer 13 are joined by baking.
  • the content of the carbon material contained in at least one starting material of the positive electrode layer 11 or the negative electrode layer 12 is 1% by mass or more and less than 25% by mass.
  • the content of the carbon material contained in at least one starting material of the positive electrode layer 11 or the negative electrode layer 12 is 1% by mass or more and less than 25% by mass, the electrode layer (positive electrode layer 11 or negative electrode layer 12) and solid Even when the electrolyte layer 13 is joined by integral firing, the sinterability is good, sufficient strength of the laminate can be obtained, and electron conductivity is imparted in the positive electrode layer 11 or the negative electrode layer 12. As a result, good charge / discharge characteristics can be obtained.
  • the content of the carbon material is less than 1% by mass, sufficient electron conductivity in the electrode layer (positive electrode layer 11 or negative electrode layer 12) cannot be obtained, and charge / discharge characteristics are deteriorated.
  • the content of the carbon material is 25% by mass or more, the electrode active material and the solid electrolyte are not sufficiently sintered at the time of firing, and the strength of the all-solid battery stack 10 is weakened. Becomes easy to break.
  • the content of the carbon material is 1% by mass or more and less than 25% by mass, the electron conductivity in the electrode layer (positive electrode layer 11 or negative electrode layer 12) can be obtained, but the content of the carbon material is preferably 5% by mass. It is 20 mass% or less.
  • the utilization factor of the electrode active material can be improved, the density of the electrode layer can be increased, and the energy volume density can be increased.
  • the carbon material content is 10% by mass or more and 20% by mass or less. In this case, the above effect can be further improved.
  • Carbon powder such as acetylene black, ketjen black, and furnace black, is used as a carbon material.
  • the type of the electrode active material is not limited.
  • the positive electrode active material include lithium-containing phosphate compounds having a NASICON structure such as Li 3 V 2 (PO 4 ) 3 , olivine such as LiFePO 4 and LiMnPO 4.
  • Type lithium-containing phosphate compound, layered compound such as LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 4 Ti 5 O 12
  • a lithium-containing compound having a spinel structure such as can be used.
  • MOx (M is at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, and Mo, and x is in the range of 0.9 ⁇ x ⁇ 2.0.
  • a compound having a composition represented by the following numerical value can be used.
  • a mixture in which two or more active materials having a composition represented by MOx containing different elements M such as TiO 2 and SiO 2 may be used.
  • graphite-lithium compounds, lithium alloys such as Li-Al, oxidations such as Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12 Can be used.
  • a lithium-containing phosphate compound having a NASICON structure can be used as the solid electrolyte.
  • Lithium-containing phosphoric acid compound having a NASICON-type structure the chemical formula Li x M y (PO 4) 3 ( Formula, x 1 ⁇ x ⁇ 2, y is a number in the range of 1 ⁇ y ⁇ 2, M Is one or more elements selected from the group consisting of Ti, Ge, Al, Ga and Zr).
  • part of P in the above chemical formula may be substituted with B, Si, or the like.
  • a compound having two or more different compositions of a lithium-containing phosphate compound having a NASICON structure such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 is mixed. You may use the mixture.
  • the lithium-containing phosphate compound having a NASICON structure used in the solid electrolyte is a compound containing a crystal phase of a lithium-containing phosphate compound having a NASICON structure or a lithium-containing phosphate having a NASICON structure by heat treatment. You may use the glass which precipitates the crystal phase of a phosphoric acid compound.
  • a material used for said solid electrolyte it is possible to use the material which has ion conductivity and is so small that electronic conductivity can be disregarded other than the lithium-containing phosphate compound which has a NASICON structure.
  • examples of such a material include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof.
  • Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4 ⁇ x N x ) in which nitrogen is mixed with lithium phosphate, and Li—Si—O such as Li 4 SiO 4
  • Li—Si—O such as Li 4 SiO 4
  • Examples thereof include a compound having a lobskite structure, a compound having a garnet structure having Li, La, and Zr.
  • At least one of the solid electrolyte or the electrode active material includes a lithium-containing phosphate compound. Moreover, it is preferable that said solid electrolyte contains the lithium containing phosphoric acid compound of NASICON type
  • the solid electrolyte and the electrode active material include a lithium-containing phosphate compound such as a lithium-containing phosphate compound having a NASICON structure and a lithium-containing phosphate compound having an olivine structure.
  • a lithium-containing phosphate compound such as a lithium-containing phosphate compound having a NASICON structure
  • a lithium-containing phosphate compound having an olivine structure such as a lithium-containing phosphate compound having an olivine structure.
  • a molded body of a positive electrode material including a solid electrolyte and an electrode active material is produced.
  • a molded body of a negative electrode material including a solid electrolyte and an electrode active material is produced.
  • a compact of a solid electrolyte material is produced.
  • each of the molded bodies can be produced in the form of a green sheet.
  • each molded object is laminated
  • the all-solid battery laminate 10 composed of the laminate of the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12 can be formed by integral firing.
  • the firing temperature is preferably 500 ° C. or higher and 700 ° C. or lower.
  • each slurry of the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12 is prepared (slurry preparation step). Thereafter, each of the slurry of the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12 is formed to produce a green sheet (green sheet forming step). And the green body of each of the positive electrode layer 11, the solid electrolyte layer 13, and the negative electrode layer 12 is laminated
  • At least one of the slurry of the positive electrode layer 11 or the negative electrode layer 12 includes an electrode active material and a conductive agent including a carbon material, and the positive electrode layer 11 or the negative electrode layer 12.
  • the content of the carbon material contained in at least one of the slurries is 1% by mass or more and less than 25% by mass.
  • the method for forming the green sheet is not particularly limited, but a die coater, a comma coater, screen printing, or the like can be used.
  • the method of laminating the green sheets is not particularly limited, but the green sheets can be laminated using a hot isostatic press (HIP), a cold isostatic press (CIP), a hydrostatic press (WIP), or the like. it can.
  • the atmosphere for firing the laminate of green sheets is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material.
  • At least one of the positive electrode layer 11 or the negative electrode layer 12 and the solid electrolyte layer 13 are joined by integral firing.
  • Example shown below is an example and this invention is not limited to the following Example.
  • MoO 2 Molybdenum dioxide
  • LAGP Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3
  • AB acetylene black
  • the glass powder of LAGP as a solid electrolyte material and polyvinyl alcohol as a binder were mixed to prepare a solid electrolyte slurry 1.
  • a conductive agent slurry 1 was prepared by mixing AB as a conductive agent and polyvinyl alcohol as a binder.
  • electrode slurry 1 was prepared.
  • the electrode slurry 1 and the solid electrolyte green sheet 1 produced as described above were formed into a thickness of 50 ⁇ m using a doctor blade to produce an electrode green sheet 1 and a solid electrolyte green sheet 1.
  • a green sheet for the negative electrode layer 12 (electrode green sheet 1) punched into a disk shape with a diameter of 12 mm on one surface of a green sheet for the solid electrolyte layer 13 (solid electrolyte green sheet 1) punched into a disk shape with a diameter of 12 mm. ) Is laminated in the configuration of the laminate as shown in FIG. 4 and thermocompression bonded at a temperature of 80 ° C. with a pressure of 1 ton to form a laminate constituting a part of the all-solid battery laminate 110. A green sheet laminate 1 was produced.
  • the green sheet laminate 1 is sandwiched between two alumina ceramic plates, baked in air at a temperature of 500 ° C., and after removing polyvinyl alcohol, the glass sheet laminate is heated to 600 ° C. in a nitrogen gas atmosphere. As shown in FIG. 4, the negative electrode layer 12 and the solid electrolyte layer 13 were joined by integral firing to produce a laminate 1 constituting a part of the all-solid battery laminate 110.
  • the obtained laminate 1 was dried at a temperature of 100 ° C. to remove moisture. Thereafter, as shown in FIG. 4, polymethyl methacrylate (PMMA) gel electrolyte 131 is applied on metallic lithium as positive electrode layer 11 (counter electrode) so that the surface of solid electrolyte layer 13 is in contact with PMMA gel electrolyte 131.
  • PMMA polymethyl methacrylate
  • the positive electrode layer 11 was laminated to the all-solid battery laminate 110.
  • the all solid state battery stack 110 was sealed with a 2032 type coin cell to produce the all solid state battery 1.
  • FIG. 6 shows a charge / discharge curve of the all-solid battery 1.
  • a decrease in potential due to lithium insertion into MoO 2 used as the negative electrode active material is defined as charging, and a rise in potential due to lithium desorption from MoO 2 is defined as discharging.
  • the horizontal axis of FIG. 6 shows the capacity [mAh / g] per gram with respect to the mass of molybdenum dioxide contained in the negative electrode layer.
  • an all-solid battery using an electrode sheet not containing a conductive agent was prepared and evaluated.
  • Electrode green sheet 1a was produced by forming electrode slurry 1a produced as described above to a thickness of 50 ⁇ m using a doctor blade.
  • a green sheet for the negative electrode layer 12 (electrode green sheet 1a) punched into a disk shape with a diameter of 12 mm is formed on one surface of a green sheet for solid electrolyte layer 13 (solid electrolyte green sheet 1) punched into a disk shape with a diameter of 12 mm. ) Is laminated in the configuration of the laminate as shown in FIG. 4 and thermocompression bonded at a temperature of 80 ° C. with a pressure of 1 ton to form a laminate constituting a part of the all-solid battery laminate 110. A green sheet laminate 1a was produced.
  • the green sheet laminate 1a is sandwiched between two alumina ceramic plates, fired in air at a temperature of 500 ° C., and after removal of polyvinyl alcohol, the temperature is 600 ° C. in a nitrogen gas atmosphere. As shown in FIG. 4, the negative electrode layer 12 and the solid electrolyte layer 13 were joined by integral firing to produce a laminate 1 a constituting a part of the all-solid battery laminate 110.
  • the obtained laminate 1a was dried at a temperature of 100 ° C. to remove moisture. Thereafter, as shown in FIG. 4, polymethyl methacrylate (PMMA) gel electrolyte 131 is applied on metallic lithium as positive electrode layer 11 (counter electrode) so that the surface of solid electrolyte layer 13 is in contact with PMMA gel electrolyte 131.
  • PMMA polymethyl methacrylate
  • the positive electrode layer 11 was laminated to the all-solid battery laminate 110.
  • the all-solid battery stack 110 was sealed with a 2032 type coin cell to produce an all-solid battery 1a.
  • the all-solid-state battery 1a was subjected to constant current constant voltage charge / discharge measurement at a voltage range of 1.4 to 3 V and a current density of 100 ⁇ A / cm 2 . As a result, it was confirmed that charging / discharging was performed at an initial discharge capacity per unit mass of the electrode active material (MoO 2 ) of about 50 mAh / g.
  • Example 1 Although only what used acetylene black (AB) as a carbon powder was demonstrated, carbon powder is not restricted to AB, Carbon powder, such as Ketjen black and furnace black, is used. Even if it is used, the same effect can be obtained.
  • AB acetylene black
  • the sealing method of an all-solid-state battery laminated body is not specifically limited, You may seal the sintered laminated body with resin. An insulating paste such as Al 2 O 3 may be applied or dipped around the laminated body and heat-treated to seal it. In order to draw current efficiently from the positive and negative electrode layers, a conductive layer such as a metal layer may be formed on the positive and negative electrode layers by sputtering or the like. A conductive layer may be formed by applying or dipping a metal paste or the like on the positive and negative electrode layers and heat-treating it.
  • Anatase type titanium oxide (hereinafter referred to as TiO 2 ) was used as an electrode active material, glass powder LAGP having a composition of a lithium-containing phosphate compound having a NASICON type structure as a solid electrolyte, and AB was used as a conductive agent.
  • Electrode active material slurry 2 The electrode active material slurry 2, the solid electrolyte slurry 1 and the conductive agent slurry 1 prepared above were mixed so that the mixing ratio of TiO 2 , LAGP and AB was a mass ratio and the value shown in Table 1. Electrode slurries 2 to 8 were prepared.
  • Electrode green sheets 2 to 8 were produced by forming the electrode slurries 2 to 8 produced as described above to a thickness of 50 ⁇ m using a doctor blade.
  • a green sheet for the negative electrode layer 12 (electrode green sheet 2) punched into a disk shape with a diameter of 12 mm on one surface of a green sheet for the solid electrolyte layer 13 (solid electrolyte green sheet 1) punched into a disk shape with a diameter of 12 mm.
  • To 8 are laminated in the structure of the laminated body as shown in FIG. 4 and thermocompression bonded at a temperature of 80 ° C. with a pressure of 1 ton to form a laminated body constituting a part of the all-solid-state battery laminated body 110.
  • Green sheet laminates 2 to 8 for formation were produced.
  • Each of the green sheet laminates 2 to 8 is sandwiched between two alumina ceramic plates, fired in air at a temperature of 500 ° C. to remove polyvinyl alcohol, and then placed in a nitrogen gas atmosphere. As shown in FIG. 4, the negative electrode layer 12 and the solid electrolyte layer 13 are joined by integral firing, so that the laminates 2 to 8 constituting a part of the all-solid battery 110 are fired at a temperature of 600 ° C. Was made.
  • the obtained laminates 2 to 8 were dried at a temperature of 100 ° C. to remove moisture. Thereafter, as shown in FIG. 4, polymethyl methacrylate (PMMA) gel electrolyte 131 is applied on metallic lithium as positive electrode layer 11 (counter electrode) so that the surface of solid electrolyte layer 13 is in contact with PMMA gel electrolyte 131.
  • PMMA polymethyl methacrylate
  • the positive electrode layer 11 was laminated to the all-solid battery laminate 110.
  • the all solid state battery stack 110 was sealed with a 2032 type coin cell to prepare all solid state batteries 2 to 8.
  • the laminates 7 and 8 have insufficient sintering of the electrode active material and the solid electrolyte, and the strengths of the laminates 2 to 6 are the same as those of the other laminates 2 to 6. Compared to this, the laminate 8 was easily broken during handling.
  • the all-solid-state batteries 2 to 8 were subjected to constant current and constant voltage charge / discharge measurement in a voltage range of 1.4 to 3 V and a current density of 100 ⁇ A / cm 2 .
  • Table 2 shows the measurement results of the discharge capacity per unit mass of the electrode active material (TiO 2 ) for all solid state batteries 2 to 8 (laminates 2 to 8).
  • the negative electrode layer 12 has the highest electronic conductivity and the highest discharge capacity.
  • the laminates 7 and 8 have insufficient sintering of the electrode active material and the solid electrolyte, and the strength thereof is lower than those of the other laminates 2 to 6, so that an all-solid battery is formed. It was not suitable for use.
  • the discharge capacity decreased as the carbon content decreased.
  • Inorganic crystal powder Li 3 V 2 (PO 4 ) 3 (hereinafter referred to as LVP) having a composition of a lithium-containing phosphate compound having a NASICON structure as an electrode active material, and a composition of a lithium-containing phosphate compound having a NASICON structure as a solid electrolyte
  • LVP Inorganic crystal powder Li 3 V 2 (PO 4 ) 3
  • furnace black was added as a carbon powder during synthesis.
  • An electrode active material slurry 9 was prepared by mixing LVP crystal powder as an electrode active material in a binder solution obtained by dissolving polyvinyl alcohol as a binder in toluene.
  • the electrode active material slurry 9 and the solid electrolyte slurry 1 produced above were mixed so that the mixing ratio of LVP, LAGP, and furnace black was 35:50:15, and the electrode slurry 9 was Produced.
  • the electrode slurry 9 produced as described above was formed into a thickness of 50 ⁇ m by using a doctor blade to produce an electrode green sheet 9.
  • a green sheet for the positive electrode layer 11 (electrode green sheet 9) punched into a disk shape with a diameter of 12 mm on one surface of a green sheet for the solid electrolyte layer 13 (solid electrolyte green sheet 1) punched into a disk shape with a diameter of 12 mm. )
  • electrode green sheet 9 punched into a disk shape with a diameter of 12 mm on one surface of a green sheet for the solid electrolyte layer 13 (solid electrolyte green sheet 1) punched into a disk shape with a diameter of 12 mm.
  • the green sheet laminate 9 is sandwiched between two alumina ceramic plates, fired in air at a temperature of 500 ° C., and after removing polyvinyl alcohol, the glass sheet laminate 9 is heated to 600 ° C. in a nitrogen gas atmosphere. As shown in FIG. 5, the positive electrode layer 11 and the solid electrolyte layer 13 were joined by integral firing to produce a laminate 9 constituting a part of the all-solid battery laminate 120.
  • the obtained laminate 9 was dried at a temperature of 100 ° C. to remove moisture. Thereafter, as shown in FIG. 5, polymethyl methacrylate (PMMA) gel electrolyte 131 is applied on metallic lithium as negative electrode layer 12 (counter electrode) so that the surface of solid electrolyte layer 13 is in contact with PMMA gel electrolyte 131. A negative electrode layer 12 was laminated to the all-solid battery laminate 120. The all solid state battery laminate 120 was sealed with a 2032 type coin cell to produce the all solid state battery 9.
  • PMMA polymethyl methacrylate
  • the all-solid-state battery 9 was subjected to constant current constant voltage charge / discharge measurement in a voltage range of 3.0 to 4.5 V and a current density of 100 ⁇ A / cm 2 . As a result, it was confirmed that charging / discharging was possible at a discharge capacity per unit mass of the electrode active material (LVP) of about 110 mAh / g, indicating a high discharge capacity.
  • LVP electrode active material

Abstract

 電極活物質に導電剤として炭素材料を添加した電極材料を使用し、電極層と固体電解質層とを一体焼成によって接合しても、十分な積層体の強度を有する全固体電池およびその製造方法を提供する。全固体電池積層体(10)は、正極層(11)と、固体電解質を含む固体電解質層(13)と、負極層(12)とを備え、正極層(11)または負極層(12)の少なくとも一方と固体電解質層(13)とが焼成によって接合され、正極層(11)または負極層(12)の少なくとも一方が、電極活物質と、炭素材料を含む導電剤とを含み、正極層(11)または負極層(12)の少なくとも一方の出発材料に含まれる炭素材料の含有量が1質量%以上25質量%未満である。

Description

全固体電池およびその製造方法
 本発明は、一般的には全固体電池およびその製造方法に関し、特定的には、正極層と、固体電解質を含む固体電解質層と、負極層とを備え、正極層または負極層の少なくとも一方と固体電解質層とが焼成によって接合された全固体電池およびその製造方法に関する。
 近年、携帯電話、携帯用パーソナルコンピュータなどの携帯用電子機器の電源として電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させるための媒体として有機溶媒などの電解質(電解液)が従来から使用されている。
 しかし、上記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒などは可燃性物質である。このため、電池の安全性をさらに高めることが求められている。
 そこで、電池の安全性を高めるための一つの対策は、電解質として、電解液に代えて、固体電解質を用いることが提案されている。さらに、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成されている全固体電池の開発が進められている。
 たとえば、特開2007-258148号公報(以下、特許文献1という)には、不燃性の固体電解質を用いてすべての構成要素を固体で構成した全固体電池が提案されている。この全固体電池の実施例として、電極層(正極層、負極層)と固体電解質層とが焼成によって接合された積層型固体電池が記載されている。電極活物質としてのLi32(PO43に、導電剤としてのアセチレンブラックを25質量%となるように混合して電極ペーストを作製し、固体電解質層としてのLi1.5Al0.5Ge1.5(PO43焼結体の両面に電極ペーストをスクリーン印刷した後、700℃の温度で焼き付けて固体電池用積層体を作製している。
特開2007-258148号公報
 しかしながら、電極活物質に導電剤としてのアセチレンブラックを25質量%添加して電極スラリーを作製して、電極スラリーと固体電解質スラリーとを一体焼成によって接合して固体電池用積層体を作製すると、焼結性が良好でなく、積層体の強度が低下することがわかった。このような発明者らの知見に基づいて本発明はなされたものである。
 したがって、本発明の目的は、電極活物質に導電剤として炭素材料を添加した電極材料を使用し、電極層と固体電解質層とを一体焼成によって接合しても、十分な積層体の強度を有する全固体電池およびその製造方法を提供することである。
 本発明に従った全固体電池は、正極層と、固体電解質を含む固体電解質層と、負極層とを備え、正極層または負極層の少なくとも一方と固体電解質層とが焼成によって接合された全固体電池であって、正極層または負極層の少なくとも一方が、電極活物質と、炭素材料を含む導電剤とを含み、正極層または負極層の少なくとも一方の出発材料に含まれる炭素材料の含有量が1質量%以上25質量%未満である。
 本発明の全固体電池において、固体電解質または電極活物質の少なくとも一方が、リチウム含有リン酸化合物を含むことが好ましい。
 また、本発明の全固体電池において、固体電解質が、ナシコン型構造のリチウム含有リン酸化合物を含むことが好ましい。
 本発明に従って全固体電池の製造方法は、上述の特徴を備えた全固体電池の製造方法であって、以下の工程を備える。
 (A)正極層、固体電解質層、および、負極層の各々のスラリーを調製するスラリー調製工程
 (B)正極層、固体電解質層、および、負極層の各々のスラリーを成形してグリーンシートを作製するグリーンシート成形工程
 (C)正極層、固体電解質層、および、負極層の各々のグリーンシートを積層して積層体を形成する積層体形成工程
 (D)積層体を焼成する焼成工程
 (E)スラリー調製工程において、正極層または負極層のスラリーの少なくとも一方が、電極活物質と、炭素材料を含む導電剤とを含み、かつ、正極層または負極層のスラリーの少なくとも一方に含まれる炭素材料の含有量が1質量%以上25質量%未満である。ここで、正極層または負極層のスラリーの少なくとも一方に含まれる炭素材料の含有量とは、電極活物質、固体電解質、導電剤、および、その他の焼結助剤などを含む無機材料の総量に対する質量比率をいう。
 本発明の全固体電池では、正極層または負極層の少なくとも一方の出発材料に含まれる炭素材料の含有量が1質量%以上25質量%未満であるので、電極層と固体電解質層とを一体焼成によって接合しても、焼結性が良好で、十分な積層体の強度を得ることができるとともに、正極層内または負極層内に電子伝導性を付与することができ、その結果、良好な充放電特性を得ることができる。
本発明の実施形態として全固体電池の断面構造を模式的に示す断面図である。 本発明の一つの実施形態として全固体電池を模式的に示す斜視図である。 本発明のもう一つの実施形態として全固体電池を模式的に示す斜視図である。 本発明の実施例1と2で作製された全固体電池を構成する積層体の断面構造を模式的に示す断面図である。 本発明の実施例3で作製された全固体電池を構成する積層体の断面構造を模式的に示す断面図である。 本発明の実施例1で作製された全固体電池の充放電曲線を示す図である。
 図1に示すように、本発明の全固体電池積層体10は、正極層11と固体電解質層13と負極層12とを備える。図2に示すように本発明の一つの実施形態として全固体電池積層体10は直方体形状に形成され、矩形の平面を有する複数の平板状層からなる積層体で構成される。また、図3に示すように本発明のもう一つの実施形態として全固体電池積層体10は円柱形状に形成され、複数の円板状層からなる積層体で構成される。なお、正極層11と負極層12のそれぞれは、電極活物質を含み、または、固体電解質と電極活物質とを含み、固体電解質層13は固体電解質を含む。正極層11または負極層12の少なくとも一方が、炭素材料を含む導電剤を含む。
 上記のように構成された全固体電池積層体10では、正極層11または負極層12の少なくとも一方と固体電解質層13とが焼成によって接合されている。正極層11または負極層12の少なくとも一方の出発材料に含まれる炭素材料の含有量が1質量%以上25質量%未満である。
 このように正極層11または負極層12の少なくとも一方の出発材料に含まれる炭素材料の含有量が1質量%以上25質量%未満であるので、電極層(正極層11または負極層12)と固体電解質層13とを一体焼成によって接合しても、焼結性が良好で、十分な積層体の強度を得ることができるとともに、正極層11内または負極層12内に電子伝導性を付与することができ、その結果、良好な充放電特性を得ることができる。炭素材料の含有量が1質量%未満の場合には、電極層(正極層11または負極層12)内の電子伝導性が十分に得られず、充放電特性が低下する。炭素材料の含有量が25質量%以上の場合には、焼成時に電極活物質と固体電解質の焼結が不十分になり、全固体電池積層体10の強度が弱くなり、全固体電池積層体10が割れやすくなる。
 炭素材料の含有量が1質量%以上25質量%未満であれば、電極層(正極層11または負極層12)内の電子伝導性が得られるが、好ましくは炭素材料の含有量が5質量%以上20質量%以下である。この場合、電極活物質の利用率を向上させ、電極層の密度が高くなり、エネルギー体積密度を高めることができる。また、さらに好ましくは炭素材料の含有量が10質量%以上20質量%以下である。この場合、上記の効果をさらに向上させることができる。
 なお、上記の導電剤に含められる炭素材料の種類は特に限定されないが、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどの炭素粉末が炭素材料として用いられる。
 また、上記の電極活物質の種類は限定されないが、正極活物質としては、Li32(PO43などのナシコン型構造を有するリチウム含有リン酸化合物、LiFePO4、LiMnPO4などのオリビン型構造を有するリチウム含有リン酸化合物、LiCoO2、LiCo1/3Ni1/3Mn1/32などの層状化合物、LiMn24、LiNi0.5Mn1.54、Li4Ti512などのスピネル型構造を有するリチウム含有化合物を用いることができる。
 負極活物質としては、MOx(MはTi、Si、Sn、Cr、FeおよびMoからなる群より選ばれた少なくとも1種以上の元素であり、xは0.9≦x≦2.0の範囲内の数値である)で表わされる組成を有する化合物を用いることができる。たとえば、TiO2とSiO2、などの異なる元素Mを含むMOxで表わされる組成を有する2つ以上の活物質を混合した混合物を用いてもよい。また、負極活物質としては、黒鉛-リチウム化合物、Li‐Alなどのリチウム合金、Li32(PO43、Li3Fe2(PO43、Li4Ti512などの酸化物、などを用いることができる。
 上記の固体電解質としては、ナシコン型構造を有するリチウム含有リン酸化合物を用いることができる。ナシコン型構造を有するリチウム含有リン酸化合物は、化学式Lixy(PO43(化学式中、xは1≦x≦2、yは1≦y≦2の範囲内の数値であり、MはTi、Ge、Al、GaおよびZrからなる群より選ばれた1種以上の元素である)で表わされる。この場合、上記化学式においてPの一部をB、Si等で置換してもよい。また、Li1.5Al0.5Ge1.5(PO43とLi1.2Al0.2Ti1.8(PO43などの、ナシコン型構造を有するリチウム含有リン酸化合物の2つ以上の異なる組成を有する化合物を混合した混合物を用いてもよい。
 また、上記の固体電解質に用いられるナシコン型構造を有するリチウム含有リン酸化合物としては、ナシコン型構造を有するリチウム含有リン酸化合物の結晶相を含む化合物、または、熱処理によりナシコン型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスを用いてもよい。
 なお、上記の固体電解質に用いられる材料としては、ナシコン型構造を有するリチウム含有リン酸化合物以外に、イオン伝導性を有し、電子伝導性が無視できるほど小さい材料を用いることが可能である。このような材料として、たとえば、ハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩、および、これらの誘導体を挙げることができる。また、リン酸リチウム(Li3PO4)などのLi‐P‐O系化合物、リン酸リチウムに窒素を混ぜたLIPON(LiPO4-xx)、Li4SiO4などのLi‐Si‐O系化合物、Li‐P‐Si‐O系化合物、Li‐V‐Si‐O系化合物、La0.51Li0.35TiO2.94、La0.55Li0.35TiO3、Li3xLa2/3-xTiO3などのぺロブスカイト型構造を有する化合物、Li、La、Zrを有するガーネット型構造を有する化合物、などを挙げることができる。
 上記の固体電解質または電極活物質の少なくとも一方が、リチウム含有リン酸化合物を含むことが好ましい。また、上記の固体電解質がナシコン型構造のリチウム含有リン酸化合物を含むことが好ましい。
 本発明の全固体電池の好ましい一つの実施形態では、固体電解質と電極活物質が、ナシコン構造を有するリチウム含有リン酸化合物、オリビン構造を有するリチウム含有リン酸化合物などのリチウム含有リン酸化合物を含む。このように固体電解質と電極活物質の双方がリン酸アニオン骨格を有する材料を含むことにより、焼成工程において電極層と固体電解質層とを密接に焼結接合することができる。
 本発明の全固体電池積層体10の製造方法の一つの実施形態では、まず、固体電解質と電極活物質とを含む正極材料の成形体を作製する。固体電解質と電極活物質とを含む負極材料の成形体を作製する。固体電解質材料の成形体を作製する。この場合、上記の各々の成形体をグリーンシートの形態で作製することができる。そして、各々の成形体を積層して積層体を形成する。この積層体を焼成する。このようにして正極層11と固体電解質層13と負極層12との積層体からなる全固体電池積層体10を一体焼成により形成することができる。この場合、焼成温度は500℃以上700℃以下であることが好ましい。
 本発明の全固体電池積層体10の製造方法の好ましい一つの実施形態では、まず、正極層11、固体電解質層13、および、負極層12の各々のスラリーを調製する(スラリー調製工程)。その後、正極層11、固体電解質層13、および、負極層12の各々のスラリーを成形してグリーンシートを作製する(グリーンシート成形工程)。そして、正極層11、固体電解質層13、および、負極層12の各々のグリーンシートを積層して積層体を形成する(積層体形成工程)。最後に、積層体を焼成する(焼成工程)。本発明の製造方法では、スラリー調製工程において、正極層11または負極層12のスラリーの少なくとも一方が、電極活物質と、炭素材料を含む導電剤とを含み、かつ、正極層11または負極層12のスラリーの少なくとも一方に含まれる炭素材料の含有量が1質量%以上25質量%未満である。
 上記のグリーンシートを成形する方法は特に限定されないが、ダイコーター、コンマコーター、スクリーン印刷などを使用することができる。グリーンシートを積層する方法は特に限定されないが、熱間等方圧プレス(HIP)、冷間等方圧プレス(CIP)、静水圧プレス(WIP)などを使用してグリーンシートを積層することができる。グリーンシートの積層体を焼成するための雰囲気は特に限定されないが、電極活物質に含まれる遷移金属の価数が変化しない条件で行うことが好ましい。
 本発明の全固体電池積層体10においては、正極層11または負極層12の少なくとも一方と固体電解質層13とが一体焼成によって接合されている。この場合、正極層11または負極層12の少なくとも一方と固体電解質層13とが、複数のグリーンシートを積層して形成された積層体を焼成することによって接合されていることが好ましい。
 次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。
 以下、各種の電極活物質と固体電解質を用いて作製された全固体電池の実施例1~3と比較例について説明する。
 (実施例1)
 電極活物質材料として二酸化モリブデン(以下、MoO2という)、固体電解質材料としてナシコン型構造のリチウム含有リン酸化合物の組成を有するガラス粉末Li1.5Al0.5Ge1.5(PO43(以下、LAGPという)、導電剤としてアセチレンブラック(以下、ABという)を用いた。
 <電極グリーンシート、固体電解質グリーンシートの作製>
 バインダとしてのポリビニルアルコールを含む溶液中に、電極活物質としてのMoO2の結晶粉末を混合して、電極活物質スラリー1を作製した。混合比は、質量比率で、MoO2:ポリビニルアルコール=80:20とした。
 固体電解質材料としてのLAGPのガラス粉末と、バインダとしてのポリビニルアルコールとを混合して、固体電解質スラリー1を作製した。混合比は、質量比率で、LAGP:ポリビニルアルコール=80:20とした。
 導電剤としてのABと、バインダとしてのポリビニルアルコールとを混合して、導電剤スラリー1を作製した。混合比は、質量比率で、AB:ポリビニルアルコール=80:20とした。
 上記で作製された電極活物質スラリー1と固体電解質スラリー1と導電剤スラリー1とを、MoO2とLAGPとABの混合比が、質量比率で、MoO2:LAGP:AB=45:45:10になるように混合して、電極スラリー1を作製した。
 以上のようにして作製された電極スラリー1と固体電解質スラリー1を、ドクターブレードを用いて、50μmの厚みに成形することにより、電極グリーンシート1と固体電解質グリーンシート1を作製した。
 <全固体電池の作製>
 直径が12mmの円板形状に打ち抜いた固体電解質層13用グリーンシート(固体電解質グリーンシート1)の一方面に、直径が12mmの円板形状に打ち抜いた負極層12用グリーンシート(電極グリーンシート1)を、図4に示すような積層体の構成で積層し、80℃の温度で1トンの圧力で熱圧着し、全固体電池積層体110の一部を構成する積層体を形成するためのグリーンシート積層体1を作製した。
 グリーンシート積層体1を、2枚のアルミナ製のセラミックス板を用いて挟み込み、空気中にて500℃の温度で焼成し、ポリビニルアルコールの除去を行った後、窒素ガス雰囲気中にて600℃の温度で焼成して、図4に示すように、負極層12と固体電解質層13とを一体焼成によって接合することにより、全固体電池積層体110の一部を構成する積層体1を作製した。
 得られた積層体1を100℃の温度で乾燥し、水分を除去した。その後、図4に示すように、正極層11(対極)としての金属リチウム上にポリメタクリル酸メチル(PMMA)ゲル電解質131を塗布し、固体電解質層13の面がPMMAゲル電解質131と接触するように正極層11を積層して、全固体電池積層体110を作製した。全固体電池積層体110を2032型のコインセルで封止して全固体電池1を作製した。
 <全固体電池の評価>
 全固体電池1を1.3~3Vの電圧範囲、100μA/cm2の電流密度で、定電流定電圧充放電測定を行った。図6に全固体電池1の充放電曲線を示す。ここで、負極の活物質として用いられたMoO2へのリチウム挿入によって電位が下降することを充電、MoO2からのリチウム脱離によって電位が上昇することを放電と定義する。図6の横軸は、負極層に含まれる二酸化モリブデンの質量に対して、1グラム当たりの容量[mAh/g]を示す。その結果、図6に示すように、電極活物質(MoO2)の単位質量当たりの放電容量が約170mAh/gで充放電が可能であり、高い放電容量を示すことが確認された。また、放電時に1.4Vと1.7V(v.s.Li)の電位で平坦域を示すことが確認された。
 (比較例)
 比較例として、導電剤を含まない電極シートを用いた全固体電池を作製し、評価した。
 <電極グリーンシート、固体電解質グリーンシートの作製>
 上記で作製された電極活物質スラリー1と固体電解質スラリー1とを、MoO2とLAGPの混合比が、質量比率で、MoO2:LAGP=50:50になるように混合して、電極スラリー1aを作製した。
 以上のようにして作製された電極スラリー1aを、ドクターブレードを用いて、50μmの厚みに成形することにより、電極グリーンシート1aを作製した。
 <全固体電池の作製>
 直径が12mmの円板形状に打ち抜いた固体電解質層13用グリーンシート(固体電解質グリーンシート1)の一方面に、直径が12mmの円板形状に打ち抜いた負極層12用グリーンシート(電極グリーンシート1a)を、図4に示すような積層体の構成で積層し、80℃の温度で1トンの圧力で熱圧着し、全固体電池積層体110の一部を構成する積層体を形成するためのグリーンシート積層体1aを作製した。
 グリーンシート積層体1aを、2枚のアルミナ製のセラミックス板を用いて挟み込み、空気中にて500℃の温度で焼成し、ポリビニルアルコールの除去を行った後、窒素ガス雰囲気中にて600℃の温度で焼成して、図4に示すように、負極層12と固体電解質層13とを一体焼成によって接合することにより、全固体電池積層体110の一部を構成する積層体1aを作製した。
 得られた積層体1aを100℃の温度で乾燥し、水分を除去した。その後、図4に示すように、正極層11(対極)としての金属リチウム上にポリメタクリル酸メチル(PMMA)ゲル電解質131を塗布し、固体電解質層13の面がPMMAゲル電解質131と接触するように正極層11を積層して、全固体電池積層体110を作製した。全固体電池積層体110を2032型のコインセルで封止して全固体電池1aを作製した。
 <全固体電池の評価>
 全固体電池1aを1.4~3Vの電圧範囲、100μA/cm2の電流密度で、定電流定電圧充放電測定を行った。その結果、電極活物質(MoO2)の単位質量当たりの初期放電容量が約50mAh/gで充放電することが確認された。
 以上の結果から、電極層に導電剤として機能する炭素粉末を混ぜることにより、電極層の電子伝導性を高めることができれば、電極活物質の容量を十分に高めることができ、有機電解液を用いた電池と同等程度に充放電できることが明らかになった。
 なお、実施例1においては、炭素粉末としてアセチレンブラック(AB)を用いたものについてのみ説明を行ったが、炭素粉末はABに限られることはなく、ケッチェンブラック、ファーネスブラックなどの炭素粉末を用いても同様の効果が得られる。
 また、全固体電池積層体の封止方法は特に限定されず、焼結した積層体を樹脂で封止するなどしてもよい。Al23などの絶縁性のペーストを積層体の周囲に塗布またはディップし、これを熱処理して封止するなどしてもよい。正負極層から効率的に電流を引き出すために、正負極層の上にスパッタリングなどで金属層などの導電層を形成してもよい。正負極層の上に金属ペーストなどを塗布またはディップし、これを熱処理して導電層を形成するなどしてもよい。
 (実施例2)
 電極活物質としてアナターゼ型酸化チタン(以下、TiO2という)、固体電解質としてナシコン型構造のリチウム含有リン酸化合物の組成を有するガラス粉末LAGP、導電剤としてABを用いた。
 <電極グリーンシートの作製>
 バインダとしてのポリビニルアルコールを含む溶液中に、電極活物質としてのTiO2の結晶粉末を混合して、電極活物質スラリー2を作製した。混合比は、質量比率で、TiO2:ポリビニルアルコール=80:20とした。
 上記で作製された電極活物質スラリー2と固体電解質スラリー1と導電剤スラリー1とを、TiO2とLAGPとABの混合比が、質量比率で、表1に示す値になるように混合して、電極スラリー2~8を作製した。
 以上のようにして作製された電極スラリー2~8を、ドクターブレードを用いて、50μmの厚みに成形することにより、電極グリーンシート2~8を作製した。
Figure JPOXMLDOC01-appb-T000001
 <全固体電池の作製>
 直径が12mmの円板形状に打ち抜いた固体電解質層13用グリーンシート(固体電解質グリーンシート1)の一方面に、直径が12mmの円板形状に打ち抜いた負極層12用グリーンシート(電極グリーンシート2~8のそれぞれ)を、図4に示すような積層体の構成で積層し、80℃の温度で1トンの圧力で熱圧着し、全固体電池積層体110の一部を構成する積層体を形成するためのグリーンシート積層体2~8を作製した。
 グリーンシート積層体2~8のそれぞれを、2枚のアルミナ製のセラミックス板を用いて挟み込み、空気中にて500℃の温度で焼成し、ポリビニルアルコールの除去を行った後、窒素ガス雰囲気中にて600℃の温度で焼成して、図4に示すように、負極層12と固体電解質層13とを一体焼成によって接合することにより、全固体電池110の一部を構成する積層体2~8を作製した。
 得られた積層体2~8を100℃の温度で乾燥し、水分を除去した。その後、図4に示すように、正極層11(対極)としての金属リチウム上にポリメタクリル酸メチル(PMMA)ゲル電解質131を塗布し、固体電解質層13の面がPMMAゲル電解質131と接触するように正極層11を積層して、全固体電池積層体110を作製した。全固体電池積層体110を2032型のコインセルで封止して全固体電池2~8を作製した。
 その結果、表2の「焼結性」の欄に示すように、積層体7と8は、電極活物質と固体電解質の焼結が不十分であり、強度が他の積層体2~6に比べて低く、積層体8は取扱い時に割れやすかった。
 <全固体電池の評価>
 全固体電池2~8を1.4~3Vの電圧範囲、100μA/cm2の電流密度で、定電流定電圧充放電測定を行った。全固体電池2~8(積層体2~8)について、電極活物質(TiO2)の単位質量当たりの放電容量の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、負極層12の出発材料に含まれるABの含有量が10~30質量部の積層体5~8にて、負極層12の電子伝導性が高くなり、最も放電容量が大きくなることを確認した。しかし、上述したように積層体7と8は、電極活物質と固体電解質の焼結が不十分であり、強度が他の積層体2~6に比べて低いので、全固体電池を構成するために用いるのに適さなかった。ABの含有量が少ない積層体4、3、2では、炭素含有量が少なくなるにつれて放電容量が小さくなることを確認した。
 (実施例3)
 電極活物質としてナシコン型構造のリチウム含有リン酸化合物の組成を有する無機結晶粉末Li32(PO43(以下、LVPという)、固体電解質としてナシコン型構造のリチウム含有リン酸化合物の組成を有するガラス粉末LAGPを用いた。LVPには、合成時に炭素粉末としてファーネスブラックを添加した。混合比は、質量比率で、LVP:ファーネスブラック=85:15とした。
 <電極グリーンシートの作製>
 バインダとしてのポリビニルアルコールをトルエンに溶解したバインダ溶液中に、電極活物質としてのLVPの結晶粉末を混合して、電極活物質スラリー9を作製した。混合比は、質量比率で、(LVP+ファーネスブラック):ポリビニルアルコール=80:20とした。
 上記で作製された電極活物質スラリー9と固体電解質スラリー1とを、LVPとLAGPとファーネスブラックの混合比が、質量比率で、35:50:15になるように混合して、電極スラリー9を作製した。
 以上のようにして作製された電極スラリー9を、ドクターブレードを用いて、50μmの厚みに成形することにより、電極グリーンシート9を作製した。
 <全固体電池の作製>
 直径が12mmの円板形状に打ち抜いた固体電解質層13用グリーンシート(固体電解質グリーンシート1)の一方面に、直径が12mmの円板形状に打ち抜いた正極層11用グリーンシート(電極グリーンシート9)を、図5に示すような積層体の構成で積層し、80℃の温度で1トンの圧力で熱圧着し、全固体電池積層体120の一部を構成する積層体を形成するためのグリーンシート積層体9を作製した。
 グリーンシート積層体9を、2枚のアルミナ製のセラミックス板を用いて挟み込み、空気中にて500℃の温度で焼成し、ポリビニルアルコールの除去を行った後、窒素ガス雰囲気中にて600℃の温度で焼成して、図5に示すように、正極層11と固体電解質層13とを一体焼成によって接合することにより、全固体電池積層体120の一部を構成する積層体9を作製した。
 得られた積層体9を100℃の温度で乾燥し、水分を除去した。その後、図5に示すように、負極層12(対極)としての金属リチウム上にポリメタクリル酸メチル(PMMA)ゲル電解質131を塗布し、固体電解質層13の面がPMMAゲル電解質131と接触するように負極層12を積層して、全固体電池積層体120を作製した。全固体電池積層体120を2032型のコインセルで封止して全固体電池9を作製した。
 <全固体電池の評価>
 全固体電池9を3.0~4.5Vの電圧範囲、100μA/cm2の電流密度で、定電流定電圧充放電測定を行った。その結果、電極活物質(LVP)の単位質量当たりの放電容量が約110mAh/gで充放電が可能であり、高い放電容量を示すことが確認された。
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
 電極層と固体電解質層とを一体焼成によって接合しても、焼結性が良好で、十分な積層体の強度を得ることができるとともに、正極層内または負極層内に電子伝導性を付与することができるので、良好な充放電特性を示す全固体二次電池を提供することができる。
 10:全固体電池積層体、11:正極層、12:負極層、13:固体電解質層。

                                                                                

Claims (4)

  1.  正極層と、固体電解質を含む固体電解質層と、負極層とを備え、前記正極層または前記負極層の少なくとも一方と前記固体電解質層とが焼成によって接合された全固体電池であって、
     前記正極層または前記負極層の少なくとも一方が、電極活物質と、炭素材料を含む導電剤とを含み、
     前記正極層または前記負極層の少なくとも一方の出発材料に含まれる炭素材料の含有量が1質量%以上25質量%未満である、全固体電池。
  2.  前記固体電解質または前記電極活物質の少なくとも一方が、リチウム含有リン酸化合物を含む、請求項1に記載の全固体電池。
  3.  前記固体電解質が、ナシコン型構造のリチウム含有リン酸化合物を含む、請求項1または請求項2に記載の全固体電池。
  4.  請求項1から請求項3までのいずれか1項に記載の全固体電池の製造方法であって、
     前記正極層、前記固体電解質層、および、前記負極層の各々のスラリーを調製するスラリー調製工程と、
     前記正極層、前記固体電解質層、および、前記負極層の各々のスラリーを成形してグリーンシートを作製するグリーンシート成形工程と、
     前記正極層、前記固体電解質層、および、前記負極層の各々のグリーンシートを積層して積層体を形成する積層体形成工程と、
     前記積層体を焼成する焼成工程とを備え、
     前記スラリー調製工程において、前記正極層または前記負極層のスラリーの少なくとも一方が、電極活物質と、炭素材料を含む導電剤とを含み、かつ、前記正極層または前記負極層のスラリーの少なくとも一方に含まれる炭素材料の含有量が1質量%以上25質量%未満である、全固体電池の製造方法。
PCT/JP2011/075270 2010-11-04 2011-11-02 全固体電池およびその製造方法 WO2012060402A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-247103 2010-11-04
JP2010247103 2010-11-04

Publications (1)

Publication Number Publication Date
WO2012060402A1 true WO2012060402A1 (ja) 2012-05-10

Family

ID=46024515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075270 WO2012060402A1 (ja) 2010-11-04 2011-11-02 全固体電池およびその製造方法

Country Status (1)

Country Link
WO (1) WO2012060402A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175991A1 (ja) * 2012-05-24 2013-11-28 株式会社 村田製作所 全固体電池およびその製造方法
WO2013175992A1 (ja) * 2012-05-24 2013-11-28 株式会社 村田製作所 全固体電池
JP2015146240A (ja) * 2014-02-03 2015-08-13 古河機械金属株式会社 正極材料、正極、およびリチウムイオン電池
EP3567016A1 (en) 2018-05-11 2019-11-13 Shin-Etsu Chemical Co., Ltd. Method for preparing ceramic molded body for sintering and method for producing ceramic sintered body
EP3566842A1 (en) 2018-05-11 2019-11-13 Shin-Etsu Chemical Co., Ltd. Method for preparing ceramic molded body for sintering and method for producing ceramic sintered body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181920A (ja) * 2008-01-31 2009-08-13 Ohara Inc 固体電池
JP2009181877A (ja) * 2008-01-31 2009-08-13 Ohara Inc 固体電池およびその電極の製造方法
JP2009181921A (ja) * 2008-01-31 2009-08-13 Ohara Inc 固体電池
JP2009181882A (ja) * 2008-01-31 2009-08-13 Ohara Inc リチウム電池の製造方法
JP2009224318A (ja) * 2008-02-22 2009-10-01 Kyushu Univ 全固体電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181920A (ja) * 2008-01-31 2009-08-13 Ohara Inc 固体電池
JP2009181877A (ja) * 2008-01-31 2009-08-13 Ohara Inc 固体電池およびその電極の製造方法
JP2009181921A (ja) * 2008-01-31 2009-08-13 Ohara Inc 固体電池
JP2009181882A (ja) * 2008-01-31 2009-08-13 Ohara Inc リチウム電池の製造方法
JP2009224318A (ja) * 2008-02-22 2009-10-01 Kyushu Univ 全固体電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175991A1 (ja) * 2012-05-24 2013-11-28 株式会社 村田製作所 全固体電池およびその製造方法
WO2013175992A1 (ja) * 2012-05-24 2013-11-28 株式会社 村田製作所 全固体電池
JPWO2013175991A1 (ja) * 2012-05-24 2016-01-12 株式会社村田製作所 全固体電池およびその製造方法
JP2015146240A (ja) * 2014-02-03 2015-08-13 古河機械金属株式会社 正極材料、正極、およびリチウムイオン電池
EP3567016A1 (en) 2018-05-11 2019-11-13 Shin-Etsu Chemical Co., Ltd. Method for preparing ceramic molded body for sintering and method for producing ceramic sintered body
EP3566842A1 (en) 2018-05-11 2019-11-13 Shin-Etsu Chemical Co., Ltd. Method for preparing ceramic molded body for sintering and method for producing ceramic sintered body
US11492294B2 (en) 2018-05-11 2022-11-08 Shin-Etsu Chemical Co., Ltd. Method for preparing ceramic molded body for sintering and method for producing ceramic sintered body

Similar Documents

Publication Publication Date Title
US9368828B2 (en) All-solid battery and manufacturing method therefor
JP5741689B2 (ja) 全固体電池およびその製造方法
WO2013137224A1 (ja) 全固体電池およびその製造方法
WO2013175993A1 (ja) 全固体電池
WO2012008422A1 (ja) 全固体電池
JP5516749B2 (ja) 全固体電池およびその製造方法
JP6262129B2 (ja) 全固体電池およびその製造方法
JP5811191B2 (ja) 全固体電池およびその製造方法
JP7127540B2 (ja) 全固体リチウムイオン二次電池
CN109792080B (zh) 全固体锂离子二次电池
JP5804208B2 (ja) 全固体電池、全固体電池用未焼成積層体、および全固体電池の製造方法
WO2013100002A1 (ja) 全固体電池およびその製造方法
WO2012060402A1 (ja) 全固体電池およびその製造方法
WO2011111555A1 (ja) 全固体二次電池およびその製造方法
JP5556969B2 (ja) 全固体電池用積層成形体、全固体電池およびその製造方法
JP5644951B2 (ja) 全固体電池用未焼結積層体、全固体電池およびその製造方法
JP5935892B2 (ja) 全固体電池
WO2012060349A1 (ja) 全固体電池
JP6030960B2 (ja) 全固体電池の製造方法
WO2013035526A1 (ja) 全固体電池用積層成形体、全固体電池およびその製造方法
JP6003982B2 (ja) 全固体電池
WO2013133394A1 (ja) 全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11838052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP