WO2012060378A1 - アンモニア注入装置 - Google Patents
アンモニア注入装置 Download PDFInfo
- Publication number
- WO2012060378A1 WO2012060378A1 PCT/JP2011/075189 JP2011075189W WO2012060378A1 WO 2012060378 A1 WO2012060378 A1 WO 2012060378A1 JP 2011075189 W JP2011075189 W JP 2011075189W WO 2012060378 A1 WO2012060378 A1 WO 2012060378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ammonia injection
- exhaust gas
- ammonia
- injection device
- nozzle
- Prior art date
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims abstract description 352
- 229910021529 ammonia Inorganic materials 0.000 title claims abstract description 176
- 238000002347 injection Methods 0.000 title claims abstract description 142
- 239000007924 injection Substances 0.000 title claims abstract description 142
- 239000003054 catalyst Substances 0.000 claims abstract description 26
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 19
- 238000009792 diffusion process Methods 0.000 claims description 43
- 239000007921 spray Substances 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 72
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 18
- 230000000694 effects Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8631—Processes characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/45—Mixing liquids with liquids; Emulsifying using flow mixing
- B01F23/451—Mixing liquids with liquids; Emulsifying using flow mixing by injecting one liquid into another
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/90—Injecting reactants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/30—Exhaust heads, chambers, or the like
- F01D25/305—Exhaust heads, chambers, or the like with fluid, e.g. liquid injection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/003—Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/08—Purpose of the control system to produce clean exhaust gases
- F05D2270/082—Purpose of the control system to produce clean exhaust gases with as little NOx as possible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2215/00—Preventing emissions
- F23J2215/10—Nitrogen; Compounds thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/87571—Multiple inlet with single outlet
- Y10T137/87652—With means to promote mixing or combining of plural fluids
- Y10T137/8766—With selectively operated flow control means
Definitions
- the present invention relates to an ammonia injection device used in an exhaust gas denitration system that removes nitrogen oxide (NOx) contained in exhaust gas generated in a combustor such as a gas turbine or a boiler.
- NOx nitrogen oxide
- the ammonia injection device is disposed in an exhaust gas duct following a combustor such as a gas turbine or a boiler, and a denitration catalyst is disposed downstream of the ammonia injection device in the exhaust gas duct.
- the ammonia injection device includes a plurality of ammonia injection pipes arranged in parallel to each other so as to cross the exhaust gas duct, and a plurality of injection holes are formed in these ammonia injection pipes.
- ammonia is injected into the exhaust gas that is directed to the denitration catalyst from a plurality of ammonia injection pipes of the ammonia injection device, and the exhaust gas containing ammonia is reacted with the denitration catalyst, thereby converting nitrogen oxides into nitrogen. It is decomposed into water and made pollution-free.
- the distance from the ammonia injection device to the denitration catalyst is increased to ensure a residence time for sufficient diffusion of ammonia in the exhaust gas, or a plurality of ammonia injection pipes and a large number of injection holes are arranged at high density.
- ammonia is uniformly injected into the exhaust gas by a method of arranging a mixing device between the ammonia injection device and the denitration catalyst.
- the distance between the ammonia injection device and the denitration catalyst stored in the exhaust heat recovery boiler tends to be shortened. If the distance from the ammonia injection device to the denitration catalyst is short, mixing of ammonia and exhaust gas injected from the ammonia injection device becomes insufficient, and the denitration function of the denitration catalyst may not be fully exhibited.
- the present invention has been made paying attention to the above-mentioned requirements, and compared with the prior art, it is possible to perform uniform mixing of exhaust gas and ammonia at a shorter distance, and as a result, the exhaust gas denitration system can be made compact. It aims to provide an ammonia injection device that can contribute.
- the present invention relates to an ammonia injection device that is installed in an exhaust gas duct through which exhaust gas generated in a combustor flows and injects ammonia into the exhaust gas upstream of a denitration catalyst that performs denitration treatment in the exhaust gas flow direction.
- the ammonia injection apparatus according to the present invention includes a plurality of ammonia injection pipes arranged in parallel to each other in a plane crossing the exhaust gas duct.
- the ammonia injection pipe is provided with a plurality of nozzle pipes in the longitudinal direction of the ammonia injection pipe for ejecting ammonia from the ammonia injection pipe in the arrangement direction of the plurality of ammonia injection pipes.
- the nozzle tube is provided with a diffusing plate that extends toward the downstream side in the exhaust gas flow direction on both sides in the longitudinal direction of the ammonia injection tube with the nozzle tube as a center.
- a diffusing plate that extends toward the downstream side in the exhaust gas flow direction on both sides in the longitudinal direction of the ammonia injection tube with the nozzle tube as a center.
- the diffusion plate is supported by the nozzle pipe on the upstream side.
- the diffusion plate has a shape in which a rectangular flat plate is bent at the center, and a bent portion at the center is fixed to the nozzle tube from the upstream side.
- the ammonia injection device is disposed in the exhaust gas duct from the combustor, and the denitration catalyst is disposed downstream of the ammonia injection device in the exhaust gas duct. .
- an ammonia injection device is often arranged upstream of the high-pressure evaporator, and a denitration catalyst is often arranged downstream of the high-pressure evaporator.
- the ammonia injected into the exhaust gas from the ammonia injection device is sufficiently mixed into the exhaust gas by the heat transfer tube of the high-pressure evaporator before reaching the denitration catalyst.
- the exhaust heat recovery boiler is made compact and the ammonia injection device and the denitration catalyst are installed in a limited space, that is, when used in an exhaust gas denitration system that requires compactness, the ammonia injection device is It is arranged very close to the upstream side of the denitration catalyst.
- a COC CO oxidation catalyst
- the distance between the ammonia injection device and the denitration catalyst is shortened.
- the ammonia injection apparatus when the exhaust gas generated in the combustor passes through the plurality of ammonia injection pipes of the ammonia injection apparatus installed so as to cross the exhaust gas duct, the plurality of diffusion plates arranged in the ammonia injection pipe A vortex is generated downstream of the ammonia injection pipe.
- the diffusion plate is arranged through a plurality of nozzle tubes provided in the longitudinal direction of the ammonia injection tube, and the diffusion plate itself has a shape in which a rectangular flat plate is bent at the center.
- both side portions of the center of the bent portion extend toward both sides in the longitudinal direction of the ammonia injection pipe and to the downstream side with respect to the nozzle pipe.
- a diffusion plate extending from the nozzle tube to both sides in the longitudinal direction of the ammonia injection tube has a shape in which a rectangular flat plate is bent at the center, and the bent portion at the center of the diffusion plate is connected to the nozzle tube.
- the exhaust gas and ammonia can be uniformly mixed in a more limited space with the above-described configuration. Therefore, it is possible to arrange the ammonia injection device in the vicinity of the denitration catalyst, and as a result, a very excellent effect of contributing to downsizing of the exhaust gas denitration system is brought about.
- FIG. 1 It is a figure which shows schematic structure at the time of applying the ammonia injection apparatus by one Embodiment of this invention to a gas turbine combined cycle. It is a figure explaining the whole structure of an ammonia injection device at the time of seeing the ammonia injection pipe which constitutes the ammonia injection device of Drawing 1 from the lower stream side. It is the enlarged view which looked at the nozzle pipe and diffusion plate provided in the ammonia injection pipe of the ammonia injection apparatus of FIG. 1 from the upstream side. It is a top view which shows the structure of the diffusion plate of the ammonia injection apparatus of FIG. It is an expansion perspective view which shows the principal part of the ammonia injection apparatus of FIG.
- FIG. 1 and FIGS. 2A to 2D show an ammonia injection apparatus according to an embodiment of the present invention.
- the ammonia injection apparatus of Kikidei is applied to a gas turbine combined cycle.
- this ammonia injection device 10 is used in a denitration system that removes nitrogen oxides (NOx) contained in exhaust gas G generated in a gas turbine GT (combustor).
- the ammonia injection device 10 is disposed in the exhaust gas duct 1 following the gas turbine GT to the chimney 4, and the denitration catalyst 2 is disposed downstream of the ammonia injection device 10.
- the high-pressure evaporator 3U is positioned upstream and the low-pressure evaporator 3L is positioned downstream of the exhaust gas denitration system.
- the ammonia injection device 10 includes a plurality of ammonia injection pipes 11 arranged in parallel with each other in the vertical direction within a plane crossing the exhaust gas duct 1.
- each of the ammonia injection pipes 11 extends in the horizontal direction, and the ammonia injection pipe 11 is upwardly and downwardly ejected with ammonia supplied through the ammonia injection pipe 11 in the vertical direction.
- Downward nozzle tubes 12 are arranged at a plurality of locations in the longitudinal direction of the ammonia injection tube 11.
- the individual ammonia injection pipes 11 When the ammonia injection pipes 11 are arranged parallel to each other in the left-right direction within a plane crossing the exhaust gas duct 1, the individual ammonia injection pipes 11 extend in the vertical direction and are nozzle pipes arranged in the ammonia injection pipes 11. 12 becomes the nozzle tube 12 of left direction and right direction, and the supplied ammonia is ejected in the left-right direction, respectively.
- the nozzle tube 12 extends on both sides in the longitudinal direction (left and right sides in the drawing) of the ammonia injection tube 11 and toward the downstream side (upper side in FIG. 2C).
- An exiting diffusion plate 13 is provided.
- the diffusion plate 13 has a shape in which a rectangular flat plate is bent at the center, and the bent portion at the center is fixed to the side surface of the nozzle tube 12 from the upstream side.
- ammonia is injected into the exhaust gas G directed from the ammonia injection device 10 toward the denitration catalyst 2, and the exhaust gas G containing ammonia is reacted in the denitration catalyst 2, thereby converting nitrogen oxides into nitrogen and water. To make it pollution-free.
- the diffusion plate 13 is disposed via a plurality of nozzle tubes 12 provided in the longitudinal direction of the ammonia injection tube 11.
- the diffusion plate 13 itself has a shape in which a rectangular flat plate is bent at the center, and both sides of the bent center are on both sides in the longitudinal direction of the ammonia injection pipe 11 around the nozzle pipe 12 and on the downstream side. It extends to each.
- a Karman vortex is generated on the downstream side of the ammonia injection pipe 11.
- uniform mixing of ammonia into the exhaust gas G is achieved at a short distance to the denitration catalyst 2. .
- the diffusion plate 13 extending on both sides in the longitudinal direction of the ammonia injection pipe 11 with the nozzle pipe 12 as the center is a rectangular plate bent at the center. It is formed fixed on the upstream side. Therefore, the labor required for manufacturing the ammonia injection device 10 having the structure shown in FIGS. 2A to 2D is reduced. Further, by installing the diffusion plate 13 on the upstream side of the nozzle tube 12, ammonia injected from the nozzle tube 12 is forcibly mixed into the exhaust gas by Karman vortices generated on the downstream side (back side) of the diffusion plate 13.
- the ratio between the pitch P of the plurality of nozzle tubes 12 and the width W of the diffusion plate 13 with respect to the gas flow is in the range of 0.5 to 1.5. It is desirable to be within. If this ratio is less than 0.5, the effect of forced mixing by Karman vortices by the diffusion plate 13 may be reduced, and the diffusibility of ammonia may be reduced. If this ratio exceeds 1.5, the amount of exhaust gas flowing from both sides of the diffusion plate 13 is reduced, the forced mixing effect due to Karman vortices is reduced, and the diffusibility of ammonia may be reduced.
- the ratio of the length 1 of the nozzle tube 12 and the height H of the diffusion plate 13 is preferably in the range of 0.25 to 0.75. When this ratio is less than 0.25 or exceeds 0.75, the position of the ejection hole of the nozzle 12 deviates from the center of the diffusion plate 13, so that the forced mixing effect due to the Karman vortex is reduced and the diffusibility of ammonia is reduced. May be reduced. Further, it is desirable that the opening angle ⁇ on one side of the diffusion plate 13 bent at the center is 30 ° to 90 °. When the angle ⁇ is less than 30 ° or exceeds 90 °, the forced mixing effect due to the Karman vortex may be reduced, and the diffusibility of ammonia may be reduced. [Example 1]
- the pitch P of the plurality of nozzle tubes 12 is 200 mm
- the opening angle ⁇ on one side of the diffusion plate 13 bent at the center is 60 °
- the width W of the diffusion plate 13 with respect to the gas flow is set.
- the height H of the diffusion plate 13 is 100 mm
- the length l of the nozzle tube 12 is about 55 mm
- the radius d of the ammonia injection tube 11 is about 45 mm
- the gap dimension between the ammonia injection tube 11 and the diffusion plate 13 is about 8 mm.
- the ammonia injection device 10 of Example 1 is manufactured by setting the clearance dimension b with the diffusion plate positioned at about 5 mm to about 50 mm and the distance c from the center of the ammonia injection pipe 11 to the diffusion plate positioned at the top about 205 mm. did.
- the gap dimension a between the ammonia injection pipe 11 and the diffusion plate 13 is about 14 mm
- the distance c from the center of the ammonia injection pipe 11 to the upper diffusion stop is about 210 mm
- other specifications are the specifications of the first embodiment.
- the ammonia injection device 10 of Example 2 which was the same as that of Example 2 was manufactured. [Example 3]
- the pitch P of the plurality of nozzle tubes 12 is 300 mm
- the width W with respect to the gas separation of the diffusion plate 13 is 150 mm
- the height H of the diffusion plate 13 is about 150 mm
- the length l of the nozzle tube 12 is about 140 mm
- the ammonia injection tube 11 and the diffusion plate 13 the gap dimension a is about 35 mm
- the gap dimension b between the upper diffusion plate is about 75 mm
- the distance c from the center of the ammonia injection pipe 11 to the upper diffusion plate is about 305 mm.
- ammonia injection device 10 of Example 4 in which the length l of the nozzle tube 12 was about 110 mm and other specifications were the same as the specifications of Example 3 was manufactured.
- the ammonia injection pipes 11 of the ammonia injection apparatus 10 are installed side by side vertically, and the measurement cross section is separated from the ammonia injection apparatus 10 between the frames F and F by 0.5 m from each other. (Pseudo ammonia) concentration was measured.
- the measurement cross section is a measurement grid S of 5 ⁇ 9 points set between both ammonia injection pipes 11 and 11.
- a conventional ammonia injection device that is, an ammonia injection pipe 111, a pair of first radial flat blades 112 having a positive angle of attack with respect to the flow direction of the exhaust gas, and exhaust gas
- a test similar to that described above was also performed on the ammonia injection device 110 in which a large number of pairs of radial second flat plate blades 113 having a negative angle of attack with respect to the flow direction were alternately provided in the length direction.
- the results of the above test are shown in FIG.
- the fluctuation rate (%) on the vertical axis is a value obtained by dividing the standard deviation of the cross-sectional concentration by the cross-sectional average concentration.
- the spray medium concentration distribution finally reaches about 20% or less as a variation rate at a position 2.0 m away from the ammonia injection device 110, whereas In the ammonia injectors 10 according to Examples 1 to 4, the fluctuation rate has already reached 10% at a position 1.5 m away from the ammonia injector 10.
- the ammonia injection devices 10 according to Examples 1 to 4 had superior mixing performance as compared with the ammonia injection device 110 of the comparative example.
- the variation rate near the ammonia injection device 10 is inferior to that of the ammonia injection device 10 according to the first and second embodiments, but the pitch P of the nozzle tube 12 is decreased.
- the number of parts can be reduced by the amount that can be increased.
- the structure and application place of the ammonia injection device according to the present invention are not limited to the above-described embodiments and examples.
- This ammonia injection device can contribute to a compact exhaust gas denitration system.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
アンモニア注入装置は、排ガスダクトを横切るように互いに平行に配置される複数のアンモニア注入管を備え、これらのアンモニア注入管には、多数の注入孔が形成されている。
このアンモニア注入装置では、多数対ずつ設けた放射状第1平板翼及び放射状第2平板翼によって、アンモニア注入管の下流側に渦を生じさせる。そして、このような渦のある排ガスの流れの中に注入孔からアンモニアを注入することで、排ガス中へのアンモニアの均一な混合が、脱硝触媒までの短い距離で達成される。
なお、以下の記載中、特に注記しない限り、「上流側」及び「下流側」とは、上述した排ガスの流れ方向における上流側及び下流側を指す。
一方、排熱回収ボイラのコンパクト化を図って、限られたスペースにアンモニア注入装置及び脱硝触媒を設置する場合において、すなわち、コンパクト化が求められる排ガス脱硝システムに用いられる場合において、アンモニア注入装置は脱硝触媒の上流側に極めて接近して配置される。なお、上流側高圧蒸発器とアンモニア注入装置との間に、COC(CO酸化触媒)が配置される場合もある。この場合も、アンモニア注入装置と脱硝触媒との距離が短くなる。
図1及び図2A~図2Dは、本発明の一実施形態によるアンモニア注入装置を示しており、この実施形態では、木器明のアンモニア注入装置をガスタービンコンバインドサイクルに適用した場合を示す。
また、ノズル管12の上流側に拡散板13が設置されることにより、拡散板13の下流側(裏側)で生成するカルマン渦により、ノズル管12から噴射されたアンモニアが排ガス中に強制混合されるという効果が得られる。これに対し、ノズル12の上流側に拡散板13を設置しない場合には、拡散板13の下流側でカルマン渦による強制混合による作用を受けず、ノズル管12から噴射されたアンモニアは、噴射されたアンモニア自体の噴霧作用により排ガス中に拡散していくため、混合効果は相対的に低下すると考えられる。
また、ノズル管12の長さlと、拡散板13の高さHとの比が、0.25~0.75の範囲内にあることが望ましい。この比が0.25未満または0.75を超える場合には、ノズル12の噴出孔の位置が拡散板13の中心からずれてくるので、カルマン渦による強制混合効果が低下し、アンモニアの拡散性が低下する可能性がある。
さらに、中央で折曲する拡散板13の片側の開き角度θが30°~90°であることが望ましい。この角度θが30°未満または90°を超える場合には、カルマン渦による強制混合効果が低下し、アンモニアの拡散性が低下する可能性がある。
[実施例1]
[実施例2]
[実施例3]
[実施例4]
上記試験の結果を図5に示す。なお、図5のグラフにおいて、縦軸の変動率(%)は、断面濃度の標準偏差を断面平均濃度で割った値である。
Claims (3)
- 燃焼器で生じる排ガスが流れる排ガスダクトに設置され、脱硝処理を行う脱硝触媒の、前記排ガスの流れ方向における上流側で前記排ガスにアンモニアを注入するアンモニア注入装置であって、
前記排ガスダクトを横切る面内に互いに平行に配置される複数のアンモニア注入管を備え、
前記アンモニア注入管には、前記アンモニア注入管からのアンモニアを複数のアンモニア注入管の配列方向に噴出させるノズル管が前記アンモニア注入管の長手方向に複数設けられ、
前記ノズル管には、ノズル管を中心にして前記アンモニア注入管の長手方向両側で且つ前記排ガスの流れ方向における下流側に向けて延出する拡散板が設けられている
アンモニア注入装置。 - 前記拡散板が、前記上流側にて前記ノズル管に支持されている請求項1に記載のアンモニア注入装置。
- 前記拡散板が、矩形状の平板を中央で折曲させた形状を成し、この中央の折曲部分が、前記上流側から前記ノズル管に固定されている請求項2に記載のアンモニア注入装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2815962A CA2815962C (en) | 2010-11-02 | 2011-11-01 | Ammonia injection device |
US13/881,226 US8984863B2 (en) | 2010-11-02 | 2011-11-01 | Ammonia injection device |
KR1020137010078A KR101480983B1 (ko) | 2010-11-02 | 2011-11-01 | 암모니아 주입 장치 |
BR112013010696-4A BR112013010696B1 (pt) | 2010-11-02 | 2011-11-01 | Dispositivo de injeção de amônia |
JP2012541877A JP5594368B2 (ja) | 2010-11-02 | 2011-11-01 | アンモニア注入装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-246151 | 2010-11-02 | ||
JP2010246151 | 2010-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012060378A1 true WO2012060378A1 (ja) | 2012-05-10 |
Family
ID=46024492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/075189 WO2012060378A1 (ja) | 2010-11-02 | 2011-11-01 | アンモニア注入装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8984863B2 (ja) |
JP (1) | JP5594368B2 (ja) |
KR (1) | KR101480983B1 (ja) |
BR (1) | BR112013010696B1 (ja) |
CA (1) | CA2815962C (ja) |
CL (1) | CL2013001147A1 (ja) |
WO (1) | WO2012060378A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019054108A1 (ja) * | 2017-09-15 | 2019-03-21 | 三菱日立パワーシステムズ株式会社 | 石炭焚きボイラ用脱硝装置 |
CN110152469A (zh) * | 2019-04-02 | 2019-08-23 | 大唐太原第二热电厂 | 脱硫脱硝系统、其喷氨隔栅及其防积灰控制系统和方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9482132B2 (en) * | 2013-11-07 | 2016-11-01 | Cummins Emission Solutions, Inc. | Gaseous reductant delivery devices and systems |
US10226778B2 (en) * | 2014-06-30 | 2019-03-12 | Carbonxt, Inc. | Systems, lances, nozzles, and methods for powder injection resulting in reduced agglomeration |
US9644515B2 (en) | 2015-03-24 | 2017-05-09 | Cummins Emission Solutions, Inc. | Gaseous ammonia injection system |
BR102017013708B1 (pt) | 2017-06-14 | 2020-03-10 | Jiangnan Environmental Protection Group Inc. | Sistema e método de adição de amônia automáticos para dispositivo de dessulfurização à base de amônia |
EP3627051A1 (en) * | 2018-09-18 | 2020-03-25 | Yara International ASA | Nox abatement system for a stationary burning system |
CN116492843B (zh) * | 2023-05-25 | 2024-03-12 | 北京市中环博业环境工程技术有限公司 | 一种脱硝方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59176635U (ja) * | 1983-05-10 | 1984-11-26 | バブコツク日立株式会社 | 還元剤注入装置 |
JPS61254230A (ja) * | 1985-05-07 | 1986-11-12 | Mitsubishi Heavy Ind Ltd | 脱硝方法及び脱硝装置 |
JPH079428U (ja) * | 1993-07-16 | 1995-02-10 | 三菱重工業株式会社 | 排ガスの脱硝装置 |
JPH09173785A (ja) * | 1995-12-21 | 1997-07-08 | Hitachi Zosen Corp | 脱硝装置におけるアンモニアガス注入装置 |
JPH1057768A (ja) * | 1996-08-23 | 1998-03-03 | Hitachi Zosen Corp | 脱硝装置におけるアンモニア供給装置 |
JP2000279765A (ja) * | 1999-03-29 | 2000-10-10 | Hitachi Zosen Corp | 排ガス脱硝システムのアンモニア注入装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS592768B2 (ja) * | 1976-02-10 | 1984-01-20 | 株式会社日立製作所 | ガスタ−ビンの排ガス処理方法及びその装置 |
JPS58137424A (ja) | 1982-02-09 | 1983-08-15 | Ngk Spark Plug Co Ltd | 排ガス用フイルタ装置 |
JPS58137424U (ja) * | 1982-03-05 | 1983-09-16 | 三菱重工業株式会社 | アンモニア注入装置 |
JPS59176635A (ja) | 1983-03-25 | 1984-10-06 | Hitachi Ltd | 偏光二光束分光光度計 |
JP3100191B2 (ja) * | 1991-09-02 | 2000-10-16 | 三菱重工業株式会社 | 排煙脱硝装置 |
JPH065118A (ja) | 1992-06-17 | 1994-01-14 | Furukawa Electric Co Ltd:The | 耐雷架空地線 |
JPH079428A (ja) | 1993-06-28 | 1995-01-13 | Iwao Jiki Kogyo Kk | アリ足タイル及びアリ足タイルの製造方法 |
US6887435B1 (en) * | 2000-06-23 | 2005-05-03 | The Babcock & Wilcox Company | Integrated air foil and ammonia injection grid for SCR systems |
US6449947B1 (en) * | 2001-10-17 | 2002-09-17 | Fleetguard, Inc. | Low pressure injection and turbulent mixing in selective catalytic reduction system |
JP4989062B2 (ja) * | 2005-04-28 | 2012-08-01 | バブコック日立株式会社 | 流体混合装置 |
US7814745B2 (en) * | 2007-07-17 | 2010-10-19 | Ford Global Technologies, Llc | Approach for delivering a liquid reductant into an exhaust flow of a fuel burning engine |
JP5489432B2 (ja) | 2008-08-12 | 2014-05-14 | 三菱重工業株式会社 | 排ガス処理装置及び排ガス処理システム |
JP2010221084A (ja) | 2009-03-19 | 2010-10-07 | Osaka Gas Co Ltd | 流体混合装置及び脱硝装置 |
-
2011
- 2011-11-01 BR BR112013010696-4A patent/BR112013010696B1/pt active IP Right Grant
- 2011-11-01 US US13/881,226 patent/US8984863B2/en active Active
- 2011-11-01 WO PCT/JP2011/075189 patent/WO2012060378A1/ja active Application Filing
- 2011-11-01 KR KR1020137010078A patent/KR101480983B1/ko active IP Right Grant
- 2011-11-01 JP JP2012541877A patent/JP5594368B2/ja active Active
- 2011-11-01 CA CA2815962A patent/CA2815962C/en not_active Expired - Fee Related
-
2013
- 2013-04-26 CL CL2013001147A patent/CL2013001147A1/es unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59176635U (ja) * | 1983-05-10 | 1984-11-26 | バブコツク日立株式会社 | 還元剤注入装置 |
JPS61254230A (ja) * | 1985-05-07 | 1986-11-12 | Mitsubishi Heavy Ind Ltd | 脱硝方法及び脱硝装置 |
JPH079428U (ja) * | 1993-07-16 | 1995-02-10 | 三菱重工業株式会社 | 排ガスの脱硝装置 |
JPH09173785A (ja) * | 1995-12-21 | 1997-07-08 | Hitachi Zosen Corp | 脱硝装置におけるアンモニアガス注入装置 |
JPH1057768A (ja) * | 1996-08-23 | 1998-03-03 | Hitachi Zosen Corp | 脱硝装置におけるアンモニア供給装置 |
JP2000279765A (ja) * | 1999-03-29 | 2000-10-10 | Hitachi Zosen Corp | 排ガス脱硝システムのアンモニア注入装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019054108A1 (ja) * | 2017-09-15 | 2019-03-21 | 三菱日立パワーシステムズ株式会社 | 石炭焚きボイラ用脱硝装置 |
JPWO2019054108A1 (ja) * | 2017-09-15 | 2020-04-16 | 三菱日立パワーシステムズ株式会社 | 石炭焚きボイラ用脱硝装置 |
CN110152469A (zh) * | 2019-04-02 | 2019-08-23 | 大唐太原第二热电厂 | 脱硫脱硝系统、其喷氨隔栅及其防积灰控制系统和方法 |
CN110152469B (zh) * | 2019-04-02 | 2022-12-02 | 大唐太原第二热电厂 | 脱硫脱硝系统、其喷氨隔栅及其防积灰控制系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101480983B1 (ko) | 2015-01-09 |
KR20130088159A (ko) | 2013-08-07 |
US8984863B2 (en) | 2015-03-24 |
US20130213511A1 (en) | 2013-08-22 |
CA2815962A1 (en) | 2012-05-10 |
BR112013010696A2 (pt) | 2016-08-02 |
CL2013001147A1 (es) | 2014-06-27 |
CA2815962C (en) | 2015-03-31 |
JPWO2012060378A1 (ja) | 2014-05-12 |
BR112013010696B1 (pt) | 2020-09-29 |
JP5594368B2 (ja) | 2014-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5594368B2 (ja) | アンモニア注入装置 | |
CN102626585B (zh) | 一种用于scr烟气脱硝装置的v型喷氨混合系统 | |
KR101630106B1 (ko) | 배기 정화용 장치 | |
US8017084B1 (en) | Ammonia injection grid for a selective catalytic reduction system | |
US8607555B2 (en) | Mixing element and an exhaust system for an internal combustion engine | |
EP1681089B1 (en) | Fluid mixing apparatus with injection lance | |
KR20110047020A (ko) | 환원제혼합 및 소음감쇄 구조를 갖는 배기가스 탈질시스템 | |
JP6542568B2 (ja) | 流体の混合装置及び該流体の混合装置を備えた脱硝装置 | |
CN109045967B (zh) | 一种用于燃气机组余热锅炉的喷氨混合一体化aig | |
CN101708430A (zh) | 燃煤烟气scr脱硝技术装备的喷氨混合系统 | |
WO2020045640A2 (ja) | 排ガス浄化装置 | |
CN206221037U (zh) | 排气后处理系统 | |
CN101342457A (zh) | 烟气脱硝涡流混合器及涡流混合方法 | |
CN101450278A (zh) | 整体机翼型均流与分区可调喷氨装置 | |
US20110162339A1 (en) | Flow distribution of gas turbine exhaust using walls shaped to facilitate improved gas flow | |
JP3376511B2 (ja) | 脱硝装置におけるアンモニアガス注入装置 | |
US20170335734A1 (en) | Tempering Air System For Gas Turbine Selective Catalyst Reduction System | |
JP5812900B2 (ja) | 流体混合装置及び乾式排ガス処理装置 | |
CN111420542A (zh) | 一种用于煤粉锅炉烟气sncr脱硝的烟道混合器结构 | |
WO2023228495A1 (ja) | 脱硝装置 | |
CN212283535U (zh) | 一种用于煤粉锅炉烟气sncr脱硝的烟道混合器结构 | |
KR20190075981A (ko) | 가스 터빈의 선택적 촉매 환원 시스템을 위한 템퍼링 에어 시스템 | |
WO2024202659A1 (ja) | 還元剤注入装置 | |
TWI673101B (zh) | 燃煤鍋爐用脫硝裝置 | |
WO2020007163A1 (zh) | 一种臭氧均布装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11838028 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012541877 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20137010078 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13881226 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2815962 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013001147 Country of ref document: CL Ref document number: 12013500838 Country of ref document: PH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11838028 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013010696 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013010696 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130430 |