WO2012060278A1 - 光変調装置およびその作製方法 - Google Patents

光変調装置およびその作製方法 Download PDF

Info

Publication number
WO2012060278A1
WO2012060278A1 PCT/JP2011/074844 JP2011074844W WO2012060278A1 WO 2012060278 A1 WO2012060278 A1 WO 2012060278A1 JP 2011074844 W JP2011074844 W JP 2011074844W WO 2012060278 A1 WO2012060278 A1 WO 2012060278A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
insulating substrate
light modulation
modulation device
Prior art date
Application number
PCT/JP2011/074844
Other languages
English (en)
French (fr)
Inventor
渡辺 典子
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012060278A1 publication Critical patent/WO2012060278A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film

Definitions

  • the present invention relates to a light modulation device and a manufacturing method thereof, and more particularly to a curved light modulation device and a manufacturing method thereof.
  • a light modulation device that changes the light transmittance by changing the voltage applied to the liquid crystal layer is known.
  • a liquid crystal display device capable of controlling the light transmittance for each of a plurality of pixels can be given.
  • the liquid crystal display device has excellent features such as high definition, thinness, light weight, and low power consumption.
  • curved light modulators have been studied from the viewpoint of design and the like.
  • curved liquid crystal display devices are used in instrument panels of automobiles.
  • a plastic substrate is used as a substrate for realizing such a curvature. From the viewpoint of moisture resistance and solvent resistance, it has been studied to provide inorganic layers on both sides of a plastic substrate (for example, see Patent Document 1).
  • the method of bending after forming an inorganic layer and electrodes on a flat insulating substrate rather than directly forming an inorganic layer and electrodes on a curved substrate is efficient. However, if a pressurizing device for pressurizing in a curved shape is produced or adjusted for each light modulation device having a different curved shape, the cost and production time increase. In addition, in the case where bending is performed after a flat light modulation device is manufactured, there is a case in which stress is applied to the seal member that bonds the pair of substrates and the seal member is peeled off. In general, the inorganic layer has a high elastic modulus and is hard, so that it is difficult to bend.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a curved light modulation device that can be easily manufactured and a method for manufacturing the same.
  • the light modulation device is a light modulation device comprising a first substrate, a second substrate, and a liquid crystal layer sandwiched between the first substrate and the second substrate, wherein the first substrate.
  • the first substrate Includes a first insulating substrate having a concave curved surface and a convex curved surface, a first inner inorganic layer and a first inner conductive layer sequentially stacked on the concave curved surface of the first insulating substrate, and the first insulation.
  • a first outer inorganic layer provided on the convex curved surface of the substrate, and the second substrate includes a second insulating substrate having a concave curved surface and a convex curved surface, and the second insulating substrate.
  • the first inner conductive layer includes at least one slit including a slit extending in the predetermined direction, or two or more openings arranged in a row along the predetermined direction. A plurality of openings are provided.
  • the slit or the opening of the first inner inorganic layer is continuous with the slit or the opening of the first inner conductive layer.
  • the light modulation device is a light modulation device comprising a first substrate, a second substrate, and a liquid crystal layer sandwiched between the first substrate and the second substrate, wherein the first substrate.
  • a first insulating substrate having a concave curved surface and a convex curved surface, and a first inner inorganic layer, a first inner organic layer, and a first inner conductive layer sequentially stacked on the concave curved surface of the first insulating substrate.
  • a first outer inorganic layer provided on the convex curved surface of the first insulating substrate, wherein the second substrate includes a second insulating substrate having a concave curved surface and a convex curved surface; A second inner inorganic layer, a second inner organic layer, and a second inner conductive layer sequentially stacked on the convex curved surface of the two insulating substrate; and a second outer surface provided on the concave curved surface of the second insulating substrate.
  • the first inner conductive layer including a slit extending in a predetermined direction; Slit, or a plurality of openings including two or more openings constituting a row of openings arranged in rows along the predetermined direction is provided.
  • the light modulation device is a light modulation device comprising a first substrate, a second substrate, and a liquid crystal layer sandwiched between the first substrate and the second substrate, wherein the first substrate.
  • a first insulating substrate having a concave curved surface and a convex curved surface, and a first inner inorganic layer, a first inner organic layer, and a first inner conductive layer sequentially stacked on the concave curved surface of the first insulating substrate.
  • a first outer inorganic layer, a first outer organic layer, and a first outer conductive layer that are sequentially stacked on the convex curved surface of the first insulating substrate, and the second substrate is concavely curved.
  • a second insulating substrate having a surface and a convex curved surface, a second inner inorganic layer, a second inner organic layer, and a second inner conductive layer sequentially stacked on the convex curved surface of the second insulating substrate;
  • a plurality of openings including two or more openings constituting a row of openings arranged in a shape are provided.
  • the first insulating substrate and the second insulating substrate each include a plastic substrate.
  • the light modulation device further includes a sealing member disposed between the first substrate and the second substrate and surrounding the liquid crystal layer, wherein the sealing member is made of a thermosetting resin. Prepare.
  • the first substrate and the second substrate are curved in a direction perpendicular to the predetermined direction.
  • the at least one slit includes a plurality of slits each extending in parallel with the predetermined direction, and intervals between adjacent slits are substantially equal.
  • the plurality of openings each include an opening that forms a plurality of rows in which two or more openings are arranged in a row along a direction parallel to the predetermined direction.
  • the intervals of the columns are substantially equal to each other.
  • the first substrate and the second substrate are each curved substantially symmetrically.
  • the at least one slit includes a plurality of slits each extending in parallel with the predetermined direction, and is adjacent to each other in a direction orthogonal to the predetermined direction among the plurality of slits.
  • An interval between two slits is different from an interval between two slits adjacent to each other in a direction orthogonal to the predetermined direction among the plurality of slits.
  • the plurality of openings each include an opening that forms a plurality of rows in which two or more openings are arranged in a row along a direction parallel to the predetermined direction.
  • the interval between two columns adjacent to each other in the direction orthogonal to the predetermined direction is different from the interval between the other two columns.
  • the first substrate and the second substrate are each curved asymmetrically.
  • the first substrate or the second substrate further includes a thin film transistor.
  • a method of manufacturing a light modulation device is a step of preparing a first substrate and a second substrate, wherein the first substrate includes a first insulating substrate having a pair of main surfaces, and a first insulating substrate.
  • a first inner inorganic layer and a first inner conductive layer sequentially stacked on one of the pair of main surfaces; and a first outer side provided on the other of the pair of main surfaces of the first insulating substrate.
  • a second insulating substrate having a pair of main surfaces and a second insulating layer sequentially stacked on one of the pair of main surfaces of the second insulating substrate.
  • a plurality of openings including two or more openings arranged in a line along the predetermined direction, and at least one of the first substrate and the second substrate; Applying the thermosetting resin, applying the pressure to the first substrate and the second substrate by bonding the first substrate and the second substrate, and heating the first substrate and the second substrate Thereby curing the thermosetting resin, and stopping the application of the pressure and the heating to bend the first substrate and the second substrate.
  • a method of manufacturing a light modulation device is a step of preparing a first substrate and a second substrate, wherein the first substrate includes a first insulating substrate having a pair of main surfaces, and a first insulating substrate.
  • a first outer inorganic layer provided, and the second substrate is in order of one of the second insulating substrate having a pair of main surfaces and the pair of main surfaces of the second insulating substrate.
  • the first inner conductive layer includes at least one slit including a slit extending in a predetermined direction.
  • a plurality of openings including two or more openings arranged in a row along the predetermined direction are provided, and heat is applied to at least one of the first substrate and the second substrate.
  • a method of manufacturing a light modulation device is a step of preparing a first substrate and a second substrate, wherein the first substrate includes a first insulating substrate having a pair of main surfaces, and a first insulating substrate.
  • a first inner inorganic layer, a first inner organic layer, and a first inner conductive layer which are sequentially stacked on one of the pair of main surfaces, and the other of the pair of main surfaces of the first insulating substrate.
  • the first outer inorganic layer, the first outer organic layer, and the first outer conductive layer are sequentially stacked, and the second substrate includes a second insulating substrate having a pair of main surfaces, and the second substrate.
  • a second inner inorganic layer, a second inner organic layer and a second inner conductive layer which are sequentially stacked on one of the pair of main surfaces of the insulating substrate.
  • at least one of the first inner conductive layer and the second outer conductive layer includes at least one slit including a slit extending in a predetermined direction, or 2 arranged in a row along the predetermined direction.
  • a plurality of openings including the above openings, a step of applying a thermosetting resin to at least one of the first substrate and the second substrate, the first substrate and the first substrate; Bonding the two substrates together, applying pressure to the first substrate and the second substrate and heating the first substrate and the second substrate to cure the thermosetting resin; and applying the pressure And the step of curving the first substrate and the second substrate by stopping the heating.
  • the method for manufacturing the light modulation device further includes a step of injecting a liquid crystal material between the first substrate and the second substrate after bonding the first substrate and the second substrate.
  • a curved light modulation device can be easily produced.
  • FIG. 1 is a schematic cross-sectional view of a first embodiment of a light modulation device according to the present invention.
  • (A) is a top view of the 2nd outer side inorganic layer in the light modulation apparatus of this embodiment,
  • (b) is sectional drawing of a 2nd outer side inorganic layer.
  • (A)-(d) is a schematic diagram which shows the manufacturing method of the light modulation apparatus of this embodiment.
  • (A) is a schematic top view which shows the 2nd outer side inorganic layer in the light modulation apparatus of this embodiment,
  • (b) is a side view of the light modulation apparatus of this embodiment.
  • (A) is a typical top view of the 2nd outside inorganic layer in the modification of the light modulation device of this embodiment, and (b) is a side view of the light modulation device of this modification. It is a typical top view of the 2nd outside inorganic layer in the modification of the light modulation device of this embodiment.
  • (A)-(c) is a typical sectional view of a modification of the light modulation device of this embodiment.
  • (A) And (b) is a typical top view of the 2nd outside inorganic layer in the modification of the light modulation device of this embodiment. It is typical sectional drawing of 2nd Embodiment of the light modulation apparatus by this invention.
  • (A)-(d) is a schematic diagram which shows the manufacturing method of the light modulation apparatus of this embodiment.
  • FIG. 1 shows an optical modulation device 100 according to this embodiment.
  • the light modulation device 100 includes substrates 10 and 20 and a liquid crystal layer 30 sandwiched between the substrates 10 and 20.
  • the light modulation device 100 is curved.
  • the substrate 10 includes an insulating substrate 12 having a concave curved surface 12a and a convex curved surface 12b, an inorganic layer mu1 and a conductive layer eu1 sequentially stacked on the concave curved surface 12a, and an inorganic layer ms1 provided on the convex curved surface 12b. And have.
  • the substrate 20 includes an insulating substrate 22 having a concave curved surface 22a and a convex curved surface 22b, an inorganic layer mu2 and a conductive layer eu2 sequentially stacked on the convex curved surface 22b, and an inorganic layer ms2 provided on the concave curved surface 22a.
  • a sealing member th surrounding the liquid crystal layer 30 is provided between the substrate 10 and the substrate 20.
  • the seal member th is formed from a thermosetting resin.
  • the substrate 10 further includes an alignment film hu1 covering the conductive layer eu1
  • the substrate 20 further includes an alignment film hu2 covering the conductive layer eu2.
  • the alignment films hu1 and hu2 define the alignment of the liquid crystal molecules of the liquid crystal layer 30.
  • the substrates 10 and 20 are provided with polarizing plates. Typically, the polarizing axis of the polarizing plate is arranged in crossed Nicols.
  • the thickness of the insulating substrates 12 and 22 is about 80 ⁇ m, and the thickness of the inorganic layers mu1, ms1, mu2, and ms2 is about 100 nm.
  • the thickness of the conductive layers eu1 and eu2 is about 100 nm, and the thickness of the alignment films hu1 and hu2 is about 80 nm.
  • the conductive layer eu1 and the conductive layer eu2 may function as electrodes for applying a voltage to the liquid crystal layer 30.
  • the transmittance of light transmitted through the liquid crystal layer 30 is controlled in accordance with the voltage between the conductive layer eu1 and the conductive layer eu2.
  • the liquid crystal layer 30 may be in a TN (Twisted Nematic) mode, a VA (Vertical Alignment) mode, or an OCB (Optically Compensated Bend) mode.
  • the liquid crystal layer 30 may be in an IPS (In Plane Switching) mode or an FFS (Fringe Field Switching) mode.
  • the light modulation device 100 may be a transmissive type or a reflective type.
  • the substrates 10 and 20 may be referred to as a first substrate 10 and a second substrate 20, respectively, and the insulating substrates 12 and 22 are referred to as a first insulating substrate 12 and a second insulating substrate 22, respectively.
  • the conductive layers eu1 and eu2 may be referred to as the first inner conductive layer eu1 and the second inner conductive layer eu2, or the inner conductive layers eu1 and eu2, respectively.
  • the inorganic layers mu1 and mu2 may be referred to as first inner inorganic layer mu1, second inner inorganic layer mu2, or inner inorganic layers mu1 and mu2, respectively, and the inorganic layers ms1 and ms2 are respectively referred to as It may be referred to as the first outer inorganic layer ms1, the second outer inorganic layer ms2, or the outer inorganic layers ms1, ms2.
  • the first substrate 10 and the second substrate 20 are curved.
  • the first insulating substrate 12 and the second insulating substrate 22 are plastic substrates including a polycarbonate (PC) and have a thickness of 80 ⁇ m.
  • PC polycarbonate
  • plastic substrates are susceptible to humidity and solvents. Therefore, in the light modulation device 100, the inorganic layers mu1 and ms1 are provided on the main surfaces 12a and 12b of the insulating substrate 12, and the inorganic layers ms2 and mu2 are provided on the main surfaces 22a and 22b of the insulating substrate 22.
  • the inorganic layers mu1, ms1, mu2, and ms2 contain SiNx.
  • the inorganic layers mu1, ms1, mu2, ms2 may contain SiO 2 .
  • the conductive layers eu1 and eu2 include a transparent conductive material (for example, ITO), and the alignment films hu1 and hu2 include polyimide.
  • the thermal expansion coefficient of the insulating substrates 12 and 22 is higher than that of the conductive layers eu1 and eu2.
  • the thermal expansion coefficients of the insulating substrates 12 and 22 are higher than those of the inorganic layers mu1, ms1, mu2, and ms2.
  • the thermal expansion coefficient of the insulating substrates 12 and 22 may be higher than that of the alignment films hu1 and hu2.
  • the thermal expansion coefficient of the insulating substrates 12 and 22 is, for example, 30 ppm / ° C. or more and 100 ppm / ° C. or less.
  • the thermal expansion coefficient of the conductive layers eu1 and eu2 is about 7 ppm / ° C.
  • the thermal expansion coefficient of the alignment films hu1 and hu2 is 5 ppm / ° C. or more and 100 ppm / ° C. or less.
  • the thermal expansion coefficient of the inorganic layers mu1, ms1, mu2, and ms2 is about 5 ppm / ° C.
  • the inner inorganic layer mu1 and the outer inorganic layer ms2 are provided with slits extending in a predetermined direction.
  • the conductive layer eu1 is also provided with a slit, and the slit of the conductive layer eu1 is continuous with the slit of the inorganic layer mu1.
  • the slit s When the slit s is provided in the conductive layer eu1, if the width of the slit s is wide, a predetermined voltage is not applied to the liquid crystal molecules on the slit s, and there is a component in a direction perpendicular to the direction in which the slit s extends. An electric field is generated. For this reason, the direction in which the slit s extends is a direction (azimuth) orthogonal to the direction in which the liquid crystal molecules in the region in which the slit s should be directed when a voltage for displaying a halftone is applied to the liquid crystal layer. Is preferred.
  • the liquid crystal molecules near the center in the thickness direction of the liquid crystal layer that most affect the display may be set so as to be orthogonal to the orientation direction.
  • FIG. 2A shows a schematic plan view of the inorganic layer ms2
  • FIG. 2B shows a schematic cross-sectional view of the inorganic layer ms2.
  • FIG. 2B is a cross section taken along line 2b-2b ′ of FIG. 2A before the inorganic layer ms2 is curved.
  • a plurality of slits s are provided in the inorganic layer ms2.
  • the length of each slit s in the vertical direction (y direction) is larger than the horizontal direction (x direction), and the slit s extends in the vertical direction.
  • the plurality of slits s are arranged at equal intervals along the horizontal direction.
  • the slits s of the inorganic layer mu1 and the conductive layer eu1 are also provided in the same manner.
  • the width of the slit s is relatively narrow.
  • the width of the slit s is preferably 10 ⁇ m or less.
  • the length of the slit s is preferably as long as possible. Note that when the end of the conductive layer eu1 is continuous with a width larger than a predetermined width, fluctuations in the applied voltage are suppressed. For this reason, it is preferable not to provide the slit s at least several mm from the end in the conductive layer eu1.
  • the inorganic layers mu1, ms2 and the conductive layer eu1 are provided with a plurality of slits s extending in the vertical direction.
  • the light modulation device 100 is curved in a direction (here, horizontal) perpendicular to the direction in which the slit s extends (here, vertical). Further, here, the light modulation device 100 is curved almost symmetrically.
  • substrates 10 and 20 are prepared.
  • each of the substrates 10 and 20 has a rectangular shape, and each of the substrates 10 and 20 has a substantially flat main surface.
  • the horizontal length of each of the substrates 10 and 20 is longer than the vertical direction.
  • the substrate 10 includes an insulating substrate 12 having a pair of main surfaces 12a and 12b, an inorganic layer mu1 and a conductive layer eu1 sequentially stacked on the main surface 12a, and an inorganic layer provided on the main surface 12b. ms1.
  • the slit s of the conductive layer eu1 is continuous with the slit s of the inorganic layer mu1.
  • the inorganic layer mu1 and the conductive layer eu1 are covered with an alignment film hu1.
  • the substrate 10 is manufactured as follows, for example.
  • An inorganic material is deposited on the main surface 12a of the insulating substrate 12, and this film is patterned to form an inorganic layer mu1 provided with slits s.
  • a conductive material is deposited and this layer is patterned to form a conductive layer eu1 provided with slits s.
  • Each patterning is performed by a photolithography process. Specifically, after depositing the inorganic layer mu1 or the conductive layer eu1, a resist is applied, exposed and developed into a pattern shape, dipped in an etching solution and patterned, and then the resist is removed.
  • an alignment film hu1 that covers the conductive layer eu1 is formed. An alignment process is performed on the alignment film hu1 as necessary. Further, an inorganic material is deposited on the main surface 12b of the insulating substrate 12 to form the inorganic layer ms1.
  • the inorganic layers mu1 and ms1 are preferably formed from the same inorganic material.
  • the substrate 20 includes an insulating substrate 22 having a pair of main surfaces 22a and 22b, an inorganic layer mu2 and a conductive layer eu2 sequentially stacked on the main surface 22b, and an inorganic layer ms2 provided on the main surface 22a.
  • the slit s is provided in the inorganic layer ms2.
  • the conductive layer eu2 is covered with the alignment film hu2.
  • the substrate 20 is manufactured as follows, for example.
  • An inorganic material is deposited on the main surface 22b of the insulating substrate 22, and a conductive material is further deposited, whereby the inorganic layer mu2 and the conductive layer eu2 are formed. Thereafter, an alignment film hu2 covering the conductive layer eu2 is formed. An alignment process is performed on the alignment film hu2 as necessary. Further, an inorganic material is deposited on the main surface 22a of the insulating substrate 22, and this layer is patterned to form an inorganic layer ms2 provided with slits s. The inorganic layers mu2 and ms2 are preferably formed from the same inorganic material.
  • thermosetting resin th is applied to the substrate 10.
  • a thermosetting resin is applied to the substrate 10, but a thermosetting resin may be applied to the substrate 20.
  • a thermosetting resin may be applied to both the substrates 10 and 20.
  • the thermosetting resin th may have not only thermosetting properties but also photo-curing properties, and may be further cured by irradiation with light after heating or after heating.
  • the substrate 10 and the substrate 20 are bonded together, pressure is applied to the substrate 10 and the substrate 20, and the substrate 10 and the substrate 20 are heated to cure the thermosetting resin th.
  • the sealing member th is formed. Heating and application of pressure are performed in the same manner as in the production of a liquid crystal panel having a general flat surface.
  • the thermal expansion coefficient of the insulating substrate 12 is higher than that of the inorganic layers mu1 and ms1. Since the slit s is provided in the inorganic layer ms1, the portion corresponding to the slit s of the inorganic layer ms1 in the main surface 12a of the insulating substrate 12 expands as compared with other portions during heating. Similarly, the thermal expansion coefficient of the insulating substrate 22 is higher than that of the inorganic layers mu2 and ms2. Since the slit s is provided in the inorganic layer ms2, the portion of the main surface 22b of the insulating substrate 22 corresponding to the slit s of the inorganic layer ms2 expands compared to the other portions during heating.
  • a photo spacer may be formed on the alignment film hu1 of the substrate 10 or the alignment film hu2 of the substrate 20 before the substrates 10 and 20 are bonded together. Thereby, the space
  • each of the main surface 12a of the insulating substrate 12 and the main surface 22a of the insulating substrate 22 is curved in a concave shape
  • each of the main surface 12b of the insulating substrate 12 and the main surface 22b of the insulating substrate 22 is curved in a convex shape. In this way, the substrates 10 and 20 are curved.
  • the liquid crystal layer 30 is formed by dropping a liquid crystal material onto at least one of the substrate 10 and the substrate 20 before bonding the substrate 10 and the substrate 20 together.
  • the light modulation device 100 is manufactured as described above. As described above, the light modulation device 100 can be manufactured using a general pressure device having a flat pressure surface.
  • the sealing member th of predetermined thickness is formed by applying a pressure and heating.
  • the pressure condition may be the same as that for bonding a liquid crystal panel having a flat surface.
  • the curve uses the difference in thermal expansion coefficient between the respective insulating substrates 12 and 22 and the inorganic layers ms1 and mu2 where no slit is provided. It is preferable to increase the temperature. For example, when the heating temperature is 200 ° C., a curve having a radius of curvature of about 200 mm can be obtained.
  • the insulating substrates 12 and 22 are plastic substrates including polycarbonate, but the present invention is not limited to this.
  • the insulating substrates 12 and 22 may be other plastic substrates such as polyethylene terephthalate (PET), polyethersulfone (PES), and polyimide (PI).
  • PET polyethylene terephthalate
  • PES polyethersulfone
  • PI polyimide
  • the insulating substrates 12 and 22 may be composite substrates obtained by combining the above-described plastic substrate and glass fiber, glass cloth, or the like. Note that the thickness of the curved insulating substrates 12 and 22 is preferably 200 ⁇ m or less.
  • the light modulation device 100 may be arranged so that the substrate 10 faces the observer side, or may be arranged so that the substrate 20 faces the observer side.
  • substrates 10 and 20 is formed from a transparent conductive material.
  • the conductive layer eu1 provided on the substrate 10 and the conductive layer eu2 provided on the substrate 20 may each be a single electrode.
  • Such a light modulation device 100 is suitably used as glasses for a display device that performs stereoscopic display by a field sequential method. This display device alternately displays a left eye image and a right eye image. The glasses for the left eye transmit light while the display device displays the left eye image, and the glasses for the right eye do not transmit light. Further, the right eyeglasses transmit light while the display device displays the right eye image, and the left eyeglasses do not transmit light. In this way, the light modulation device 100 changes the light transmittance, so that the left eye and the right eye of the observer visually recognize only the left eye image and the right eye image, respectively, and the observer visually recognizes the display in three dimensions. it can.
  • the light modulation device 100 may be provided with a plurality of pixels, and the light modulation device 100 may be used as a so-called liquid crystal panel.
  • the light modulation device 100 as at least one of the conductive layer eu1 provided on the substrate 10 and the conductive layer eu2 provided on the substrate 20, a plurality of electrodes having different potentials are provided.
  • the conductive layer eu1 may be used as a pixel electrode, and the conductive layer eu2 may be used as a counter electrode.
  • the conductive layer eu1 is used as the pixel electrode, the conductive layer eu1 is separated into a plurality of islands, so that the substrate 10 hardly bends in a specific direction.
  • the light modulation device 100 is bent by the substrate 20.
  • a switching element for example, a thin film transistor
  • the light modulation device 100 may be used in combination with a backlight.
  • the light modulation device 100 may be used as a reflective liquid crystal display device by providing a reflective member (not shown).
  • the plurality of slits s are provided in the inorganic layers mu1 and ms2 and the conductive layer eu1, but the present invention is not limited to this.
  • the number and size of the slits s may be changed according to the size of the insulating substrates 12 and 22.
  • the number of slits s may be one.
  • each of the inorganic layers mu1, ms2 and the conductive layer eu1 provided with the slits s is continuous in the same layer, but the present invention is not limited to this.
  • the inorganic layers mu1, ms2, and the conductive layer eu1 may have a plurality of regions separated from each other in the same layer. Note that when the conductive layer eu1 is separated, the different regions are preferably electrically connected by any means.
  • one slit s extends in the vertical direction of the inorganic layers mu1, ms2 and the conductive layer eu1, but the present invention is not limited to this. As shown in FIG. 4A, a plurality of slits s may be arranged in the vertical direction.
  • FIG. 4B shows a side view of the light modulation device 100.
  • the light modulation device 100 is curved in a direction perpendicular to the direction in which the slit s extends. Note that the curvature of the light modulation device 100 can be increased by increasing the number of slits s arranged in the horizontal direction (x direction).
  • the interval between the slits s may not be constant. Specifically, the interval between the slits s1 in the x direction is different from the interval between the slits s2 in the x direction. In this case, the substrates 10 and 20 bend asymmetrically in a direction perpendicular to the direction in which the slit s extends.
  • FIG. 5B shows a side view of the light modulation device 100. The light modulation device 100 is asymmetrically curved in a direction perpendicular to the direction in which the slit s extends.
  • the slits s are regularly arranged, but the present invention is not limited to this. As shown in FIG. 6, the slits may be arranged irregularly.
  • the slits s are provided in both the inorganic layer mu1 and the conductive layer eu1, but the present invention is not limited to this.
  • the slit s may be provided in the inorganic layer mu1 without the slit s being provided in the conductive layer eu1.
  • the conductive layer eu1 is used as the pixel electrode, the conductive layer eu1 is separated into a plurality of islands.
  • the inorganic layer mu1 is provided with the slits s, not only the substrate 20 but also the substrate 10 is used. Also causes curvature.
  • the slits s are provided in both the inorganic layers mu1 and ms2, but the present invention is not limited to this.
  • a slit s may be provided on one of the inorganic layers mu1 and ms2.
  • the slit s may be provided in the inorganic layer mu1 of the substrate 10 without providing the slit s in the inorganic layer ms2 of the substrate 20. Further, here, the slit s is provided in the conductive layer eu1, but the slit s may not be provided in the conductive layer eu1.
  • the slit s may be provided in the inorganic layer ms2 of the substrate 20 without providing the slit s in the inorganic layer mu1 of the substrate 10.
  • the conductive layer eu1 is used as an island-shaped pixel electrode, if attention is paid only to the substrate 10, no contraction in a specific direction occurs.
  • the slit s is provided in the inorganic layer ms2, the light modulation device 100 can be bent by the contraction generated from the inorganic layer ms2.
  • interpose a liquid crystal layer are comprised symmetrically centering
  • the substrate 10 is arranged in order from the liquid crystal layer 30 in the order of the alignment film hu1, the conductive layer eu1, the inorganic layer mu1, the insulating substrate 12, and the inorganic layer ms1, and the substrate 20 includes the liquid crystal layer.
  • the alignment film hu2, the conductive layer eu2, the inorganic layer mu2, the insulating substrate 22, and the inorganic layer ms2 are arranged in this order. Since the light modulation device 100 has such a symmetric configuration, it is possible to suppress bending in an unintended direction during cooling after bonding.
  • the in-plane retardation of the liquid crystal layer is preferably 10 nm or less when at least a certain display (display of a certain gradation) is performed.
  • the direction of the slow axis is orthogonal to the bending direction, the phase difference caused by the bending can be canceled out.
  • the slits s extending in a predetermined direction is provided in either of the inorganic layers mu1 and ms2, but the present invention is not limited to this.
  • the slits s may not be provided in any of the inorganic layers mu1 and ms2.
  • a row including the opening a may be provided.
  • the row of the openings a is composed of a plurality of openings arranged along a predetermined direction (horizontal direction or y direction).
  • one row is composed of a plurality of openings.
  • column of an opening part should just be comprised from the 2 or more opening part.
  • the opening is circular, but the shape of the opening is not limited to this.
  • a plurality of rows are arranged at almost equal intervals in a direction (x direction) orthogonal to a predetermined direction (y direction), but the row of openings is not limited to this.
  • the interval between the rows of the openings a may not be constant.
  • the interval in the x direction of the row of openings a1 may be different from the interval in the x direction of the row of openings a2.
  • Such a row of openings a may be provided in either of the inorganic layers mu1 and ms2 or in both of the inorganic layers mu1 and ms2.
  • the row of openings a may be provided in the conductive layer eu1 in addition to the inorganic layer mu1.
  • FIG. 9 is a schematic diagram of the light modulation device 100A.
  • the light modulation device 100A has the same configuration as that of the light modulation device 100 except that an inner organic layer is further provided between the inner inorganic layer and the inner conductive layer, and that a slit or an opening is provided in the inner conductive layer. In order to avoid redundancy, redundant description is omitted.
  • the light modulation device 100 ⁇ / b> A includes substrates 10 and 20 and a liquid crystal layer 30 sandwiched between the substrates 10 and 20.
  • the light modulation device 100A is curved.
  • the substrate 10 is provided on the insulating substrate 12 having the concave curved surface 12a and the convex curved surface 12b, the inorganic layer mu1, the organic layer yu1, the conductive layer eu1, and the convex curved surface 12b that are sequentially stacked on the concave curved surface 12a. And an inorganic layer ms1.
  • the substrate 20 is provided on the insulating substrate 22 having the concave curved surface 22a and the convex curved surface 22b, the inorganic layer mu2, the organic layer yu2, the conductive layer eu2, and the concave curved surface 22a that are sequentially stacked on the convex curved surface 22b.
  • the organic layers yu1 and yu2 have a thickness of 1 ⁇ m or more, and the organic layers yu1 and yu2 include polyimide.
  • the substrate 10 further includes an alignment film hu1 that covers the conductive layer eu1
  • the substrate 20 further includes an alignment film hu2 that covers the conductive layer eu2.
  • the alignment films hu1 and hu2 define the alignment of the liquid crystal molecules of the liquid crystal layer 30.
  • the organic layer yu1 may be formed from the same organic material as the alignment film hu1
  • the organic layer yu2 may be formed from the same organic material as the alignment film hu2.
  • the thermal expansion coefficient of the organic layer yu1 is preferably higher than the thermal expansion coefficient of the insulating substrate 12.
  • the organic layers yu1 and yu2 may be referred to as the first inner organic layer yu1, the second inner organic layer yu2, or the inner organic layers yu1 and yu2, respectively.
  • the conductive layer eu1 is provided with slits s in a predetermined direction.
  • the slit s of the conductive layer eu1 is provided along a predetermined direction as described with reference to FIGS. 2, 4, 5, and 6, for example.
  • the curved light modulation device 100A is easily manufactured.
  • the slits s are not provided in the inorganic layers mu1 and ms2 here, a decrease in moisture resistance and solvent resistance of the insulating substrates 12 and 22 is suppressed.
  • substrates 10 and 20 are prepared.
  • each of the substrates 10 and 20 has a substantially flat main surface.
  • the substrate 10 includes an insulating substrate 12 having a pair of main surfaces 12a and 12b, an inorganic layer mu1, an organic layer yu1, a conductive layer eu1, and an alignment film hu1 stacked in order on the main surface 12a. And an inorganic layer ms1 provided on the surface 12b.
  • the substrate 20 includes an insulating substrate 22 having a pair of main surfaces 22a, 22b, an inorganic layer mu2, an organic layer yu2, a conductive layer eu2, an alignment film hu2, and a main surface 22a, which are sequentially stacked on the main surface 22b. And an inorganic layer ms2.
  • a slit s extending in a predetermined direction is provided in the conductive layer eu1.
  • thermosetting resin is applied to the substrate 10.
  • the thermosetting resin is applied to the substrate 10, but a thermosetting resin may be applied to the substrate 20.
  • a thermosetting resin may be applied to both the substrates 10 and 20.
  • the substrate 10 and the substrate 20 are bonded together, pressure is applied to the substrate 10 and the substrate 20, and the thermosetting resin is cured by heating the substrate 10 and the substrate 20, thereby sealing members. th is formed.
  • the thermal expansion coefficient of the organic layer yu1 is higher than that of the conductive layer eu1 and the inorganic layer mu1. Since the slit s is provided in the conductive layer eu1, the portion corresponding to the slit s of the conductive layer eu1 in the organic layer yu1 expands as compared with other portions during heating.
  • the portion of the organic layer yu1 corresponding to the slit s of the conductive layer eu1 contracts more than the other portions. For this reason, the interface between the organic layer yu1 and the conductive layer eu1 is curved in a concave shape, and the light modulation device 100A is curved accordingly.
  • a liquid crystal material is injected between the bonded substrate 10 and the substrate 20, and the injection port is sealed. Note that the liquid crystal material may be dropped onto at least one of the substrate 10 and the substrate 20 before the substrate 10 and the substrate 20 are bonded to each other.
  • the light modulation device 100A can be manufactured as described above.
  • the conductive layer eu1 provided with the slit s is adjacent not only to the organic layer yu1 but also to the alignment film hu1.
  • the alignment film hu1 is relatively thin while the organic layer yu1 is relatively thick, the influence of the conductive film eu1 on the alignment film hu1 is smaller than the influence of the conductive film eu1 on the organic layer yu1.
  • the influence on the alignment film hu1 can be substantially ignored.
  • the thermal expansion coefficient of the organic layer yu1 is higher than the thermal expansion coefficient of the insulating substrate 12, the influence of expansion / contraction of the insulating substrate 12 can be substantially ignored.
  • the two substrates 10 and 20 sandwiching the liquid crystal layer 30 are preferably configured symmetrically with the liquid crystal layer 30 as the center.
  • the substrate 10 is arranged in order from the liquid crystal layer 30 in the order of the alignment film hu1, the conductive layer eu1, the organic layer yu1, the inorganic layer mu1, the insulating substrate 12, and the inorganic layer ms1.
  • a row including two or more openings may be provided instead of the slit s.
  • the row of openings is composed of a plurality of openings arranged along a predetermined direction. Such an opening is provided in the conductive layer eu1.
  • FIG. 11 is a schematic diagram of the light modulation device 100B.
  • the light modulation device 100B has the same configuration as the light modulation device 100A except that it has an outer organic layer and an outer conductive layer that cover the outer inorganic layer, and that a slit or an opening can be provided at least in the conductive layer. In order to avoid redundancy, redundant description is omitted.
  • the light modulation device 100B includes substrates 10 and 20 and a liquid crystal layer 30 sandwiched between the substrates 10 and 20.
  • the light modulation device 100B is curved.
  • the substrate 10 includes an insulating substrate 12 having a concave curved surface 12a and a convex curved surface 12b, an inorganic layer mu1, an organic layer yu1, a conductive layer eu1, an alignment film hu1, and a convex curved surface laminated in order on the concave curved surface 12a. It has the inorganic layer ms1, the organic layer ys1, and the conductive layer es1 laminated in order on 12b.
  • the substrate 20 includes an insulating substrate 22 having a concave curved surface 22a and a convex curved surface 22b, an inorganic layer mu2, an organic layer yu2, a conductive layer eu2 and an alignment film hu2 stacked in order on the convex curved surface 22b, and a concave curved surface. It has the inorganic layer ms2, the organic layer ys2, and the conductive layer es2 laminated in order on 22a.
  • the organic layers yu1, yu2, ys1, and ys2 include polyimide.
  • the organic layers yu1 and ys1 are preferably formed from the same organic material.
  • the organic layers yu2 and ys2 are preferably formed from the same organic material.
  • the organic layers yu1 and yu2 may be referred to as the first inner organic layer yu1 and the second inner organic layer yu2, respectively, or the inner organic layers yu1 and yu2, and the organic layers ys1 and ys2 may be referred to as the first and second organic layers yu1, yu2, respectively. It may be called 1 outer organic layer ys1, 2nd outer organic layer ys2, or outer organic layers ys1, ys2.
  • the conductive layers es1 and es2 may be referred to as first outer conductive layer es1, second outer conductive layer es2, or outer conductive layers es1 and es2, respectively.
  • the conductive layer eu1 and the conductive layer es2 are provided with slits s in a predetermined direction.
  • the slits s of the conductive layers eu1 and es2 are provided along a predetermined direction as described with reference to FIGS. 2, 4, 5, and 6, for example.
  • the slits s are provided in the conductive layer eu1 and the conductive layer es2, whereby the curved light modulation device 100B is easily manufactured.
  • the slits s are not provided in the inorganic layers mu1 and ms2 here, a decrease in moisture resistance and solvent resistance of the insulating substrates 12 and 22 is suppressed.
  • the substrates 10 and 20 are prepared.
  • each of the substrates 10 and 20 has a substantially flat main surface.
  • the substrate 10 includes an insulating substrate 12 having a pair of main surfaces 12a and 12b, an inorganic layer mu1, an organic layer yu1, a conductive layer eu1, and an alignment film hu1 stacked in order on the main surface 12a.
  • An inorganic layer ms1, an organic layer ys1, and a conductive layer es1 are sequentially stacked on the surface 12b.
  • the substrate 20 includes an insulating substrate 22 having a pair of main surfaces 22a, 22b, an inorganic layer mu2, an organic layer yu2, a conductive layer eu2, an alignment film hu2, and a main surface 22a, which are sequentially stacked on the main surface 22b. And an inorganic layer ms2, an organic layer ys2, and a conductive layer es2.
  • slits s extending in a predetermined direction are provided in the conductive layers eu1 and es2.
  • thermosetting resin th is applied to the substrate 10.
  • the thermosetting resin is applied to the substrate 10, but a thermosetting resin may be applied to the substrate 20.
  • a thermosetting resin may be applied to both the substrates 10 and 20.
  • the substrate 10 and the substrate 20 are bonded together, pressure is applied to the substrate 10 and the substrate 20, and the substrate 10 and the substrate 20 are heated to cure the thermosetting resin th.
  • the thermal expansion coefficient of the organic layer yu1 is higher than that of the conductive layer eu1 and the inorganic layer mu1. Since the slit s is provided in the conductive layer eu1, the portion corresponding to the slit s of the conductive layer eu1 in the organic layer yu1 expands as compared with other portions during heating.
  • the thermal expansion coefficient of the organic layer ys2 is higher than that of the conductive layer es2 and the inorganic layer ms2. Since the slit s is provided in the conductive layer es2, a portion of the organic layer ys2 corresponding to the slit s of the organic layer es2 expands as compared with other portions during heating.
  • the portion of the organic layer yu1 corresponding to the slit s of the conductive layer eu1 contracts more than the other portion, and the conductive layer of the organic layer ys2
  • the part corresponding to the slit s of es2 contracts more than the other part.
  • the interface between the organic layer yu1 and the conductive layer eu1 is curved in a concave shape, and the interface between the organic layer ys2 and the conductive layer es2 is curved in a concave shape. In this way, the substrates 10 and 20 are curved.
  • a liquid crystal material is injected between the bonded substrate 10 and the substrate 20, and the injection port is sealed. Note that the liquid crystal material may be dropped onto at least one of the substrate 10 and the substrate 20 before the substrate 10 and the substrate 20 are bonded to each other.
  • the light modulation device 100B can be manufactured as described above.
  • the slits s are provided in the conductive layers eu1 and es2, but the present invention is not limited to this.
  • the slit s may be provided in the conductive layer eu1 of the substrate 10 without providing the slit s in the conductive layer es2 of the substrate 20.
  • the slit s may be provided in the conductive layer es ⁇ b> 2 of the substrate 20 without the slit s being provided in the conductive layer eu ⁇ b> 1 of the substrate 10.
  • the two substrates 10 and 20 sandwiching the liquid crystal layer 30 are preferably configured symmetrically with the liquid crystal layer 30 as the center.
  • the substrate 10 is in order of the alignment film hu1, the conductive layer eu1, the organic layer yu1, the inorganic layer mu1, the insulating substrate 12, the inorganic layer ms1, the organic layer ys1, and the conductive layer es1 in order from the liquid crystal layer 30.
  • the substrate 20 is arranged in the order of the alignment film hu2, the conductive layer eu2, the organic layer yu2, the inorganic layer mu2, the insulating substrate 22, the inorganic layer ms2, the organic layer ys2, and the conductive layer es2 in order from the liquid crystal layer 30. Is arranged. Since the light modulation device 100B has such a symmetric configuration, it is possible to suppress bending in an unintended direction during cooling after bonding.
  • a row including two or more openings may be provided instead of the slit s.
  • the row of openings is composed of a plurality of openings arranged along a predetermined direction. Such an opening is provided in one of the conductive layers eu1 and es2, or both of the conductive layers eu1 and es2.
  • a curved light modulation device can be easily produced.
  • a light modulation device is suitably used for glasses for a display device that performs stereoscopic display.
  • Such a light modulation device itself may be used as a liquid crystal panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明による光変調装置(100)は、基板(10)と、基板(20)と、液晶層(30)とを備える。基板(10)は、絶縁基板(12)と、絶縁基板(12)の凹湾曲面(12a)に順番に積層された内側無機層(mu1)および内側導電層(eu1)と、絶縁基板(12)の凸湾曲面(12b)に設けられた外側無機層(ms1)とを有している。基板(20)は、絶縁基板(22)と、絶縁基板(22)の凸湾曲面(22b)に順番に積層された内側無機層(mu2)および内側導電層(eu2)と、絶縁基板(22)の凹湾曲面(22a)に設けられた外側無機層(ms2)とを有している。内側無機層(mu1)および外側無機層(ms2)の少なくとも一方に、所定の方向に延びたスリット(S)が設けられている。本発明によると、簡便に作製可能な湾曲形状の光変調装置を提供することができる。

Description

光変調装置およびその作製方法
 本発明は、光変調装置およびその作製方法に関し、より詳細には湾曲形状の光変調装置およびその作製方法に関する。
 液晶層の印加電圧を変化させて光の透過率を変化させる光変調装置が知られている。例えば、光変調装置の一例として、複数の画素ごとに光の透過率を制御可能な液晶表示装置が挙げられる。液晶表示装置は、高精細、薄型、軽量および低消費電力等の優れた特長を有している。
 また、近年、デザイン等の観点から湾曲形状の光変調装置が検討されており、例えば、湾曲形状の液晶表示装置は自動車のインパネに用いられる。このような湾曲性を実現するための基板として、例えば、プラスチック基板が用いられる。耐湿性および耐溶剤性の観点から、プラスチック基板の両面に無機層を設けることが検討されている(例えば、特許文献1参照)。
特開平5-5871号公報
 湾曲形状の光変調装置を作製する場合には、湾曲形状の基板に無機層および電極等を直接形成するよりも、平坦な絶縁基板上に無機層および電極等を形成した後に湾曲化を行う方が効率的である。しかしながら、湾曲形状に加圧するための加圧装置を湾曲形状の異なる光変調装置ごとに作製または調整すると、コストや作製時間が増大することになる。また、平坦な光変調装置を作製した後に湾曲を行う場合、一対の基板を貼り合わせるシール部材にストレスがかかり、シール部材が剥がれるなどの不具合が生じることがある。また、一般に、無機層は高い弾性率を有し、硬いので、湾曲しにくい。
 本発明は、上記課題を鑑みてなされたものであり、その目的は、簡便に作製可能な湾曲形状の光変調装置およびその作製方法を提供することにある。
 本発明による光変調装置は、第1基板と、第2基板と、前記第1基板と前記第2基板との間に挟まれた液晶層とを備える光変調装置であって、前記第1基板は、凹湾曲面および凸湾曲面を有する第1絶縁基板と、前記第1絶縁基板の前記凹湾曲面に順番に積層された第1内側無機層および第1内側導電層と、前記第1絶縁基板の前記凸湾曲面に設けられた第1外側無機層とを有しており、前記第2基板は、凹湾曲面および凸湾曲面を有する第2絶縁基板と、前記第2絶縁基板の前記凸湾曲面に順番に積層された第2内側無機層および第2内側導電層と、前記第2絶縁基板の前記凹湾曲面に設けられた第2外側無機層とを有しており、前記第1内側無機層および前記第2外側無機層の少なくとも一方に、所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された開口部の列を構成する2以上の開口部を含む複数の開口部が設けられている。
 ある実施形態において、前記第1内側導電層に、前記所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された2以上の開口部を含む複数の開口部が設けられている。
 ある実施形態において、前記第1内側無機層の前記スリットまたは前記開口部は、前記第1内側導電層の前記スリットまたは前記開口部と連続する。
 本発明による光変調装置は、第1基板と、第2基板と、前記第1基板と前記第2基板との間に挟まれた液晶層とを備える光変調装置であって、前記第1基板は、凹湾曲面および凸湾曲面を有する第1絶縁基板と、前記第1絶縁基板の前記凹湾曲面に順番に積層された第1内側無機層、第1内側有機層および第1内側導電層と、前記第1絶縁基板の前記凸湾曲面に設けられた第1外側無機層を有しており、前記第2基板は、凹湾曲面および凸湾曲面を有する第2絶縁基板と、前記第2絶縁基板の前記凸湾曲面に順番に積層された第2内側無機層、第2内側有機層および第2内側導電層と、前記第2絶縁基板の前記凹湾曲面に設けられた第2外側無機層を有しており、前記第1内側導電層に、所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された開口部の列を構成する2以上の開口部を含む複数の開口部が設けられている。
 本発明による光変調装置は、第1基板と、第2基板と、前記第1基板と前記第2基板との間に挟まれた液晶層とを備える光変調装置であって、前記第1基板は、凹湾曲面および凸湾曲面を有する第1絶縁基板と、前記第1絶縁基板の前記凹湾曲面に順番に積層された第1内側無機層、第1内側有機層および第1内側導電層と、前記第1絶縁基板の前記凸湾曲面に順番に積層された第1外側無機層、第1外側有機層および第1外側導電層とを有しており、前記第2基板は、凹湾曲面および凸湾曲面を有する第2絶縁基板と、前記第2絶縁基板の前記凸湾曲面に順番に積層された第2内側無機層、第2内側有機層および第2内側導電層と、前記第2絶縁基板の前記凹湾曲面に順番に積層された第2外側無機層、第2外側有機層および第2外側導電層とを有しており、前記第1内側導電層および前記第2外側導電層の少なくとも一方に、所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された開口部の列を構成する2以上の開口部を含む複数の開口部が設けられている。
 ある実施形態において、前記第1絶縁基板および前記第2絶縁基板は、それぞれ、プラスチック基板を含む。
 ある実施形態において、前記光変調装置は、前記第1基板と前記第2基板との間に配置されて前記液晶層を囲むシール部材であって、熱硬化性樹脂から形成されたシール部材をさらに備える。
 ある実施形態において、前記第1基板および前記第2基板は、前記所定の方向に垂直な方向に湾曲している。
 ある実施形態において、前記少なくとも1つのスリットは、それぞれが前記所定の方向と平行に延びた複数のスリットを含み、互いに平行に隣接するスリットの間隔はほぼ等しい。
 ある実施形態において、前記複数の開口部は、それぞれが前記所定の方向と平行な方向に沿って2以上の開口部が列状に配列された複数の列を構成する開口部を含み、前記複数の列の間隔は互いにほぼ等しい。
 ある実施形態において、前記第1基板および前記第2基板はそれぞれほぼ対称に湾曲している。
 ある実施形態において、前記少なくとも1つのスリットは、それぞれが前記所定の方向と平行に延びた複数のスリットを含み、前記複数のスリットのうちの前記所定の方向と直交する方向に互いに隣接するある2つのスリットの間隔は、前記複数のスリットのうちの前記所定の方向と直交する方向に互いに隣接する別の2つのスリットの間隔と異なる。
 ある実施形態において、前記複数の開口部は、それぞれが前記所定の方向と平行な方向に沿って2以上の開口部が列状に配列された複数の列を構成する開口部を含み、前記複数の列のうちの前記所定の方向と直交する方向に互いに隣接するある2つの列の間隔は、別の2つの列の間隔と異なる。
 ある実施形態において、前記第1基板および前記第2基板はそれぞれ非対称に湾曲している。
 ある実施形態において、前記第1基板または前記第2基板は薄膜トランジスタをさらに有する。
 本発明による光変調装置の作製方法は、第1基板および第2基板を用意する工程であって、前記第1基板は、一対の主面を有する第1絶縁基板と、前記第1絶縁基板の前記一対の主面のうちの一方に順番に積層された第1内側無機層および第1内側導電層と、前記第1絶縁基板の前記一対の主面のうちの他方に設けられた第1外側無機層とを有しており、前記第2基板は、一対の主面を有する第2絶縁基板と、前記第2絶縁基板の前記一対の主面のうちの一方に順番に積層された第2内側無機層および第2内側導電層と、前記第2絶縁基板の前記一対の主面のうちの他方に設けられた第2外側無機層とを有しており、前記第1内側無機層および前記第2外側無機層の少なくとも一方に、所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された2以上の開口部を含む複数の開口部が設けられている、工程と、前記第1基板および前記第2基板の少なくとも一方に、熱硬化性樹脂を付与する工程と、前記第1基板および前記第2基板を貼り合わせて前記第1基板および前記第2基板に圧力を印加するとともに前記第1基板および前記第2基板を加熱することによって前記熱硬化性樹脂を硬化させる工程と、前記圧力の印加および前記加熱を停止して、前記第1基板および前記第2基板を湾曲させる工程とを包含する。
 本発明による光変調装置の作製方法は、第1基板および第2基板を用意する工程であって、前記第1基板は、一対の主面を有する第1絶縁基板と、前記第1絶縁基板の前記一対の主面のうちの一方に順番に積層された第1内側無機層、第1内側有機層および第1内側導電層と、前記第1絶縁基板の前記一対の主面のうちの他方に設けられた第1外側無機層とを有しており、前記第2基板は、一対の主面を有する第2絶縁基板と、前記第2絶縁基板の前記一対の主面のうちの一方に順番に積層された第2内側無機層、第2内側有機層および第2内側導電層と、前記第2絶縁基板の前記一対の主面のうちの他方に設けられた第2外側無機層とを有しており、前記第1内側導電層に、所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された2以上の開口部を含む複数の開口部が設けられている、工程と、前記第1基板および前記第2基板の少なくとも一方に、熱硬化性樹脂を付与する工程と、前記第1基板および前記第2基板を貼り合わせて前記第1基板および前記第2基板に圧力を印加するとともに前記第1基板および前記第2基板を加熱することによって前記熱硬化性樹脂を硬化させる工程と、前記圧力の印加および前記加熱を停止して、前記第1基板および前記第2基板を湾曲させる工程とを包含する。
 本発明による光変調装置の作製方法は、第1基板および第2基板を用意する工程であって、前記第1基板は、一対の主面を有する第1絶縁基板と、前記第1絶縁基板の前記一対の主面のうちの一方に順番に積層された第1内側無機層、第1内側有機層および第1内側導電層と、前記第1絶縁基板の前記一対の主面のうちの他方に順番に積層された第1外側無機層、第1外側有機層および第1外側導電層とを有しており、前記第2基板は、一対の主面を有する第2絶縁基板と、前記第2絶縁基板の前記一対の主面のうちの一方に順番に積層された第2内側無機層、第2内側有機層および第2内側導電層と、前記第2絶縁基板の前記一対の主面のうちの他方に順番に積層された第2外側無機層、第2外側有機層および第2外側導電層とを有しており、前記第1内側導電層および前記第2外側導電層の少なくとも一方に、所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された2以上の開口部を含む複数の開口部が設けられている、工程と、前記第1基板および前記第2基板の少なくとも一方に、熱硬化性樹脂を付与する工程と、前記第1基板および前記第2基板を貼り合わせて前記第1基板および前記第2基板に圧力を印加するとともに前記第1基板および前記第2基板を加熱することによって前記熱硬化性樹脂を硬化させる工程と、前記圧力の印加および前記加熱を停止して、前記第1基板および前記第2基板を湾曲させる工程とを包含する。
 ある実施形態において、前記光変調装置の作製方法は、前記第1基板および前記第2基板を貼り合わせた後に、前記第1基板と前記第2基板との間に液晶材料を注入する工程をさらに包含する。
 本発明によれば、湾曲形状の光変調装置を簡便に作製することができる。
本発明による光変調装置の第1実施形態の模式的な断面図である。 (a)は本実施形態の光変調装置における第2外側無機層の平面図であり、(b)は第2外側無機層の断面図である。 (a)~(d)は本実施形態の光変調装置の作製方法を示す模式図である。 (a)は本実施形態の光変調装置における第2外側無機層を示す模式的な平面図であり、(b)は本実施形態の光変調装置の側面図である。 (a)は本実施形態の光変調装置の変形例における第2外側無機層の模式的な平面図であり、(b)はこの変形例の光変調装置の側面図である。 本実施形態の光変調装置の変形例における第2外側無機層の模式的な平面図である。 (a)~(c)はそれぞれ本実施形態の光変調装置の変形例の模式的な断面図である。 (a)および(b)は本実施形態の光変調装置の変形例における第2外側無機層の模式的な平面図である。 本発明による光変調装置の第2実施形態の模式的な断面図である。 (a)~(d)は本実施形態の光変調装置の作製方法を示す模式図である。 本発明による光変調装置の第3実施形態の模式的な断面図である。 (a)~(d)は本実施形態の光変調装置の作製方法を示す模式図である。 (a)および(b)はそれぞれ本実施形態の光変調装置の変形例の模式的な断面図である。
 以下、図面を参照して、本発明による光変調装置の実施形態を説明する。ただし、本発明は、以下の実施形態に限定されるものではない。
 (実施形態1)
 図1に、本実施形態の光変調装置100を示す。光変調装置100は、基板10、20と、基板10と基板20との間に挟まれた液晶層30とを備えている。光変調装置100は湾曲している。
 基板10は、凹湾曲面12aおよび凸湾曲面12bを有する絶縁基板12と、凹湾曲面12aに順番に積層された無機層mu1および導電層eu1と、凸湾曲面12bに設けられた無機層ms1とを有している。基板20は、凹湾曲面22aおよび凸湾曲面22bを有する絶縁基板22と、凸湾曲面22bに順番に積層された無機層mu2および導電層eu2と、凹湾曲面22aに設けられた無機層ms2とを有している。基板10と基板20との間には液晶層30を囲むシール部材thが設けられている。シール部材thは、熱硬化性樹脂から形成される。
 基板10は導電層eu1を覆う配向膜hu1をさらに有しており、基板20は導電層eu2を覆う配向膜hu2をさらに有している。配向膜hu1、hu2は液晶層30の液晶分子の配向を規定する。なお、ここでは、図示しないが、基板10、20には偏光板が設けられている。典型的には、偏光板の偏光軸はクロスニコルに配置される。
 例えば、絶縁基板12、22の厚さは約80μmであり、無機層mu1、ms1、mu2、ms2の厚さは約100nmである。また、導電層eu1、eu2の厚さは約100nmであり、配向膜hu1、hu2の厚さは約80nmである。
 導電層eu1および導電層eu2は液晶層30に電圧を印加する電極として機能してもよい。この場合、導電層eu1と導電層eu2との間の電圧に応じて液晶層30を透過する光の透過率が制御される。例えば、液晶層30はTN(Twisted Nematic)モード、VA(Vertical Alignment)モードまたはOCB(Optically Compensated Bend)モードであってもよい。あるいは、液晶層30はIPS(In Plane Switching)モードまたはFFS(Fringe Field Switching)モードであってもよい。また、光変調装置100は透過型であってもよく、反射型であってもよい。
 なお、本明細書において、基板10、20をそれぞれ、第1基板10、第2基板20と呼ぶことがあり、絶縁基板12、22をそれぞれ第1絶縁基板12、第2絶縁基板22と呼ぶことがある。また、導電層eu1、eu2をそれぞれ第1内側導電層eu1、第2内側導電層eu2、または、内側導電層eu1、eu2と呼ぶことがあり、配向膜hu1、hu2をそれぞれ第1配向膜hu1、第2配向膜hu2と呼ぶことがある。また、本明細書において、無機層mu1、mu2をそれぞれ第1内側無機層mu1、第2内側無機層mu2、または、内側無機層mu1、mu2と呼ぶことがあり、無機層ms1、ms2をそれぞれ、第1外側無機層ms1、第2外側無機層ms2、または、外側無機層ms1、ms2と呼ぶことがある。
 光変調装置100において第1基板10、第2基板20はそれぞれ湾曲している。例えば、第1絶縁基板12、第2絶縁基板22はポリカーボネート(Polycarbonate:PC)を含むプラスチック基板であり、厚さは80μmである。一般に、プラスチック基板は湿度や溶剤の影響を受けやすい。このため、光変調装置100では絶縁基板12の主面12a、12bに無機層mu1、ms1が設けられており、絶縁基板22の主面22a、22bに無機層ms2、mu2が設けられている。例えば、無機層mu1、ms1、mu2、ms2はSiNxを含む。あるいは、無機層mu1、ms1、mu2、ms2はSiO2を含んでいてもよい。例えば、導電層eu1、eu2は透明導電材料(例えば、ITO)を含み、配向膜hu1、hu2はポリイミドを含む。
 絶縁基板12、22の熱膨張率は、導電層eu1、eu2よりも高い。絶縁基板12、22の熱膨張率は、無機層mu1、ms1、mu2、ms2よりも高い。また、絶縁基板12、22の熱膨張率は配向膜hu1、hu2よりも高くてもよい。絶縁基板12、22の熱膨張率は、例えば30ppm/℃以上100ppm/℃以下である。また、例えば、導電層eu1、eu2の熱膨張率は約7ppm/℃であり、配向膜hu1、hu2の熱膨張率は5ppm/℃以上100ppm/℃以下である。また、例えば、無機層mu1、ms1、mu2、ms2の熱膨張率は約5ppm/℃である。
 本実施形態の光変調装置100において、内側無機層mu1および外側無機層ms2に、所定の方向に延びたスリットが設けられている。後述するように、無機層mu1、ms2にスリットが設けられていることにより、湾曲形状の光変調装置100を簡便に作製することができる。ここでは、導電層eu1にもスリットが設けられており、導電層eu1のスリットは無機層mu1のスリットと連続している。なお、導電層eu1にスリットsを設ける場合、スリットsの幅が広いと、スリットs上の液晶分子に所定の電圧が印加されず、スリットsの延びている方向に垂直な方向の成分を有する電界が生じる。このため、スリットsの延びる方向は、液晶層に中間調を表示する電圧を印加したときに、スリットsの設けられた領域の液晶分子が本来向くべき方位と直交する方向(方位)であることが好ましい。
 なお、例えば、TNモードの液晶層のように、液晶層の厚さ方向の位置によって液晶分子の配向方位が異なるときは、表示に最も影響する液晶層の厚さ方向の中央付近の液晶分子の配向方位と直交するように、スリットsの延びる方向(方位)を設定すればよい。
 ここで図2を参照して無機層ms2を説明する。図2(a)に無機層ms2の模式的な平面図を示し、図2(b)に無機層ms2の模式的な断面図を示す。図2(b)は、無機層ms2が湾曲する前に、図2(a)の2b-2b’線に沿った断面である。
 無機層ms2には複数のスリットsが設けられている。各スリットsの垂直方向(y方向)の長さは水平方向(x方向)よりも大きく、スリットsは垂直方向に延びている。ここでは、複数のスリットsが水平方向に沿って等間隔に並んで配列されている。なお、ここでは、図示していないが、無機層mu1および導電層eu1のスリットsも同様に設けられている。
 スリットsの幅は比較的狭いことが好ましい。例えば、スリットsの幅は10μm以下であることが好ましい。スリットsの幅が10μm以下の場合、液晶の配向に対するスリットの影響は殆ど無視できる。また、スリットsの長さはできるだけ長いことが好ましい。なお、導電層eu1の端部が所定の幅よりも大きい幅で連続していると、印加電圧の変動が抑制される。このため、少なくとも導電層eu1において端部から数mmにはスリットsを設けないことが好ましい。
 このように、光変調装置100には、無機層mu1、ms2および導電層eu1のそれぞれに、それぞれが垂直方向に延びた複数のスリットsが設けられている。光変調装置100は、スリットsの延びている方向(ここでは垂直方向)に対して垂直な方向(ここでは水平方向)に湾曲している。また、ここでは、光変調装置100はほぼ対称に湾曲している。
 以下、図3を参照して光変調装置100の作製方法を説明する。
 図3(a)に示すように、基板10、20を用意する。ここでは、基板10、20はそれぞれ矩形状であり、基板10、20は、それぞれほぼ平坦な主面を有している。基板10、20のそれぞれの主面の法線方向から見た場合、基板10、20のそれぞれにおいて、その水平方向の長さは垂直方向よりも長い。
 具体的には、基板10は、一対の主面12a、12bを有する絶縁基板12と、主面12aに順番に積層された無機層mu1および導電層eu1と、主面12bに設けられた無機層ms1とを有している。導電層eu1のスリットsは無機層mu1のスリットsと連続している。無機層mu1および導電層eu1は配向膜hu1で覆われている。
 基板10は、例えば以下のように作製される。絶縁基板12の主面12a上に無機材料を堆積し、この膜をパターニングすることにより、スリットsの設けられた無機層mu1を形成する。その後、導電性材料を堆積し、この層をパターニングすることにより、スリットsの設けられた導電層eu1を形成する。パターニングはそれぞれフォトリソプロセスで行われる。具体的には、無機層mu1または導電層eu1を蒸着した後、レジストを塗布してパターン形状に露光および現像し、エッチング液に浸漬してパターニングした後、レジストを除去する。
 さらに、導電層eu1を覆う配向膜hu1を形成する。必要に応じて、配向膜hu1には配向処理が行われる。また、絶縁基板12の主面12b上に無機材料を堆積して無機層ms1を形成する。無機層mu1、ms1は同じ無機材料から形成されることが好ましい。
 同様に、基板20は、一対の主面22a、22bを有する絶縁基板22と、主面22bに順番に積層された無機層mu2および導電層eu2と、主面22aに設けられた無機層ms2とを有している。ここでは、無機層ms2にスリットsが設けられている。また、ここでは、導電層eu2は配向膜hu2で覆われている。
 基板20は、例えば以下のように作製される。絶縁基板22の主面22b上に無機材料を堆積し、さらに、導電性材料を堆積し、これにより、無機層mu2および導電層eu2を形成する。その後、導電層eu2を覆う配向膜hu2を形成する。必要に応じて、配向膜hu2には配向処理が行われる。また、絶縁基板22の主面22a上に無機材料を堆積し、この層をパターニングすることにより、スリットsの設けられた無機層ms2を形成する。無機層mu2、ms2は同じ無機材料から形成されることが好ましい。
 図3(b)に示すように、基板10に熱硬化性樹脂thを付与する。ここでは、基板10に熱硬化性樹脂を付与しているが、基板20に熱硬化性樹脂を付与してもよい。あるいは、基板10、20の両方に熱硬化性樹脂を付与してもよい。なお、熱硬化性樹脂thは、熱硬化性だけでなく光硬化性を有していてもよく、後述の加熱時または加熱後に光を照射してさらに硬化させてもよい。
 図3(c)に示すように、基板10および基板20を貼り合わせて、基板10および基板20に圧力を印加するとともに、基板10および基板20を加熱することによって熱硬化性樹脂thを硬化させてシール部材thを形成する。加熱および圧力の印加は、一般的な平坦な面を有する液晶パネルの作製と同様に行われる。
 上述したように、絶縁基板12の熱膨張率は無機層mu1、ms1よりも高い。無機層ms1にスリットsが設けられているため、加熱時において、絶縁基板12の主面12aのうち無機層ms1のスリットsに対応する部分は他の部分と比べて膨張する。同様に、絶縁基板22の熱膨張率は無機層mu2、ms2よりも高い。無機層ms2にスリットsが設けられているため、加熱時において、絶縁基板22の主面22bのうち無機層ms2のスリットsに対応する部分は他の部分と比べて膨張する。
 なお、ここでは、図示していないが、基板10、20を貼り合わせる前に、基板10の配向膜hu1または基板20の配向膜hu2の上にフォトスペーサを形成してもよい。これにより、基板10と基板20との間隔がほぼ均一に維持される。
 図3(d)に示すように、圧力の印加および加熱を停止すると、絶縁基板12の主面12aは主面12bよりも大きく収縮するとともに絶縁基板22の主面22aは主面22bよりも大きく収縮する。このため、絶縁基板12の主面12aおよび絶縁基板22の主面22aのそれぞれが凹状に湾曲し、絶縁基板12の主面12bおよび絶縁基板22の主面22bのそれぞれが凸状に湾曲する。このようにして基板10、20が湾曲する。
 なお、その後、貼り合わされた基板10と基板20との間に液晶材料を注入し、その注入口を封止し、これにより、液晶層30が形成される。あるいは、基板10と基板20とを貼り合わせる前に、基板10および基板20の少なくとも一方に液晶材料を滴下して液晶層30を形成してもよい。以上のようにして光変調装置100が作製される。このように、光変調装置100は平坦な加圧面を有する一般的な加圧装置を用いて作製可能である。
 なお、図3(c)に示したように、圧力を印加して加熱することにより、所定の厚さのシール部材thが形成される。圧力条件は、平坦面を有する液晶パネルの貼り合せと同様にすればよい。これに対して、湾曲は、それぞれの絶縁基板12、22とスリットの設けられていない無機層ms1、mu2との熱膨張率の差を利用するため、必要となる湾曲の曲率が小さいほど、加熱温度を高くすることが好ましい。例えば、加熱温度が200℃の場合、曲率半径が約200mmの湾曲を得ることができる。
 上述した説明では、絶縁基板12、22は、ポリカーボネートを含むプラスチック基板であったが、本発明はこれに限定されない。絶縁基板12、22は、ポリエチレンテレフタラート(Polyethylene terephthalate:PET)、ポリエーテルサルフォン(Polyethersulphone:PES)、ポリイミド(Polyimide:PI)などの別のプラスチック基板であってもよい。あるいは、絶縁基板12、22は、上述のプラスチック基板とガラスファイバー、ガラスクロス等を複合させた複合基板であってもよい。なお、湾曲する絶縁基板12、22の厚さは200μm以下であることが好ましい。
 光変調装置100は、基板10が観察者側に向くように配置されてもよいし、基板20が観察者側に向くように配置されてもよい。なお、基板10、20のうち少なくとも観察者側に配置された基板の導電層は透明導電材料から形成されることが好ましい。
 また、光変調装置100において基板10に設けられた導電層eu1および基板20に設けられた導電層eu2はそれぞれ単一電極であってもよい。このような光変調装置100は、フィールドシーケンシャル方式で立体表示を行う表示装置のためのメガネとして好適に用いられる。この表示装置は左眼画像と右眼画像を交互に表示する。表示装置が左眼画像を表示している時間に左眼用のメガネは光を透過し、右眼用のメガネは光を透過しない。また、この表示装置が右眼画像を表示している時間に右眼用のメガネは光を透過し、左眼用のメガネは光を透過しない。このようにして光変調装置100が光の透過率を変化させることにより、観察者の左眼および右眼はそれぞれ左眼画像および右眼画像のみを視認し、観察者は表示を立体的に視認できる。
 あるいは、光変調装置100には複数の画素が設けられ、光変調装置100はいわゆる液晶パネルとして用いられてもよい。この場合、光変調装置100において基板10に設けられた導電層eu1および基板20に設けられた導電層eu2のうちの少なくとも一方として、互いに異なる電位を有し得る複数の電極が設けられる。例えば、導電層eu1が画素電極として用いられ、導電層eu2が対向電極として用いられてもよい。ただし、導電層eu1を画素電極として用いる場合、導電層eu1は複数の島状に分離されるため、基板10において特定の方向への湾曲はほとんど生じない。この場合、光変調装置100は基板20によって湾曲される。なお、基板10、20のうち画素電極の設けられた基板にはスイッチング素子(例えば、薄膜トランジスタ)が設けられてもよい。例えば、光変調装置100はバックライトと組み合わせて用いられてもよい。あるいは、反射部材(図示せず)を設けることにより、光変調装置100は反射型液晶表示装置として用いられてもよい。
 なお、上述した説明では、無機層mu1、ms2および導電層eu1に複数のスリットsが設けられていたが、本発明はこれに限定されない。スリットsの数およびサイズは絶縁基板12、22のサイズに応じて変更してもよい。例えば、スリットsは1つであってもよい。
 また、上述した説明では、スリットsの設けられた無機層mu1、ms2および導電層eu1のそれぞれは同一層内で連続していたが、本発明はこれに限定されない。無機層mu1、ms2および導電層eu1は同一層内で互いに分離された複数の領域を有してもよい。なお、導電層eu1が分離されている場合、異なる領域は任意の手段で電気的に接続されることが好ましい。
 また、上述した説明では、無機層mu1、ms2および導電層eu1の垂直方向にわたって1つのスリットsが延びていたが、本発明はこれに限定されない。図4(a)に示すように、垂直方向にわたって複数のスリットsが配列されてもよい。
 図4(b)に、光変調装置100の側面図を示す。光変調装置100はスリットsの延びている方向に垂直な方向に湾曲している。なお、水平方向(x方向)に並ぶスリットsの数を増加させることにより、光変調装置100の曲率を増加させることができる。
 また、上述した説明では、互いに平行に隣接するスリットsの間隔はほぼ等しかったが、本発明はこれに限定されない。
 図5(a)に示すように、スリットsの間隔は一定でなくてもよい。具体的には、スリットs1のx方向の間隔はスリットs2のx方向の間隔とは異なっている。この場合、基板10、20はスリットsの延びている方向に対して垂直な方向に非対称に湾曲する。図5(b)に、光変調装置100の側面図を示す。光変調装置100はスリットsの延びている方向に垂直な方向に非対称に湾曲している。
 また、上述した説明では、スリットsは規則的に配列されていたが、本発明はこれに限定されない。図6に示すように、スリットは不規則的に配列されてもよい。
 なお、上述した説明では、無機層mu1および導電層eu1の両方にスリットsが設けられていたが、本発明はこれに限定されない。
 例えば、図7(a)に示すように、導電層eu1にスリットsが設けられることなく、無機層mu1にスリットsが設けられてもよい。上述したように、導電層eu1を画素電極として用いる場合、導電層eu1は複数の島状に分離されるが、無機層mu1にスリットsが設けられていることにより、基板20だけでなく基板10によっても湾曲が生じる。
 また、上述した説明では、無機層mu1、ms2の両方にスリットsが設けられていたが、本発明はこれに限定されない。無機層mu1、ms2の一方にスリットsが設けられていてもよい。
 例えば、図7(b)に示すように、基板20の無機層ms2にスリットsが設けられることなく、基板10の無機層mu1にスリットsが設けられてもよい。また、ここでは、導電層eu1にスリットsが設けられているが、導電層eu1にスリットsが設けられなくてもよい。
 あるいは、図7(c)に示すように、基板10の無機層mu1にスリットsが設けられることなく、基板20の無機層ms2にスリットsが設けられてもよい。上述したように、導電層eu1を島状の画素電極として用いる場合、基板10のみに着目すると特定の方向への収縮は発生しない。しかしながら、無機層ms2にスリットsが設けられているため、無機層ms2から生じた収縮により、光変調装置100を湾曲させることができる。
 なお、湾曲形状に変形させる場合、液晶層を挟む2つの基板は液晶層を中心として対称に構成されていることが好ましい。光変調装置100では、基板10は、液晶層30から順番に、配向膜hu1、導電層eu1、無機層mu1、絶縁基板12および無機層ms1の順番に配置されており、基板20は、液晶層30から順番に、配向膜hu2、導電層eu2、無機層mu2、絶縁基板22および無機層ms2の順番に配置されている。光変調装置100がこのように対称な構成を有することにより、貼り合わせ後の冷却時において意図しない方向に湾曲することが抑制される。
 なお、液晶層の面内位相差はほぼ無いことが好ましい。例えば、少なくともある表示(ある階調の表示)が行われる際に、液晶層の面内位相差が10nm以下であることが好ましい。遅相軸の方向を湾曲方向と直交させると、湾曲によって生じる位相差を相殺することができる。
 また、上述した説明では、無機層mu1、ms2のいずれかに所定の方向に延びたスリットsが設けられていたが、本発明はこれに限定されない。無機層mu1、ms2のいずれかに設けられるのはスリットsでなくてもよい。
 図8(a)に示すように、スリットsに代えて、開口部aを含む列が設けられてもよい。開口部aの列は、所定の方向(水平方向またはy方向)に沿って配列された複数の開口部から構成される。ここでは、1つの列は、複数の開口部から構成されている。開口部の列は2以上の開口部から構成されていればよい。なお、ここでは、開口部は円状であるが、開口部の形状はこれに限定されない。
 また、ここでは、複数の列が、所定の方向(y方向)に直交する方向(x方向)にほぼ等しい間隔で配列されているが、開口部の列はこれに限定されない。開口部aの列の間隔は一定でなくてもよい。図8(b)に示すように、開口部a1の列のx方向の間隔は開口部a2の列のx方向の間隔とは異なってもよい。
 このような開口部aの列は、無機層mu1、ms2のいずれか、または、無機層mu1、ms2の両方に設けられてもよい。あるいは、開口部aの列は、無機層mu1に加えて導電層eu1に設けられてもよい。
 (実施形態2)
 上述した説明では、絶縁基板と無機層との熱膨張率の差を利用して湾曲を行ったが、本発明はこれに限定されない。
 以下、図9を参照して本発明による光変調装置の第2実施形態を説明する。図9に、光変調装置100Aの模式図を示す。光変調装置100Aは、内側無機層と内側導電層との間にさらに内側有機層を有する点、および、スリットまたは開口部が内側導電層に設けられる点を除いて光変調装置100と同様の構成を有しており、冗長を避けるために重複する説明を省略する。
 光変調装置100Aは、基板10、20と、基板10と基板20との間に挟まれた液晶層30とを備えている。光変調装置100Aは湾曲している。
 基板10は、凹湾曲面12aおよび凸湾曲面12bを有する絶縁基板12と、凹湾曲面12aに順番に積層された無機層mu1、有機層yu1および導電層eu1と、凸湾曲面12bに設けられた無機層ms1とを有している。基板20は、凹湾曲面22aおよび凸湾曲面22bを有する絶縁基板22と、凸湾曲面22bに順番に積層された無機層mu2、有機層yu2および導電層eu2と、凹湾曲面22aに設けられた無機層ms2を有している。例えば、有機層yu1、yu2の厚さは1μm以上であり、有機層yu1、yu2はポリイミドを含む。
 なお、基板10は導電層eu1を覆う配向膜hu1をさらに有しており、基板20は導電層eu2を覆う配向膜hu2をさらに有している。配向膜hu1、hu2は液晶層30の液晶分子の配向を規定する。例えば、有機層yu1は配向膜hu1と同じ有機材料から形成されていてもよく、有機層yu2は配向膜hu2と同じ有機材料から形成されていてもよい。有機層yu1の熱膨張率は、絶縁基板12の熱膨張率よりも高いことが好ましい。なお、本明細書において、有機層yu1、yu2をそれぞれ第1内側有機層yu1、第2内側有機層yu2、または、内側有機層yu1、yu2と呼ぶことがある。
 本実施形態の光変調装置100Aにおいて、導電層eu1には、所定の方向にスリットsが設けられている。導電層eu1のスリットsは、例えば、図2、図4、図5および図6を参照して説明したように、所定の方向に沿って設けられている。このように、導電層eu1にスリットsが設けられていることにより、湾曲形状の光変調装置100Aが簡便に作製される。また、ここでは無機層mu1、ms2にスリットsが設けられていないため、絶縁基板12、22の耐湿性や耐溶剤性の低下が抑制される。
 以下、図10を参照して光変調装置100Aの作製方法を説明する。
 図10(a)に示すように、基板10、20を用意する。ここでは、基板10、20は、それぞれほぼ平坦な主面を有している。具体的には、基板10は、一対の主面12a、12bを有する絶縁基板12と、主面12aに順番に積層された無機層mu1、有機層yu1、導電層eu1および配向膜hu1と、主面12bに設けられた無機層ms1とを有している。同様に、基板20は、一対の主面22a、22bを有する絶縁基板22と、主面22bに順番に積層された無機層mu2、有機層yu2、導電層eu2および配向膜hu2と、主面22aに設けられた無機層ms2とを有している。ここでは、導電層eu1に、所定の方向に延びたスリットsが設けられている。
 図10(b)に示すように、基板10に熱硬化性樹脂を付与する。なお、ここでは、基板10に熱硬化性樹脂を付与したが、基板20に熱硬化性樹脂を付与してもよい。あるいは、基板10、20の両方に熱硬化性樹脂を付与してもよい。
 図10(c)に示すように、基板10および基板20を貼り合わせて基板10および基板20に圧力を印加するとともに基板10および基板20を加熱することによって熱硬化性樹脂を硬化させてシール部材thを形成する。上述したように、有機層yu1の熱膨張率は導電層eu1、無機層mu1よりも高い。導電層eu1にスリットsが設けられているため、加熱時において、有機層yu1のうち導電層eu1のスリットsに対応する部分は他の部分と比べて膨張する。
 図10(d)に示すように、圧力の印加および加熱を停止すると、有機層yu1のうち導電層eu1のスリットsに対応する部分は他の部分より大きく収縮する。このため、有機層yu1と導電層eu1との界面が凹状に湾曲し、これに伴い、光変調装置100Aが湾曲する。
 なお、その後、貼り合わされた基板10と基板20との間に液晶材料を注入し、その注入口を封止する。なお、液晶材料は、基板10と基板20とを貼り合わせる前に、基板10および基板20の少なくとも一方に、滴下してもよい。以上のようにして光変調装置100Aを作製することができる。
 なお、スリットsの設けられた導電層eu1は有機層yu1だけでなく配向膜hu1とも隣接している。しかしながら、配向膜hu1は比較的薄いのに対して有機層yu1は比較的厚いため、導電膜eu1による配向膜hu1への影響は導電膜eu1による有機層yu1に対する影響よりも小さく、導電膜eu1による配向膜hu1への影響を実質的に無視することができる。また、有機層yu1の熱膨張率が絶縁基板12の熱膨張率よりも高い場合、絶縁基板12の膨張・収縮の影響も実質的に無視することができる。
 上述したように、液晶層30を挟む2つの基板10、20は液晶層30を中心として対称に構成されていることが好ましい。光変調装置100Aでは、基板10は、液晶層30から順番に、配向膜hu1、導電層eu1、有機層yu1、無機層mu1、絶縁基板12、無機層ms1の順番に配置されており、基板20は、液晶層30から順番に、配向膜hu2、導電層eu2、有機層yu2、無機層mu2、絶縁基板22、無機層ms2の順番に配置されている。光変調装置100Aがこのように対称な構成を有することにより、貼り合わせ後の冷却時において意図しない方向に湾曲することを抑制できる。
 また、図8を参照して上述したように、光変調装置100Aでも、スリットsに代えて、2以上の開口部を含む列が設けられてもよい。開口部の列は、所定の方向に沿って配列された複数の開口部から構成される。このような開口部は、導電層eu1に設けられる。
 (実施形態3)
 以下、図11を参照して本発明による光変調装置の第3実施形態を説明する。図11に、光変調装置100Bの模式図を示す。光変調装置100Bは、外側無機層を覆う外側有機層および外側導電層を有する点、および、スリットまたは開口部が少なくとも導電層に設けられ得る点を除いて光変調装置100Aと同様の構成を有しており、冗長を避けるために重複する説明を省略する。
 光変調装置100Bは、基板10、20と、基板10と基板20との間に挟まれた液晶層30とを備えている。光変調装置100Bは湾曲している。
 基板10は、凹湾曲面12aおよび凸湾曲面12bを有する絶縁基板12と、凹湾曲面12aに順番に積層された無機層mu1、有機層yu1、導電層eu1および配向膜hu1と、凸湾曲面12bに順番に積層された無機層ms1、有機層ys1および導電層es1とを有している。基板20は、凹湾曲面22aおよび凸湾曲面22bを有する絶縁基板22と、凸湾曲面22bに順番に積層された無機層mu2、有機層yu2、導電層eu2および配向膜hu2と、凹湾曲面22aに順番に積層された無機層ms2、有機層ys2および導電層es2とを有している。例えば、有機層yu1、yu2、ys1、ys2はポリイミドを含む。有機層yu1、ys1は同じ有機材料から形成されることが好ましい。同様に、有機層yu2、ys2は同じ有機材料から形成されることが好ましい。
 なお、本明細書において、有機層yu1、yu2をそれぞれ第1内側有機層yu1、第2内側有機層yu2、または、内側有機層yu1、yu2と呼ぶことがあり、有機層ys1、ys2をそれぞれ第1外側有機層ys1、第2外側有機層ys2、または、外側有機層ys1、ys2と呼ぶことがある。また、導電層es1、es2をそれぞれ第1外側導電層es1、第2外側導電層es2、または、外側導電層es1、es2と呼ぶことがある。
 本実施形態の光変調装置100Bにおいて、導電層eu1および導電層es2には、所定の方向にスリットsが設けられている。導電層eu1、es2のスリットsは、例えば、図2、図4、図5および図6を参照して説明したように、所定の方向に沿って設けられている。このように、導電層eu1および導電層es2にスリットsが設けられていることにより、湾曲形状の光変調装置100Bが簡便に作製される。また、ここでは無機層mu1、ms2にスリットsが設けられていないため、絶縁基板12、22の耐湿性や耐溶剤性の低下が抑制される。
 以下、図12を参照して光変調装置100Bの作製方法を説明する。
 図12(a)に示すように、基板10、20を用意する。ここでは、基板10、20は、それぞれほぼ平坦な主面を有している。具体的には、基板10は、一対の主面12a、12bを有する絶縁基板12と、主面12aに順番に積層された無機層mu1、有機層yu1、導電層eu1および配向膜hu1と、主面12bに順番に積層された無機層ms1、有機層ys1および導電層es1とを有している。同様に、基板20は、一対の主面22a、22bを有する絶縁基板22と、主面22bに順番に積層された無機層mu2、有機層yu2、導電層eu2および配向膜hu2と、主面22aに順番に積層された無機層ms2、有機層ys2および導電層es2とを有している。ここでは、導電層eu1、es2に、所定の方向に延びるスリットsが設けられている。
 図12(b)に示すように、基板10に熱硬化性樹脂thを付与する。なお、ここでは、基板10に熱硬化性樹脂を付与したが、基板20に熱硬化性樹脂を付与してもよい。あるいは、基板10、20の両方に熱硬化性樹脂を付与してもよい。
 図12(c)に示すように、基板10および基板20を貼り合わせて基板10および基板20に圧力を印加するとともに基板10および基板20を加熱することによって熱硬化性樹脂thを硬化させる。上述したように、有機層yu1の熱膨張率は導電層eu1、無機層mu1よりも高い。導電層eu1にスリットsが設けられているため、加熱時において、有機層yu1のうち導電層eu1のスリットsに対応する部分は他の部分と比べて膨張する。同様に、有機層ys2の熱膨張率は導電層es2、無機層ms2よりも高い。導電層es2にスリットsが設けられているため、加熱時において、有機層ys2のうち導電層es2のスリットsに対応する部分は他の部分と比べて膨張する。
 図12(d)に示すように、圧力の印加および加熱を停止すると、有機層yu1のうち導電層eu1のスリットsに対応する部分は他の部分より大きく収縮し、有機層ys2のうち導電層es2のスリットsに対応する部分は他の部分より大きく収縮する。このため、有機層yu1と導電層eu1との界面が凹状に湾曲し、有機層ys2と導電層es2との界面が凹状に湾曲する。このようにして基板10、20が湾曲する。
 なお、その後、貼り合わされた基板10と基板20との間に液晶材料を注入し、その注入口を封止する。なお、液晶材料は、基板10と基板20とを貼り合わせる前に、基板10および基板20の少なくとも一方に、滴下してもよい。以上のようにして光変調装置100Bを作製することができる。
 なお、上述した説明では、導電層eu1、es2にスリットsが設けられていたが、本発明はこれに限定されない。
 例えば、図13(a)に示すように、基板20の導電層es2にスリットsが設けられることなく、基板10の導電層eu1にスリットsが設けられてもよい。あるいは、図13(b)に示すように、基板10の導電層eu1にスリットsが設けられることなく、基板20の導電層es2にスリットsが設けられてもよい。
 上述したように、液晶層30を挟む2つの基板10、20は液晶層30を中心として対称に構成されていることが好ましい。光変調装置100Bでは、基板10は、液晶層30から順番に、配向膜hu1、導電層eu1、有機層yu1、無機層mu1、絶縁基板12、無機層ms1、有機層ys1および導電層es1の順番に配置されており、基板20は、液晶層30から順番に、配向膜hu2、導電層eu2、有機層yu2、無機層mu2、絶縁基板22、無機層ms2、有機層ys2および導電層es2の順番に配置されている。光変調装置100Bがこのように対称な構成を有することにより、貼り合わせ後の冷却時において意図しない方向に湾曲することを抑制できる。
 また、図8を参照して上述したように、光変調装置100Bでも、スリットsに代えて、2以上の開口部を含む列が設けられてもよい。開口部の列は、所定の方向に沿って配列された複数の開口部から構成される。このような開口部は、導電層eu1、es2のいずれか、または、導電層eu1、es2の両方に設けられる。
 本発明によれば、湾曲した光変調装置を簡便に作製することができる。このような光変調装置は、立体表示を行う表示装置用のメガネに好適に用いられる。また、このような光変調装置自体を液晶パネルとして用いてもよい。
 10  第1基板
 20  第2基板
 30  液晶層
 100 光変調装置

Claims (19)

  1.  第1基板と、第2基板と、前記第1基板と前記第2基板との間に挟まれた液晶層とを備える光変調装置であって、
     前記第1基板は、凹湾曲面および凸湾曲面を有する第1絶縁基板と、前記第1絶縁基板の前記凹湾曲面に順番に積層された第1内側無機層および第1内側導電層と、前記第1絶縁基板の前記凸湾曲面に設けられた第1外側無機層とを有しており、
     前記第2基板は、凹湾曲面および凸湾曲面を有する第2絶縁基板と、前記第2絶縁基板の前記凸湾曲面に順番に積層された第2内側無機層および第2内側導電層と、前記第2絶縁基板の前記凹湾曲面に設けられた第2外側無機層とを有しており、
     前記第1内側無機層および前記第2外側無機層の少なくとも一方に、所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された開口部の列を構成する2以上の開口部を含む複数の開口部が設けられている、光変調装置。
  2.  前記第1内側導電層に、前記所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された2以上の開口部を含む複数の開口部が設けられている、請求項1に記載の光変調装置。
  3.  前記第1内側無機層の前記スリットまたは前記開口部は、前記第1内側導電層の前記スリットまたは前記開口部と連続する、請求項2に記載の光変調装置。
  4.  第1基板と、第2基板と、前記第1基板と前記第2基板との間に挟まれた液晶層とを備える光変調装置であって、
     前記第1基板は、凹湾曲面および凸湾曲面を有する第1絶縁基板と、前記第1絶縁基板の前記凹湾曲面に順番に積層された第1内側無機層、第1内側有機層および第1内側導電層と、前記第1絶縁基板の前記凸湾曲面に設けられた第1外側無機層を有しており、
     前記第2基板は、凹湾曲面および凸湾曲面を有する第2絶縁基板と、前記第2絶縁基板の前記凸湾曲面に順番に積層された第2内側無機層、第2内側有機層および第2内側導電層と、前記第2絶縁基板の前記凹湾曲面に設けられた第2外側無機層を有しており、
     前記第1内側導電層に、所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された開口部の列を構成する2以上の開口部を含む複数の開口部が設けられている、光変調装置。
  5.  第1基板と、第2基板と、前記第1基板と前記第2基板との間に挟まれた液晶層とを備える光変調装置であって、
     前記第1基板は、凹湾曲面および凸湾曲面を有する第1絶縁基板と、前記第1絶縁基板の前記凹湾曲面に順番に積層された第1内側無機層、第1内側有機層および第1内側導電層と、前記第1絶縁基板の前記凸湾曲面に順番に積層された第1外側無機層、第1外側有機層および第1外側導電層とを有しており、
     前記第2基板は、凹湾曲面および凸湾曲面を有する第2絶縁基板と、前記第2絶縁基板の前記凸湾曲面に順番に積層された第2内側無機層、第2内側有機層および第2内側導電層と、前記第2絶縁基板の前記凹湾曲面に順番に積層された第2外側無機層、第2外側有機層および第2外側導電層とを有しており、
     前記第1内側導電層および前記第2外側導電層の少なくとも一方に、所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された開口部の列を構成する2以上の開口部を含む複数の開口部が設けられている、光変調装置。
  6.  前記第1絶縁基板および前記第2絶縁基板は、それぞれ、プラスチック基板を含む、請求項1から5のいずれかに記載の光変調装置。
  7.  前記第1基板と前記第2基板との間に配置されて前記液晶層を囲むシール部材であって、熱硬化性樹脂から形成されたシール部材をさらに備える、請求項1から6のいずれかに記載の光変調装置。
  8.  前記第1基板および前記第2基板は、前記所定の方向に垂直な方向に湾曲している、請求項1から7のいずれかに記載の光変調装置。
  9.  前記少なくとも1つのスリットは、それぞれが前記所定の方向と平行に延びた複数のスリットを含み、
     互いに平行に隣接するスリットの間隔はほぼ等しい、請求項1から8のいずれかに記載の光変調装置。
  10.  前記複数の開口部は、それぞれが前記所定の方向と平行な方向に沿って2以上の開口部が列状に配列された複数の列を構成する開口部を含み、
     前記複数の列の間隔は互いにほぼ等しい、請求項1から8のいずれかに記載の光変調装置。
  11.  前記第1基板および前記第2基板はそれぞれほぼ対称に湾曲している、請求項9または10に記載の光変調装置。
  12.  前記少なくとも1つのスリットは、それぞれが前記所定の方向と平行に延びた複数のスリットを含み、
     前記複数のスリットのうちの前記所定の方向と直交する方向に互いに隣接するある2つのスリットの間隔は、前記複数のスリットのうちの前記所定の方向と直交する方向に互いに隣接する別の2つのスリットの間隔と異なる、請求項1から8のいずれかに記載の光変調装置。
  13.  前記複数の開口部は、それぞれが前記所定の方向と平行な方向に沿って2以上の開口部が列状に配列された複数の列を構成する開口部を含み、
     前記複数の列のうちの前記所定の方向と直交する方向に互いに隣接するある2つの列の間隔は、別の2つの列の間隔と異なる、請求項1から8のいずれかに記載の光変調装置。
  14.  前記第1基板および前記第2基板はそれぞれ非対称に湾曲している、請求項12または13に記載の光変調装置。
  15.  前記第1基板または前記第2基板は薄膜トランジスタをさらに有する、請求項1から14のいずれかに記載の光変調装置。
  16.  第1基板および第2基板を用意する工程であって、前記第1基板は、一対の主面を有する第1絶縁基板と、前記第1絶縁基板の前記一対の主面のうちの一方に順番に積層された第1内側無機層および第1内側導電層と、前記第1絶縁基板の前記一対の主面のうちの他方に設けられた第1外側無機層とを有しており、前記第2基板は、一対の主面を有する第2絶縁基板と、前記第2絶縁基板の前記一対の主面のうちの一方に順番に積層された第2内側無機層および第2内側導電層と、前記第2絶縁基板の前記一対の主面のうちの他方に設けられた第2外側無機層とを有しており、前記第1内側無機層および前記第2外側無機層の少なくとも一方に、所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された2以上の開口部を含む複数の開口部が設けられている、工程と、
     前記第1基板および前記第2基板の少なくとも一方に、熱硬化性樹脂を付与する工程と、
     前記第1基板および前記第2基板を貼り合わせて前記第1基板および前記第2基板に圧力を印加するとともに前記第1基板および前記第2基板を加熱することによって前記熱硬化性樹脂を硬化させる工程と、
     前記圧力の印加および前記加熱を停止して、前記第1基板および前記第2基板を湾曲させる工程と
     を包含する、光変調装置の作製方法。
  17.  第1基板および第2基板を用意する工程であって、前記第1基板は、一対の主面を有する第1絶縁基板と、前記第1絶縁基板の前記一対の主面のうちの一方に順番に積層された第1内側無機層、第1内側有機層および第1内側導電層と、前記第1絶縁基板の前記一対の主面のうちの他方に設けられた第1外側無機層とを有しており、前記第2基板は、一対の主面を有する第2絶縁基板と、前記第2絶縁基板の前記一対の主面のうちの一方に順番に積層された第2内側無機層、第2内側有機層および第2内側導電層と、前記第2絶縁基板の前記一対の主面のうちの他方に設けられた第2外側無機層とを有しており、前記第1内側導電層に、所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された2以上の開口部を含む複数の開口部が設けられている、工程と、
     前記第1基板および前記第2基板の少なくとも一方に、熱硬化性樹脂を付与する工程と、
     前記第1基板および前記第2基板を貼り合わせて前記第1基板および前記第2基板に圧力を印加するとともに前記第1基板および前記第2基板を加熱することによって前記熱硬化性樹脂を硬化させる工程と、
     前記圧力の印加および前記加熱を停止して、前記第1基板および前記第2基板を湾曲させる工程と
     を包含する、光変調装置の作製方法。
  18.  第1基板および第2基板を用意する工程であって、前記第1基板は、一対の主面を有する第1絶縁基板と、前記第1絶縁基板の前記一対の主面のうちの一方に順番に積層された第1内側無機層、第1内側有機層および第1内側導電層と、前記第1絶縁基板の前記一対の主面のうちの他方に順番に積層された第1外側無機層、第1外側有機層および第1外側導電層とを有しており、前記第2基板は、一対の主面を有する第2絶縁基板と、前記第2絶縁基板の前記一対の主面のうちの一方に順番に積層された第2内側無機層、第2内側有機層および第2内側導電層と、前記第2絶縁基板の前記一対の主面のうちの他方に順番に積層された第2外側無機層、第2外側有機層および第2外側導電層とを有しており、前記第1内側導電層および前記第2外側導電層の少なくとも一方に、所定の方向に延びたスリットを含む少なくとも1つのスリット、または、前記所定の方向に沿って列状に配列された2以上の開口部を含む複数の開口部が設けられている、工程と、
     前記第1基板および前記第2基板の少なくとも一方に、熱硬化性樹脂を付与する工程と、
     前記第1基板および前記第2基板を貼り合わせて前記第1基板および前記第2基板に圧力を印加するとともに前記第1基板および前記第2基板を加熱することによって前記熱硬化性樹脂を硬化させる工程と、
     前記圧力の印加および前記加熱を停止して、前記第1基板および前記第2基板を湾曲させる工程と
     を包含する、光変調装置の作製方法。
  19.  前記第1基板および前記第2基板を貼り合わせた後に、前記第1基板と前記第2基板との間に液晶材料を注入する工程をさらに包含する、請求項16から18のいずれかに記載の光変調装置の作製方法。
PCT/JP2011/074844 2010-11-01 2011-10-27 光変調装置およびその作製方法 WO2012060278A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-245633 2010-11-01
JP2010245633 2010-11-01

Publications (1)

Publication Number Publication Date
WO2012060278A1 true WO2012060278A1 (ja) 2012-05-10

Family

ID=46024393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074844 WO2012060278A1 (ja) 2010-11-01 2011-10-27 光変調装置およびその作製方法

Country Status (1)

Country Link
WO (1) WO2012060278A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013345A (ja) * 2012-07-05 2014-01-23 Stanley Electric Co Ltd 液晶装置の製造方法、液晶装置
JP2015022303A (ja) * 2013-07-23 2015-02-02 友達光電股▲ふん▼有限公司AU Optronics Corporation 表示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273600A (ja) * 1992-01-20 1993-10-22 Ricoh Co Ltd 薄膜積層デバイス用プラスチック基板および該基板付き薄膜積層デバイス
JPH05323301A (ja) * 1992-05-25 1993-12-07 Ricoh Co Ltd 液晶表示素子
JPH10268246A (ja) * 1997-03-24 1998-10-09 Seiko Epson Corp 曲面表示液晶パネルの製造装置および製造方法ならびに液晶表示装置の製造方法
JP2001356370A (ja) * 2000-06-16 2001-12-26 Kyodo Printing Co Ltd アクティブマトリックス層および転写方法
JP2002072179A (ja) * 2000-09-04 2002-03-12 Minolta Co Ltd 非平面液晶表示素子及びその製造方法
JP2004101976A (ja) * 2002-09-11 2004-04-02 Sony Corp 薄膜回路基板
JP2005288852A (ja) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd 透明ガス遮断性フィルム、及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273600A (ja) * 1992-01-20 1993-10-22 Ricoh Co Ltd 薄膜積層デバイス用プラスチック基板および該基板付き薄膜積層デバイス
JPH05323301A (ja) * 1992-05-25 1993-12-07 Ricoh Co Ltd 液晶表示素子
JPH10268246A (ja) * 1997-03-24 1998-10-09 Seiko Epson Corp 曲面表示液晶パネルの製造装置および製造方法ならびに液晶表示装置の製造方法
JP2001356370A (ja) * 2000-06-16 2001-12-26 Kyodo Printing Co Ltd アクティブマトリックス層および転写方法
JP2002072179A (ja) * 2000-09-04 2002-03-12 Minolta Co Ltd 非平面液晶表示素子及びその製造方法
JP2004101976A (ja) * 2002-09-11 2004-04-02 Sony Corp 薄膜回路基板
JP2005288852A (ja) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd 透明ガス遮断性フィルム、及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013345A (ja) * 2012-07-05 2014-01-23 Stanley Electric Co Ltd 液晶装置の製造方法、液晶装置
JP2015022303A (ja) * 2013-07-23 2015-02-02 友達光電股▲ふん▼有限公司AU Optronics Corporation 表示装置

Similar Documents

Publication Publication Date Title
KR101030538B1 (ko) Ips 모드 액정표시소자
JP2013504789A (ja) 曲面状のディスプレイパネル製造方法
US20140368782A1 (en) Curved display panel manufacturing method
KR101377728B1 (ko) 전환 가능한 액정 렌즈 배열을 위한 곡률 감소
JP2014525606A (ja) 曲面ディスプレイパネル製造方法
US8451392B2 (en) Liquid crystal display and method of manufacturing liquid crystal display having particular liquid crystal film
US20180210293A1 (en) Liquid crystal panels, liquid crystal alignment methods thereof and liquid crystal displays
JP2010139573A (ja) 液晶表示パネル
JP2014157311A (ja) 表示装置および表示装置の製造方法
US20160238888A1 (en) Liquid crystal display panel and fabrication method thereof
JP6094916B1 (ja) 液晶セル
JPH09231002A (ja) タッチパネル一体型液晶表示素子
JP2017065945A (ja) 合わせガラス
WO2012060278A1 (ja) 光変調装置およびその作製方法
KR20130063686A (ko) 편광 액정 패널 및 이를 포함하는 표시 장치
JP6094915B1 (ja) 液晶セル
KR102242168B1 (ko) 곡면 액정패널, 이를 포함한 곡면 액정표시장치 및 그 제조방법
KR102158802B1 (ko) 표시 패널 및 액정 표시 장치
JP6331167B2 (ja) 液晶セル
CN109300398B (zh) 显示装置及制造该显示装置的方法
JP6146489B1 (ja) 調光フィルム及び調光フィルムの製造方法
JP6112237B1 (ja) 調光フィルム及び調光フィルムの製造方法
JP2017016005A (ja) 表示装置
JP2002341358A (ja) 液晶表示パネルの製造方法
JP2017111422A (ja) 調光フィルム及び調光フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP