WO2012057467A2 - 구리 함유 금속막 식각액 조성물 및 이를 이용한 식각 방법 - Google Patents

구리 함유 금속막 식각액 조성물 및 이를 이용한 식각 방법 Download PDF

Info

Publication number
WO2012057467A2
WO2012057467A2 PCT/KR2011/007653 KR2011007653W WO2012057467A2 WO 2012057467 A2 WO2012057467 A2 WO 2012057467A2 KR 2011007653 W KR2011007653 W KR 2011007653W WO 2012057467 A2 WO2012057467 A2 WO 2012057467A2
Authority
WO
WIPO (PCT)
Prior art keywords
copper
film
etching
metal film
containing metal
Prior art date
Application number
PCT/KR2011/007653
Other languages
English (en)
French (fr)
Other versions
WO2012057467A3 (ko
Inventor
구병수
최정헌
조삼영
이기범
Original Assignee
㈜동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜동진쎄미켐 filed Critical ㈜동진쎄미켐
Publication of WO2012057467A2 publication Critical patent/WO2012057467A2/ko
Publication of WO2012057467A3 publication Critical patent/WO2012057467A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/10Etching, surface-brightening or pickling compositions containing an inorganic acid containing a boron compound
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only

Definitions

  • the present invention relates to a metal film etching liquid composition including copper used in a semiconductor device and an etching method using the same.
  • the process of forming the metal wiring on the substrate in the semiconductor device is generally made of a metal film forming process by sputtering or the like, a photoresist forming process and an etching process in an optional region by photoresist coating, exposure and development, and an individual unit process.
  • the etching process refers to a process of leaving a metal film in a selective region using a photoresist as a mask, and typically, dry etching using plasma or wet etching using an etching solution is used.
  • the resistance of metal wiring is a major factor causing RC signal delay, and in particular, TFT-LCD (Thin Film Transistor Liquid Crystal Display) is a key factor for increasing panel size and realizing high resolution.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • a copper film which is a low resistance metal film, has been used to reduce the RC signal delay, which is essential for the large-sized TFT-LCD.
  • the copper film has a problem in that the process of applying and patterning the photoresist is difficult and the adhesion to the silicon insulating film is poor.
  • a multi-metal film has been used, and typically, there is a copper / titanium film.
  • the copper / titanium film has a disadvantage of not being etched unless fluorine ions are present due to the special chemical properties of the titanium film.
  • the etchant contains fluorine ions, the glass substrate and various silicon layers (passivation layer composed of a semiconductor layer and a silicon nitride film) are also etched, and there are many elements that may cause defects in the process.
  • the copper / molybdenum film is well controlled by the thickness of the copper and molybdenum film can make a film having a similar or better properties than the copper / titanium film, it is advantageous in that it does not need to include fluorine ions in the etchant.
  • Korean Patent Laid-Open Publication No. 1999-17836 discloses a mixture of phosphoric acid, nitric acid, and acetic acid as an etching solution of a multilayer containing copper
  • Korean Patent Laid-Open Publication No. 2000-32999 discloses iron chloride hexahydrate and hydrofluoric acid (HF).
  • An etchant comprising a mixture is disclosed.
  • the acid mixture is used as an etchant, the etching speed may be too high, which may cause a problem in the process margin, and the taper angle may be 90 degrees or more, which makes the subsequent process difficult. In this case, the problem in the copper / titanium film in which the glass substrate or the silicon layer is etched is maintained.
  • a copper / titanium-molybdenum film is used for metal wiring, and the copper / titanium-molybdenum film etching liquid composition is disclosed in Korean Patent Publication No. 2010-40352.
  • the etching solution composition is far from etching the multilayer film collectively.
  • One aspect of the present invention is to provide a copper-containing metal film etching liquid composition capable of collectively etching a copper-containing metal multilayer film without damaging the glass substrate.
  • Another aspect of the present invention is to provide an etching method using the etchant composition.
  • a copper containing metal film etchant composition comprising boric acid and water in an amount such that the total weight of the total composition is 100% by weight.
  • a method for forming a copper containing metal film on a substrate comprising: Forming a photoresist pattern on the copper-containing metal film; And etching the copper-containing metal film with the etchant composition.
  • Copper-containing metal film etchant composition is 0.1 to 30% by weight of hydrogen peroxide, 0.1 to 7.0% by weight of phosphoric acid, 0.01 to 5.0% by weight of the cyclic amine compound, 0.1 to 5.0% by weight of sulfate, 0.1 To 1.0 weight percent boric fluoric acid and water in an amount such that the total weight of the total composition is 100 weight percent.
  • 18% by weight hydrogen peroxide, 3% by weight phosphoric acid, 0.8% by weight cyclic amine compound, 1.5% by weight sulfate, 0.5% by weight boric fluoride acid and 76.2% by weight water 18% by weight hydrogen peroxide, 3% by weight phosphoric acid, 0.8% by weight cyclic amine compound, 1.5% by weight sulfate, 0.5% by weight boric fluoride acid and 76.2% by weight water.
  • the copper-containing metal film of the present invention may be a single film made of copper or a copper alloy, or a multilayer film containing at least one of molybdenum and titanium in addition to copper.
  • the multilayer film containing at least one of copper and molybdenum and titanium includes a copper film as a lower film and at least one film of molybdenum and titanium as an upper film, or a double film arranged on the contrary, a copper film, and molybdenum and It includes multiple membranes in which one or more membranes of titanium are alternately arranged.
  • the structure of the multi-layer may be determined by considering the kind of material or the bonding property of the film disposed below or the film disposed above.
  • the thickness of the copper film and at least one film of molybdenum and titanium can be variously combined without limitation, and the thickness of the copper film is preferably larger than the thickness of the film of molybdenum and titanium.
  • the two metals may exist in the form of an alloy.
  • the hydrogen peroxide, phosphoric acid, sulfate and cyclic amine compounds included in the etching liquid composition of the present invention can be prepared by a conventionally known method, and preferably have a purity for a semiconductor process.
  • water may use deionized water for semiconductor processing.
  • the boron fluoride (HBF 4 ) can be used by purchasing a commercial product in the state of the aqueous solution having a purity for the semiconductor process or directly manufactured.
  • the etchant composition may further include an additive usually included.
  • Hydrogen peroxide and phosphoric acid used in the etchant composition of the present invention is a main component for etching the copper film and molybdenum film, and preferably has a purity for the semiconductor process, so that metal impurities are below the ppb level.
  • Hydrogen peroxide in the etching solution composition of the present invention is used in an amount of 0.1 to 30% by weight, preferably 10 to 25% by weight.
  • content of hydrogen peroxide is too high, there is a risk of explosion due to the catalytic action in the presence of metal ions in the solution, and when too little, the metal film may not be etched smoothly and the metal film may remain as a residue.
  • phosphoric acid is used in an amount of 0.1 to 7.0% by weight, preferably 2 to 5% by weight.
  • Phosphoric acid adjusts the pH of the etchant to allow the metal film containing copper to be etched.
  • the pH of the etchant may be adjusted to 0.5 to 4.5 by phosphoric acid.
  • the phosphate is combined with the oxidized copper ions to increase the solubility in water to remove the residue of the copper-containing metal film after etching.
  • the phosphoric acid content is too high, the excessive copper-containing metal film may be etched by the phosphoric acid, and if the phosphoric acid content is too low, the etching rate of the copper-containing metal film may be lowered.
  • sulfate is used in an amount of 0.1 to 5.0% by weight, preferably 0.5 to 3% by weight.
  • the sulfate is not particularly limited as a component that increases the etching rate of the molybdenum film, and various kinds may be used.
  • salts in which hydrogen in sulfuric acid is substituted with ammonium, alkali metals or alkaline earth metals can be used, such as ammonium sulfate, ammonium persulfate, sodium sulfate, sodium persulfate, potassium sulfate and potassium persulfate.
  • the sulfate speeds up the etching rate of the molybdenum film and prevents the copper film from being excessively etched while the molybdenum film is etched to form a stepped taper profile. If the copper film is excessively etched, the CD (critical dimension) loss of the upper copper film is severe and the line width is narrowed, the electrical resistance is increased, the advantage of using a low resistance metal disappears.
  • the boron fluoric acid is used in an amount of 0.1 to 1.0% by weight, preferably 0.2 to 1.0% by weight.
  • the boron fluoric acid used in the etchant composition of the present invention enables the copper-containing metal film to be collectively etched without damaging the glass substrate or the silicon-containing substrate, unlike conventional fluorine ion-containing compounds.
  • the etching rate of the lower molybdenum film, molybdenum-titanium film, or titanium film can be increased, and the stepped taper profile can be adjusted so as not to occur.
  • the liquid crystal display mass production process it is preferable to treat a large number of substrates using the same etchant composition.
  • the generated copper and molybdenum ions are again treated with the etchant composition.
  • the composition of the etchant composition is rapidly changed, and the etching characteristics of the etchant are changed after treating the substrate in a predetermined amount.
  • boron fluoric acid is used as the fluorine ion-containing compound, the time point at which the etching characteristics of the etching solution changes is delayed, thereby increasing the number of substrates that can be treated with the same etching solution composition.
  • the lower layer of the molybdenum film or the molybdenum-titanium film can be easily etched, and in particular, the gate and source-drain wirings play an important role in improving wiring defects caused by residues and residual films, while the etching of the composition together with hydrogen peroxide and phosphoric acid in the etchant composition. It plays an important role in maintaining power.
  • the cyclic amine compound used in the etchant composition of the present invention controls the etching rate of the copper-containing metal film and reduces the CD (Critical Dimension) loss of the copper-containing metal film pattern to increase the process margin.
  • the cyclic amine compound can be used in various kinds without particular limitation, for example, aminotetrazole, imidazole, indole, purine, pyrazole, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrroline and other water-soluble cyclic An amine compound can be used.
  • the cyclic amine compound allows to control the etching rate and to obtain metal wiring of the desired width.
  • a method of etching a copper-containing metal film includes depositing a copper-containing metal film on a substrate; Forming a photoresist pattern on the copper-containing metal film; And etching the copper-containing metal film with the etchant composition.
  • FIG. 1 is a view schematically showing an etching method according to an embodiment of the present invention. Referring to Figure 1 in more detail the etching method according to an embodiment of the present invention.
  • a display device structure (not shown) may be added between the glass substrate 10 and the molybdenum-titanium alloy film 12.
  • the structure for a display device is formed by forming a pattern on various oxide films such as a silicon oxide film, a silicon nitride film, or a semiconductor film such as amorphous silicon, polysilicon, or a conductive layer such as doped amorphous polysilicon, various metal films, and the like. It means a structure formed by overlapping at least two.
  • an ordinary cleaning process is performed on the substrate 10, on the copper film 14, on the molybdenum-titanium alloy film 12, and the like.
  • the photoresist 16 is then applied to form a copper / molybdenum-titanium bilayer on the optional site (FIG. 1B), selectively exposed using a mask and partially removed by the developer. (FIG. 1C).
  • the photoresist 16 may be a negative type or a positive type reactant, and in the case of a positive type photoresist, an exposed part is developed and a negative type photoresist is developed in that an unexposed part is developed. .
  • such a process may be added with a conventional process such as ashing, heat treatment.
  • FIG. 1D shows a situation in which the copper film 14 is etched.
  • the molybdenum-titanium film 12 is etched by the same etching solution (FIG. 1E).
  • FIG. 1E is a diagram in which the film thickness and the like are exaggerated than actual.
  • the etching process of such a copper / molybdenum-titanium double layer may be performed according to a method known in the art, and there are dipping, spraying, and the like.
  • the temperature of the etching solution may be 30 to 33 ° C., and the etching time is usually performed for about 50 seconds to 100 seconds. Finally, the photoresist is removed from the front to form the shape shown in FIG. 1F.
  • a liquid crystal display and a semiconductor device may be manufactured by the etching method.
  • a semiconductor structure can be formed between the substrate and the copper containing metal film.
  • the semiconductor structure includes a semiconductor structure for a display device such as an LCD or a PDP, and includes an insulating film by a chemical vapor deposition method, a conductive film by a sputtering method, or a semiconductor film such as a silicon film such as amorphous or polycrystalline. It refers to a structure including the above film and manufactured by a photolithography process, an etching process, or the like.
  • the structure of a TFT of a liquid crystal display device includes the steps of forming a gate electrode on a substrate; Forming a gate insulating layer on the substrate including the gate electrode; Forming a semiconductor layer on the gate insulating layer; Forming source and drain electrodes on the semiconductor layer; And forming a pixel electrode connected to the drain electrode, and a method of forming a gate electrode, a source and a drain electrode, and a pixel electrode may be performed by the etching method. That is, the above-described copper-containing metal film can form source / drain wirings constituting the gate wirings and data lines of the TFT-LCD through etching.
  • TFT-LCD source / drain wiring is a wiring whose resistance is particularly problematic
  • a copper-containing metal film in particular, a copper / molybdenum-titanium, titanium, molybdenum multilayer film is used, and is easily etched with the etchant composition according to the present invention to TFT-LCD. Larger size is possible.
  • the etchant composition according to an aspect of the present invention can etch a copper-containing metal film without damaging the glass substrate, thereby reusing the glass substrate and increasing the number of cumulative treatments by the same etchant. Production yield is increased.
  • FIG. 1 is a view schematically showing an etching process according to an embodiment of the present invention.
  • FIG. 2 is a scanning electron micrograph of a thin film transistor according to an etching process of Example 1.
  • FIG. 2 is a scanning electron micrograph of a thin film transistor according to an etching process of Example 1.
  • FIG. 3 is a scanning electron micrograph of a thin film transistor according to an etching process of Example 2.
  • FIG. 3 is a scanning electron micrograph of a thin film transistor according to an etching process of Example 2.
  • Example 4 is a scanning electron micrograph of the thin film transistor according to the etching process of Example 3.
  • FIG. 5 is a scanning electron micrograph of a thin film transistor according to an etching process of Example 4.
  • FIG. 5 is a scanning electron micrograph of a thin film transistor according to an etching process of Example 4.
  • FIG. 6 is a scanning electron micrograph of a thin film transistor according to an etching process of Comparative Example 1.
  • composition comprising a component of the amount shown in Table 1 and the balance of water.
  • an alloy film (50:50) of molybdenum and titanium and a copper film were continuously deposited.
  • the thickness of each film was about 300 to 400 kPa for the molybdenum-titanium alloy film and about 2000 to 2500 kPa for the copper film.
  • the photoresist was then applied to form a copper / molybdenum-titanium bilayer on the selective site, selectively exposed using a mask and partially removed by the developer. Then, using the etching solution composition obtained in Preparation Example 1, a copper / molybdenum-titanium double layer etching process was performed. In performing the etching method was carried out by the spray method, the temperature of the etching solution during the etching process was 33 °C, the etching time was about 70 seconds. EPD (End Point Detection, Metal Etch Point) was visually measured to obtain an etching rate over time. After the etching process, the rinse process and the drying process were performed, and finally the photoresist was removed from the front surface.
  • EPD End Point Detection, Metal Etch Point
  • An etching process was performed in the same manner as in Example 1, except that the etching solution composition obtained in Preparation Example 5 was used, and a double layer profile was obtained by an etching rate and a cross-sectional SEM.
  • the cumulative number of sheets of the etching solution of Example 1 is inverted through the analysis result according to the contamination degree of Cu powder, and the results are shown in Table 2 below. .
  • the process was repeated using the compositions obtained in Preparation Examples 2 to 6, respectively, to calculate the cumulative number of sheets of the etching solution of Examples 2 to 4 and Comparative Examples 1 and 2.
  • Comparative Example 1 using hydrofluoric acid instead of boron fluoric acid, as shown in FIG. 6, the glass substrate is severely damaged (Glass Attack), and as shown in Table 2, the cumulative number of treated sheets is also significantly reduced.
  • the boron fluoric acid content is more than 1.0% by weight as in Comparative Example 2, the etching rate is fast, but the cumulative number of treated sheets is significantly reduced.
  • the etching rate is greater than 100 s / sec, the etching control is difficult, and as shown in FIG. 7, the yield rate is increased by increasing the defective rate due to the undercut of the lower layer and as shown in FIG. 7.
  • the etching liquid composition according to the present invention includes a specific content range of boric fluoric acid, so that the glass substrate is not damaged and the cumulative number of sheets is large compared with the prior art, which is directly related to the production yield. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Weting (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

반도체 장치에 사용되는 구리를 포함한 금속막 식각액 조성물 및 이를 사용한 식각 방법이 개시된다. 불화붕소산을 포함한 식각액 조성물은 유리 기판을 손상시키지 않고 구리 함유 다층막을 일괄적으로 식각할 수 있어 반도체 소자의 생산 수율을 향상시킬 수 있다.

Description

구리 함유 금속막 식각액 조성물 및 이를 이용한 식각 방법
반도체 장치에 사용되는 구리를 포함한 금속막 식각액 조성물 및 이를 이용한 식각 방법에 관한 것이다.
반도체 장치에서 기판 위에 금속 배선을 형성하는 과정은 통상적으로 스퍼터링 등에 의한 금속막 형성 공정, 포토레지스트 도포, 노광 및 현상에 의한 선택적인 영역에서의 포토레지스트 형성 공정 및 식각 공정으로 이루어지고, 개별적인 단위 공정 전후의 세정 공정 등을 포함한다. 이러한 식각 공정은 포토레지스트를 마스크로 하여 선택적인 영역에 금속막을 남기는 공정을 의미하며, 통상적으로 플라즈마 등을 이용한 건식식각 또는 식각액을 이용하는 습식식각이 사용된다.
이러한 반도체 장치에서 금속 배선의 저항은 RC 신호 지연을 유발하는 주요 인자이며, 특히 TFT-LCD(Thin Film Transistor Liquid Crystal Display)의 경우 패널 크기 증가와 고해상도 실현에 관건이 되고 있다.
따라서 TFT-LCD의 대형화에 필수적으로 요구되는 RC 신호 지연을 감소시키기 위해 저저항 금속막인 구리막이 사용되어 왔다. 그러나 구리막은 포토레지스트를 도포하고 패터닝하는 공정에 어려움이 많고 실리콘 절연막과의 접착력이 떨어지는 문제점이 있다.
이러한 구리막의 단점을 보완하기 위해 다중 금속막이 사용되어 왔으며, 대표적으로는 구리/티타늄막이 있다. 구리/티타늄막은 티타늄막의 특수한 화학적 성질로 인하여 불소 이온이 존재하지 않으면 식각이 되지 않는 단점을 가지고 있다. 식각액 중에 불소 이온이 포함되어 있으면 유리 기판 및 각종 실리콘층(반도체층과 실리콘 질화막으로 이루어진 패시베이션층)도 함께 식각되어 공정상에서 불량이 날 수 있는 요소가 많이 존재한다. 한편, 구리/몰리브덴막은 구리 및 몰리브덴막의 두께를 잘 조절하면 구리/티타늄막과 비슷하거나 더 좋은 성질을 가진 막을 만들 수 있으며, 식각액중 불소 이온이 포함될 필요가 없는 점에서 유리하다.
대한민국특허공개 제1999-17836호에는 구리가 포함된 다중막의 식각액으로 인산, 질산, 및 아세트산이 혼합된 물질을 개시하고 있으며, 대한민국특허공개 제2000-32999호에는 염화철 6수화물과 불산(HF)의 혼합물을 포함하는 식각액을 개시하고 있다. 그러나, 산 혼합물을 식각액으로 사용하는 경우 식각 속도가 너무 빨라 공정 마진에 문제가 발생하는 경우가 있고, 테이퍼 각(taper angle)이 90도 이상이 되어 후속 공정이 어려워지게 되며, 또한 불산을 사용하는 경우 유리 기판이나 실리콘층이 식각되는 구리/티타늄막에서의 문제점이 그대로 유지된다.
최근에는 상기한 구리/티타늄막 및 구리/몰리브덴막의 문제점을 해소하기 위하여 구리/티타늄-몰리브덴막을 금속배선용으로 사용하고 있으며, 이러한 구리/티타늄-몰리브덴막 식각액 조성물로 대한민국특허공개 제2010-40352호에는 전체 조성물 총 중량에 대하여 5 내지 20중량%의 과산화수소수, 1 내지 5중량%의 인산, 0.1 내지 5중량%의 인산염, 0.1 내지 10중량%의 킬레이트제, 0.1 내지 5중량%의 고리형 아민 화합물 및 전체 조성물 총 중량이 100중량%가 되도록 하는 물을 포함하는 식각액 조성물이 개시되어 있다. 그러나 상기 식각액 조성물은 구리(구리합금)/티타늄, 몰리브덴 또는 몰리브덴 합금층을 함유한 다층막으로부터 구리 또는 구리합금층을 선택적으로 식각하는 것이므로 다층막을 일괄적으로 식각하는 것과는 거리가 멀다.
본 발명의 한 측면은 유리 기판을 손상시키지 않고, 구리 함유 금속 다층막을 일괄적으로 식각할 수 있는 구리 함유 금속막 식각액 조성물을 제공하는 것이다.
본 발명의 다른 측면은 상기 식각액 조성물을 이용한 식각 방법을 제공하는 것이다.
본 발명의 한 측면에 따라, 0.1 내지 30중량%의 과산화수소, 0.1 내지 7.0중량%의 인산, 0.01 내지 5.0중량%의 고리형 아민 화합물, 0.1 내지 5.0중량%의 황산염, 0.01 내지 1.0중량%의 불화붕소산 및 전체 조성물 총 중량이 100중량%가 되도록 하는 양의 물을 포함하는 구리 함유 금속막 식각액 조성물이 제공된다.
본 발명의 다른 한 측면에 따라, 기판 상에 구리 함유 금속막을 증착하는 단계; 상기 구리 함유 금속막에 포토레지스트 패턴을 형성하는 단계; 및 상기 식각액 조성물로 상기 구리 함유 금속막을 식각하는 단계를 포함하는 구리 함유 금속막의 식각 방법이 제공된다.
이하에서 예시적인 일 구현예에 따른 식각액 조성물 및 이를 이용한 식각 방법에 관하여 더욱 상세히 설명한다.
본 발명의 일 측면에 따른 구리 함유 금속막 식각액 조성물은 0.1 내지 30중량%의 과산화수소, 0.1 내지 7.0중량%의 인산, 0.01 내지 5.0중량%의 고리형 아민 화합물, 0.1 내지 5.0중량%의 황산염, 0.1 내지 1.0중량%의 불화붕소산 및 전체 조성물 총 중량이 100중량%가 되도록 하는 양의 물을 포함한다. 특히, 18중량%의 과산화수소, 3중량%의 인산, 0.8중량%의 고리형 아민 화합물, 1.5중량%의 황산염, 0.5중량%의 불화붕소산 및 76.2중량%의 물을 포함한다.
본 발명의 구리 함유 금속막은 구리 또는 구리 합금으로 된 단일막, 또는 구리 외에 몰리브덴과 티타늄 중 1종 이상을 함유한 다층막일 수 있다.
상기 구리, 및 몰리브덴과 티타늄 중 1종 이상을 함유한 다층막은 구리막을 하부막으로 하고 몰리브덴과 티타늄 중 1종 이상의 막을 상부막으로 하거나, 그 반대로 배열된 이중막을 포함하며, 구리막, 및 몰리브덴과 티타늄 중 1종 이상의 막을 교대로 배치한 다중막을 포함한다. 이 때 하부에 배치되는 막이나 상부에 배치되는 막의 재료의 종류 또는 접합성 등을 복합적으로 고려하여 다중막의 구조를 결정할 수 있다. 또한 구리막, 및 몰리브덴과 티타늄 중 1종 이상의 막의 두께는 제한없이 다양한 조합이 가능한데, 구리막의 두께가 몰리브덴과 티타늄 중 1종 이상의 막의 두께보다 크게 형성하는 것이 바람직하다.
한편, 몰리브덴과 티타늄이 함께 하나의 막을 형성하는 경우, 두 금속은 합금의 형태로 존재할 수 있다.
본 발명의 식각액 조성물에 포함되는 과산화수소, 인산, 황산염 및 고리형 아민 화합물은 통상적으로 공지된 방법에 의해 제조할 수 있고, 반도체 공정용의 순도를 가지는 것이 바람직하다. 또한 물은 반도체 공정용 탈이온수를 사용할 수 있다.
또한 불화붕소산(HBF4)은 반도체 공정용의 순도를 가진 수용액 상태의 시판 제품을 구입하여 사용하거나 직접 제조하여 사용할 수 있다.
상기 식각액 조성물에는 통상적으로 포함되는 첨가제를 더 포함할 수 있다.
본 발명의 식각액 조성물에 사용되는 과산화수소 및 인산은 구리막 및 몰리브덴 막을 식각하는 주성분으로, 바람직하게는 반도체 공정용의 순도를 가져 금속 불순물이 ppb 수준 이하인 것을 사용할 수 있다.
본 발명의 식각액 조성물에서 과산화수소는 0.1 내지 30중량%, 바람직하게는 10 내지 25중량%의 양으로 사용된다. 과산화수소의 함량이 지나치게 많으면 용액내 금속이온 존재시 촉매 작용에 의한 폭발 위험이 있고, 지나치게 적으면 금속막이 원활하게 식각되지 않아 금속막이 잔사로 남을 수 있다.
본 발명의 식각액 조성물에서 인산은 0.1 내지 7.0중량%, 바람직하게는 2 내지 5중량%의 양으로 사용된다. 인산은 식각액의 pH를 조절하여 구리를 포함하는 금속막이 식각될 수 있도록 한다. 인산에 의해 식각액의 pH를 0.5 내지 4.5로 조절할 수 있다. 또한 산화된 구리 이온과 결합하여 인산염을 형성함으로써 물에 대한 용해성을 증가시켜 식각 후 구리 함유 금속막의 잔사를 없애준다. 그러나 인산의 함량이 지나치게 높으면 인산에 의해 과도한 구리 함유 금속막의 식각이 일어날 수 있고, 인산의 함량이 지나치게 낮으면 구리 함유 금속막의 식각 속도가 떨어질 수 있다.
본 발명의 식각액 조성물에서 황산염은 0.1 내지 5.0중량%, 바람직하게는 0.5 내지 3중량%의 양으로 사용된다. 황산염은 몰리브덴막의 식각 속도를 높여주는 성분으로 특별히 한정되지 않고 다양한 종류가 사용될 수 있다. 예를 들면 황산암모늄, 과황산암모늄, 황산나트륨, 과황산나트륨, 황산칼륨 및 과황산칼륨과 같이 황산에서의 수소가 암모늄, 알칼리금속 또는 알칼리토금속으로 치환된 염을 사용할 수 있다. 황산염은 몰리브덴막의 식각 속도를 높여주어 몰리브덴막이 식각되는 동안 구리막이 지나치게 식각되어 계단형 테이퍼 프로파일을 만드는 현상을 막아준다. 구리막이 지나치게 식각되면 상부 구리막의 CD(Critical Dimension) 손실이 심하여 선폭이 좁아지므로 전기적 저항이 커지게 되어 저저항 금속을 사용하는 이점이 사라지게 된다.
본 발명의 식각액 조성물에서 불화붕소산은 0.1 내지 1.0중량%, 바람직하게는 0.2 내지 1.0중량%의 양으로 사용된다. 본 발명의 식각액 조성물에 사용되는 불화붕소산은 통상의 불소 이온 함유 화합물과는 달리 유리 기판 또는 실리콘 함유 기판을 손상시키기 않고 구리 함유 금속막을 일괄적으로 식각할 수 있도록 한다. 또한 하부 몰리브덴막, 몰리브덴-티타늄막, 또는 티타늄막의 식각 속도를 빠르게 할 수 있으며, 계단형 테이퍼 프로파일이 생기지 않도록 조절할 수 있다.
또한, 액정표시장치 양산 공정에서는 동일한 식각액 조성물을 사용하여 많은 수의 기판을 처리하는 것이 바람직한데, 종래의 식각액 조성물로 구리 함유 금속 다층막을 식각하는 경우, 생성된 구리와 몰리브덴 이온이 다시 식각액 조성물과 반응하여 식각액 조성물의 조성을 빠르게 변화시켜, 일정량의 기판을 처리한 후에는 식각액의 식각 특성이 변하게 된다. 그러나 불화붕소산을 불소 이온 함유 화합물로 사용하는 경우에는 식각액의 식각 특성이 변하는 시점이 늦추어져 동일한 식각액 조성물로 처리할 수 있는 기판의 수가 많아지게 된다. 특히 하부막인 몰리브덴막 또는 몰리브덴-티타늄막의 식각을 원활하게 하며, 특히 게이트 및 소스-드레인 배선에서 잔사 및 잔막에 의한 배선불량 향상에 중요한 역할을 하는 반면 식각액 조성물 중 과산화수소 및 인산과 함께 조성물의 식각력을 유지시켜주는 중요한 역할을 한다.
본 발명의 식각액 조성물에 사용되는 고리형 아민 화합물은 구리 함유 금속막의 식각 속도를 조절하며 구리 함유 금속막 패턴의 CD(Critical Dimension) 손실을 줄여주어 공정상의 마진을 높이는 역할을 한다. 고리형 아민 화합물은 특별한 제한없이 다양한 종류가 사용가능하며, 예를 들면 아미노테트라졸, 이미다졸, 인돌, 푸린, 피라졸, 피리딘, 피리미딘, 피롤, 피롤리딘, 피롤린 및 기타 수용성 고리형 아민 화합물을 사용할 수 있다. 상기 고리형 아민 화합물은 식각 속도를 조절하고 원하는 폭의 금속 배선을 얻을 수 있도록 한다.
본 발명의 다른 측면에 따른 구리 함유 금속막의 식각 방법은 기판상에 구리 함유 금속막을 증착하는 단계; 상기 구리 함유 금속막에 포토레지스트 패턴을 형성하는 단계; 및 상기 식각액 조성물로 상기 구리 함유 금속막을 식각하는 단계를 포함한다.
도 1은 본 발명의 일 구현예에 따른 식각 방법을 개략적으로 나타낸 도면이다. 도 1을 참고로 하여 본 발명의 일 구현예에 따른 식각 방법을 보다 구체적으로 설명하면 다음과 같다.
유리 기판(10) 상에 화학기상증착에 의해 몰리브덴과 티타늄의 합금막(12) 및 구리막(14)을 연속증착한다. 각 막의 두께는 몰리브덴-티타늄 합금막(12)이 대략 50~500Å, 구리막(14)이 약 1500~2000Å로 이루어진다(도 1a). 유리 기판(10)과 몰리브덴-티타늄 합금막(12) 사이에는 표시장치용 구조물(미도시)이 부가될 수 있다. 표시 장치용 구조물은 실리콘 산화막, 실리콘 질화막 등의 각종 산화막 또는 비정질 실리콘, 폴리실리콘 등의 반도체막, 또는 도핑된 비정질 폴리실리콘, 각종 금속막 등의 도전층에 패턴을 형성하여, 상술한 층들이 1개 이상 중첩적으로 형성된 구조를 의미한다. 또한 기판(10) 상, 구리막(14) 상, 몰리브덴-티타늄 합금막(12) 상 등에 통상적인 세정공정을 행한다.
그런 다음 구리/몰리브덴-티타늄 이중막을 선택적인 부위에 형성하기 위하여 포토레지스트(16)를 도포하고(도 1b), 마스크를 이용하여 선택적으로 노광하며 현상액에 의해 부분적으로 포토레지스트(16)를 제거한다(도 1c). 이 경우 포토레지스트(16)는 네가티브형 또는 포지티브형 반응물질일 수 있으며, 포지티브형 포토레지스트의 경우는 노광된 부분이 현상되고, 네가티브형 포토레지스트는 노광되지 않은 부분이 현상되는 점에서 차이가 있다. 또한 이와 같은 공정에는 에싱(ashing), 열처리 등 통상적으로 행해지는 공정이 부가될 수 있다.
그런 다음 상기 식각액 조성물을 이용하여 구리/몰리브덴-티타늄 이중막 식각공정을 수행한다. 도 1d는 구리막(14)이 식각된 상황을 도시한다. 계속해서 동일한 식각액에 의해 몰리브덴-티타늄막(12)이 식각된다(도 1e). 도 1e는 막 두께 등을 실제보다 과장하여 도시한 도면이다. 이러한 구리/몰리브덴-티타늄 이중막의 식각공정은 당업게 공지의 방법에 따라 수행될 수 있으며, 침지, 스프레이 법 등이 있다. 식각 공정시 식각액의 온도는 30 내지 33℃일 수 있으며, 식각 시간은 통상 약 50초 내지 100초동안 진행된다. 마지막으로 포토레지스트를 전면에서 제거하여 도 1f에 도시한 형상이 만들어진다.
상기 식각 방법으로 액정표시장치 및 반도체 소자 등을 제조할 수 있다.
이 경우, 기판과 구리 함유 금속막 사이에 반도체 구조물이 형성될 수 있다. 상기 반도체 구조물은 LCD, PDP 등의 표시장치용 반도체 구조물을 포함하는 것으로서 화학기상증착 등의 방법에 의한 절연막, 스퍼터링 등의 방법에 의한 도전성막, 비정질 또는 다결정 등의 실리콘막 등의 반도체막 중 하나 이상의 막을 포함하며, 포토리소그래피 공정, 식각공정 등으로 제조한 구조물을 의미한다.
액정표시장치의 TFT의 구조는 기판상에 게이트 전극을 형성하는 단계; 상기 게이트 전극을 포함하는 기판상에 게이트 절연층을 형성하는 단계; 상기 게이트 절연층 상에 반도체층을 형성하는 단계; 상기 반도체층 상에 소스 및 드레인 전극을 형성하는 단계; 및 상기 드레인 전극에 연결된 화소 전극을 형성하는 단계를 포함하며, 게이트 전극, 소스 및 드레인 전극, 화소 전극을 형성하는 방법은 상기 식각 방법을 통해 행할 수 있다. 즉, 상기한 구리 함유 금속막은 식각을 통하여 TFT-LCD의 게이트 배선 및 데이터 라인을 구성하는 소스/드레인 배선을 형성할 수 있다. TFT-LCD 소스/드레인 배선은 특히 그 저항이 문제되는 배선이므로 구리 함유 금속막, 특히 구리/몰리브덴-티타늄, 티타늄, 몰리브덴 다층막을 사용하고, 본 발명에 따른 식각액 조성물로 용이하게 식각하여 TFT-LCD의 대형화가 가능하다.
본 발명의 한 측면에 따른 식각액 조성물은 유리 기판을 손상시키지 않고 구리 함유 금속막을 일괄적으로 식각할 수 있어, 유리 기판의 재사용이 가능하고 동일 식각액에 의한 누적처리매수를 증가시킬 수 있어 반도체 장치의 생산 수율이 증대된다.
도 1은 본 발명의 일 구현예에 따른 식각 공정을 개략적으로 나타낸 도면이다.
도 2는 실시예 1의 식각 공정에 따른 박막트랜지스터에 대한 주사전자현미경 사진이다.
도 3은 실시예 2의 식각 공정에 따른 박막트랜지스터에 대한 주사전자현미경 사진이다.
도 4은 실시예 3의 식각 공정에 따른 박막트랜지스터에 대한 주사전자현미경 사진이다.
도 5은 실시예 4의 식각 공정에 따른 박막트랜지스터에 대한 주사전자현미경 사진이다.
도 6은 비교예 1의 식각 공정에 따른 박막트랜지스터에 대한 주사전자현미경 사진이다.
도 7은 비교예 2의 식각 공정에 따른 박막트랜지스터에 대한 주사전자현미경 사진이다.
이하 실시예를 들어 본 발명을 더욱 상세히 설명한다. 아래 실시예들에 나타낸 구성은 어디까지나 발명의 이해를 돕기 위함이며 어떠한 경우에도 본 발명의 기술적 범위를 실시예에서 제시한 실시 태양으로 제한하려는 것이 아님을 밝혀 둔다.
제조예 1 내지 제조예 6
하기 표 1에 나타낸 함량의 성분 및 잔량의 물을 포함하는 조성물을 제조하였다.
표 1
과산화수소(wt%) 인산(wt%) 황산암모늄(wt%) 아미노테트라졸(wt%) 불화붕소산(wt%) 불산(wt%)
제조예 1 18 3.0 1.5 0.8 0.9 0
제조예 2 18 3.0 0.5 0.8 0.7 0
제조예 3 15 3.0 1.0 0.4 0.5 0
제조예 4 10 3.0 0.5 0.2 0.3 0
제조예 5 18 3.0 1.5 0.8 0 0.5
제조예 6 25 5.0 3.0 1.0 1.5 0
실시예 1
유리 기판상에 화학기상증착에 의해 몰리브덴과 티타늄의 합금막(50:50) 및 구리막을 연속증착하였다. 각 막의 두께는 몰리브덴-티타늄 합금막이 약 300 ~ 400Å, 구리막이 약 2000 ~ 2500Å이었다.
그런 다음 구리/몰리브덴-티타늄 이중막을 선택적인 부위에 형성하기 위하여 포토레지스트를 도포하고, 마스크를 이용하여 선택적으로 노광하며 현상액에 의해 부분적으로 포토레지스트를 제거하였다. 그런 다음 상기 제조예 1에서 얻은 식각액 조성물을 이용하여 구리/몰리브덴-티타늄 이중막 식각공정을 수행하였다. 수행에 있어 식각 방식은 스프레이 법으로 진행하였으며, 식각 공정시 식각액의 온도는 33℃, 식각 시간은 약 70초이었다. 육안으로 EPD(End Point Detection, 금속 식각 시점)를 측정하여 시간에 따른 식각 속도(etching rage)를 얻었다. 식각 공정 후 린스 공정 및 건조 공정을 거친 다음 마지막으로 포토레지스트를 전면에서 제거하였다.
상기 공정에 의해 식각된 구리/몰리브덴-티타늄 이중막의 프로파일을 단면 SEM(Hitachi사 제품, 모델명 S-4200)을 사용하여 검사하였다.
실시예 2 내지 실시예 4
상기 제조예 2 내지 4에서 얻은 식각액 조성물을 각각 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 식각 공정을 수행하였으며, 식각 속도 및 단면 SEM으로 이중막의 프로파일을 얻었다.
비교예 1
상기 제조예 5에서 얻은 식각액 조성물을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 식각 공정을 수행하였으며, 식각 속도 및 단면 SEM으로 이중막의 프로파일을 얻었다.
비교예 2
상기 제조예 6에서 얻은 식각액 조성물을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 식각 공정을 수행하였으며, 식각 속도 및 단면 SEM으로 이중막의 프로파일을 얻었다.
상기 실시예 및 비교예에 따른 식각 공정에서의 식각 속도, CD 로스 평가, 테이퍼 앵글 평가, 테일 렝스 평가 결과를 하기 표 2에 나타내었다.
한편, 상기 제조예 1에서 얻은 조성물에 Cu 파우더를 1000ppm씩 첨가한 다음 4시간 동안 용해시켰다. 상기 Cu가 용해된 식각액을 사용하여 상기 실시예 1과 동일한 방법으로 기판(5 x 5 사이즈)을 식각한 다음 식각 프로파일을 FE-SEM으로 분석하였다. 상기 Cu가 용해된 식각액에 Cu 파우더 1000ppm을 추가로 첨가한 다음 상기 과정을 Cu 파우더 첨가량이 6000ppm ~ 8000ppm이 될 때까지 반복하여 실시하였다. 초기 식각 프로파일(reference)(Cu 파우더를 첨가하지 않은 경우)과 비교하여 오염도가 증가함에 따라 프로파일이 변하는 시점에 투입된 Cu 파우더 함량을 계산하여, 기판의 사이즈에 따른 면적 및 적층된 Cu막 두께를 대입하여, 역으로 누적 처리 매수를 산출하였다. 누적 처리 매수의 산출 과정에서 기판 사이즈는 고정된 것이 아니므로 Cu 파우더의 오염도에 따른 분석 결과를 통하여 상기 실시예 1의 식각액의 누적 처리 매수를 역산하게 되는 것이며, 그 결과를 하기 표 2에 나타내었다. 상기 제조예 2 내지 제조예 6에서 얻은 조성물을 각각 사용하여 상기 과정을 반복하여 실시예 2 내지 4 및 비교예 1 및 2의 식각액의 누적 처리 매수를 산출하였다.
표 2
식각속도(Å/sec) CD 로스(㎛) 테이퍼 앵글(˚) 테일렝스(㎛) 누적처리매수(ppm)
Cu막 Mo-Ti막
실시예 1 90~100 30~35 0.515 45 0 6500
실시예 2 85~90 20~25 0.458 55 0.348 6500
실시예 3 70~75 18~22 0.304 40 0.241 6500
실시예 4 60~65 10~14 0.121 50 0.660 6500
비교예 1 45~50 55~60 0.212 55 0 2000
비교예 2 130~140 50~55 1.086 65 0 3000
도 2 내지 도 7은 상기 실시예 및 비교예에서 얻은 FE-SEM 사진이다. 도 2 내지 도 5에서 보듯이, 본 발명에 따른 식각액 조성물을 사용한 경우 유리 기판의 손상이 전혀 없고, 다층막이 일괄적으로 식각됨을 알 수 있다. 또한 상기 표 2에서 보듯이 본 발명에 따른 식각액 조성물을 사용한 경우 누적처리매수가 증가함을 알 수 있다.
반면에, 비교예의 경우 유리 기판의 손상이 관찰되며, 도 6과 같이 유리 기판이 식각되어 단차 및 도 7과 같이 하부막의 언더컷(under cut) 불량을 확인할 수 있으며, 표 2에서 보는 바와 같이 누적처리매수가 감소함을 확인할 수 있다.
즉, 불화붕소산 대신 불산을 사용한 비교예 1은 도 6에서 보는 바와 같이 유리 기판의 손상(Glass Attack)이 심하며, 표 2에서 보는 바와 같이 누적처리매수 또한 현저히 감소됨을 알 수 있다. 또한, 비교예 2에서와 같이 불화붕소산 함량이 1.0중량%보다 많을 경우 식각 속도는 빠르지만 누적처리매수가 현저히 감소한다. 뿐만 아니라 식각 속도가 100ㅕ/sec보다 크면 식각 제어가 곤란하며, 데이터 오픈 불량 및 도 7에서 보는 바와 같이 하부막의 언더컷에 따른 불량률을 증가시켜 오히려 생산 수율을 감소시키게 된다.
따라서 표 2 및 도면에서 보는 바와 같이 본 발명에 따른 식각액 조성물은 특정 함량 범위의 불화붕소산을 포함함으로써 종래 기술과 비교시 유리 기판의 손상이 없고 누적 처리 매수가 크며, 이는 생산 수율과 직결되는 것이다.

Claims (10)

  1. 0.1 내지 30중량%의 과산화수소, 0.1 내지 7.0중량%의 인산, 0.01 내지 5.0중량%의 고리형 아민 화합물, 0.1 내지 5.0중량%의 황산염, 0.1 내지 1.0중량%의 불화붕소산 및 전체 조성물 총 중량이 100중량%가 되도록 하는 물을 포함하는 구리 함유 금속막 식각액 조성물.
  2. 제 1 항에 있어서,
    18중량%의 과산화수소, 3중량%의 인산, 0.8중량%의 고리형 아민 화합물, 1.5중량%의 황산염 화합물, 0.5중량%의 불화붕소산 및 76.2중량%의 물을 포함하는 식각액 조성물.
  3. 제 1항에 있어서,
    상기 고리형 아민 화합물은 벤조트리아졸, 아미노테트라졸, 이미다졸, 인돌, 푸린, 피라졸, 피리딘, 피리미딘, 피롤 및 피롤린으로 이루어지는 군으로부터 선택된 1종 이상인 식각액 조성물.
  4. 제 1항에 있어서,
    상기 황산염은 황산암모늄, 과황산암모늄, 황산나트륨, 과황산나트륨, 황산칼륨 및 과황산칼륨으로 이루어지는 군으로부터 선택된 1종 이상인 식각액 조성물.
  5. 제 1 항에 있어서,
    상기 구리 함유 금속막은 구리 또는 구리 합금으로 된 단일막, 또는 구리 이외에 몰리브덴과 티타늄 중 1종 이상을 함유한 다층막인 식각액 조성물.
  6. 기판 상에 구리 함유 금속막을 증착하는 단계;
    상기 구리 함유 금속막에 포토레지스트 패턴을 형성하는 단계; 및
    제 1항 내지 제 5항 중 어느 한 항에 따른 식각액 조성물로 상기 구리 함유 금속막을 식각하는 단계를 포함하는 구리 함유 금속막 식각 방법.
  7. 제 6항에 있어서,
    상기 식각하는 단계가 침지 방식 또는 스프레이 방식으로 행해지는 식각 방법.
  8. 제 6항에 있어서,
    상기 구리 함유 금속막이 구리 또는 구리 합금으로 된 단일막, 또는 구리 이외에 몰리브덴과 티타늄 중 1종 이상을 함유한 다층막인 식각 방법.
  9. 제 6항에 따른 방법으로 제조된 액정 표시 장치.
  10. 제 6항에 따른 방법으로 제조된 반도체 소자.
PCT/KR2011/007653 2010-10-28 2011-10-14 구리 함유 금속막 식각액 조성물 및 이를 이용한 식각 방법 WO2012057467A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100106026A KR20120044630A (ko) 2010-10-28 2010-10-28 구리 함유 금속막 식각액 조성물 및 이를 이용한 식각 방법
KR10-2010-0106026 2010-10-28

Publications (2)

Publication Number Publication Date
WO2012057467A2 true WO2012057467A2 (ko) 2012-05-03
WO2012057467A3 WO2012057467A3 (ko) 2012-06-28

Family

ID=45994511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007653 WO2012057467A2 (ko) 2010-10-28 2011-10-14 구리 함유 금속막 식각액 조성물 및 이를 이용한 식각 방법

Country Status (3)

Country Link
KR (1) KR20120044630A (ko)
TW (1) TWI572745B (ko)
WO (1) WO2012057467A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764147B (zh) * 2019-05-08 2022-05-11 香港商Lsr工程及顧問公司 用於建構基板之方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400953B1 (ko) * 2012-09-04 2014-07-01 주식회사 이엔에프테크놀로지 구리와 몰리브덴 합금막의 식각액 조성물
KR101980668B1 (ko) 2012-11-21 2019-05-22 삼성전자주식회사 식각 조성물 및 이를 이용한 반도체 장치의 제조방법
KR101517013B1 (ko) * 2013-10-02 2015-05-04 주식회사 이엔에프테크놀로지 구리 및 몰리브덴 함유 막의 식각액 조성물
KR102160286B1 (ko) * 2013-11-04 2020-09-28 동우 화인켐 주식회사 액정표시장치용 어레이 기판의 제조방법
EP3080240A4 (en) * 2013-12-11 2017-07-19 FujiFilm Electronic Materials USA, Inc. Cleaning formulation for removing residues on surfaces
KR102218556B1 (ko) 2014-06-26 2021-02-22 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정 표시 장치용 어레이 기판의 제조방법
KR102218565B1 (ko) 2014-06-26 2021-02-22 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정 표시 장치용 어레이 기판의 제조방법
KR102218353B1 (ko) 2014-06-26 2021-02-22 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102204210B1 (ko) 2014-06-27 2021-01-18 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102209687B1 (ko) 2014-06-27 2021-01-29 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102209690B1 (ko) 2014-06-27 2021-01-29 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR20160001292A (ko) 2014-06-27 2016-01-06 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102209423B1 (ko) 2014-06-27 2021-01-29 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102209680B1 (ko) 2014-06-27 2021-01-29 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정 표시 장치용 어레이 기판의 제조방법
KR102209788B1 (ko) 2014-06-27 2021-01-29 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102204219B1 (ko) 2014-06-27 2021-01-18 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102209686B1 (ko) 2014-06-27 2021-01-29 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102204361B1 (ko) 2014-06-27 2021-01-18 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102204205B1 (ko) 2014-06-27 2021-01-18 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102204209B1 (ko) 2014-06-27 2021-01-18 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102218669B1 (ko) 2014-06-27 2021-02-22 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정 표시 장치용 어레이 기판의 제조방법
KR20160001296A (ko) 2014-06-27 2016-01-06 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102204042B1 (ko) 2014-06-27 2021-01-15 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102209685B1 (ko) 2014-06-30 2021-01-29 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102204224B1 (ko) 2014-06-30 2021-01-18 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR102204228B1 (ko) 2014-06-30 2021-01-18 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정 표시 장치용 어레이 기판의 제조방법
KR20160001985A (ko) 2014-06-30 2016-01-07 동우 화인켐 주식회사 금속막의 식각액 조성물 및 이를 이용한 액정 표시 장치용 어레이 기판의 제조방법
KR20190027019A (ko) * 2017-09-04 2019-03-14 삼성디스플레이 주식회사 식각액 조성물 및 이를 이용한 금속 패턴과 박막 트랜지스터 기판 제조 방법
KR20210045838A (ko) 2019-10-17 2021-04-27 삼성전자주식회사 금속 함유막 식각액 조성물 및 이를 이용한 집적회로 소자의 제조 방법
KR102395072B1 (ko) * 2021-12-27 2022-05-09 주식회사 그래핀랩 면저항이 낮은 그래핀 제조용 식각액 조성물

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020056702A1 (en) * 1997-12-19 2002-05-16 Bishop Craig V. Method of producing copper surfaces for improved bonding, compositions used therein and articles made therefrom
US20060249482A1 (en) * 2003-05-12 2006-11-09 Peter Wrschka Chemical mechanical polishing compositions for step-ll copper line and other associated materials and method of using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338757C (zh) * 2005-12-21 2007-09-19 广辉电子股份有限公司 平面显示基板用铜导线的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020056702A1 (en) * 1997-12-19 2002-05-16 Bishop Craig V. Method of producing copper surfaces for improved bonding, compositions used therein and articles made therefrom
US20060249482A1 (en) * 2003-05-12 2006-11-09 Peter Wrschka Chemical mechanical polishing compositions for step-ll copper line and other associated materials and method of using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764147B (zh) * 2019-05-08 2022-05-11 香港商Lsr工程及顧問公司 用於建構基板之方法

Also Published As

Publication number Publication date
KR20120044630A (ko) 2012-05-08
WO2012057467A3 (ko) 2012-06-28
TWI572745B (zh) 2017-03-01
TW201224210A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
WO2012057467A2 (ko) 구리 함유 금속막 식각액 조성물 및 이를 이용한 식각 방법
WO2012177017A2 (ko) 금속 배선 식각액 및 이를 이용한 액정 표시 장치의 제조 방법
KR100839428B1 (ko) 식각액, 및 이를 이용한 박막트랜지스터를 갖는 기판의제조 방법
WO2011021860A9 (en) Method of fabricating array substrate for liquid crystal display
WO2012015089A1 (ko) 액정표시장치용 어레이 기판의 제조방법
WO2014098392A1 (ko) 금속막 식각액 조성물 및 이를 이용한 식각 방법
WO2011136594A2 (ko) 구리와 티타늄을 포함하는 금속막용 식각액 조성물
WO2013025003A2 (ko) 식각액의 식각 용량이 증대된 구리/몰리브데늄 합금막의 식각 방법
WO2011019222A9 (ko) 구리 배선의 형성을 위한 식각액 조성물
WO2011010879A2 (ko) 액정표시장치용 어레이 기판의 제조방법
WO2011136597A2 (ko) 구리와 티타늄을 포함하는 금속막용 식각액 조성물
WO2011010872A2 (ko) 금속 배선 형성을 위한 식각액 조성물
WO2011052987A2 (ko) 식각액 조성물
KR100419071B1 (ko) 구리-티타늄 막의 식각용액 및 그 식각방법
WO2011019209A2 (ko) 금속 배선 형성을 위한 식각액 조성물
KR20080045854A (ko) 액정표시장치용 tft 어레이 기판의 제조방법
WO2012015088A1 (ko) 액정표시장치용 어레이 기판의 제조방법
WO2011059281A2 (ko) 몰리브덴 단일막용 식각액 조성물
KR102505196B1 (ko) 구리계 금속막의 식각액 조성물 및 이를 이용한 액정표시장치용 어레이 기판의 제조방법
KR20140118455A (ko) 액정 표시 장치용 어레이 기판의 제조 방법
KR101381482B1 (ko) 식각액 조성물 및 이를 이용한 금속 패턴 형성방법
WO2013032047A1 (ko) 구리와 티타늄을 포함하는 금속막용 식각액 조성물
KR102009529B1 (ko) 액정 표시 장치용 어레이 기판의 제조 방법
KR101461180B1 (ko) 비과산화수소형 구리 에칭제
WO2011062400A2 (ko) 액정표시장치용 어레이 기판의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836559

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836559

Country of ref document: EP

Kind code of ref document: A2