WO2012057117A1 - 集熱レシーバー及び太陽熱発電装置 - Google Patents

集熱レシーバー及び太陽熱発電装置 Download PDF

Info

Publication number
WO2012057117A1
WO2012057117A1 PCT/JP2011/074522 JP2011074522W WO2012057117A1 WO 2012057117 A1 WO2012057117 A1 WO 2012057117A1 JP 2011074522 W JP2011074522 W JP 2011074522W WO 2012057117 A1 WO2012057117 A1 WO 2012057117A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat collecting
honeycomb unit
collecting receiver
receiver according
Prior art date
Application number
PCT/JP2011/074522
Other languages
English (en)
French (fr)
Inventor
馬嶋 一隆
将隆 加藤
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to EP11836250.8A priority Critical patent/EP2634504A1/en
Priority to CN201180046000XA priority patent/CN103119379A/zh
Publication of WO2012057117A1 publication Critical patent/WO2012057117A1/ja
Priority to US13/860,589 priority patent/US20130233303A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/72Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being integrated in a block; the tubular conduits touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/60Thermal insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a heat collection receiver and a solar power generation apparatus.
  • Solar power generation is known as a power generation method using the sun.
  • solar thermal power generation light emitted from the sun is collected through a reflecting mirror and the like, and a steam turbine is driven using the obtained solar heat to generate electric power. Since this solar thermal power generation does not generate greenhouse gases such as carbon dioxide during power generation and can store heat, it can generate power even in cloudy weather or at night. Therefore, solar thermal power generation is attracting attention as a promising power generation method in the future.
  • Tower-type solar thermal power generation uses a number of flat mirrors called heliostats to concentrate sunlight by concentrating sunlight on the heat collection receiver in the tower installed in the center, and then heats the heat medium to generate electricity. It is a power generation method.
  • Heliostat is a flat mirror of several meters square.
  • tower type solar thermal power generation hundreds to thousands of heliostats can be arranged around the tower to concentrate sunlight in one place. Therefore, it is possible to heat the heat collecting receiver to about 1000 ° C., and the tower type solar thermal power generation has a feature of good thermal efficiency.
  • Patent Document 1 discloses a funnel type silicon carbide having a large number of flow paths for allowing a heat medium to pass therethrough or a heat absorber made of silicon and silicon carbide. What is housed and supported by the support is disclosed. In the heat collecting receiver, a heat medium made of air or a mixed gas containing air is passed through the flow path of the heated heat absorber, whereby the heat medium can obtain heat. In tower-type solar thermal power generation, water is boiled with the obtained heat to produce steam, and power is generated by turning a steam turbine.
  • the said heat collection receiver needs to absorb the sunlight irradiated through a heliostat, and to convert into heat efficiently.
  • the heat collecting receiver described in Patent Document 1 has a problem that the solar light reflectance is not sufficiently low and the absorption efficiency is not high because the surface irradiated with sunlight is a flat surface. . Therefore, there is a demand for a heat collecting receiver with better absorption efficiency.
  • the present invention has been made to solve such problems, and a heat collecting receiver and a solar thermal power generation apparatus that can efficiently absorb sunlight converted through a heliostat and convert it into heat.
  • the purpose is to provide.
  • the heat collection receiver according to claim 1 is a heat collection receiver used in a solar thermal power generation apparatus, and the heat collection receiver includes a plurality of flow paths for allowing a heat medium to pass through 1
  • the heat absorber since the heat absorber is subjected to polishing treatment or coating treatment on a surface irradiated with sunlight, it can suppress reflection of the condensed sunlight. Thus, heat loss due to light reflection can be reduced, and the heat collecting receiver can be heated more efficiently. Further, since the heat absorber is configured to contain silicon carbide, the heat conductivity is high, cracks and the like are not easily generated, and the obtained heat can be smoothly transferred to the heat medium.
  • the polishing process is a blasting process, and a roughened surface is formed on a surface irradiated with the sunlight.
  • a heat absorber made of hard porous silicon carbide can form a roughened surface relatively easily on the surface irradiated with sunlight, thereby reflecting sunlight. It can suppress and can raise the heat absorption rate of a heat collecting receiver.
  • the blast processing for example, sand blast processing using silicon carbide particles or the like is desirable.
  • the surface roughness Ra of the roughened surface is preferably 0.5 to 5.0 ⁇ m.
  • the roughened surface formed by the polishing process makes it easier for sunlight to be reflected and absorbed on the inside of the roughened surface, making it more likely to be emitted outside.
  • the reflection of sunlight on the surface irradiated with can be more reliably reduced.
  • the surface roughness Ra is measured according to the method described in JIS B 0601.
  • the black coating layer is formed in the surface irradiated with the said sunlight by the said coating process. Even with such a configuration, similarly to the above polishing treatment, the reflection of sunlight can be further suppressed, and the heat collecting receiver can efficiently absorb the light.
  • the coating layer includes an infrared emitter (hereinafter also referred to as a crystalline inorganic material) mainly composed of an oxide of a transition element, and a softening temperature of 400 to 1000 ° C. It preferably comprises an infrared blackbody coating composition containing an inorganic compound (hereinafter also referred to as an amorphous inorganic material). Since the coating layer having such a composition is excellent in adhesion to the heat absorber, the coating layer is hardly peeled even when the heat absorber is in a high temperature state.
  • an infrared emitter hereinafter also referred to as a crystalline inorganic material
  • an infrared blackbody coating composition containing an inorganic compound hereinafter also referred to as an amorphous inorganic material
  • the oxide of the transition element is at least one selected from manganese dioxide, manganese oxide, iron oxide, cobalt oxide, copper oxide and chromium oxide
  • the inorganic compound is Low melting high expansion glass consisting of at least one selected from alumina silicate glass, potash lead glass, soda lead glass, soda zinc glass, soda barium glass, barium glass, boron glass, strontium glass, high lead glass and potash soda lead glass It is preferable that By setting it as the coating layer which has such a composition, it can be set as the coating layer which is black and was excellent in adhesiveness with a heat absorber.
  • the coating layer may be a porous carbon layer.
  • the porous carbon layer has low reflectance, can suppress reflection of sunlight, and can improve heat absorption efficiency.
  • the thickness of the coating layer is preferably 2 to 50 ⁇ m.
  • a coating liquid coating material
  • the surface of the heat absorber that is irradiated with sunlight, thereby forming a coating layer having a uniform thickness relatively easily. be able to.
  • the heat collecting receiver according to claim 9 it is desirable that a roughened surface by polishing is formed on the surface of the coating layer. Even with such a configuration, the roughened surface formed by the polishing process makes it easier for sunlight to be reflected and absorbed on the inner side of the roughened surface, so that it is more likely to be emitted outside. Can be reduced.
  • the polishing process is a blasting process.
  • a blasting process By applying the blast processing, a roughened surface can be easily formed on the surface of the coating layer.
  • the surface roughness Ra of the roughened surface is preferably 0.5 to 5.0 ⁇ m. According to such a structure, since it becomes easy to be reflected inside the roughened surface irradiated with sunlight, and it becomes more likely to be emitted from the outside, reflection of sunlight can be more reliably reduced.
  • the surface roughness Ra is measured according to the method described in JIS B 0601.
  • a thickness of a wall portion between the channels is 0.1 to 9 mm. It is preferably 0.5 mm.
  • the honeycomb unit is made of dense silicon carbide. With such a configuration, the heat storage property of the honeycomb unit becomes high and the heat conductivity is extremely high, so that the obtained heat can be smoothly transferred to the heat medium.
  • the honeycomb unit is preferably made of porous silicon carbide. With such a configuration, since the honeycomb unit has high thermal conductivity, the obtained heat can be smoothly transferred to the heat medium.
  • the honeycomb unit is preferably made of porous silicon carbide in which pores are filled with silicon.
  • the honeycomb unit is a dense body, so that the heat storage property of the honeycomb unit is high and the thermal conductivity is extremely high, so that the obtained heat can be smoothly transferred to the heat medium. it can.
  • the honeycomb unit has a porosity of 35 to 60% and an average pore diameter of 5 to 30 ⁇ m. With such a configuration, since the honeycomb unit has open pores, when filling silicon, the inside of the pores can be filled with silicon smoothly.
  • the heat insulating material is interposed between the said heat absorption body and the said support body.
  • the heat insulating material can effectively prevent the heat from escaping from the heat absorbing body to the support body, and the heat insulating material can be firmly held by the heat insulating material. Can do.
  • the solar thermal power generation apparatus according to claim 18 is characterized in that the above-described heat collecting receiver according to the present invention is used. Since the solar thermal power generation apparatus according to the present invention uses the above-described heat collecting receiver according to the present invention, sunlight can be more efficiently absorbed and stored in the heat absorber, and power generation efficiency can be improved.
  • FIG.1 (a) is a longitudinal cross-sectional view which shows typically the heat collection receiver which concerns on 1st embodiment of this invention
  • FIG.1 (b) is the front of the heat collection receiver shown to Fig.1 (a).
  • FIG. Fig. 2 (a) is an enlarged cross-sectional view showing a part of the end face of the heat collecting receiver according to the first embodiment of the present invention
  • Fig. 2 (b) is a collector according to the fourth embodiment of the present invention. It is an expanded sectional view showing a part of end face of a heat receiver.
  • FIG.3 (a) is a front view which shows typically the receiver array which comprises the solar thermal power generation device which concerns on 5th embodiment of this invention
  • FIG.3 (b) is a receiver array shown to Fig.3 (a).
  • FIG. FIG. 4 is an explanatory view schematically showing a solar thermal power generation apparatus according to the fifth embodiment of the present invention.
  • FIG.1 (a) is a longitudinal cross-sectional view which shows typically the heat collection receiver which concerns on 1st embodiment of this invention
  • FIG.1 (b) is the front of the heat collection receiver shown to Fig.1 (a).
  • FIG. Fig.2 (a) is the expanded sectional view which showed a part of end surface of the heat collecting receiver which concerns on 1st embodiment of this invention.
  • the honeycomb unit 13 in which a large number of flow paths 13b for allowing the heat medium 14 to pass therethrough is formed as an adhesive layer 15.
  • a plurality of heat absorbers 11 that are joined to each other via a heat sink 11, and a support 12 that houses and supports the heat absorber 11 and distributes the heat medium 14.
  • the heat insulating material 17 which consists of inorganic fiber is interposed, and the heat absorption body 11 is supported and fixed to the support body 12 through this heat insulation material 17.
  • the honeycomb unit 13 is made of porous silicon carbide having open pores. By including porous silicon carbide, the thermal conductivity of the honeycomb unit 13 is increased, and the obtained heat can be smoothly transferred to the heat medium.
  • the porosity of the honeycomb unit 13 is not particularly limited, but is desirably 35 to 60%. When the porosity of the honeycomb unit 13 is less than 35%, it becomes difficult to manufacture the honeycomb unit 13. In addition, when the porosity of the honeycomb unit 13 exceeds 60%, the strength of the honeycomb unit 13 decreases, and the honeycomb unit 13 is easily broken due to a thermal history (repetition of temperature increase and decrease) when used as a heat collecting receiver. The porosity can be measured by a mercury intrusion method.
  • the average pore diameter of the honeycomb unit 13 is preferably 5 to 30 ⁇ m. When the average pore diameter of the honeycomb unit 13 is less than 5 ⁇ m, it is difficult to manufacture. On the other hand, when the average pore diameter of the honeycomb unit 13 exceeds 30 ⁇ m, the mechanical strength of the honeycomb unit 13 decreases.
  • the surface 13a of the honeycomb unit 13 to which the sunlight is irradiated is subjected to a blasting process to be a roughened surface.
  • the surface roughness Ra of the roughened surface is preferably 0.5 to 5.0 ⁇ m although it depends on the material of the honeycomb unit 13. When the surface roughness Ra is 1.5 ⁇ m or more, the reflectance can be sufficiently lowered. When the surface roughness Ra is increased, the reflectance decreases, but when the surface roughness Ra is increased to about 5.0 ⁇ m, it reaches a peak.
  • the surface roughness Ra is preferably 2.5 to 3.5 ⁇ m, and more preferably 3.1 to 3.3 ⁇ m.
  • the thickness is desirably 0.5 to 3.5 ⁇ m. In the case of the honeycomb unit 13 filled with silicon, the thickness is desirably 0.8 to 3.5 ⁇ m.
  • the surface roughness Ra is in such a range, the reflection of sunlight can be more reliably reduced.
  • the reflectance of the honeycomb unit 13 is desirably low, but when the surface treatment is not performed, the reflectance is high. However, in the invention according to the embodiment of the present invention, the reflectance can be suppressed in the range of 9 to 27% by forming the roughened surface. Further, by using porous silicon carbide and forming a roughened surface, the reflectance can be suppressed to a range of 9 to 21%. In the invention according to the embodiment of the present invention, the emissivity of the honeycomb unit 13 can be set to 0.73 to 0.91. When the honeycomb unit 13 is made of porous silicon carbide, the emissivity of the honeycomb unit can be suppressed to 0.73 to 0.91. The thermal conductivity of the honeycomb unit 13 is preferably 45 to 120 W / mK. The density of the honeycomb unit 13 is preferably 2.7 to 3.1 g / cm 3 .
  • the number of 1 cm 2 per flow path 13b is desirably 31.0 to 93.0 cells / cm 2 .
  • the honeycomb unit 13 efficiently exchanges heat with the heat medium 14.
  • the number of the flow paths 13b of the honeycomb unit 13 exceeds 93.0 / cm 2 , the cross-sectional area of one flow path 13b of the honeycomb unit 13 becomes small, so that the heat medium 14 circulates. It becomes difficult to do.
  • the thickness of the wall portion between the flow paths of the honeycomb unit 13 is preferably 0.1 to 0.5 mm. If the thickness of the wall portion between the flow paths of the honeycomb unit 13 is less than 0.1 mm, the mechanical strength of the wall portion is lowered and the honeycomb unit 13 is easily damaged. When the thickness of the portion exceeds 0.5 mm, the wall portion becomes too thick, and the flow rate of the heat medium 14 with respect to the area of the honeycomb unit 13 decreases, so that the thermal efficiency decreases.
  • the honeycomb unit 13 becomes the heat absorber 11 by bonding and bonding a plurality of the honeycomb units 13 via the adhesive layer 15.
  • an adhesive material paste for forming the adhesive material layer 15 silicon, a slurry containing silicon, or an adhesive paste containing at least one of inorganic particles, inorganic fibers, and an inorganic binder can be used.
  • the adhesive paste may contain an organic binder.
  • inorganic particles contained in the adhesive paste include carbides and nitrides, and specific examples include inorganic powders composed of silicon carbide, silicon nitride, and boron nitride. These may be used alone or in combination of two or more. Among the inorganic particles, silicon carbide having excellent thermal conductivity is desirable.
  • the lower limit of the content of the inorganic particles in the adhesive layer 15 is desirably 3% by weight, more desirably 10% by weight, and further desirably 20% by weight.
  • the upper limit of the content of the inorganic particles in the adhesive layer 15 is desirably 80% by weight, and more desirably 40% by weight.
  • the content of the inorganic particles in the adhesive layer 15 is less than 3% by weight, the thermal conductivity of the adhesive layer 15 is likely to be reduced.
  • the content of the inorganic particles in the adhesive layer 15 exceeds 80% by weight. When the adhesive layer 15 is exposed to a high temperature, the adhesive strength of the adhesive layer 15 is liable to decrease.
  • examples of the inorganic fibers contained in the adhesive layer 15 include ceramic fibers such as silica-alumina, mullite, alumina, and silica. These may be used alone or in combination of two or more. Among inorganic fibers, alumina fibers are desirable.
  • the lower limit of the inorganic fiber content of the adhesive layer 15 is desirably 10% by weight, and more desirably 20% by weight.
  • the upper limit of the inorganic fiber content in the adhesive layer 15 is desirably 70% by weight, and more desirably 40% by weight.
  • examples of the inorganic binder contained in the adhesive layer 15 include solid contents such as silica sol and alumina sol. These may be used alone or in combination of two or more. Among inorganic binders, silica sol is desirable.
  • the lower limit of the content of the inorganic binder in the adhesive layer 15 is preferably 1% by weight and more preferably 5% by weight in terms of solid content.
  • the upper limit of the content of the inorganic binder in the adhesive layer 15 is preferably 30% by weight and more preferably 15% by weight in terms of solid content. If the content of the inorganic binder in the adhesive layer 15 is less than 1% by weight in terms of solid content, the adhesive strength of the adhesive layer 15 is likely to decrease, while the content of the inorganic binder in the adhesive layer 15 is 30 in terms of solid content. When the weight percentage is exceeded, the thermal conductivity of the adhesive layer 15 tends to decrease.
  • examples of the organic binder contained in the adhesive layer 15 include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like. These may be used alone or in combination of two or more. Among organic binders, carboxymethylcellulose is desirable.
  • the lower limit of the organic binder content of the adhesive layer 15 is solid content, preferably 0.1% by weight, more preferably 0.4% by weight, while the upper limit of the organic binder content is solid content. Thus, 5.0% by weight is desirable and 1.0% by weight is more desirable. If the content of the organic binder in the adhesive layer 15 is less than 0.1% by weight, it becomes difficult to suppress the migration of the adhesive layer 15, while the content of the organic binder in the adhesive layer 15 is 5.0% by weight. If it exceeds 50%, the amount of gas generated by the decomposition of the organic binder increases so that the adhesive force of the adhesive layer 15 is likely to be lowered.
  • the organic binder contained in the adhesive layer 15 is decomposed and erased when the temperature of the honeycomb unit 13 rises when the heat absorber 11 is used, but the adhesive layer 15 has solid contents of inorganic particles and inorganic binder. Therefore, sufficient adhesive force can be maintained.
  • the support body 12 has a square shape when viewed from the front, but the overall shape of the support body 12 is a funnel shape. That is, the cross section of the heat collecting part 12a (the cross section parallel to the surface that receives the sunlight 18 of the heat absorber 11), in which the heat absorber 11 is housed and the heat medium 14 flows, is a large area. Are parallelly moved in the direction of the outlet of the heat medium 14, the area of the cross section gradually decreases, and thereafter, the area of the cross section becomes substantially constant at the outlet 12b of the heat medium 14.
  • the material of the support 12 is not particularly limited. However, when the heat absorber 11 is used as a heat collecting receiver used for solar power generation, the heat absorber 11 has a temperature of about 1000 ° C. Since it is necessary to have heat resistance, it is preferably made of metal or ceramic. Examples of the metal material include iron, nickel, chromium, aluminum, tungsten, molybdenum, titanium, lead, copper, zinc, and alloys of these metals.
  • nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, titanium nitride, carbide ceramics such as silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, tungsten carbide, silica, alumina, mullite, zirconia, etc.
  • oxide ceramics Other examples of the material of the support 12 include a composite of metal and nitride ceramic, a composite of metal and carbide ceramic, and the like. Among these, silicon carbide or alumina is particularly preferable from the viewpoint of heat resistance and the like.
  • a heat insulating material 17 is interposed between the heat absorber 11 and the support 12.
  • the material of the heat insulating material 17 is not particularly limited, and may include various inorganic materials such as inorganic fibers, inorganic particles, and inorganic binders. However, a mat-like material made of inorganic fibers is preferable. In the present embodiment, an example in which a rectangular mat made of inorganic fibers is used as the heat insulating material 17 will be described below.
  • the heat insulating material 17 is configured by laminating one or a plurality of rectangular mats made of inorganic fibers in a plan view.
  • the heat insulating material 17 is wound around the side surface of the heat absorber 11 and the support 12
  • the heat absorber 11 can be supported and fixed inside the support 12 by being housed in the housing.
  • the inorganic fiber constituting the mat is not particularly limited, and examples thereof include alumina-silica fiber, alumina fiber, and silica fiber. What is necessary is just to change according to the characteristics etc. which are required for the heat insulating material 17, such as heat resistance and wind erosion resistance.
  • alumina-silica fibers as inorganic fibers constituting the mat of the heat insulating material 17, it is desirable to use fibers having a composition ratio of alumina to silica of 60:40 to 80:20.
  • the mat is preferably subjected to needle punching.
  • constituent materials such as inorganic fibers constituting the mat are not easily separated.
  • a single mat can be formed. Further, if the mat is needle punched in the width direction perpendicular to the longitudinal direction, the mat is formed in the width direction of the mat at the needle punched portion. It becomes easy to wind.
  • the heat insulating material 17 a material in which the mat is thinned by impregnating the mat with an organic binder containing an acrylic resin or the like and compressing and drying the mat may be used.
  • a heat insulating material 17 can be used as follows. First, the heat absorber 11 is attached to the support 12 by winding the heat insulating material 17 around the heat absorber 11 and pushing it into the support 12. Then, when the heat absorber 11 is irradiated with the reflected sunlight of sunlight collected by the heliostat, the temperature of the heat absorber 11 rises to near 1000 ° C., so that the organic binder in the mat is decomposed and disappears, and the organic The mat is compressed by the binder. Thereby, the heat absorber 11 is firmly held and fixed to the support 12.
  • the thickness of the heat insulating material 17 is desirably 3 to 14 mm. When the thickness of the heat insulating material 17 is less than 3 mm, it is difficult to obtain sufficient heat insulating properties, and when the thickness of the heat insulating material 17 exceeds 14 mm, it is difficult to attach to the heat absorber 11.
  • porous silicon carbide constituting the honeycomb unit 13 is manufactured.
  • a wet mixture is prepared by mixing silicon carbide powder having different average particle diameters as a ceramic raw material with an organic binder, plasticizer, lubricant, water, and the like.
  • a forming step of introducing the wet mixture into an extruder and performing extrusion forming is performed, and a quadrangular prism-shaped honeycomb formed body in which a large number of channels are formed in the longitudinal direction is manufactured.
  • a cutting process is performed in which both ends of the honeycomb formed body are cut using a cutting device, the honeycomb formed body is cut into a predetermined length, and the cut honeycomb formed body is dried using a dryer.
  • a degreasing step of heating the organic matter in the honeycomb formed body in a degreasing furnace is performed, and the honeycomb fired body is transported to the firing furnace and subjected to the firing step to produce a honeycomb fired body.
  • the honeycomb unit 13 made of porous silicon carbide is obtained.
  • the surface 13a of the honeycomb unit 13 is subjected to a blasting process to form a roughened surface.
  • the heat absorber 11 in which the plurality of honeycomb units 13 are joined via the adhesive layer 15 is obtained.
  • the blasting process described above may be performed after the plurality of honeycomb units 13 are joined using an adhesive paste or the like.
  • the support 12 can be manufactured by using a conventionally used method.
  • the support body 12 made of ceramic after performing pressure forming, injection molding, casting molding and the like of a mixture containing ceramic powder, organic binder, etc., the support is obtained by passing through a degreasing process and a firing process.
  • the body can be manufactured.
  • the heat absorber 17 is wound around the heat absorber 11 manufactured by the above method, and the heat absorber 11 around which the heat insulator 17 is wound is pushed into the support 12 and fixed.
  • the heat collecting receiver 10 can be assembled.
  • the honeycomb unit included in the heat absorber is subjected to a polishing process (blasting process) on the surface irradiated with sunlight (light collected from the heliostat). Therefore, reflection of sunlight can be suppressed, heat loss due to reflection of sunlight can be reduced, and the heat collecting receiver can be heated more efficiently.
  • the honeycomb unit included in the heat absorber is made of silicon carbide, the thermal conductivity is high and the obtained heat can be smoothly transferred to the heat medium. It becomes a highly efficient heat collecting receiver.
  • the heat collection receiver of the present embodiment 31.0 to 93.0 channels / cm 2 are formed in the honeycomb unit included in the heat absorber, and the thickness of the wall portion between the channels Is 0.1 to 0.4 mm, the porosity of the honeycomb unit is 35 to 60%, and the average pore diameter is 5 to 30 ⁇ m. Therefore, the heat medium can be efficiently circulated through the flow path while maintaining the strength as the heat absorber, whereby heat is efficiently transferred from the heat absorber to the heat medium, and the strength and heat storage. It becomes an excellent heat collecting receiver.
  • a heat insulating material is interposed between the heat absorber and the support, and the heat absorber is firmly held by the heat insulating material.
  • the heat insulating material can effectively prevent the escape of heat from the heat absorber to the support.
  • Example 1 (Honeycomb unit manufacturing process) A mixture of 52.8% by weight of silicon carbide coarse powder having an average particle diameter of 22 ⁇ m and 22.6% by weight of fine powder of silicon carbide having an average particle diameter of 0.5 ⁇ m is obtained. 2.1% by weight, organic binder (methylcellulose) 4.6% by weight, lubricant (Unilube, NOF Corporation) 2.8% by weight, glycerin 1.3% by weight, and water 13.8% by weight In addition, after kneading to obtain a wet mixture, an extrusion molding step of extrusion molding was performed, and a square pillar-shaped raw honeycomb molded body was produced.
  • organic binder methylcellulose
  • lubricant Unilube, NOF Corporation
  • the raw honeycomb molded body was dried using a microwave dryer to obtain a dried honeycomb molded body.
  • a degreasing process of degreasing the dried honeycomb molded body at 400 ° C. is performed, and a firing process is performed at 2200 ° C. for 3 hours under an atmospheric pressure of argon atmosphere.
  • the porosity is 42% and the average pore diameter is 11 ⁇ m.
  • a honeycomb fired body honeycomb unit 13 was produced.
  • the obtained honeycomb unit 13 had a thermal conductivity of 45 W / m ⁇ K and a density of 2.7 g / cm 3 .
  • the thermal conductivity of the honeycomb unit 13 was measured by a laser flash method. Further, the density of the honeycomb unit was measured by Archimedes method.
  • the blasting process is a sandblasting process using silicon carbide particles.
  • the silicon carbide vantage is 400
  • the nozzle outlet diameter ⁇ is 11.8 cm
  • the injection angle is 90 °
  • the projection pressure is 4 kg / cm 2
  • the flow rate is The test was performed under the condition of 100 g / hr.
  • the surface roughness Ra of the surface 13a of the honeycomb unit 13 was 3.2 ⁇ m.
  • the surface roughness Ra was measured based on the arithmetic average roughness described in JIS B 0601.
  • Thermal conductivity of the honeycomb unit 13 The thermal conductivity of the honeycomb unit 13 was measured by a laser flash method. Further, the density of the honeycomb unit was measured by Archimedes method. Regarding the thermal conductivity of the honeycomb unit, the obtained honeycomb unit 13 had a thermal conductivity of 45 W / m ⁇ K and a density of 2.7 g / cm 3 .
  • the reflectance of the light on the surface 13a of the obtained heat collecting receiver 10 was measured using a spectrophotometer (manufactured by Perkin Elmer, model number system 200 type) under an atmosphere of room temperature (25 ° C.) under a wavelength of 3 to 30 ⁇ m. It was measured.
  • the emissivity of light on the surface 13a of the heat collecting receiver 10 is measured using a spectrophotometer (manufactured by Perkin Elmer, model number system 200 type) under an atmosphere of room temperature (25 ° C.) under a wavelength of 3 to 30 ⁇ m. did.
  • the reflectance of the honeycomb unit 13 of Example 1 was 21%, and the emissivity was 0.79. Table 1 shows the measurement results of reflectance and emissivity.
  • Example 2 As shown in Table 1, the surface roughness Ra on the surface 13a of the honeycomb unit 13 was changed to 3.1 ⁇ m in Example 2 and 3.3 ⁇ m in Example 3. Other than that, the honeycomb unit 13 was produced in the same manner as in Example 1, and the surface roughness, thermal conductivity, and density of the honeycomb unit 13 were measured in the same manner as in Example 1.
  • the honeycomb unit 13 of Example 2 has a thermal conductivity of 45 W / m ⁇ K and a density of 2.7 g / cm 3
  • the honeycomb unit 13 of Example 3 has a thermal conductivity of 45 W / m ⁇ K and a density of It was 2.7 g / cm 3 .
  • a heat collecting receiver 10 was produced in the same manner as in Example 1. Thereafter, the reflectance and emissivity on the surface 13a of the heat collecting receiver 10 were measured.
  • the reflectance of the honeycomb unit 13 of Example 2 was 15% and the emissivity was 0.85
  • the reflectance of the honeycomb unit 13 of Example 3 was 13% and the emissivity was 0.87.
  • Table 1 shows the measurement results of reflectance and emissivity.
  • Example 1 The surface of the honeycomb unit 13 in Example 1 was not subjected to blast processing. Other than that, the honeycomb unit 13 was produced in the same manner as in Example 1, and the surface roughness, thermal conductivity, and density of the honeycomb unit 13 were measured in the same manner as in Example 1.
  • the surface roughness Ra of the surface 13a of the honeycomb unit 13 of Comparative Example 1 was 2.4 ⁇ m.
  • the honeycomb unit 13 of Comparative Example 1 had a thermal conductivity of 45 W / m ⁇ K and a density of 2.7 g / cm 3 .
  • a heat collecting receiver 10 was produced in the same manner as in Example 1. Thereafter, the reflectance and emissivity on the surface 13a of the heat collecting receiver 10 were measured.
  • the reflectance of the honeycomb unit 13 of Comparative Example 1 was 25% and the emissivity was 0.75. Table 1 shows the measurement results of reflectance and emissivity.
  • the heat collection receiver according to the present embodiment is configured in the same manner as the heat collection receiver according to the first embodiment of the present invention, except that the honeycomb unit is made of dense silicon carbide.
  • the porosity of the honeycomb unit made of dense silicon carbide is 98 to 99%.
  • a honeycomb unit made of dense silicon carbide is prepared by mixing silicon carbide powder and a sintering aid, boron (B), carbon, organic binder, plasticizer, lubricant, water, etc. It can produce by performing a baking process.
  • the honeycomb unit is a dense body, the heat storage property is higher than that of the honeycomb unit made of porous silicon carbide, and the heat conductivity is extremely high, so that the obtained heat is smoothly transferred to the heat medium. be able to.
  • the heat absorber has a structure in which a honeycomb unit made of dense silicon carbide is joined via an adhesive layer, so that the heat storage property of the heat absorber is high.
  • the thermal conductivity becomes extremely high, the obtained heat can be smoothly transferred to the heat medium.
  • the honeycomb unit 13 was made of dense silicon carbide.
  • the honeycomb unit 13 made of dense silicon carbide is prepared by mixing silicon carbide powder and boron (B), carbon, organic binder, plasticizer, lubricant, water, etc. to prepare a wet mixture. It was produced by extrusion molding, drying and baking.
  • the surface roughness, thermal conductivity, and density of the honeycomb unit 13 were measured.
  • the surface roughness Ra of the surface 13a of the honeycomb unit 13 was 0.7 ⁇ m.
  • the honeycomb unit 13 had a thermal conductivity of 80 W / m ⁇ K and a density of 3.1 g / cm 3 .
  • the reflectance of the surface 13a of the honeycomb unit 13 was 22%, and the emissivity was 0.78.
  • the heat collection receiver 10 was produced in the same manner as in Example 1, and the reflectance and emissivity on the surface 13a of the heat collection receiver 10 were measured in the same manner as in Example 1.
  • Table 1 shows the measurement results of reflectance and emissivity.
  • Example 2 The surface of the honeycomb unit 13 in Example 4 was not blasted. Other than that was carried out similarly to Example 4, and produced the honeycomb unit 13, and measured the surface roughness of the honeycomb unit 13, the thermal conductivity, and the density.
  • the surface roughness Ra of the surface 13a of the honeycomb unit 13 was 0.2 ⁇ m.
  • the honeycomb unit 13 had a thermal conductivity of 80 W / m ⁇ K and a density of 3.1 g / cm 3 .
  • the heat collecting receiver 10 was produced in the same manner as in Example 1, and the reflectance and emissivity were measured. The reflectance of the surface 13a of the honeycomb unit 13 was 29%, and the emissivity was 0.71.
  • the heat collecting receiver according to the present embodiment is configured in the same manner as the heat collecting receiver according to the first embodiment of the present invention, except that a honeycomb unit made of porous silicon carbide with pores filled with silicon is used. .
  • honeycomb unit made of porous silicon carbide in which pores are filled with silicon will be mainly described.
  • honeycomb fired bodies honeycomb units
  • a plurality of honeycomb fired bodies impregnated with fine powder silicon are combined to form a heat absorber using a predetermined fixture or the like, and then heated or impregnated with silicon fine powder.
  • silicon is placed on the side surfaces of the honeycomb fired body (honeycomb unit) excluding end faces such as the upper and lower surfaces and heated.
  • honeycomb fired body honeycomb unit
  • honeycomb fired bodies honeycomb fired bodies
  • silicon is filled in the open pores of the honeycomb unit (porous silicon carbide), and the silicon spreads also between the side surfaces of the honeycomb unit to form an adhesive layer. It can be bonded through the layers.
  • a method of impregnating a slurry containing silicon can also be applied. This method is a method in which a honeycomb unit is impregnated with silicon using a slurry containing silicon, and a plurality of honeycomb units impregnated with silicon are bonded via silicon.
  • the honeycomb unit made of porous silicon carbide in which the pores are filled with silicon increases the reflectance of sunlight by silicon.
  • the heat collecting receiver according to the present embodiment performs a polishing process (for example, on the surface 13a of the honeycomb unit 13). Since the blasting process is performed, the reflectance of sunlight can be suppressed.
  • the heat absorber is composed of a plurality of honeycomb units in which silicon is filled in the open pores of the honeycomb unit, and the honeycomb units are firmly bonded to each other by silicon. Since the heat storage property of the heat absorber becomes high and the thermal conductivity becomes extremely high, the obtained heat can be smoothly transferred to the heat medium.
  • the honeycomb unit 13 was made of porous silicon carbide having pores filled with silicon.
  • a honeycomb fired body made of porous silicon carbide was produced in the same manner as in Example 1.
  • the honeycomb unit 13 was produced.
  • the surface roughness Ra of the surface 13a of the honeycomb unit 13 was 3.3 ⁇ m.
  • the honeycomb unit 13 had a thermal conductivity of 120 W / m ⁇ K and a density of 2.8 g / cm 3 .
  • the heat collection receiver 10 was produced, and the reflectance and emissivity on the surface 13a of the heat collection receiver 10 were measured.
  • the reflectance on the surface 13a of the honeycomb unit 13 was 27%, and the emissivity was 0.73. Table 1 shows the measurement results of reflectance and emissivity.
  • the fired body of the obtained honeycomb unit 13 made of porous silicon carbide was impregnated with a phenol resin (carbonization rate: 30% by weight) in advance at normal temperature and normal pressure, and then dried.
  • particulate silicon is placed on the upper and lower surfaces (side surfaces excluding the end surfaces) of the fired body of the honeycomb unit, and held at 1650 ° C. for 2 hours under vacuum conditions to dissolve the silicon. Silicon was filled in the open pores. The amount of silicon impregnated with respect to 100 parts by weight of silicon carbide was 40 parts by weight.
  • the obtained honeycomb unit 13 had a thermal conductivity of 120 W / m ⁇ K and a density of 2.80 g / cm 3 .
  • Example 3 The surface of the honeycomb unit 13 in Example 5 was not blasted. Other than that was carried out similarly to Example 1, the honeycomb unit 13 was produced, and the heat collecting receiver 10 was produced.
  • the surface roughness, thermal conductivity, and density of the honeycomb unit 13 were measured in the same manner as in Example 1.
  • the surface roughness Ra of the surface 13a of the honeycomb unit 13 was 0.7 ⁇ m.
  • the honeycomb unit 13 had a thermal conductivity of 120 W / m ⁇ K and a density of 2.8 g / cm 3 .
  • the produced heat collection receiver it carried out similarly to Example 1, and measured the reflectance and emissivity in the surface 13a of the heat collection receiver 10.
  • the reflectance of the surface 13a of the honeycomb unit 13 was 36%, and the emissivity was 0.64. Table 1 shows the measurement results of reflectance and emissivity.
  • the heat collection receiver according to the present embodiment is configured in the same manner as the heat collection receiver according to the first embodiment except that the surface treatment is a coating treatment.
  • FIG.2 (b) is the expanded sectional view which showed a part of end surface of the heat collecting receiver which concerns on 4th embodiment of this invention.
  • the coating layer 16 is formed in the surface where the sunlight of the flow-path wall of the honeycomb unit 13 is irradiated.
  • Such a coating layer 16 can also reduce the reflectance of the surface irradiated with sunlight, similarly to the roughened surface by the polishing treatment according to the first embodiment of the present invention.
  • the color of the coating layer 16 is desirably black. With such a configuration, the heat collecting receiver can efficiently absorb light, and reflection of sunlight can be further suppressed.
  • the coating layer 16 includes a porous carbon layer or an infrared emitter (crystalline inorganic material) mainly composed of an oxide of a transition element, and an inorganic compound (amorphous) having a softening temperature of 400 to 1000 ° C. And those composed of an infrared blackbody coating composition containing an inorganic material). Since the coating layer having such a composition has excellent adhesion to the heat absorber (the surface of the flow path wall of the honeycomb unit 13), the coating layer is difficult to peel off even when the heat absorber is in a high temperature state. Become.
  • the coating layer is not limited to the coating layer newly formed on the surface of the flow path wall of the honeycomb unit 13, but the surface portion of the flow path wall of the honeycomb unit 13 is changed to a structure different from the inside of the flow path wall.
  • a layer functioning as a coating layer is also included.
  • the porous carbon layer can be formed by applying and heating a coating agent containing carbon black or the like.
  • the coating layer can also be formed by converting the honeycomb unit 13 made of porous silicon carbide into carbon.
  • the coating layer 16 can also be obtained by removing silicon from the honeycomb unit 13 made of porous silicon carbide filled with silicon and converting the exposed porous silicon carbide into carbon.
  • the surrounding atmosphere may be vacuumed at 0.8 Torr or less, and heat treatment may be performed at 1600 to 1700 ° C. for 96 hours or more. Thereby, silicon is removed from the honeycomb unit 13 and the exposed porous silicon carbide is converted into carbon.
  • the oxide of the transition element contained in the infrared radiator is at least one selected from, for example, manganese dioxide, manganese oxide, iron oxide, cobalt oxide, copper oxide, and chromium oxide. These may be used alone or in combination of two or more.
  • Such an oxide of a transition metal has a high emissivity in the infrared region, so that the coating layer 16 having a high emissivity can be formed.
  • the inorganic compound having a softening temperature of 400 to 1000 ° C. a low-melting high-expansion glass is preferable.
  • These low-melting-point high-expansion glasses have good compatibility with the honeycomb unit 13 when melted and applied to the surface 13a of the honeycomb unit 13 and heat-fired. Therefore, the coating layer 16 is applied to the surface 13a of the honeycomb unit 13. It can be formed easily and firmly.
  • the softening temperature of the inorganic compound is less than 400 ° C., after the coating layer 16 is formed, when the temperature of the honeycomb unit 13 becomes high, the coating layer 16 tends to flow and the coating layer 16 tends to peel off.
  • the softening temperature exceeds 1000 ° C., it becomes difficult to melt the coating material and apply it to the honeycomb unit 13.
  • the thickness of the coating layer 16 is not particularly limited, but is preferably 2 to 50 ⁇ m. If the thickness of the coating layer 16 is less than 2 ⁇ m, the effect of reducing the reflectance on the surface 13a of the honeycomb unit 13 is reduced, and if the thickness of the coating layer 16 exceeds 50 ⁇ m, it is difficult to form the coating layer 16 having a uniform thickness. Become. On the surface of the coating layer 16, a roughened surface by the polishing process as described above may be formed.
  • the polishing treatment is preferably blasting, and the surface roughness of the roughened surface of the coating layer is preferably Ra 0.5 to 50 ⁇ m.
  • the surface roughness of the roughened surface of the coating layer is in such a range, so that the reflection of sunlight can be reduced more reliably.
  • the coating layer 16 can be formed by the following procedure, for example. First, a coating liquid (coating material) for forming the coating layer 16 is prepared.
  • the coating liquid is prepared by wet-mixing the above-described infrared emitter and an inorganic compound. Specifically, infrared radiator powder and inorganic compound powder are prepared to have a predetermined particle size, shape, etc., and each powder is dry-mixed at a predetermined blending ratio to prepare a mixed powder. Furthermore, water is added and a slurry is prepared by wet mixing with a ball mill.
  • the mixing ratio of the mixed powder and water is not particularly limited, but 100 parts by weight of water is desirable with respect to 100 parts by weight of the mixed powder. This is because it is necessary to have an appropriate viscosity in order to apply to the honeycomb unit 13. If necessary, an organic solvent may be added to the coating solution.
  • the adjusted coating liquid is applied to the surface 13 a of the honeycomb unit 13.
  • the method for applying the coating liquid to the honeycomb unit 13 is not particularly limited as long as the coating layer 16 having a uniform film thickness can be obtained.
  • spray coating, curtain coating, dipping, transfer, brush coating It can be carried out by such a method.
  • the applied coating liquid is dried and baked to form the coating layer 16 having a thickness of 2 to 50 ⁇ m.
  • the firing temperature is set so that the adhesion between the coating layer 16 and the honeycomb unit 13 (the surface of the flow path wall) is enhanced. Thereby, the heat collecting receiver 10 which concerns on this embodiment is obtained.
  • the honeycomb unit included in the heat absorber has a coating layer on the surface (surface of the flow path wall) irradiated with sunlight (light condensed from the heliostat) Therefore, reflection of sunlight can be suppressed, heat loss due to reflection can be reduced, and a heat collecting receiver with high heat storage property can be obtained.
  • the heat collection receiver can absorb light more efficiently and suppress reflection of light more. Can do.
  • the coating layer of the heat absorber includes an infrared emitter mainly composed of porous carbon or an oxide of a transition element, and a softening temperature of 400 to 1000 ° C. Since it is composed of an infrared black body coating composition containing an inorganic compound, it has excellent adhesion to the honeycomb unit (the surface of the channel wall), and the coating layer is difficult to peel off even when the heat collecting receiver is at a high temperature.
  • the coating liquid (coating material) is uniformly applied to the surface of the honeycomb unit (channel wall). And a heat collecting receiver having a coating layer with a desired thickness.
  • Example 6 A heat collecting receiver 10 was produced in the same manner as in Example 1 except that the coating layer 16 was formed instead of blasting the surface 13a of the honeycomb unit 13.
  • the coating layer 16 was formed by the following procedure.
  • MnO 2 powder 65 wt%, Fe 3 O 4 powder 5 wt%, and BaO—SiO 2 glass powder 10 wt% were dry mixed to prepare a mixed powder, and 100 parts by weight of water was added to 100 parts by weight of the mixed powder.
  • a coating liquid (coating material) was prepared by wet mixing with a ball mill.
  • the obtained coating liquid was applied to the surface 13a of the honeycomb unit 13 by spray coating. Thereafter, the honeycomb unit 13 on which the coating layer was formed by spray coating was dried at 100 ° C. for 2 hours, and then subjected to a firing process in which the honeycomb unit 13 was heated and fired at 700 ° C. in air for 1 hour to form a coating layer 16 having a thickness of 2 ⁇ m. . Thereafter, in the same manner as in Example 1, the thermal conductivity and density of the honeycomb unit 13 were measured.
  • the honeycomb unit 13 had a thermal conductivity of 45 W / m ⁇ K and a density of 2.7 g / cm 3 .
  • the thickness of the coating layer 16 was measured with a scanning electron microscope after being cut in the thickness direction.
  • the reflectance and the emissivity of the honeycomb unit 13 having the obtained coating layer 16 were measured in the same manner as in Example 1.
  • the reflectance of the surface 13a of the honeycomb unit 13 was 9%, and the emissivity was 0.91.
  • Table 1 shows the measurement results of reflectance and emissivity.
  • Example 7 A heat collecting receiver 10 was produced in the same manner as in Example 6 except that the thickness of the coating layer 16 was changed to 50 ⁇ m.
  • the thermal conductivity and density of the honeycomb unit 13 were measured.
  • the honeycomb unit 13 had a thermal conductivity of 45 W / m ⁇ K and a density of 2.7 g / cm 3 .
  • the resulting coating layer 16 was measured for reflectivity and emissivity in the same manner as in Example 1.
  • the reflectance of the surface 13a of the honeycomb unit 13 was 9%, and the emissivity was 0.91. Table 1 shows the measurement results of reflectance and emissivity.
  • Example 8 A heat collecting receiver 10 was produced in the same manner as in Example 6 except that the coating layer 16 was formed of a porous carbon layer and the thickness of the coating layer 16 was 50 ⁇ m.
  • the porous carbon layer was formed as follows. That is, a porous carbon layer was formed in the same manner as in Example 6 except that carbon black powder was used instead of MnO 2 powder and Fe 3 O 4 and a coating liquid (coating material) was prepared. 1 and the thermal conductivity and density of the honeycomb unit 13 were measured.
  • the honeycomb unit 13 had a thermal conductivity of 45 W / m ⁇ K and a density of 2.7 g / cm 3 .
  • the resulting coating layer 16 was measured for reflectivity and emissivity in the same manner as in Example 1.
  • the reflectance of the surface 13a of the honeycomb unit 13 was 15%, and the emissivity was 0.85. Table 1 shows the measurement results of reflectance and emissivity.
  • the heat collecting receivers according to Examples 1 to 8 are Examples 1 to 3 and 6 to 8, Comparative Example 1, Example 4 and Comparative Example 2, and Example 5.
  • Comparative Example 3 an example in which the material of the heat collecting receiver is the same is compared with a comparative example.
  • the emissivity of the porous silicon carbide heat collecting receiver is in the range of 0.73 to 0.91 in the examples, which is higher than the 0.75 of the comparative example, and the emissivity of the dense silicon carbide heat collecting receiver.
  • the emissivity is 0.78 in the example, which is higher than 0.71 of the comparative example, and the emissivity of the heat collecting receiver of porous silicon carbide filled with silicon is 0. 0 in the example. 73, which is higher than 0.64 in the comparative example.
  • the emissivity is higher in the example in which the surface treatment is performed than in the comparative example in which the surface treatment of the heat collecting receiver is not performed. Therefore, when the receiver according to the embodiment of the present invention is used as a collector for solar thermal power generation, the heat of the absorbed light can be radiated and transmitted to the heat medium satisfactorily. When used as a solar power collector, heat can be transferred to the heat medium by both emissivity and thermal conductivity.
  • the reflectivity of the porous silicon carbide heat collecting receiver is 9 to 21% in the examples, which is lower than the 25% of the comparative example, and the reflectivity of the dense silicon carbide heat collecting receiver is The reflectance of the heat collecting receiver of porous silicon carbide filled with silicon, which is 22% in the example and lower than 36% of the comparative example, is 27% in the example, and is 36% of the comparative example.
  • the heat collecting receivers according to Examples 1 to 8 all have a surface treatment on the surface irradiated with sunlight, and thus have a lower reflectance than the comparative example. Therefore, when the heat collecting receiver which concerns on the Example of this invention is used as a heat collector of solar thermal power generation, it is thought that heat can be efficiently transmitted to the heat collecting receiver from the surface irradiated with sunlight.
  • FIG.3 (a) is a front view which shows typically the receiver array which comprises the solar thermal power generation device which concerns on 5th embodiment of this invention
  • FIG.3 (b) is a receiver array shown to Fig.3 (a).
  • FIG. FIG. 4 is an explanatory view schematically showing a solar thermal power generation apparatus according to the fifth embodiment of the present invention.
  • a plurality of heat collecting receivers 10 irradiate the heat absorber 11 with sunlight on a box-shaped frame 22 having an open sunlight irradiation surface. It is arranged with the receiving surface aligned with the front facing.
  • the gas outlet 12b of the support 12 constituting the heat collecting receiver 10 is coupled to the bottom 22a of the frame 22, and the bottom 22a is a sealed space except for the portion connected to the tube 22b.
  • the heat medium 14 such as air passes through the flow path 13 b formed in the honeycomb unit 13, is heated by the heat absorber 11, and then passes through the gas outlet 12 b of the support 12 to the bottom 22 a of the frame 22. And is led to a steam generator (boiler) 33 which will be described later through a pipe 22b.
  • the pipe 22b or a container connected to the pipe 22b is connected to a device for sucking gas such as an exhaust pump. Therefore, by operating an exhaust pump or the like, the heat medium 14 such as air around the heat collecting receiver 10 is passed through the flow path 13b formed in the honeycomb unit 13, and the heat accumulated in the heat absorber 11 is discharged. It can be transmitted to a heat medium 14 such as air.
  • the air around the heat collecting receiver 10 is guided to the flow path 13b of the honeycomb unit 13, but the bottom of the frame 22 is divided into two chambers. It is good also as a double structure which has.
  • the heat medium 14 such as air does not suddenly enter from the flow path 13 b formed in the honeycomb unit 13, but enters one of the two rooms and exists between a large number of heat collecting receivers 10. Enter the space 22c. Subsequently, the heat medium 14 blows out from the gap formed between the heat collecting portions 12a, and immediately enters the flow path 13b formed in the honeycomb unit 13 of the heat collecting receiver 10.
  • the heat medium 14 first exchanges heat with the support 12 whose temperature has risen, so that the thermal efficiency becomes higher.
  • the receiver array 20 is disposed at the highest position of the central tower 32, and the steam generator 33, the heat accumulator 34, and the steam turbine are sequentially provided therebelow. 35 and a cooler 36 are disposed.
  • a large number of heliostats 37 are arranged around the central tower 32. These heliostats 37 are set so that the reflection angle and direction can be freely controlled. It is controlled so that the changing sunlight is reflected by the heliostat 37 and collected in the receiver array 20 of the central tower 32.
  • the steam generator 33 is a department that generates steam for operating the steam turbine 35.
  • the heat medium 14 heated by the heat absorber 11 of the receiver array 20 passes through the pipe 22 b, the heat medium 14 is guided to a pipe in the steam generator 33 (boiler) and exchanges heat with the heat medium 14.
  • the heated water generates water vapor.
  • the generated steam is introduced into the steam turbine 35 to operate the steam turbine 35, and a generator (not shown) is operated by the steam turbine 35 to generate electricity.
  • the heat accumulator 34 is a member that temporarily stores the heat obtained by the heat medium 14, and includes a heat storage material having a large heat capacity.
  • a heat storage material for example, a solid medium such as molten salt, silica sand, ceramics, concrete, and graphite is used.
  • a heat storage pipe (not shown) connected to the pipe 22b passes through the heat accumulator 34, and the heat medium 14 heated by the heat absorber 11 passes through the heat storage pipe, whereby the heat storage material is heated. Supply. Since the heat storage material has a large heat capacity as described above, it can absorb a large amount of heat and store the heat.
  • the heat accumulator 34 also passes through a steam generation pipe (not shown) separate from the heat storage pipe, and the heat medium that is not heated by the steam generation pipe during a time when sunlight cannot be used, such as at night.
  • the heat medium is heated by the heat storage material whose temperature has increased.
  • the heated heat medium enters the steam generator 33 to generate water vapor, and electricity is generated by the operation of the steam turbine 35 as described above.
  • the water vapor that has passed through the steam turbine 35 is guided to the cooler 36 and becomes water by being cooled by the cooler 36.
  • the steam is returned to the steam generator 33.
  • the heat medium 14 cooled by passing through the steam generator 33 preferably passes through a cooling pipe (not shown) of the cooler 36. Since the heat medium 14 is heated by passing through the cooling pipe, the heat absorbed by the heat collecting receiver 10 can be used efficiently. Further, as described above, if the piping is configured so that the heat medium 14 that has recovered the heat enters the space 22c formed between the many heat collection receivers 10 of the receiver array 20, the heat collection receiver is further provided. The heat of the ten support bodies 12 can also be used effectively.
  • the first embodiment is not limited even if the heat collection receiver according to any of the second to fourth embodiments of the present invention is used.
  • the effect similar to the heat collecting receiver which concerns on a form can be acquired.
  • the solar thermal power generation apparatus since the receiver array includes a large number of heat collecting receivers, the solar thermal power generation apparatus can use a large amount of solar heat and perform a large amount of power generation. it can.
  • a heat accumulator is used, and heat generated by sunlight can be stored in the heat accumulator, so even at night without sunlight or on a rainy day, It can generate electricity.
  • the honeycomb unit 13 that is the heat absorber 11 is made of porous silicon carbide
  • other porous ceramics include nitride ceramics such as aluminum nitride, silicon nitride, and boron nitride, carbide ceramics such as zirconium carbide and tantalum carbide, and oxide ceramics such as alumina, zirconia, cordierite, and mullite. Can do. Since these ceramics themselves have high thermal conductivity, when used as the heat absorber 11, the obtained heat can be smoothly transferred to the heat medium.
  • the cross-sectional shape of the flow path 13b of the honeycomb unit 13 is a square, but the cross-sectional shape of the flow path 13b is not particularly limited, and may be a hexagon, an octagon, or the like. Also good.
  • the shape of the support 12 viewed from the front is a quadrangle, and the overall shape is a funnel shape, but the shape of the support 12 is not limited to this.
  • the shape viewed from the front may be a hexagonal shape, an octagonal shape, or the like.
  • the heat absorber 11 is described by using an example in which a plurality of honeycomb units 13 are bound through an adhesive layer.
  • the heat absorber 11 is a single honeycomb unit. It may consist of.
  • the surface treatment is performed only on the sunlight irradiation surface of the honeycomb unit 13, but the surface treatment is also performed on the sunlight irradiation surface of the heat insulating material or the support. It may be.
  • the blasting process is described as an example of the surface treatment on the sunlight irradiation surface.
  • a grinding process instead of the blasting process, etching using a molten salt is performed. Processing and the like can also be applied.
  • the coating layer is formed as the surface treatment of the heat collecting receiver.
  • a roughened surface by polishing treatment may be further formed on the coating layer. Even with such a configuration, the reflection of sunlight can be reduced.
  • the polishing process applied to the coating layer include a blasting process, a grinding process, a polishing process, and an etching process using a molten salt.
  • the solar thermal power generation system shown in FIG. 4 is an example of the solar thermal power generation system according to the fifth embodiment of the present invention, and members and the like constituting the power generation system are not limited to those shown in FIG. It can be set appropriately according to.
  • a reheater or the like may be provided in the power generation system shown in FIG. Further, the number and arrangement of the pipes can be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Products (AREA)
  • Thermal Insulation (AREA)

Abstract

ヘリオスタットを介して照射される太陽光を効率よく吸収し、熱に変換することが可能な集熱レシーバーを提供すること。 太陽熱発電装置に使用される集熱レシーバーであって、上記集熱レシーバーは、熱媒体を通過させるための複数の流路が並設された1個又は複数個のハニカムユニットからなる熱吸収体と、該熱吸収体を支持するとともに、熱媒体を流通させる支持体とからなり、上記熱吸収体は、炭化ケイ素を含んで構成され、太陽光が照射される面には、研磨処理又はコーティング処理のいずれかの表面処理が施されていることを特徴とする集熱レシーバー。

Description

集熱レシーバー及び太陽熱発電装置
本発明は、集熱レシーバー及び太陽熱発電装置に関する。
太陽を利用した発電方法として、太陽熱発電が知られている。太陽熱発電は、太陽から照射される光を反射鏡等を介して集光し、得られる太陽熱を利用して蒸気タービンを駆動させ、発電するものである。この太陽熱発電は、発電中に二酸化炭素等の温室効果ガスを発生することがないうえ、蓄熱することが可能であるので、曇天や夜間でも発電が可能である。そのため、太陽熱発電は、将来、有望な発電方法として注目を集めている。
太陽熱発電の方式には、大きく分けて、トラフ型、タワー型の2種類がある。タワー型太陽熱発電は、ヘリオスタットと呼ばれる平面鏡を多数用いて、中央部に設置されたタワーにある集熱レシーバーに太陽光を集中させることで集光し、その熱で熱媒体を加熱して発電する発電方式である。ヘリオスタットは、数メートル四方の平面鏡であり、タワー型太陽熱発電では、このヘリオスタットを数百枚から数千枚、タワーの周囲に配置して太陽光を一箇所に集中させることができる。そのため、集熱レシーバーを1000℃程度まで加熱することが可能であり、タワー型太陽熱発電は、熱効率が良いという特徴を有する。
このタワー型太陽熱発電用の集熱レシーバーとして、特許文献1には、熱媒体を通過させるための多数の流路を備えた炭化ケイ素、又は、シリコンと炭化ケイ素とからなる熱吸収体が漏斗型の支持体に収納、支持されたものが開示されている。
集熱レシーバーでは、加熱された熱吸収体の流路に、エアーやエアーを含む混合ガスからなる熱媒体を通過させ、これにより熱媒体が熱を得ることができる。タワー型太陽熱発電では、得られた熱により水を沸騰させて蒸気とし、蒸気タービンを回して発電を行う。
米国特許第6003508号明細書
上記集熱レシーバーは、ヘリオスタットを介して照射される太陽光を吸収し、効率よく熱に変換する必要がある。しかしながら、特許文献1に記載された集熱レシーバーは、太陽光が照射される面が平面であるため、太陽光の反射率が充分に低いとは言えず、吸収効率が高くないという問題がある。そのため、より吸収効率のよい集熱レシーバーが求められている。
本発明は、このような問題を解決するためにされたものであり、ヘリオスタットを介して照射される太陽光を効率よく吸収し、熱に変換することが可能な集熱レシーバー及び太陽熱発電装置を提供することを目的とする。
すなわち、請求項1に記載の集熱レシーバーは、太陽熱発電装置に使用される集熱レシーバーであって、上記集熱レシーバーは、熱媒体を通過させるための複数の流路が並設された1個又は複数個のハニカムユニットからなる熱吸収体と、該熱吸収体を収納、支持するとともに、熱媒体を流通させる支持体とからなり、該熱吸収体は、炭化ケイ素を含んで構成され、太陽光が照射される面には、研磨処理又はコーティング処理のいずれかの表面処理が施されていることを特徴とする。
請求項1に記載の集熱レシーバーでは、上記熱吸収体は、太陽光が照射される面に研磨処理又はコーティング処理が施されているので、集光された太陽光の反射を抑制することができ、これにより光の反射による熱損失を低減して、集熱レシーバーをより効率よく加熱することができる。
また、熱吸収体は、炭化ケイ素を含んで構成されているため、熱伝導率が高く、クラック等が発生しにくく、得られた熱をスムーズに熱媒体に伝達することができる。
請求項2に記載の集熱レシーバーでは、上記研磨処理は、ブラスト加工処理であり、上記太陽光が照射される面には、粗化面が形成されている。ブラスト加工処理を行うことで、硬質の多孔質炭化ケイ素からなる熱吸収体であっても、太陽光が照射される面に比較的容易に粗化面を形成でき、これにより太陽光の反射を抑制して集熱レシーバーの熱吸収率を高めることができる。
ブラスト加工処理としては、例えば、炭化ケイ素粒子等を用いたサンドブラスト加工処理が望ましい。
請求項3に記載の集熱レシーバーでは、上記粗化面の表面粗さRaは、0.5~5.0μmであることが望ましい。
研磨処理により形成された粗化面により太陽光は、粗化面の内側で反射され易くなるとともに吸収され易くなり、外部に出射しくにになるので、太陽光の反射が生じにくくなり、太陽光が照射される面における太陽光の反射をより確実に低減できる。なお、表面粗さRaは、JIS B 0601に記載の方法に準じて測定したものである。
請求項4に記載の集熱レシーバーでは、上記コーティング処理により上記太陽光が照射される面には黒色のコーティング層が形成されている。
このような構成によっても、上記研磨処理と同様に、太陽光の反射をより抑制することができ、効率的に集熱レシーバーに光を吸収させることができる。
請求項5に記載の集熱レシーバーでは、上記コーティング層は、遷移元素の酸化物を主成分とする赤外線放射体(以下、結晶性無機材とも称す。)と、軟化温度が400~1000℃である無機化合物(以下、非晶質無機材料とも称す。)とを含む赤外線黒体塗料組成物からなることが好ましい。
このような組成を有するコーティング層は、熱吸収体との密着性に優れるため、熱吸収体が高温状態となっても、コーティング層が剥離しにくくなる。
請求項6に記載の集熱レシーバーでは、上記遷移元素の酸化物は、二酸化マンガン、酸化マンガン、酸化鉄、酸化コバルト、酸化銅及び酸化クロムから選ばれる少なくとも1種であり、上記無機化合物は、アルミナ珪酸ガラス、ポタッシュ鉛ガラス、ソーダ鉛ガラス、ソーダ亜鉛ガラス、ソーダバリウムガラス、バリウムガラス、ボロンガラス、ストロンチウムガラス、高鉛ガラス及びポタッシュソーダ鉛ガラスから選ばれる少なくとも1種からなる低融点高膨張ガラスであることが好ましい。
このような組成を有するコーティング層とすることにより、黒色で熱吸収体との密着性に優れたコーティング層とすることができる。
請求項7に記載の集熱レシーバーでは、上記コーティング層は、多孔質のカーボン層であってもよい。
多孔質のカーボン層は、反射率が低く、太陽光の反射を抑制することができ、熱の吸収効率を向上させることができる。
請求項8に記載の集熱レシーバーでは、上記コーティング層の厚みは、2~50μmであることが好ましい。
このような膜厚を有するコーティング層であれば、コーティング液(コーティング材料)を熱吸収体の太陽光が照射される面に塗布することにより、比較的容易に均一な厚みのコーティング層を形成することができる。
請求項9に記載の集熱レシーバーでは、上記コーティング層の表面には、研磨処理による粗化面が形成されていることが望ましい。
このような構成によっても、研磨処理により形成された粗化面により太陽光は、粗化面の内側で反射され易くなるとともに吸収され易くなり、外部に出射しくにになるので、太陽光の反射を低減することができる。
請求項10に記載の集熱レシーバーでは、上記研磨処理は、ブラスト加工処理である。
ブラスト加工処理を適用することで、コーティング層の表面に容易に粗化面を形成できる。
請求項11に記載の集熱レシーバーでは、上記粗化面の表面粗さRaは、0.5~5.0μmであることが好ましい。
このような構成によると、太陽光が照射される粗化面の内側で反射され易くなるとともに外部により出射しくにになるので、太陽光の反射をより確実に低減できる。なお、表面粗さRaは、JIS B 0601に記載の方法に準じて測定したものである。
請求項12に記載の集熱レシーバーでは、上記ハニカムユニットには、31.0~93.0個/cmの流路が形成され、流路間の壁部の厚さは、0.1~0.5mmであることが好ましい。
このような構成であると、上記流路を熱媒体が流通することにより、上記ハニカムユニットから上記熱媒体に効率よく熱が伝達され、その結果、高い効率で発電を行うことができる。
請求項13に記載の集熱レシーバーでは、上記ハニカムユニットは、緻密質炭化ケイ素からなることが好ましい。
このような構成であると、ハニカムユニットの蓄熱性が高くなり、また、極めて熱伝導率が高いため、得られた熱をスムーズに熱媒体に伝達することができる。
請求項14に記載の集熱レシーバーでは、上記ハニカムユニットは、多孔質炭化ケイ素からなることが好ましい。
このような構成であると、ハニカムユニットは、熱伝導率が高いものであるため、得られた熱をスムーズに熱媒体に伝達することができる。
請求項15に記載の集熱レシーバーとしては、上記ハニカムユニットは、気孔がシリコンで充填された多孔質炭化ケイ素からなることが好ましい。
このような構成であると、ハニカムユニットは、緻密体であるためハニカムユニットの蓄熱性が高くなり、また、熱伝導率も極めて高いため、得られた熱をスムーズに熱媒体に伝達することができる。
請求項16に記載の集熱レシーバーでは、上記ハニカムユニットの気孔率は35~60%、平均気孔径は5~30μmであることが好ましい。
このような構成であると、ハニカムユニットは、開気孔を有しているので、シリコンを充填する際には、気孔の内部にスムーズにシリコンを充填することができる。
請求項17に記載の集熱レシーバーでは、上記熱吸収体と上記支持体との間には、断熱材が介装されていることが好ましい。
このような構成であると、断熱材により、上記熱吸収体から上記支持体への熱の逃散を効果的に防止することができるとともに、上記断熱材により上記熱吸収体をしっかりと保持することができる。
請求項18に記載の太陽熱発電装置は、上記した本発明に係る集熱レシーバーが用いられていることを特徴とする。
本発明に係る太陽熱発電装置は、上記した本発明に係る集熱レシーバーを用いているので、太陽光をより効率的に熱吸収体に吸収及び蓄熱することができ、発電効率の向上が図れる。
図1(a)は、本発明の第一実施形態に係る集熱レシーバーを模式的に示す縦断面図であり、図1(b)は、図1(a)に示した集熱レシーバーの正面図である。 図2(a)は、本発明の第一実施形態に係る集熱レシーバーの端面の一部を示した拡大断面図であり、図2(b)は、本発明の第四実施形態に係る集熱レシーバーの端面の一部を示した拡大断面図である。 図3(a)は、本発明の第五実施形態に係る太陽熱発電装置を構成するレシーバーアレイを模式的に示す正面図であり、図3(b)は、図3(a)に示すレシーバーアレイのB-B線断面図である。 図4は、本発明の第五実施形態に係る太陽熱発電装置を模式的に示す説明図である。
(第一実施形態)
以下、本発明の集熱レシーバーの一実施形態である第一実施形態について図面を参照しながら説明する。
図1(a)は、本発明の第一実施形態に係る集熱レシーバーを模式的に示す縦断面図であり、図1(b)は、図1(a)に示した集熱レシーバーの正面図である。図2(a)は、本発明の第一実施形態に係る集熱レシーバーの端面の一部を示した拡大断面図である。
図1(a)、(b)に示すように、本発明に係る集熱レシーバー10は、熱媒体14を通過させるための多数の流路13bが並設されたハニカムユニット13が接着材層15を介して複数個接合された熱吸収体11と、熱吸収体11を収納、支持するとともに、熱媒体14を流通させる支持体12とを含んで構成されている。そして、熱吸収体11と支持体12との間には、無機繊維からなる断熱材17が介装され、この断熱材17を介して熱吸収体11が支持体12に支持、固定されている。
ハニカムユニット13は、開気孔を有する多孔質炭化ケイ素からなる。多孔質炭化ケイ素を含んで構成されることで、ハニカムユニット13の熱伝導率が高くなり、得られた熱をスムーズに熱媒体に伝達することができる。
ハニカムユニット13の気孔率は、特に限定されるものではないが、35~60%であることが望ましい。ハニカムユニット13の気孔率が35%未満であると、ハニカムユニット13の製造が困難となる。また、ハニカムユニット13の気孔率が60%を超えると、ハニカムユニット13の強度が低下して、集熱レシーバーとして用いた際の熱履歴(昇温、降温の繰り返し)により破壊され易くなる。
なお、上記気孔率は、水銀圧入法により測定することができる。
ハニカムユニット13の平均気孔径は、5~30μmであることが望ましい。ハニカムユニット13の平均気孔径が5μm未満であるものは、製造が困難であり、一方、ハニカムユニット13の平均気孔径が30μmを超えると、ハニカムユニット13の機械的強度が低下する。
ハニカムユニット13の太陽光が照射される面13aには、ブラスト加工処理が施されており、粗化面となっている。粗化面の表面粗さRaは、ハニカムユニット13の材質にもよるが、0.5~5.0μmであることが望ましい。表面粗さRaが1.5μm以上であると、反射率を充分低くすることができる。表面粗さRaを大きくすると反射率は低下するが、5.0μm程度まで大きくすると頭打ちとなる。例えば、多孔質炭化ケイ素からなるハニカムユニット13であれば、表面粗さRaは、2.5~3.5μmであることが望ましく、3.1~3.3μmであることがより望ましい。緻密質炭化ケイ素からなるハニカムユニット13であれば、0.5~3.5μmであることが望ましい。シリコン充填されたハニカムユニット13であれば、0.8~3.5μmであることが望ましい。
表面粗さRaがこのような範囲にあることで、太陽光の反射をより確実に低減できる。
ハニカムユニット13の反射率は、低いことが望ましいが、表面処理が施されていない場合には、高い反射率となる。しかしながら、本発明の実施形態に係る発明では、粗化面を形成することにより、9~27%の範囲に反射率を抑制することができる。
また、多孔質炭化ケイ素を用い、粗化面を形成することにより、反射率を9~21%の範囲に抑制することができる。
本発明の実施形態に係る発明では、ハニカムユニット13の放射率を、0.73~0.91とすることができる。
ハニカムユニット13が多孔質炭化ケイ素からなる場合には、ハニカムユニットの放射率を、0.73~0.91に抑制することができる。
ハニカムユニット13の熱伝導率は、45~120W/mKが望ましい。ハニカムユニット13の密度は、2.7~3.1g/cmが望ましい。
本発明に係るハニカムユニット13では、長手方向に対して垂直な断面を形成した際に、1cm当たりの流路13bの数は、31.0~93.0個/cmであることが望ましい。ハニカムユニット13の流路13bの数が31.0個/cm未満である場合には、ハニカムユニット13の流路13bの数が少ないため、ハニカムユニット13が熱媒体14と効率よく熱交換することが難しくなり、一方、ハニカムユニット13の流路13bの数が93.0個/cmを超えると、ハニカムユニット13の1つの流路13bの断面積が小さくなるため、熱媒体14が流通しにくくなる。
また、ハニカムユニット13の流路間の壁部の厚さは、0.1~0.5mmが望ましい。ハニカムユニット13の流路間の壁部の厚さが0.1mm未満では、壁部の機械的強度が低下してハニカムユニット13が破損し易くなり、一方、ハニカムユニット13の流路間の壁部の厚さが0.5mmを超えると、壁部が厚くなりすぎて、ハニカムユニット13の面積に対する熱媒体14の流通量が低下するため、熱効率が低下する。
ハニカムユニット13は、接着材層15を介して複数個を接着、結合することで熱吸収体11となる。接着材層15を形成する接着材材ペーストとしては、シリコン、シリコンを含むスラリー、又は、少なくとも無機粒子、無機繊維及び無機バインダのうちの1種類を含む接着材ペースト等を用いることができる。接着材ペーストは、有機バインダを含んでいてもよい。
接着材ペーストに含まれる無機粒子としては、例えば、炭化物、窒化物等を挙げることができ、具体的には、炭化ケイ素、窒化ケイ素、窒化ホウ素からなる無機粉末等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機粒子のなかでは、熱伝導性に優れる炭化ケイ素が望ましい。
上記接着材ペーストを用いた場合に、接着材層15の無機粒子の含有量の下限は、3重量%が望ましく、10重量%がより望ましく、20重量%がさらに望ましい。一方、接着材層15の無機粒子の含有量の上限は、80重量%が望ましく、40重量%がより望ましい。接着材層15の無機粒子の含有量が3重量%未満では、接着材層15の熱伝導率の低下を招き易く、一方、接着材層15の無機粒子の含有量が80重量%を超えると、接着材層15が高温にさらされた場合に、接着材層15の接着強度の低下を招き易い。
接着材ペーストを用いた場合、接着材層15に含まれる無機繊維としては、例えば、シリカ-アルミナ、ムライト、アルミナ、シリカ等のセラミックファイバー等を挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機繊維のなかでは、アルミナファイバが望ましい。
上記接着材層15の無機繊維の含有量の下限は、10重量%が望ましく、20重量%がより望ましい。一方、上記接着材層15の無機繊維の含有量の上限は、70重量%が望ましく、40重量%がより望ましい。上記接着材層15の無機繊維の含有量が10重量%未満では、接着材層15の弾性が低下し易くなり、一方、接着材層15の無機繊維の含有量が70重量%を超えると、接着材層15の熱伝導性の低下を招き易くなる。
上記接着材ペーストを用いた場合、接着材層15に含まれる無機バインダとしては、例えば、シリカゾル、アルミナゾル等の固形分が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機バインダのなかでは、シリカゾルが望ましい。
また、上記接着材層15の無機バインダーの含有量の下限は、固形分で、1重量%が望ましく、5重量%がさらに望ましい。一方、上記接着材層15の無機バインダーの含有量の上限は、固形分で、30重量%が望ましく、15重量%がより望ましい。接着材層15の無機バインダーの含有量が固形分で1重量%未満では、接着材層15の接着強度の低下を招き易く、一方、接着材層15の無機バインダーの含有量が固形分で30重量%を超えると、接着材層15の熱伝導率の低下を招き易い。
接着材ペーストを用いた場合、接着材層15に含まれる有機バインダとしては、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。有機バインダのなかでは、カルボキシメチルセルロースが望ましい。
上記接着材層15の有機バインダーの含有量の下限は、固形分で、0.1重量%が望ましく、0.4重量%がより望ましく、一方、上記有機バインダーの含有量の上限は、固形分で、5.0重量%が望ましく、1.0重量%がより望ましい。接着材層15の有機バインダーの含有量が0.1重量%未満では、接着材層15のマイグレーションを抑制するのが難しくなり、一方、接着材層15の有機バインダーの含有量が5.0重量%を超えると、有機バインダーが分解して発生するガスの量が多くなりすぎて、接着材層15の接着力の低下を招きやすくなる。
上記接着材層15に含まれる有機バインダは、熱吸収体11の使用時にハニカムユニット13の温度が上昇することにより、分解、消去するが、接着材層15には無機粒子及び無機バインダの固形分等が含まれているので、充分な接着力を維持することができる。
支持体12は、図1(b)に示すように、正面から見た形状は、四角形であるが、支持体12の全体的な形状は、漏斗形状である。すなわち、熱吸収体11が収納され、熱媒体14が流入する部分である集熱部12aの断面(熱吸収体11の太陽光18を受ける面に平行な断面)は大面積であるが、断面を熱媒体14の出口方向に平行移動していくと、断面の面積は次第に小さくなり、その後、熱媒体14の出口12bでは、断面の面積は略一定の面積となる。
支持体12の材料は特に限定されるものではないが、熱吸収体11を太陽熱発電に使用される集熱レシーバーとして用いた場合には、熱吸収体11は、1000℃前後の温度となるため、耐熱性を有する必要があることから、金属又はセラミックからなることが好ましい。
金属材料としては、例えば、鉄、ニッケル、クロム、アルミニウム、タングステン、モリブデン、チタン、鉛、銅、亜鉛及びこれら金属の合金等が挙げられる。また、セラミックとしては、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、炭化ケイ素、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、シリカ、アルミナ、ムライト、ジルコニア等の酸化物セラミック等が挙げられる。支持体12の材料としては、その他に、例えば、金属と窒化物セラミックの複合体、金属と炭化物セラミックの複合体等も挙げられる。これらのなかでは、耐熱性等の点から、炭化ケイ素又はアルミナが特に好ましい。
本発明の集熱レシーバー10では、熱吸収体11と支持体12との間に断熱材17が介装されている。断熱材17が設けられていることで、熱吸収体11から支持体12への熱の逃散を効果的に防止することができる。
断熱材17の材料は特に限定されるものではなく、無機繊維、無機粒子、無機バインダー等、種々の無機材料を含むものであってもよいが、無機繊維からなるマット状のものが好ましい。本実施形態では、断熱材17として無機繊維からなる平面視矩形のマットを使用した例について、以下に説明する。
この断熱材17は、無機繊維からなる平面視矩形のマットが1個又は複数積層されて構成されたものであり、この断熱材17を熱吸収体11の側面に巻き付けた状態で、支持体12に収納することにより、熱吸収体11を支持体12の内部に支持、固定することができる。
上記マットを構成する無機繊維としては、特に限定されず、アルミナ-シリカ繊維、アルミナ繊維、シリカ繊維等が挙げられる。耐熱性や耐風蝕性等、断熱材17に要求される特性等に応じて変更すればよい。アルミナ-シリカ繊維を断熱材17のマットを構成する無機繊維として用いる場合には、アルミナとシリカとの組成比が、60:40~80:20である繊維を用いることが望ましい。
上記マットには、ニードルパンチング処理が施されていることが望ましい。マットにニードルパンチング処理が施されることにより、マットを構成する無機繊維等の構成材料がばらばらになりにくくなる。複数積層されたマットを用いる場合には、1つのまとまったマット状とすることができる。また、マットが長手方向に垂直な幅方向でニードルパンチング処理されたものであると、ニードルパンチング処理した部分でマットの幅方向に折り目がついたようになることから、マットを熱吸収体11に巻き付けやすくなる。
また、断熱材17として、上記マットに、アクリル系樹脂等を含む有機バインダを含浸させ、圧縮乾燥させることにより、マットの厚さを薄くしたものを用いてもよい。このような断熱材17は、以下のようにして用いることができる。まず、熱吸収体11に断熱材17を巻き付けて支持体12に押し込むことにより、支持体12に熱吸収体11を取り付ける。そして、ヘリオスタットで集光された太陽光の反射光を熱吸収体11に照射すると、熱吸収体11の温度が1000℃近くに上昇するため、マット内の有機バインダは分解、消失し、有機バインダによるマットの圧縮状態が開放される。これにより、熱吸収体11は、強固に支持体12に保持、固定される。
断熱材17の厚さは、3~14mmが望ましい。断熱材17の厚さが3mm未満であると充分な断熱性が得られにくく、断熱材17の厚さが14mmを超えると、熱吸収体11へ取り付けにくくなる。
以下、本実施形態に係る集熱レシーバー10の製造方法について、一例を挙げて説明する。
まず、ハニカムユニット13を構成する多孔質炭化ケイ素を製造する。
多孔質炭化ケイ素を製造する際には、セラミック原料として平均粒子径の異なる炭化ケイ素粉末と、有機バインダ、可塑剤、潤滑剤、水等とを混合して、湿潤混合物を調製する。
続いて、上記湿潤混合物を押出成形機に投入して押出成形する成形工程を行い、長手方向に多数の流路が形成された四角柱形状のハニカム成形体を作製する。
次に、ハニカム成形体の両端を切断装置を用いて切断する切断工程を行い、ハニカム成形体を所定の長さに切断し、切断したハニカム成形体を乾燥機を用いて乾燥する。
次に、ハニカム成形体中の有機物を脱脂炉中で加熱する脱脂工程を行い、焼成炉に搬送し、焼成工程を行ってハニカム焼成体を作製する。これにより、多孔質炭化ケイ素からなるハニカムユニット13が得られる。そして、このハニカムユニット13の面13aに、ブラスト加工処理を施し、粗化面を形成する。
得られた複数のハニカムユニット13を接着材ペースト等を用いて接合することで、接着材層15を介して複数のハニカムユニット13が接合された熱吸収体11が得られる。
なお、上記したブラスト加工処理は、複数のハニカムユニット13を接着材ペースト等を用いて接合した後に行ってもよい。
支持体12は、従来から用いられている方法を用いることにより製造することができる。セラミックからなる支持体12を製造する際には、セラミック粉末、有機バインダ等を含む混合物の加圧成形、射出成形、鋳込成形等を行った後、脱脂工程、焼成工程を経ることにより、支持体を製造することができる。
集熱レシーバー10を組み立てる際には、上記方法により製造した熱吸収体11の周囲に断熱材17を巻き付け、断熱材17が巻きつけられた熱吸収体11を支持体12に押し込んで固定することにより、集熱レシーバー10を組み立てることができる。
以下、本実施形態に係る集熱レシーバーの作用効果について列挙する。
(1)本実施形態の集熱レシーバーにおいては、熱吸収体に含まれるハニカムユニットは、太陽光(ヘリオスタットから集光された光)が照射される面に研磨処理(ブラスト加工処理)が施されているので、太陽光の反射を抑制することができ、太陽光の反射による熱損失を低減して、集熱レシーバーをより効率よく加熱することができる。
(2)本実施形態の集熱レシーバーにおいては、熱吸収体に含まれるハニカムユニットは、炭化ケイ素からなるため、熱伝導率が高く、得られた熱をスムーズに熱媒体に伝達できるため、蓄熱性の高い集熱レシーバーとなる。
(3)本実施形態の集熱レシーバーでは、熱吸収体に含まれるハニカムユニットには、31.0~93.0個/cmの流路が形成され、流路間の壁部の厚さは、0.1~0.4mmであり、ハニカムユニットの気孔率は35~60%、平均気孔径は5~30μmである。そのため、熱吸収体としての強度を維持しつつ、上記流路に熱媒体を効率良く流通させることができ、これにより、上記熱吸収体から上記熱媒体に効率よく熱が伝達され、強度及び蓄熱性に優れた集熱レシーバーとなる。
(4)本実施形態の集熱レシーバーでは、上記熱吸収体と上記支持体との間には断熱材が介装されており、上記断熱材により上記熱吸収体を強固に保持するとともに、上記断熱材により、上記熱吸収体から上記支持体への熱の逃散を効果的に防止することができる。
以下、本発明の第一実施形態をより具体的に開示した実施例を示すが、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
(ハニカムユニットの作製工程)
平均粒子径22μmを有する炭化ケイ素の粗粉末52.8重量%と、平均粒子径0.5μmの炭化ケイ素の微粉末22.6重量%とを混合し、得られた混合物に対して、アクリル樹脂2.1重量%、有機バインダ(メチルセルロース)4.6重量%、潤滑剤(日油(株)製 ユニルーブ)2.8重量%、グリセリン1.3重量%、及び、水13.8重量%を加えて混練して湿潤混合物を得た後、押出成形する押出成形工程を行い、四角柱形状の生のハニカム成形体を作製した。
次いで、マイクロ波乾燥機を用いて上記生のハニカム成形体を乾燥させ、ハニカム成形体の乾燥体とした。
このハニカム成形体の乾燥体を400℃で脱脂する脱脂工程を行い、常圧のアルゴン雰囲気下2200℃、3時間の条件で焼成工程を行い、気孔率が42%、平均気孔径が11μm、大きさが34.3mm×34.3mm×45mm、流路の数(流路密度)が50個/cm、流路の壁部の厚さが0.25mm(10mil)の多孔質炭化ケイ素からなるハニカム焼成体(ハニカムユニット13)を作製した。
得られたハニカムユニット13の熱伝導率は、45W/m・K、密度は、2.7g/cmであった。なお、ハニカムユニット13の熱伝導率は、レーザフラッシュ法により測定した。また、ハニカムユニットの密度をアルキメデス法により測定した。
次に、ハニカムユニット13の表面13aにブラスト加工処理を施した。
ブラスト加工処理は、炭化ケイ素粒子を用いたサンドブラスト加工処理であり、炭化ケイ素のバンテージが400、ノズルの出口径φが11.8cm、噴射角度が90°、投射圧が4kg/cm、流量が100g/hrの条件下で行った。
このブラスト加工処理により、ハニカムユニット13の面13aにおける表面粗さRaは、3.2μmとなった。なお、表面粗さRaは、JIS B 0601に記載の算術平均粗さに準拠して測定した。
(熱吸収体の作製工程)
表面処理を施したハニカムユニット13を4個用いて、図1(b)に示すように、組み合わせた後、真空下、ハニカムユニット13の上面、下面等(端面を除く側面)にシリコンを載置し、加熱した。これにより、ハニカムユニット13をシリコンにより結束して、熱吸収体11を作製した。
(集熱レシーバーの作製工程)
得られた熱吸収体11の周囲に断熱材17を巻き付け、支持体12に挿入した。これにより、集熱レシーバー10が得られた。
断熱材17としては、組成比がAl:SiO=72:28(重量比)からなる無機繊維のマット状物で、無機繊維の平均繊維径が5.1μm、平均繊維長60mm、嵩密度が0.15g/cm、目付量が1400g/mの断熱材を用い、14mmの厚さになるように巻き付けた。
ハニカムユニット13の熱伝導率ハニカムユニット13の熱伝導率は、レーザフラッシュ法により測定した。また、ハニカムユニットの密度をアルキメデス法により測定した。ハニカムユニットの熱伝導率は、得られたハニカムユニット13の熱伝導率は、45W/m・K、密度は、2.7g/cmであった。
得られた集熱レシーバー10の面13aにおける光の反射率を、分光光度計(Perkin Elmer社製、型番system200型)を用いて、室温(25℃)の雰囲気下、波長3~30μmの条件で測定した。また、集熱レシーバー10の面13aにおける光の放射率を、分光光度計(Perkin Elmer社製、型番system200型)を用いて、室温(25℃)の雰囲気下、波長3~30μmの条件で測定した。
実施例1のハニカムユニット13の反射率は21%、放射率は0.79であった。
反射率及び放射率の測定結果を表1に示す。
(実施例2、3)
ハニカムユニット13の面13aにおける表面粗さRaを表1に示すように実施例2は3.1μm、実施例3は3.3μmに変更した。そして、それ以外は実施例1と同様にして、ハニカムユニット13を作製し、実施例1と同様にして、ハニカムユニット13の表面粗さ、熱伝導率及び密度を測定した。実施例2のハニカムユニット13の熱伝導率は、45W/m・K、密度は、2.7g/cm、実施例3のハニカムユニット13の熱伝導率は、45W/m・K、密度は、2.7g/cmであった。
次に、実施例1と同様にして、集熱レシーバー10を作製した。この後、集熱レシーバー10の面13aにおける反射率及び放射率を測定した。実施例2のハニカムユニット13の反射率は15%、放射率は0.85、実施例3のハニカムユニット13の反射率は13%、放射率は0.87であった。
反射率及び放射率の測定結果を表1に示す。
(比較例1)
実施例1におけるハニカムユニット13の表面にブラスト加工処理を行わなかった。そして、それ以外は実施例1と同様にして、ハニカムユニット13を作製し、実施例1と同様にして、ハニカムユニット13の表面粗さ、熱伝導率及び密度を測定した。この比較例1のハニカムユニット13の面13aにおける表面粗さRaは、2.4μmであった。比較例1のハニカムユニット13の熱伝導率は、45W/m・K、密度は、2.7g/cmであった。
次に、実施例1と同様にして、集熱レシーバー10を作製した。この後、集熱レシーバー10の面13aにおける反射率及び放射率を測定した。
比較例1のハニカムユニット13の反射率は25%、放射率は0.75であった。
反射率及び放射率の測定結果を表1に示す。
(第二実施形態)
以下、本発明の集熱レシーバーの他の一実施形態である第二実施形態について説明する。
本実施形態に係る集熱レシーバーは、ハニカムユニットが緻密質炭化ケイ素からなる他は、本発明の第一実施形態に係る集熱レシーバーと同様に構成されている。緻密質炭化ケイ素からなるハニカムユニットの気孔率は、98~99%である。
従って、以下においては、緻密質炭化ケイ素からなるハニカムユニットについて主に説明する。緻密質炭化ケイ素からなるハニカムユニットは、炭化ケイ素粉末と、焼結助剤、ホウ素(B)、カーボン、有機バインダ、可塑剤、潤滑剤、水等とを混合して、押出成形し、乾燥及び焼成処理を行うことにより作製することができる。
ハニカムユニットが緻密体であると、多孔質炭化ケイ素からなるハニカムユニットよりもさらに蓄熱性が高くなり、また、極めて熱伝導率が高くなることから、得られた熱をスムーズに熱媒体に伝達することができる。
以下、本実施形態の集熱レシーバーの作用効果について列挙する。
本実施形態においては、本発明の第一実施形態の(1)、(2)、(4)の作用効果を奏するほか、下記の効果を奏する。
(5)本実施形態の集熱レシーバーでは、上記熱吸収体は、緻密質炭化ケイ素からなるハニカムユニットが接着材層を介して接合されて構成されているので、熱吸収体の蓄熱性が高くなり、極めて熱伝導率が高くなるため、得られた熱をスムーズに熱媒体に伝達することができる。
以下、本発明の第二実施形態をより具体的に開示した実施例を示すが、本発明はこれらの実施例のみに限定されるものではない。
(実施例4)
ハニカムユニット13を緻密質炭化ケイ素で作製した。緻密質炭化ケイ素からなるハニカムユニット13は、炭化ケイ素粉末と、ホウ素(B)、カーボン、有機バインダ、可塑剤、潤滑剤、水等とを混合して、湿潤混合物を調製し、この湿潤混合物を押出成形し、乾燥及び焼成処理を行うことにより作製した。そして、実施例1と同様にして、ハニカムユニット13の表面粗さ、熱伝導率及び密度を測定した。
その結果、ハニカムユニット13の面13aにおける表面粗さRaは、0.7μmであった。また、ハニカムユニット13の熱伝導率は、80W/m・K、密度は、3.1g/cmであった。ハニカムユニット13の面13aにおける反射率は22%、放射率は0.78であった。
次に、実施例1と同様にして、集熱レシーバー10を作製し、実施例1と同様にして、集熱レシーバー10の面13aにおける反射率及び放射率を測定した。反射率及び放射率の測定結果を表1に示す。
(比較例2)
実施例4におけるハニカムユニット13の表面にブラスト加工処理を行わなかった。それ以外は実施例4と同様にして、ハニカムユニット13を作製し、ハニカムユニット13の表面粗さ、熱伝導率及び密度を測定した。ハニカムユニット13の面13aにおける表面粗さRaは、0.2μmであった。また、ハニカムユニット13の熱伝導率は、80W/m・K、密度は、3.1g/cmであった。
次に、実施例1と同様にして、集熱レシーバー10を作製し、反射率、放射率を測定した。ハニカムユニット13の面13aにおける反射率は29%、放射率は0.71であった。
(第三実施形態)
以下、本発明の集熱レシーバーの他の一実施形態である第三実施形態について説明する。
本実施形態に係る集熱レシーバーは、気孔がシリコンで充填された多孔質炭化ケイ素からなるハニカムユニットを用いた他は、本発明の第一実施形態に係る集熱レシーバーと同様に構成されている。
従って、以下においては、気孔がシリコンで充填された多孔質炭化ケイ素からなるハニカムユニットについて主に説明する。
多孔質炭化ケイ素からなるハニカムユニットの気孔をシリコンで充填するには、例えば、以下の方法が適用できる。
まず、微粉状シリコンを含浸させた複数のハニカム焼成体(ハニカムユニット)を所定の固定具等を用いて熱吸収体の形状となるように組み合わせた後、加熱するか、シリコン微粉末を含浸させていないハニカム焼成体(ハニカムユニット)を複数個組み合わせた後、真空下、ハニカム焼成体(ハニカムユニット)の上面、下面等の端面を除く側面にシリコンを載置し、加熱する。
また、シリコンの粉末をスラリー状にしたものをハニカム焼成体(ハニカムユニット)の側面に塗布し、塗布面を介して二つのハニカム焼成体を接触させた状態で加熱することにより接着し、この作業を繰り返すことにより複数のハニカム焼成体(ハニカムユニット)を結束してもよい。
上記方法により、ハニカムユニット(多孔質炭化ケイ素)の開気孔中にシリコンが充填されるとともに、ハニカムユニットの側面の間にもシリコンが広がっていき、接着材層を形成し、ハニカムユニット同士をシリコンの層を介して接着することができる。
また、シリコンを含むスラリーを、含浸させる方法も適用できる。この方法は、ハニカムユニットにシリコンを含むスラリーを用いて、ハニカムユニットにシリコンを含浸させ、シリコンを含浸させたハニカムユニットの複数個をシリコンを介して接着する方法である。
気孔がシリコンで充填された多孔質炭化ケイ素からなるハニカムユニットは、シリコンによって太陽光の反射率が高くなるが、本実施形態に係る集熱レシーバーは、ハニカムユニット13の面13aに研磨処理(例えば、ブラスト加工処理)が施されているため、太陽光の反射率を抑制することができる。
以下、本実施形態の集熱レシーバーの作用効果について列挙する。
本実施形態においては、本発明の第一実施形態の(1)~(4)の作用効果を奏するほか、下記の効果を奏する。
(6)本実施形態の集熱レシーバーでは、熱吸収体は、ハニカムユニットの開気孔中にシリコンが充填された複数個のハニカムユニットからなり、シリコンによってハニカムユニット同士がしっかりと接着されているので、熱吸収体の蓄熱性が高くなり、熱伝導率が極めて高くなるため、得られた熱をスムーズに熱媒体に伝達することができる。
以下、本発明の第三実施形態をより具体的に開示した実施例を示すが、本発明はこれらの実施例のみに限定されるものではない。
(実施例5)
ハニカムユニット13を気孔がシリコンで充填された多孔質炭化ケイ素で作製した。
まず、実施例1と同様にして多孔質炭化ケイ素からなるハニカム焼成体を作製した。次に、ハニカムユニット13を作製した。そして、実施例1と同様にして、ハニカムユニット13の表面粗さ、熱伝導率及び密度を測定した。ハニカムユニット13の面13aにおける表面粗さRaは、3.3μmであった。また、ハニカムユニット13の熱伝導率は、120W/m・K、密度は、2.8g/cmであった。
次に、実施例1と同様にして、集熱レシーバー10を作製し、集熱レシーバー10の面13aにおける反射率及び放射率を測定した。ハニカムユニット13の面13aにおける反射率は27%、放射率は0.73であった。反射率及び放射率の測定結果を表1に示す。
(シリコン充填工程)
次いで、得られた多孔質炭化ケイ素からなるハニカムユニット13の焼成体にフェノール樹脂(炭化率30重量%)をあらかじめ常温、常圧で含浸し、続いて乾燥した。
次に、ハニカムユニットの焼成体の上面及び下面(端面を除く側面)に粒子状のシリコンを載置し、真空条件下、1650℃で2時間保持してシリコンを溶解させ、ハニカムユニットの焼成体の開気孔中にシリコンを充填させた。
なお、炭化ケイ素100重量部に対する上記シリコンの含浸量は40重量部であった。
得られたハニカムユニット13の熱伝導率は、120W/m・K、密度は、2.80g/cm であった。
(比較例3)
実施例5におけるハニカムユニット13の表面にブラスト加工処理を行わなかった。それ以外は実施例1と同様にして、ハニカムユニット13を作製し、集熱レシーバー10を作製した。
作製したハニカムユニット13については、実施例1と同様にして、ハニカムユニット13の表面粗さ、熱伝導率及び密度を測定した。ハニカムユニット13の面13aにおける表面粗さRaは、0.7μmであった。また、ハニカムユニット13の熱伝導率は、120W/m・K、密度は、2.8g/cmであった。
そして、作製した集熱レシーバーについては、実施例1と同様にして、集熱レシーバー10の面13aにおける反射率及び放射率を測定した。ハニカムユニット13の面13aにおける反射率は36%、放射率は0.64であった。
反射率及び放射率の測定結果を表1に示す。
(第四実施形態)
以下、本発明の集熱レシーバーの他の一実施形態である第四実施形態について図面を参照しながら説明する。本実施形態に係る集熱レシーバーは、表面処理がコーティング処理であるほかは、第一実施形態に係る集熱レシーバーと同様に構成されている。
従って、以下においては、主にコーティング処理及びこれにより形成されたコーティング層について主に説明する。
図2(b)は、本発明の第四実施形態に係る集熱レシーバーの端面の一部を示した拡大断面図である。
図2(b)に示すように、本発明に係る集熱レシーバー10には、ハニカムユニット13の流路壁の太陽光が照射される表面にコーティング層16が形成されている。このようなコーティング層16によっても、本発明の第一実施形態に係る研磨処理による粗化面と同様に、太陽光が照射される面の反射率を低減することができる。
コーティング層16の色は、黒色であることが望ましい。このような構成であると、効率的に集熱レシーバーに光を吸収させることができ、太陽光の反射をより抑制することができる。
コーティング層16としては、多孔質のカーボン層、又は、遷移元素の酸化物を主成分とする赤外線放射体(結晶性無機材)と、軟化温度が400~1000℃である無機化合物(非晶質無機材料)とを含む赤外線黒体塗料組成物からなるもの等が挙げられる。これらのような組成を有するコーティング層は、熱吸収体(ハニカムユニット13の流路壁の表面)との密着性に優れるため、熱吸収体が高温状態となっても、コーティング層が剥離しにくくなる。
なお、本発明においてコーティング層は、ハニカムユニット13の流路壁の表面に新たに形成したコーティング層のみでなく、ハニカムユニット13の流路壁の表面部分を流路壁内部と違う構造に変えてコーティング層として機能する層としたものも含むこととする。
多孔質のカーボン層は、カーボンブラック等を含むコーティング剤を塗布して加熱することにより形成することができる。
また、多孔質炭化ケイ素からなるハニカムユニット13をカーボンに変換させることによっても、コーティング層を形成することができる。
さらに、シリコンを充填した多孔質炭化ケイ素からなるハニカムユニット13からシリコンを除去し、露出した多孔質炭化ケイ素をさらにカーボンに変換することによってもコーティング層16とすることができる。露出した多孔質炭化ケイ素をカーボンに変換する際には、例えば、周囲の雰囲気を0.8Torr以下の真空にし、1600~1700℃で96時間以上加熱処理を行えばよい。これにより、ハニカムユニット13からシリコンが除去され、露出した多孔質炭化ケイ素がカーボンに変換される。
上記赤外線放射体に含まれる遷移元素の酸化物とは、例えば、二酸化マンガン、酸化マンガン、酸化鉄、酸化コバルト、酸化銅及び酸化クロムから選ばれる少なくとも1種である。これらは、単独で用いてもよく、2種以上を併用してもよい。このような遷移金属の酸化物は、赤外線領域における放射率が高いため、放射率の高いコーティング層16を形成することができる。
軟化温度が400~1000℃である無機化合物としては、低融点高膨張ガラスが好ましく、具体的には、アルミナ珪酸ガラス、ポタッシュ鉛ガラス、ソーダ鉛ガラス、ソーダ亜鉛ガラス、ソーダバリウムガラス、バリウムガラス、ボロンガラス、ストロンチウムガラス、高鉛ガラス及びポタッシュソーダ鉛ガラスから選ばれる少なくとも1種である。
これらの低融点高膨張ガラスは、融解させてハニカムユニット13の面13aに塗布して加熱焼成処理する際に、ハニカムユニット13とのなじみが良いため、ハニカムユニット13の面13aにコーティング層16を容易にしかも強固に形成することができる。
無機化合物の軟化温度が400℃未満では、コーティング層16を形成した後に、ハニカムユニット13の温度が高くなるとコーティング層16が流動し易くなり、コーティング層16が剥がれ落ちやすくなり、一方、無機化合物の軟化温度が1000℃を超えると、コーティング材料を融解させてハニカムユニット13に塗布するのが難しくなる。
コーティング層16の厚みは、特に限定されるものではないが、2~50μmであることが望ましい。コーティング層16の厚みが2μm未満であると、ハニカムユニット13の面13aにおける反射率の低減効果が低くなり、コーティング層16の厚みが50μmを超えると、均一な厚みのコーティング層16の形成が難しくなる。
コーティング層16の表面には、上記のような研磨処理による粗化面が形成されていてもよい。
研磨処理は、ブラスト加工が望ましく、コーティング層の粗化面の表面粗さは、Ra0.5~50μmが望ましい。コーティング層の粗化面の表面粗さがこのような範囲であるこおて、太陽光の反射をより確実に低減できる。
コーティング層16は、例えば、以下の手順で形成することができる。
まず、コーティング層16を形成するためのコーティング液(コーティング材料)を調製する。
コーティング液の調製は、上記した赤外線放射体と無機化合物とを湿式混合することで行う。具体的には、赤外線放射体の粉末と、無機化合物の粉末とをそれぞれ所定の粒度、形状等になるように調製し、各粉末を所定の配合比率で乾式混合して混合粉末を調製し、さらに水を加えて、ボールミルで湿式混合することによりスラリーを調製する。混合粉末と水との配合比は、特に限定されるものでないが、混合粉末100重量部に対して、水100重量部が望ましい。ハニカムユニット13への塗布を行うために適度な粘度とする必要があるためである。また、必要によっては、コーティング液に有機溶剤を加えてもよい。
続いて、調整したコーティング液を、ハニカムユニット13の面13aに塗布する。コーティング液のハニカムユニット13への塗布方法は、均一な膜厚のコーティング層16が得られるものであれば特に限定されるものではないが、例えば、スプレーコート、カーテンコート、ディッピング、転写、ハケ塗り等の方法により行うことができる。
次に、塗布したコーティング液を、乾燥させて焼成することにより厚さ2~50μmのコーティング層16を形成する。焼成温度は、コーティング層16とハニカムユニット13(流路の壁の表面)との密着性が高まるような温度設定とする。これにより、本実施形態に係る集熱レシーバー10が得られる。
以下、本実施形態の集熱レシーバーの作用効果について列挙する。
本実施形態においては、本発明の第一実施形態の(2)~(4)の作用効果を奏するほか、下記の効果を奏する。
以下、本実施形態の集熱レシーバーの作用効果について列挙する。
(7)本実施形態の集熱レシーバーにおいては、熱吸収体に含まれるハニカムユニットは、太陽光(ヘリオスタットから集光された光)が照射される面(流路壁の表面)にコーティング層が形成されているので、太陽光の反射を抑制することができ、反射による熱損失を低減して、蓄熱性の高い集熱レシーバーとすることができる。
(8)本実施形態の集熱レシーバーにおいては、熱吸収体のコーティング層は、黒色であるので、より効率的に集熱レシーバーに光を吸収させることができ、より光の反射を抑制することができる。
(9)本実施形態の集熱レシーバーにおいては、熱吸収体のコーティング層は、多孔質カーボン、又は、遷移元素の酸化物を主成分とする赤外線放射体と、軟化温度が400~1000℃である無機化合物とを含む赤外線黒体塗料組成物からなるので、ハニカムユニット(流路壁の表面)との密着性に優れ、集熱レシーバーが高温状態となっても、コーティング層が剥離しにくい。
(10)本実施形態の集熱レシーバーにおいては、熱吸収体のコーティング層の厚みは、2~50μmであるので、コーティング液(コーティング材料)をハニカムユニット(流路壁)の表面に均一に塗布することができ、所望の厚みのコーティング層が形成された集熱レシーバーとすることができる。
以下、本発明の第四実施形態をより具体的に開示した実施例を示すが、本発明はこれらの実施例のみに限定されるものではない。
(実施例6)
ハニカムユニット13の面13aにブラスト加工処理を施す代わりに、コーティング層16を形成した以外は、実施例1と同様にして集熱レシーバー10を作製した。
コーティング層16は、以下の手順で形成した。
(コーティング液の調製工程)
MnO粉末65wt%、Fe粉末5wt%と、BaO-SiOガラス粉末10wt%とを乾式混合して混合粉末を調製し、混合粉末100重量部に対して水を100重量部加えて、ボールミルで湿式混合することによりコーティング液(コーティング材料)を調製した。
(コーティング液の塗布工程)
得られたコーティング液を、ハニカムユニット13の面13aに向けてスプレーコートによって塗布した。
その後、スプレーコートにより塗布層が形成されたハニカムユニット13を、100℃で2時間乾燥した後、空気中700℃で1時間加熱焼成する焼成工程を行って、厚み2μmのコーティング層16を形成した。この後、実施例1と同様にして、ハニカムユニット13の熱伝導率及び密度を測定した。
ハニカムユニット13の熱伝導率は、45W/m・K、密度は、2.7g/cmであった。
コーティング層16の厚みは、厚み方向に切断した後、走査型電子顕微鏡でその厚さを測定した。
また、得られたコーティング層16を有するハニカムユニット13について、実施例1と同様にして反射率及び放射率を測定した。ハニカムユニット13の面13aにおける反射率は9%、放射率は0.91であった。
反射率及び放射率の測定結果を表1に示す。
(実施例7)
コーティング層16の厚みを50μmに変更した以外は、実施例6と同様にして集熱レシーバー10を作製した。実施例1と同様にして、ハニカムユニット13の熱伝導率及び密度を測定した。
ハニカムユニット13の熱伝導率は、45W/m・K、密度は、2.7g/cmであった。
得られたコーティング層16について、実施例1と同様にして反射率及び放射率を測定した。ハニカムユニット13の面13aにおける反射率は9%、放射率は0.91であった。
反射率及び放射率の測定結果を表1に示す。
(実施例8)
コーティング層16を、多孔質カーボン層で形成し、コーティング層16の厚みを50μmとした以外は、実施例6と同様にして集熱レシーバー10を作製した。
多孔質カーボン層の形成は以下により行った。
すなわち、MnO粉末及びFeの代わりにカーボンブラックの粉末を使用し、コーティング液(コーティング材料)を調製した他は、実施例6と同様にして多孔質カーボン層を形成し、実施例1と同様にして、ハニカムユニット13の熱伝導率及び密度を測定した。
ハニカムユニット13の熱伝導率は、45W/m・K、密度は、2.7g/cmであった。
得られたコーティング層16について、実施例1と同様にして反射率及び放射率を測定した。ハニカムユニット13の面13aにおける反射率は15%、放射率は0.85であった。
反射率及び放射率の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
以下、実施例1~8及び比較例1~3の結果についてまとめて説明する。
表1に示した結果から明らかなように、実施例1~8に係る集熱レシーバーは、実施例1~3及び6~8と比較例1、実施例4と比較例2、実施例5と比較例3のように、集熱レシーバーの材質が同じものである実施例と比較例とを比較する。多孔質炭化珪ケイ素の集熱レシーバーの放射率は、実施例においては0.73~0.91の範囲であり、比較例の0.75に比べて高く、緻密質炭化ケイ素の集熱レシーバーの放射率は、実施例においては0.78であり、比較例の0.71に比べて高く、シリコンで充填された多孔質炭化珪ケイ素の集熱レシーバーの放射率は、実施例においては0.73であり、比較例の0.64に比べて高くなっている。その結果、集熱レシーバーの表面処理が行われていない比較例に比べて、表面処理が行われている実施例の方が放射率が高いことがわかる。したがって、本発明の実施例に係るレシーバーを太陽熱発電の集熱器として使用した場合には、吸収した光の熱を放熱して、熱媒体へと良好に伝えることができる。
また、太陽熱発電の集熱器として使用した場合には、放射率と熱伝導率との両方によって熱媒体へ熱を伝えることができる。すなわち、熱伝導率の高い材料からなるレシーバーであれば、昇温したレシーバーから貫通孔を通過する熱媒体へと熱が伝わることとなる。そして、放射率が高ければ、レシーバーからの放熱によっても熱媒体を良好に加熱することができる。
また、多孔質炭化ケイ素の集熱レシーバーの反射率は、実施例においては9~21%であり、比較例の25%に比べて低く、緻密質炭化ケイ素の集熱レシーバーの反射率は、実施例においては22%であり、比較例の36%に比べて低く、シリコンで充填された多孔質炭化ケイ素の集熱レシーバーの反射率は、実施例においては27%であり、比較例の36%に比べて低くなっている。その結果、実施例1~8に係る集熱レシーバーは、いずれも太陽光が照射される面に表面処理が施されていたため、比較例に比べて反射率が低くなっていることがわかる。したがって、本発明の実施例に係る集熱レシーバーを太陽熱発電の集熱器として使用した場合には、太陽光が照射される面から効率良く集熱レシーバーに熱を伝えることができると考えられる。
(第五実施形態)
以下、本発明の太陽熱発電装置の一実施形態である第五実施形態について説明する。
本実施形態に係る太陽熱発電装置では、本発明の第一実施形態に係る集熱レシーバーが用いられている。
図3(a)は、本発明の第五実施形態に係る太陽熱発電装置を構成するレシーバーアレイを模式的に示す正面図であり、図3(b)は、図3(a)に示すレシーバーアレイのB-B線断面図である。
図4は、本発明の第五実施形態に係る太陽熱発電装置を模式的に示す説明図である。
図3(a)、図3(b)に示すレシーバーアレイ20では、複数の集熱レシーバー10が太陽光照射面が開放された箱型の枠体22に熱吸収体11の太陽光の照射を受ける面を正面に向けて整列した状態で配置されている。
すなわち、集熱レシーバー10を構成する支持体12のガス出口12bは、枠体22の底部22aに結合しており、底部22aは、管22bと繋がっている部分を除いて密閉した空間となっている。従って、空気等の熱媒体14は、ハニカムユニット13に形成された流路13bを通過し、熱吸収体11により加熱された後、支持体12のガス出口12bを通って枠体22の底部22aに集まり、管22bを通って後述する蒸気発生器(ボイラー)33に導かれる。
実際には、管22b又は管22bに結合された容器等には、排気ポンプ等のガスを吸引する装置に結合している。したがって、排気ポンプ等を稼動させることにより、集熱レシーバー10の周囲にある空気等の熱媒体14をハニカムユニット13に形成された流路13bを通過させ、熱吸収体11に蓄積された熱を空気等の熱媒体14に伝達することができる。
図3(a)、(b)に示すレシーバーアレイ20では、集熱レシーバー10の周囲にある空気をハニカムユニット13の流路13bに導くようにしているが、枠体22の底部を2つの部屋を有する二重構造としてもよい。この場合、空気等の熱媒体14は、いきなりハニカムユニット13に形成された流路13bより入るのではなく、2つの部屋のうちの1つの部屋に入り、多数の集熱レシーバー10の間に存在する空間22cに入る。続いて、熱媒体14は、集熱部12aの間に形成された隙間から吹き出た後、直ぐに集熱レシーバー10のハニカムユニット13に形成された流路13bに入る。
上記のような構成とした場合には、熱媒体14は、最初に、温度の上昇した支持体12と熱交換するため、熱効率はより高くなる。
図4に示すように、本発明の太陽熱発電装置30では、中央タワー32の最も高い位置にレシーバーアレイ20が配設されており、その下に順次、蒸気発生器33、蓄熱器34、蒸気タービン35及び冷却器36が配設されている。また、中央タワー32の周囲には、多数のヘリオスタット37が配置されているが、これらヘリオスタット37は、反射角度や方向を自由に制御することが可能なように設定されており、時々刻々と変化する太陽の光をヘリオスタット37で反射し、中央タワー32のレシーバーアレイ20に集めるように制御されている。
蒸気発生器33は、蒸気タービン35を稼動させるための蒸気を発生させる部署である。蒸気発生器33では、レシーバーアレイ20の熱吸収体11により加熱された熱媒体14が管22bを通過した後、蒸気発生器33(ボイラー)中の配管に導かれ、熱媒体14と熱交換することにより加熱された水が水蒸気を発生させる。
発生した水蒸気は、蒸気タービン35に導入されて蒸気タービン35を稼動させ、この蒸気タービン35により発電機(図示せず)が稼動して電気が発生する。
蓄熱器34は、熱媒体14が得た熱を一時的に蓄熱する部材であり、熱容量が大きい蓄熱材を備えている。蓄熱材としては、例えば、溶融塩や、ケイ砂、セラミックス、コンクリート、黒鉛等の固形媒体が用いられる。
蓄熱器34には、管22bと繋がった蓄熱用配管(図示せず)が通っており、熱吸収体11により加熱された熱媒体14が蓄熱用配管内を通過することにより、蓄熱材に熱を供給する。蓄熱材は、上記のように熱容量が大きいため、多量の熱を吸収して蓄熱することができる。
蓄熱器34には、蓄熱用配管とは別の蒸気発生用配管(図示せず)も通っており、夜間等、太陽光を利用できない時間では、この蒸気発生用配管に加熱されていない熱媒体を流し、温度が上昇した蓄熱材により熱媒体を加熱する。
加熱された熱媒体は、蒸気発生器33に入って水蒸気を発生させ、上述したように、蒸気タービン35が稼動することにより、電気が発生する。
蒸気タービン35を通過した水蒸気は、冷却器36に導かれ、冷却器36で冷却されることにより水となり、所定の処理を行った後、蒸気発生器33に戻される。
この冷却器36において、蒸気発生器33を通過することにより冷却された熱媒体14は、冷却器36の冷却管(図示せず)を通るようにすることが好ましい。熱媒体14が冷却管を通ることにより加熱されるので、集熱レシーバー10で吸収した熱を効率良く利用することができる。また、上述したように、熱を回収した熱媒体14が、レシーバーアレイ20の多数の集熱レシーバー10の間に形成されている空間22cに入るように配管を構成すれば、さらに、集熱レシーバー10の支持体12の熱も有効に利用することができる。
上記本発明の第一実施形態に係る集熱レシーバーを用いた太陽熱発電装置について説明したが、本発明の第二~第四実施形態のいずれかに係る集熱レシーバーを用いても、第一実施形態に係る集熱レシーバーと同様の効果を得ることができる。
以下、本発明の第五実施形態に係る太陽熱発電装置の作用効果について列挙する。
(11)本実施形態の太陽熱発電装置においては、本発明に係る集熱レシーバーが用いられているので、照射された太陽光を、効率よく熱に変換することができ、効率よく発電を行うことができる。
(12)本実施形態の太陽熱発電装置においては、レシーバーアレイは、多数の集熱レシーバーを備えているので、太陽熱発電装置では、多量の太陽熱を利用することができ、多量の発電を行うことができる。
(13)本実施形態の太陽熱発電装置では、蓄熱器が用いられ、上記蓄熱器に太陽光により発生した熱を蓄えておくことができるので、太陽光のない夜間や雨の日等においても、発電を行うことができる。
(その他の実施形態)
本発明の第一実施形態では、熱吸収体11であるハニカムユニット13が多孔質炭化ケイ素からなる例を挙げて説明したが、他の多孔質セラミックを用いることも可能である。他の多孔質セラミックとしては、例えば、窒化アルミニウム、窒化ケイ素、窒化ホウ素等の窒化物セラミック、炭化ジルコニウム、炭化タンタル等の炭化物セラミック、アルミナ、ジルコニア、コージュライト、ムライト等の酸化物セラミックを挙げることができる。これらのセラミックは、それ自体が高い熱伝導率を有しているので、熱吸収体11として用いたときには、得られた熱をスムーズに熱媒体に伝達することができる。
本発明の第一実施形態では、ハニカムユニット13の流路13bの断面形状は四角形であったが、流路13bの断面形状は特に限定されるものではなく、六角形、八角形等であってもよい。
本発明の第一実施形態では、支持体12は、正面から見た形状は四角形であり、全体的な形状は、漏斗形状であったが、支持体12の形状はこれに限定されるものではなく、正面から見た形状が六角形、八角形等の形状であってもよい。
本発明の第一実施形態では、熱吸収体11として複数のハニカムユニット13が接着材層を介して結束されたものを用いた例を挙げて説明したが、熱吸収体11は一つのハニカムユニットからなるものであってもよい。
本発明の第一~第四実施形態では、ハニカムユニット13の太陽光の照射面のみに表面処理が施されていたが、断熱材や支持体の太陽光の照射面にも表面処理は施されていてもよい。
本発明の第一~第三実施形態では、太陽光の照射面における表面処理として、ブラスト加工処理を例に挙げて説明したが、ブラスト加工処理に代えて研削加工処理、溶融塩を用いたエッチング加工処理等も適用できる。
本発明の第四実施形態では、集熱レシーバーの表面処理としてコーティング層を形成したが、このコーティング層には、さらに研磨処理による粗化面を形成してもよい。このような構成によっても、太陽光の反射を低減することができる。
コーティング層に施す研磨処理としては、ブラスト加工処理、研削加工処理、研磨加工処理、溶融塩を用いたエッチング加工処理等が挙げられる。
図4に示した太陽熱発電システムは、本発明の第五実施形態に係る太陽熱発電システムの一例であって、発電システムを構成する部材等は図4に示すものに限定されるものではなく、必要に応じて適宜設定できる。例えば、図4に示す発電システムにおいて、再熱機等を設けてもよい。また、配管の数や配置等も適宜変更可能である。
10 集熱レシーバー
11 熱吸収体
12 支持体
12a 集熱部
12b ガス出口
13 ハニカムユニット
13a 面
13b 流路
14 熱媒体
15 接着材層
16 コーティング層
17 断熱材
18 太陽光
20 レシーバーアレイ
22 枠体
22a 底部
22b 管
30 太陽熱発電装置
32 中央タワー
33 蒸気発生器
34 蓄熱器
35 蒸気タービン
36 冷却器
37 ヘリオスタット

Claims (18)

  1. 太陽熱発電装置に使用される集熱レシーバーであって、
    前記集熱レシーバーは、熱媒体を通過させるための複数の流路が並設された1個又は複数個のハニカムユニットからなる熱吸収体と、
    該熱吸収体を収納、支持するとともに、熱媒体を流通させる支持体とからなり、
    前記熱吸収体は、炭化ケイ素を含んで構成され、
    太陽光が照射される面には、研磨処理又はコーティング処理のいずれかの表面処理が施されていることを特徴とする集熱レシーバー。
  2. 前記研磨処理は、ブラスト加工処理であり、前記太陽光が照射される面には、粗化面が形成されている請求項1に記載の集熱レシーバー。
  3. 前記粗化面の表面粗さRaは、0.5~5.0μmである請求項2に記載の集熱レシーバー。
  4. 前記コーティング処理により前記太陽光が照射される面には黒色のコーティング層が形成されている請求項1に記載の集熱レシーバー。
  5. 前記コーティング層は、遷移元素の酸化物を主成分とする赤外線放射体と、軟化温度が400~1000℃である無機化合物とを含む赤外線黒体塗料組成物からなる請求項4に記載の集熱レシーバー。
  6. 前記遷移元素の酸化物は、二酸化マンガン、酸化マンガン、酸化鉄、酸化コバルト、酸化銅及び酸化クロムから選ばれる少なくとも1種であり、
    前記無機化合物は、アルミナ珪酸ガラス、ポタッシュ鉛ガラス、ソーダ鉛ガラス、ソーダ亜鉛ガラス、ソーダバリウムガラス、バリウムガラス、ボロンガラス、ストロンチウムガラス、高鉛ガラス及びポタッシュソーダ鉛ガラスから選ばれる少なくとも1種からなる低融点高膨張ガラスである請求項5に記載の集熱レシーバー。
  7. 前記コーティング層は、多孔質のカーボン層である請求項4に記載の集熱レシーバー。
  8. 前記コーティング層の厚みは、2~50μmである請求項4~7のいずれかに記載の集熱レシーバー。
  9. 前記コーティング層の表面には、研磨処理による粗化面が形成されている請求項4~7のいずれかに記載の集熱レシーバー。
  10. 前記研磨処理は、ブラスト加工処理である請求項9に記載の集熱レシーバー。
  11. 前記粗化面の表面粗さRaは、0.5~5.0μmである請求項9又は10に記載の集熱レシーバー。
  12. 前記ハニカムユニットには、31.0~93.0個/cmの流路が形成され、流路間の壁部の厚さは、0.1~0.5mmである請求項1~11のいずれかに記載の集熱レシーバー。
  13. 前記ハニカムユニットは、緻密質炭化ケイ素からなる請求項1~12のいずれかに記載の集熱レシーバー。
  14. 前記ハニカムユニットは、多孔質炭化ケイ素からなる請求項1~12のいずれかに記載の集熱レシーバー。
  15. 前記ハニカムユニットは、気孔がシリコンで充填された多孔質炭化ケイ素からなる請求項1~12のいずれかに記載の集熱レシーバー。
  16. 前記ハニカムユニットの気孔率は35~60%、平均気孔径は5~30μmである請求項14又は15に記載の集熱レシーバー。
  17. 前記熱吸収体と前記支持体との間には、断熱材が介装されている請求項1~16のいずれかに記載の集熱レシーバー。
  18. 請求項1~17のいずれかに記載の集熱レシーバーが用いられていることを特徴とする太陽熱発電装置。
PCT/JP2011/074522 2010-10-25 2011-10-25 集熱レシーバー及び太陽熱発電装置 WO2012057117A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11836250.8A EP2634504A1 (en) 2010-10-25 2011-10-25 Thermal receiver and solar thermal power generation device
CN201180046000XA CN103119379A (zh) 2010-10-25 2011-10-25 集热接收器及太阳能热发电装置
US13/860,589 US20130233303A1 (en) 2010-10-25 2013-04-11 Thermal receiver and solar thermal power generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-239009 2010-10-25
JP2010239009A JP5743486B2 (ja) 2010-10-25 2010-10-25 集熱レシーバー及び太陽熱発電装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/860,589 Continuation US20130233303A1 (en) 2010-10-25 2013-04-11 Thermal receiver and solar thermal power generation device

Publications (1)

Publication Number Publication Date
WO2012057117A1 true WO2012057117A1 (ja) 2012-05-03

Family

ID=45993824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074522 WO2012057117A1 (ja) 2010-10-25 2011-10-25 集熱レシーバー及び太陽熱発電装置

Country Status (5)

Country Link
US (1) US20130233303A1 (ja)
EP (1) EP2634504A1 (ja)
JP (1) JP5743486B2 (ja)
CN (1) CN103119379A (ja)
WO (1) WO2012057117A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208355A1 (ja) * 2013-06-26 2014-12-31 イビデン株式会社 熱吸収体、集熱レシーバーおよび太陽熱発電装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058693A (ja) * 2011-04-22 2017-03-23 日東電工株式会社 光学積層体
JP5929460B2 (ja) * 2012-04-18 2016-06-08 大日本印刷株式会社 ハードコートフィルム、偏光板、前面板及び画像表示装置
ES2558053B2 (es) * 2013-05-17 2016-07-06 Tyk Corporation Colector de calor para la generación de energía térmica solar
JP5946961B2 (ja) * 2013-05-17 2016-07-06 東京窯業株式会社 太陽熱発電用集熱体
JP2015031493A (ja) * 2013-08-06 2015-02-16 イビデン株式会社 集熱レシーバー及び太陽熱発電装置
JP2015031482A (ja) * 2013-08-06 2015-02-16 イビデン株式会社 集熱レシーバー及び太陽熱発電装置
JP2017036841A (ja) * 2013-11-15 2017-02-16 イビデン株式会社 蓄熱器
JP2015203515A (ja) * 2014-04-11 2015-11-16 イビデン株式会社 太陽熱蓄熱システム
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
JPWO2022065340A1 (ja) * 2020-09-28 2022-03-31

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108531A (en) * 1976-03-08 1977-09-12 Us Government Solar energy collector and method of forming surface film
US4121564A (en) * 1977-02-04 1978-10-24 Sanders Associates, Inc. Solar energy receiver
US4263895A (en) * 1977-10-17 1981-04-28 Sanders Associates, Inc. Solar energy receiver
JPH0297895A (ja) * 1988-10-03 1990-04-10 Agency Of Ind Science & Technol 蓄熱器
JPH0362798B2 (ja) * 1985-02-04 1991-09-27 Ibiden Co Ltd
JPH04190049A (ja) * 1990-11-26 1992-07-08 Furukawa Electric Co Ltd:The 集熱用部材
US5483950A (en) * 1992-07-18 1996-01-16 L. & C. Steinmuller Gmbh Solar device with an air receiver and air return
JP2001158680A (ja) * 1999-11-30 2001-06-12 Ibiden Co Ltd 炭化珪素・金属複合体及びその製造方法、並びにウェハ研磨装置用部材及びウェハ研磨装置用テーブル
JP2003329311A (ja) * 2002-05-14 2003-11-19 Takeo Saito 集光・集熱装置
JP2005024173A (ja) * 2003-07-02 2005-01-27 Mitsubishi Heavy Ind Ltd ソーラパネル
JP2005298304A (ja) * 2004-04-15 2005-10-27 Nippon Steel Corp 高緻密質炭化ケイ素セラミックスおよびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211210A (en) * 1977-02-02 1980-07-08 Exxon Research & Engineering Co. High temperature solar absorber coating and method of applying same
US4594995A (en) * 1982-12-14 1986-06-17 Garrison John D Carbonaceous selective absorber for solar thermal energy collection and process for its formation
JPH07139817A (ja) * 1993-11-18 1995-06-02 Ig Tech Res Inc 太陽熱集熱器
US5555878A (en) * 1995-01-30 1996-09-17 Sparkman; Scott Solar energy collector
JP3778544B2 (ja) * 2000-04-26 2006-05-24 イビデン株式会社 セラミック部材及びその製造方法、ウェハ研磨装置用テーブル
BR0209230B1 (pt) * 2001-04-23 2010-08-10 método para vedar canais numa colméia de cerámica.
JP2004205184A (ja) * 2002-12-20 2004-07-22 Sagae Shoji Kk 園芸用施設の加温装置及び加温方法
WO2009128324A1 (ja) * 2008-04-17 2009-10-22 三菱電機株式会社 基板の粗面化方法、光起電力装置の製造方法
FR2936956B1 (fr) * 2008-10-10 2010-11-12 Saint Gobain Ct Recherches Dispositif de filtration de particules
DE102009006952A1 (de) * 2009-01-30 2010-08-05 Saint-Gobain Industriekeramik Rödental GmbH Gehäuse für ein Solarabsorbermodul, Solarabsorbermodul und Solarabsorberanordnung sowie Verfahren zur Herstellung
CN102574039B (zh) * 2009-09-30 2015-09-02 住友大阪水泥股份有限公司 废气净化过滤器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108531A (en) * 1976-03-08 1977-09-12 Us Government Solar energy collector and method of forming surface film
US4121564A (en) * 1977-02-04 1978-10-24 Sanders Associates, Inc. Solar energy receiver
US4263895A (en) * 1977-10-17 1981-04-28 Sanders Associates, Inc. Solar energy receiver
JPH0362798B2 (ja) * 1985-02-04 1991-09-27 Ibiden Co Ltd
JPH0297895A (ja) * 1988-10-03 1990-04-10 Agency Of Ind Science & Technol 蓄熱器
JPH04190049A (ja) * 1990-11-26 1992-07-08 Furukawa Electric Co Ltd:The 集熱用部材
US5483950A (en) * 1992-07-18 1996-01-16 L. & C. Steinmuller Gmbh Solar device with an air receiver and air return
JP2001158680A (ja) * 1999-11-30 2001-06-12 Ibiden Co Ltd 炭化珪素・金属複合体及びその製造方法、並びにウェハ研磨装置用部材及びウェハ研磨装置用テーブル
JP2003329311A (ja) * 2002-05-14 2003-11-19 Takeo Saito 集光・集熱装置
JP2005024173A (ja) * 2003-07-02 2005-01-27 Mitsubishi Heavy Ind Ltd ソーラパネル
JP2005298304A (ja) * 2004-04-15 2005-10-27 Nippon Steel Corp 高緻密質炭化ケイ素セラミックスおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208355A1 (ja) * 2013-06-26 2014-12-31 イビデン株式会社 熱吸収体、集熱レシーバーおよび太陽熱発電装置

Also Published As

Publication number Publication date
JP5743486B2 (ja) 2015-07-01
JP2012093004A (ja) 2012-05-17
EP2634504A1 (en) 2013-09-04
US20130233303A1 (en) 2013-09-12
CN103119379A (zh) 2013-05-22

Similar Documents

Publication Publication Date Title
JP5743486B2 (ja) 集熱レシーバー及び太陽熱発電装置
JP5743485B2 (ja) 集熱レシーバー及び太陽熱発電装置
JP5632704B2 (ja) 集熱レシーバー及び太陽熱発電装置
US10544363B2 (en) Ceramic emitter
EP3093474B1 (en) Water recovery device
CN102765227B (zh) 一种开孔结构的波纹-蜂窝复合夹层材料及其制备方法
WO2009122538A1 (ja) ハニカム構造体
JPWO2008117621A1 (ja) セラミックハニカム構造体の製造方法
AU2012230467B2 (en) Solar absorber module
CN103553634A (zh) 一种选择吸收型光热转换陶瓷复合材料及其制备方法
JP5946961B2 (ja) 太陽熱発電用集熱体
KR102524017B1 (ko) 저온펌프 및 다른 큰 부피 형상물용 질화붕소 나노튜브 물질
WO2015019814A1 (ja) 集熱レシーバー及び太陽熱発電装置
WO2014208355A1 (ja) 熱吸収体、集熱レシーバーおよび太陽熱発電装置
WO2015019815A1 (ja) 集熱レシーバー及び太陽熱発電装置
JP6839564B2 (ja) 流体加熱部材、加熱された流体を製造する装置および気体を製造する装置
JP2015049015A (ja) 集光器
JP6450134B2 (ja) 集熱管
WO2015093416A1 (ja) 集熱レシーバー
ES2558053B2 (es) Colector de calor para la generación de energía térmica solar

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046000.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836250

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011836250

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE