WO2012056793A1 - X線を用いた骨付き肉の脱骨方法及び装置 - Google Patents

X線を用いた骨付き肉の脱骨方法及び装置 Download PDF

Info

Publication number
WO2012056793A1
WO2012056793A1 PCT/JP2011/068482 JP2011068482W WO2012056793A1 WO 2012056793 A1 WO2012056793 A1 WO 2012056793A1 JP 2011068482 W JP2011068482 W JP 2011068482W WO 2012056793 A1 WO2012056793 A1 WO 2012056793A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
cutting blade
reaction force
dimensional position
meat
Prior art date
Application number
PCT/JP2011/068482
Other languages
English (en)
French (fr)
Inventor
一裕 服部
広章 村並
達哉 海野
後藤 修
憲一郎 木村
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Priority to EP11835934.8A priority Critical patent/EP2532246B1/en
Priority to ES11835934.8T priority patent/ES2548545T3/es
Priority to JP2012524012A priority patent/JP5384740B2/ja
Priority to DK11835934.8T priority patent/DK2532246T3/en
Priority to BR112012019756-8A priority patent/BR112012019756B1/pt
Publication of WO2012056793A1 publication Critical patent/WO2012056793A1/ja
Priority to US13/477,694 priority patent/US8376814B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C17/00Other devices for processing meat or bones
    • A22C17/0073Other devices for processing meat or bones using visual recognition, X-rays, ultrasounds, or other contactless means to determine quality or size of portioned meat
    • A22C17/0086Calculating cutting patterns based on visual recognition
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C17/00Other devices for processing meat or bones
    • A22C17/004Devices for deboning meat

Definitions

  • the present invention in a bone carcass separation process of a carcass part of a livestock carcass provided as meat or a thigh part, the outline of the bone is accurately grasped by using X-rays, so that the yield is good and the cutting blade is
  • the present invention relates to a deboning method and apparatus capable of avoiding damage and the like.
  • the deboning process of the carcass part or thigh part (hereinafter referred to as “work”) of livestock carcasses used as meat such as pigs, cattle, sheep, etc. is roughly divided into a pretreatment process for removing hipbone etc. , A forcing process that cuts in the longitudinal direction along the surface of the forearm bone, humerus, crus, femur and the like, and a meat separation process for stripping meat after the placing process. Since the work is heavy, if the dismantling and deboning work is performed manually, heavy labor is required. For this reason, an operator has performed a deboning process while suspending and transporting a workpiece with a suspension device such as a gambler or a clamp device, but heavy labor has been forced.
  • a suspension device such as a gambler or a clamp device
  • Patent Document 3 Japanese Patent Laid-Open No. 6-324006
  • the position of meat muscles, tendons, bones, etc. is read using an X-ray irradiating means and indicated on two-dimensional or more coordinates. Based on the above, a technical matter for causing a cutting operation to be performed at a cutting unit is disclosed.
  • Patent Document 3 The technical matter disclosed in Patent Document 3 is an idea of using X-ray irradiation means to read the positions of meat muscles, tendons, bones, etc., and using the read results for meat muscle cutting or bone separation. was just a presentation. Therefore, even if the technical matter disclosed in Patent Document 3 is applied to the automatic deboning means disclosed in Patent Document 1 or Patent Document 2, the above problem cannot be solved. In other words, for workpieces that have complex shapes, are suspended, and move at high speeds at a constant speed or intermittent tact feed, there is no overload on the cutting blade, no reduction in operating efficiency, and high yield. Many production engineering problems remain in order to enable a sustained deboning process.
  • the present invention does not generate an overload on the cutting blade in the automatic deboning process of the workpiece, reduces damage to the cutting blade, etc., and maintains high operation efficiency.
  • the purpose is to improve the yield by means.
  • the bone removal method for bone with X-ray uses a multi-axis multi-joint arm provided with a cutting blade that operates based on a predetermined motion trajectory.
  • a comparison reference point on the contour line of the umbilical region or thigh region And a pre-process for presetting the three-dimensional position coordinates of the motion trajectory that is the target of the cutting blade and the two-dimensional position coordinates of the comparison reference point corresponding to the three-dimensional position coordinates of the target motion trajectory, X-ray image analysis step of obtaining a two-dimensional position coordinate of the contour line of the bone of the part or thigh part by irradiating each part or thigh part with X-rays and analyzing the transmitted X-ray image; Two-dimensional position of the comparison reference point corresponding to the target motion trajectory An operation trajectory correction step for obtaining a displacement
  • one or more comparison reference points are set at locations where it is easy to specify the position on the outline of the bone of the workpiece. Further, the three-dimensional position coordinates of the target motion locus and the two-dimensional position coordinates of the comparison reference point corresponding to the target motion locus are set in advance. The amount of positional deviation between the two-dimensional position coordinates and the two-dimensional position coordinates of the comparison reference point obtained in the X-ray image analysis step is obtained, and the target motion locus is corrected by the amount of positional deviation.
  • the bone shape inside the meat particularly the complicated shape and position of the joint part and the bone head part can be accurately detected for each work.
  • a highly accurate deboning process is possible.
  • the yield of meat can be improved, bone cutting can be avoided, and contamination of foreign matter such as bone fragments into meat can be prevented.
  • produces in a cutting blade the capacity
  • the diameter of the ankle bone immediately below the clamp position of the ankle of the umbilical region or thigh is obtained from the two-dimensional position coordinates of the contour of the bone of the umbilical region or thigh obtained in the X-ray image analysis step
  • An ankle measurement step for obtaining W 1 and an immediately above ankle bone diameter W 2 and two-dimensional position coordinates obtained in the X-ray image analysis step when the ankle bone diameter W 1 is larger than the ankle bone diameter W 2 in the ankle measurement step
  • the workpiece length measurement step for obtaining the length L 1 from the clamp position to the joint and the length L 2 from the joint to the epiphysis, and the ratio of the length L 1 and the length L 2 are not normal values
  • the length ratio is changed to a normal value, and an image information correction step of correcting the two-dimensional position coordinates obtained in the X-ray image analysis step may be further performed.
  • the ankle has a part where the cross-sectional diameter of the bone is minimized at the center of the lower leg bone, and the vicinity of this minimal part is clamped with a suspension device and suspended.
  • the workpiece is normally lowered by its own weight, and the clamp position is an enlarged portion near the tip from the minimal portion and the workpiece is locked to the suspension device. Therefore, all the workpieces can be suspended from the tip of the ankle at a substantially constant height.
  • X-ray image analysis is performed in a state of being suspended at this position, and an operation trajectory of the cutting blade is set based on the two-dimensional position information of the bone contour obtained by the X-ray image analysis.
  • the workpiece when the workpiece is clamped at a position where W 1 > W 2 , the workpiece may not be lowered to the enlarged diameter portion. In this state, X-ray image analysis is performed, and when the workpiece is lowered to the normal clamping position due to the load applied to the workpiece in the subsequent deboning process, the movement locus of the cutting blade matches the actual workpiece position. This causes a situation where the cutting blade is overloaded. Therefore, by performing the ankle measurement step, the image information correction step, and the image information correction step, even when the workpiece clamping position becomes abnormal, the operation trajectory of the cutting blade can be matched with the actual bone contour of the workpiece. it can.
  • the reaction force applied to the cutting blade when the cutting blade operates on the target motion trajectory is measured in advance, and the target reaction force data is stored, and in the cutting blade operation step, Or, a muscle is inserted in the longitudinal direction along the bone surface of the thigh, and the reaction force applied to the cutting blade during the cutting operation is measured, and the difference between the measured reaction force and the target reaction force data is set.
  • the corrected motion trajectory corrected in the motion trajectory correcting step may be changed so that the difference falls within the set range. For example, when the measurement reaction force exceeds the upper limit of the threshold value, the cutting blade is moved in a direction to detach from the bone, and the measurement reaction force is returned to the threshold value or less. When the measured reaction force falls below the threshold value, the cutting blade is brought close to the bone, and the measured reaction force is returned to the threshold value.
  • the cutting blade can be moved along the bone surface more accurately. Therefore, the meat yield can be further improved, the overload applied to the cutting blade can be avoided, and the blade breakage and bone cutting can be avoided.
  • the reaction force applied to the cutting blade can be obtained by detecting the current value and power value of an electric motor that drives the cutting blade, for example.
  • a strain gauge can be attached to a cutting blade or the like, and the value can be obtained from the value of the strain gauge.
  • an accurate reaction force that is not affected by the gravity applied to the cutting blade and the bending moment fluctuation caused by gravity is obtained. be able to.
  • a checkpoint is set at a location where the cutting blade is likely to be overloaded on the operation trajectory of the cutting blade, and in a region upstream of the checkpoint, a reaction force applied to the cutting blade during the cutting operation is measured,
  • the correction operation locus from the reaction force measurement point to the check point may be changed so that the difference is within the setting range.
  • the reaction force applied to the cutting blade during no-load operation is measured in advance, the no-load reaction force data is stored, and the reaction force applied to the cutting blade during the cutting operation of the cutting blade Compared with the no-load reaction force data, when these differences are outside the set range, it is determined that the cutting blade is damaged, and the operation is stopped. As a result, damage to the cutting blade can be quickly found and the operation of the deboning device can be stopped.
  • this setting range is uniquely set unlike the setting range for the difference between the measured reaction force and the target reaction force data.
  • the bone-removing device for bone-in meat using the X-ray according to the present invention that can be directly used for carrying out the method according to the present invention is a multi-axis multi-joint equipped with a cutting blade that operates based on a predetermined motion trajectory.
  • a device that includes an arm and a device that suspends and conveys a gait region or thigh region of a livestock carcass, and that performs a deboning process in a state where the umbilical region or thigh region is suspended, X-ray irradiating unit that irradiates X-rays to the umbilical part or thigh part, and X that penetrates the umbilical part or thigh part.
  • An X-ray incident part where a line enters, an image analysis processing part that analyzes a transmitted X-ray image incident on the X-ray incident part to obtain two-dimensional position information of a bone contour line, and controls the operation of the cutting blade
  • the controller is a contour line of the bone of the nape or thigh
  • a comparison reference point setting unit for setting a comparison reference point, a three-dimensional position coordinate of a motion trajectory that is a target of the cutting blade, and a two-dimensional position coordinate of a comparison reference point corresponding to the three-dimensional position coordinate of the target motion trajectory.
  • the comparison reference point setting unit sets one or more comparison reference points at locations where the position can be easily specified on the outline of the workpiece bone. Further, the three-dimensional position coordinates of the target motion trajectory and the two-dimensional position coordinates of the comparison reference point corresponding to the target motion trajectory are set in advance, and these pieces of information are stored in the storage unit.
  • the motion trajectory correction unit obtains a positional deviation amount between the stored two-dimensional position coordinates of the comparison reference point and the two-dimensional position coordinates of the comparison reference point obtained by the image analysis processing unit, and the target motion trajectory is calculated by the positional deviation amount. To correct. By performing this process for each workpiece, the cutting blade can be accurately operated along the contour of the bone of each workpiece.
  • Controller of the present invention apparatus the ankle obtained from the two-dimensional position coordinates of the contour line of the bone obtained by the image analysis processing section, the ankle bone diameter W 2 of the ankle bone diameter W 1 and immediately above the right under the clamping position of the suspension conveying device a measuring unit, when the ankle bone size W 1 is larger than the ankle bone diameter W 2 at the ankle measuring unit, from the two-dimensional position coordinates of the bone obtained by the image analysis processing section, from the clamping position to the joint length L 1 And when the ratio of the workpiece length measurement part for obtaining the length L 2 from the joint to the end of the bone and the length L 1 and the length L 2 is not in the normal range, the length ratio is changed to a normal value, An image information correction unit that corrects the two-dimensional position information of the bone obtained by the image analysis processing unit may be provided.
  • W 1 and W 2 are measured by X-ray image analysis, and when W 1 > W 2 , lengths L 1 and L 2 are further measured by X-ray image analysis.
  • L 1 and L 2 are not in the normal range, re-calculate the two-dimensional position information of the check point by changing these ratios to normal. Thereby, even when the clamp position of the workpiece becomes abnormal, the operation trajectory of the cutting blade can be matched with the actual contour of the bone of the workpiece.
  • the device according to the present invention is provided with a reaction force measuring device for measuring a reaction force applied to the cutting blade, and the storage unit of the controller has a target reaction force obtained by measuring the reaction force applied to the cutting blade when the cutting blade operates on the target motion trajectory.
  • the data is stored, and the controller has the measured reaction force within the setting range when the difference between the reaction force measured by the reaction force measuring device during the cutting operation of the cutting blade and the target reaction force data is outside the setting range.
  • an operation trajectory changing unit that changes the operation trajectory of the cutting blade.
  • the motion trajectory change section For example, when the measured reaction force exceeds the upper limit of the threshold value, the cutting blade is moved in the direction of detachment from the bone so that the measured reaction force is returned to the threshold value or less, and when the measured reaction force falls below the threshold value, the cutting is performed. The blade is brought close to the bone, and the measurement reaction force is returned within the threshold value.
  • the reaction force applied to the cutting blade is measured, and the operation locus is corrected by the operation locus changing unit from the reaction force data, so that the cutting blade can be moved along the bone surface more accurately. Can do. Therefore, the meat yield can be further improved, the overload applied to the cutting blade can be avoided, and the blade breakage and bone cutting can be avoided.
  • the controller sets a checkpoint at a location where the cutting blade is likely to be overloaded on the operation trajectory of the cutting blade, and the reaction force measuring device cuts during the cutting operation in the upstream region of the checkpoint.
  • the reaction force applied to the blade is measured, and when the difference between the measured reaction force and the target reaction force data is outside the setting range at the movement locus changing unit, the reaction force measurement point is set so that the difference is within the setting range.
  • the corrective action trajectory from to the checkpoint may be changed.
  • the measurement data of the reaction force applied to the cutting blade during no-load operation is stored in the storage unit, the reaction force applied to the cutting blade during the cutting operation of the cutting blade, and the stored no-load reaction force data,
  • the storage unit determines that the cutting blade has been damaged and to include a determination unit that transmits an operation stop command.
  • this setting range is uniquely set unlike the setting range for the difference between the measured reaction force and the target reaction force data.
  • a multi-axis articulated arm provided with a cutting blade that operates based on a predetermined motion trajectory is used, with the animal carcass part or thigh part suspended through the ankle.
  • a comparison reference point is set on the contour line of the bone of the umbilical region or thigh region, and the three-dimensional position of the motion trajectory that is the target of the cutting blade.
  • the pre-process for presetting the coordinates and the two-dimensional position coordinates of the comparison reference point corresponding to the three-dimensional position coordinates of the target motion trajectory;
  • An X-ray image analysis step of analyzing the X-ray image to obtain a two-dimensional position coordinate of the contour of the bone or thigh part; a two-dimensional position coordinate of the comparison reference point corresponding to the target motion locus;
  • Comparison reference points obtained in the line image analysis process An amount of positional deviation from the two-dimensional position coordinates is obtained, an operation locus correcting step for obtaining a corrected operation loc
  • a multi-axis multi-joint arm provided with a cutting blade that operates based on a predetermined motion trajectory, and a device that suspends and conveys a livestock carcass part or thigh part.
  • a device that performs a deboning process in a state where the armor part or the thigh part is suspended it is arranged on the upstream side in the transport direction of the armor part or the thigh part from the multi-axis multi-joint arm, and the body part in the suspended state
  • an X-ray irradiating unit that irradiates the thigh region with X-rays
  • an X-ray incident unit that receives X-rays transmitted through the umbilical region or thigh region, and a transmitted X-ray image incident on the X-ray incident unit
  • an image analysis processing unit that obtains two-dimensional position information of the bone contour line and a controller that controls the operation of the cutting blade.
  • the comparison reference point setting section for setting the comparison reference point to A storage unit for storing the three-dimensional position coordinates of the motion trajectory that is the target of the blade, and the two-dimensional position coordinates of the comparison reference point corresponding to the three-dimensional position coordinate of the target motion trajectory, and the comparison reference point corresponding to the target motion trajectory
  • Motion trajectory correction unit for obtaining a displacement amount between the two-dimensional position coordinates of the reference point and the two-dimensional position coordinates of the comparison reference point obtained by the image analysis processing unit, and obtaining a corrected motion locus obtained by correcting the target motion locus by the amount of displacement
  • the cutting blade is operated with the corrected motion trajectory obtained by the motion trajectory correcting unit.
  • FIG. 1 shows a portion w (hereinafter referred to as “work w”) of a pig to be deboned.
  • the bone of the work w is a calcaneus located in the vicinity of the lower leg bone 2, the femur 3, the hipbone 4, and the knee joint 5 connecting the lower leg bone 2 and the femur 3 from the ankle 1 side. (Patellar) 6, and the meat part 7 is attached to these bones.
  • the operator manually removes the hipbone 4 and then the clamping device 12 of the automatic deboning device by the loading device. Suspended by. The workpiece w moves between the processing devices constituting the automatic deboning device while being suspended by the clamp device 12.
  • FIG. 2 is a flowchart showing the entire deboning process according to the present embodiment, and the outline of the entire deboning process of the present embodiment will be described with reference to FIG.
  • the thickness of the left and right parts of the work w is measured by two sets of measurement plates 14a and 14b, and whether the work w is the right leg or the left leg depending on the thickness difference of the left and right parts. Determine.
  • the full length measurement step the full length of the bone of the workpiece w is measured. In the workpiece w, there are uneven portions at the head portions of the knee joint 5 and the femur 3.
  • a spherical femoral sphere 3 a and a greater trochanter 3 b exist at the head of the femur 3.
  • the measurement plate 16 is applied from below to the femoral sphere 3 a located at the lowermost end of the femur 3, and the total length of the bone is measured from the distance between the reference point P that corresponds to the upper surface position of the clamp device 12 and the measurement plate 16.
  • the workpiece w is irradiated with X-rays, the X-ray image transmitted through the workpiece w is analyzed, and two-dimensional position information of the bone contour is obtained.
  • the rotating round blades 18 arranged in the horizontal direction are used to cut in the periphery of the ankle 1, and living tissues such as muscles and tendons attached around the ankle are removed. Disconnect.
  • three stages of bracing steps (1) to (3) are performed, and incisions indicated by the bracing lines S 1 to S 3 are made along the surface of the bone in the longitudinal direction of the bone.
  • a rotating circular blade 20 which is arranged in the vertical direction, as shown in the cut line S 4, an incision along the side of the knee cap 6. This cuts the living tissue adhering to the side surface of the osseous bone, facilitating separation of meat in the subsequent process.
  • the separator 22 is pressed against the upper surface of the meat part 7 and the separator 22 is pulled down to peel off the meat part 7 from the crus bone 2.
  • the meat part 7 is separated from the femur 3 by pulling down the separator 22 while cutting the biological tissue such as muscles and tendons attached near the head of the femur 3 with the round blade 24. To do.
  • FIG. 3 shows a part (the X-ray irradiation unit 30 and the muscle insertion unit 50) of the automatic deboning apparatus 10 according to the present embodiment.
  • a transport chain 26 is disposed in the horizontal direction so as to connect the processing stations, and the transport chain 26 is stretched between a driven sprocket 28 and a drive sprocket (not shown).
  • a number of clamp devices 12 are mounted on the transport chain 26 at equal intervals, and the workpiece w is suspended from each clamp device 12 via the ankle 1 and transported in the direction of the arrow.
  • the X-ray irradiation unit 30 is provided with an X-ray irradiation device 34 inside an X-ray box 32.
  • a region surrounded by the shielding wall 36 is disposed in front of the X-ray box 32, and an X-ray line sensor 38 is disposed in the region.
  • the shielding wall 36 is provided with an irradiation window 35 at a position where the X-ray r is irradiated toward the workpiece w, and the workpiece w is irradiated from the X-ray irradiation device 34 through the irradiation window 35.
  • the X-ray transmission image transmitted through the workpiece w is input to the X-ray line sensor 38.
  • the X-ray transmission image input to the X-ray line sensor 38 is displayed on the display 82 of the controller 80 that controls the overall operation of the automatic deboning apparatus 10.
  • the X-ray transmission image input to the X-ray line sensor 38 is subjected to image analysis by the image analysis processing unit 40, and the two-dimensional position coordinates of the bone contour of the workpiece w can be obtained.
  • the two-dimensional position coordinates are sent to the controller 80 and a robot controller 60 described later.
  • a creasing portion 50 is disposed on the downstream side of the X-ray irradiation unit 30 in the workpiece conveyance direction.
  • three scoring robots 52a to 52c that perform a three-step scoring process are arranged along the transport chain 26.
  • Each muscle placement robot includes 4 to 6-axis multi-axis multi-joint arms 54a to 54c and electric motors 56a to 56c for operating these multi-axis multi-joint arms. Knife-like cutting blades 58a to 58c are attached to the tip of each multi-axis articulated arm.
  • the multi-axis multi-joint arms 54a to 54c are controlled to control the operation of the cutting blades 58a to 58c, and the torque applied to each cutting blade during operation.
  • Torque sensors 59a to 59c for detecting the above are provided.
  • the torque sensor detects a torque value applied to the cutting blade by detecting a current value flowing through the electric motors 56a to 56c.
  • torque values that are always applied to the electric motors 56 a to 56 c are detected by the torque sensors 59 a to 59 c, and detection signals of the respective torque sensors are input to the robot controller 60.
  • the transfer position of each workpiece w is detected by the encoder 57 and input to the controller 80 and the robot controller 60.
  • FIG. 4 shows an operation trajectory for the right leg workpiece w (r) applied in the scoring step (1) as an example of the operation trajectory of the cutting blade.
  • step 1 shows a target motion trajectory.
  • the target motion trajectory assumes a workpiece w having an average size and shape.
  • Eight comparison reference points A 0 to H 0 are set in advance on the bone outline, and teaching points c00 to c99 are set on the target motion locus.
  • the comparison reference point is set at a site having a bone shape feature.
  • Step 2 in FIG. 4 shows a transmission image of the workpiece w (r) input to the X-ray line sensor 38. Comparing the two-dimensional position coordinates of the comparison reference point A 0 in Step 1, and a two-dimensional position coordinates of the comparison reference point A of Step 2 (two-dimensional position coordinates determined by analyzing the transmitted image in the image analysis processing section 40) Then, the positional deviation amount ⁇ A is obtained. Next, the three-dimensional position coordinates of the teaching points c00 to c09 in step 2 are corrected by the positional deviation amount ⁇ A. Similarly, the positional deviation amount of each comparison reference point is obtained, and the position of the teaching point corresponding to each comparison reference point is corrected by this positional deviation amount.
  • Step 3 The correspondence between the comparison reference point and the teaching point is shown in Step 3.
  • the position of the teaching point c10 is corrected by the displacement amount of the comparison reference point B
  • the positions of the teaching points c11 and c12 are corrected by the displacement amount of the comparison reference point C.
  • Step 3 shows the corrected motion trajectory.
  • the cutting blade 58a is operated with the corrected operation locus.
  • a teaching point that is highly likely to cause a risk that the cutting blade 58a bites into the bone is set as a check point.
  • the checkpoints are c09, c11, c19 and c32 (indicated by double circles).
  • Monitoring of the torque value applied to the cutting blade 58a is started from the upstream region of the set check point.
  • the corrected teaching point is further changed according to the monitoring result. That is, in the upstream region of the checkpoint, if the torque value exceeds the upper limit value of the setting range, the operation trajectory is changed in a direction to detach the cutting blade 58a from the bone, and if the torque value falls below the lower limit value, the correction is made. Change the motion trajectory so that the teaching point is closer to the bone.
  • FIG. 5A and 5B show actual X-ray transmission images input to the X-ray line sensor 38.
  • FIG. FIG. 5A shows the left leg work
  • FIG. 5B shows the right leg work.
  • the uneven portions of the workpiece w are in the vicinity of the knee joint 5 and in the vicinity of the head of the femur 3, and in particular, in order to accurately place these uneven portions, it is necessary to accurately know the position information of these uneven portions. Therefore, comparative reference points A to H are set in these uneven portions.
  • the comparison reference point is not provided for the central part of the lower leg bone or the straight bone part of the femoral center part
  • the bone contour of this part is determined by the reference point P of the clamping device 12 and the comparison reference point of the joint or the bone head.
  • the shape can be specified by interpolation.
  • the image analysis processing unit 40 obtains the two-dimensional position coordinates of these comparison reference points, and corrects the target motion locus of the cutting blade 58a based on the position information.
  • the comparison reference point setting unit 64 sets comparison reference points A 0 to H 0 on the contours of the knee joint 5 of the workpiece w and the femoral head of the femur 3 before the X-ray irradiation process.
  • the storage unit 62 of the robot controller 60 stores the two-dimensional position coordinates of the comparison reference points A 0 to H 0 , the three-dimensional position coordinates of the operation locus targeted by the cutting blades 58a to 58c, and the target operation locus of the cutting blade.
  • target torque data Measurement data of torque value applied to the cutting blade when operated
  • no-load torque data measurement of torque value applied to the cutting blade during no-load operation in which the cutting blade is operated without a workpiece Data
  • the motion trajectory correcting unit 66 includes two-dimensional position coordinates of the comparison reference points A 0 to H 0 corresponding to the target motion trajectory, and 2 of the comparison reference points A to H of the X-ray transmission image obtained by the image analysis processing unit 40.
  • a positional deviation amount with respect to the dimension position coordinates is obtained, and a target motion locus, that is, a corrected motion locus obtained by correcting the teaching point is obtained by the positional deviation amount.
  • the ankle measurement unit 68 determines the ankle bone diameter W 1 directly below the reference point P of the clamp device 12 and the reference from the two-dimensional position coordinates of the bone obtained by the image analysis processing unit 40. determine the ankle bone diameter W 2 immediately above the point P.
  • the workpiece length measurement unit 70 calculates the length L 1 from the clamp reference point P to the knee joint 5 and the knee joint 5 from the two-dimensional position coordinates of the bone obtained by the image analysis processing unit 40. determining the length L 2 to the lower end of the femur ball 3a from.
  • the image information correction unit 72 when the ratio (L 2 / L 1 ) is not in the normal range, the ratio is changed to a normal value, and the two-dimensional position coordinates of the X-ray transmission image obtained by the image analysis processing unit 40 are changed. Correct it.
  • the motion trajectory changing unit 74 is configured so that the difference between the torque value generated in the target motion trajectory stored in the storage unit 62 and the torque value actually detected by the torque sensors 59a to 59c during the cutting operation is within the set range. In addition, a command to change the operation locus is transmitted to the electric motors 56a to 56c.
  • the determination unit 76 compares the torque value applied to the cutting blade during the cutting operation with the no-load torque data stored in the storage unit 62, and the cutting blade is damaged when these differences are within the set range. It determines with having performed, and the signal which stops the driving
  • the alarm device 78 generates an alarm when the difference is within the set range.
  • FIG. 6A shows the first half of the driving operation procedure
  • FIG. 6B shows the second half of the driving operation procedure
  • the inside of the frame 40A is an operation performed by the image analysis processing unit 40
  • the inside of the frame 80A is an operation performed by the controller 80
  • the inside of the frame 60A is an operation performed by the robot controller 60.
  • the automatic deboning apparatus 10 When the shielding wall 36 is not in the shielding state, the automatic deboning apparatus 10 is returned to the start-up state, and when it is confirmed that the shielding state is in the shielding state (S16), an X-ray irradiation start command is issued from the controller 80 (S18).
  • an opening command for the irradiation window 35 is issued from the controller 80 (S20) and an imaging start command is issued (S22)
  • X-rays r are emitted from the X-ray irradiation device 34 through the irradiation window 35.
  • the X-ray r that has passed through the workpiece w is input to the X-ray line sensor 38.
  • an imaging end command (S24) and an X-ray irradiation end command (S26) are transmitted from the controller 80, and when the X-ray irradiation ends, a command for closing the irradiation window 35 is issued (S28).
  • the controller 80 When the controller 80 receives the two-dimensional position coordinates of the workpiece w, it sends it to the robot controller 60 (S42), and selects the operation of the apparatus depending on whether the left or right leg of the workpiece w is shown in FIG. An ankle cut process is implemented (S46).
  • the motion trajectory correction unit 66 stores the two-dimensional position coordinates of the comparison reference points A 0 to H 0 of the target motion trajectory stored in the storage unit 62 and the X-ray transmission obtained by the image analysis processing unit 40.
  • the comparison reference points A to H of the image are compared with the two-dimensional position coordinates to obtain the position deviation amount, and the three-dimensional position coordinates of the teaching point are corrected by the position deviation amount as described above (S44).
  • the controller 80 issues a creasing process start command to the robot controller 60 (S48).
  • the robot controller 60 transmits a start command for the muscle placement process to the muscle placement robots 52a to 52c (S50).
  • the torque sensors 59a to 59c start measuring the torque values applied to the drive motors 56a to 56c (S52). If the torque value T ⁇ T 1 ⁇ (set value) is satisfied after the start of the torque value measurement until the scoring process is completed (S54), the determination unit 76 does not damage the cutting blades 58a to 58c. It determines with it being in a load state.
  • the set value (T 1 - ⁇ ) can be set to a value different from the threshold value T 1 or T 2 by uniquely setting the value of ⁇ .
  • the operation path changing unit 74 when the torque value T ⁇ T 1, the operation path changing unit 74, the cutting blade in a direction toward the bone surface, to change the teaching points until the checkpoint from the current position (S66).
  • the threshold value (lower limit) T 1 and the threshold value (upper limit) T 2 are set in advance at different teaching points on the motion trajectory and stored in the storage unit 62.
  • the bone cutting process is performed while selecting the operation of the apparatus depending on whether the work w is the left leg or the right leg (S72). Further, the same operation selection is performed, and the crus bone separation step (1) (S74), the crus bone separation step (2) (S76), and the femur separation step (S78) are sequentially performed.
  • FIG. 7 is an example of experimental data of the creasing step (1), where the vertical axis represents the torque value T loaded on the electric motor 56a, and the horizontal axis represents the teaching point in the operation locus.
  • the numbers on the horizontal axis correspond to the teaching point numbers shown in FIG.
  • a curve H is a no-load torque data curve indicating a torque value loaded on the electric motor 56 a when the cutting blade 58 a is in an unloaded state
  • a curve I is operated on the target operation locus by the cutting blade. It is a target torque data curve showing a torque value when an overload is not applied to the cutting blade 58a and the yield is good.
  • Curve J is an actual torque curve that shows actual torque values when the automatic deboning apparatus 10 is actually operated. It shows that the torque value T is larger than the target value indicated by the curve I in the vicinity of the teaching points c18 to c22 (located in the vicinity of the femoral head) of the actually measured torque curve J. Therefore, it is shown that the torque value T can be returned to the normal value after the teaching point c22 by shifting the cutting blade 58a away from the bone part by the operation locus changing unit 74.
  • an automatic loading device 84 that suspends the workpiece w from the clamp device 12 is provided upstream of the X-ray irradiation unit 30 in the moving direction of the workpiece w.
  • the workpiece w is temporarily transferred from the automatic loading device 84 to the clamp table 86, and then pushed by a pusher (not shown), slid on the clamp table 86 and inserted into the clamp device 12.
  • the lower leg bone 2 is composed of a tibia 2a and a tibia 2b.
  • FIG. 9 shows a state of being delivered to the clamping device 12 at a normal clamping position K.
  • the ankle 1 has a portion 2c where the bone cross-sectional diameter is minimized on the side of the crus bone 2 from the tip, and is inserted into the clamp device 12 near the minimal portion 2c. Thereafter, normally, the workpiece w is lowered by its own weight, and is locked to the clamp device 12 from the minimal portion 2c to the enlarged diameter portion 2d near the tip.
  • Step 1 in FIG. 10 the bone of the ankle 1 of the workpiece w is clamped below the ankle 1 because the bone is thin or the skin is thick, and ⁇ h above the normal clamping position K.
  • the workpiece w may not be lowered even by its own weight.
  • X-ray irradiation is performed.
  • Step 2 in FIG. 10 when a downward load by the cutting blade is applied to the work w in the creasing process, the work w is only ⁇ h up to the diameter-expanded portion 2d. Descend. Therefore, the height of the work w is shifted by ⁇ h between the X-ray irradiation and the placement.
  • FIG. 12A shows a normal clamping position
  • FIG. 12B shows an abnormal clamping position
  • the work length measurement unit 70 calculates the length L 1 shown in FIG. 13 from the two-dimensional position coordinates of the work w obtained by the image analysis processing unit 40. and obtaining the length L 2 (S98).
  • the difference (W 1 ⁇ W 2 ) is negative, the two-dimensional position coordinates obtained by the image analysis processing unit 40 are not corrected. Note that the length L 1 is the length from the clamp position to the knee joint 5, the length L 2 is the length from the knee joint 5 to the lower end of the femur ball 3a.
  • the two-dimensional position coordinates are recalculated at the normal ratio (S102), and the two-dimensional position coordinates are corrected (S104).
  • the corrected two-dimensional position coordinates are transmitted to the controller 80 (S106).
  • the creasing method in the creasing step (1) will be described with reference to FIGS. 14 to 17, taking the right leg work w (r) as an example.
  • the meat part around the femur 3 is composed of a, shintama b, and c at first, and a fat layer d is present outside c.
  • the cutting blade 58a creasing robot 52a first, from the bottom of the lower leg bone 2 to the top of the knee cap 6, add cut obliquely along the cutting line C 1 (c01 ⁇ c04) . Thereafter, a cut along the cutting line C 2 from top to bottom again (c06 ⁇ c99).
  • the cutting line C 2 while along the fascia e with the cutting blade 58a at the boundary between the inner thigh a Toshintama b, cut between inner thigh a Toshintama b, and periosteum of the femur surface Disconnect.
  • Hatching f indicates a cut surface between a and tamama b
  • hatching g indicates a cut surface along the surfaces of the lower leg 2 and the femur 3.
  • FIG. 17A to 17C are views showing the quality of the cutting line.
  • Incision line C 3 shown in FIG. 17A is a cut line along the fascia e, it is possible to good crease not to damage fascia e.
  • Cutting line C 4 shown in FIG. 17B hurt Shintama side fascia e, a poor creasing the loss meat m the Shintama b occurs.
  • Cutting lines C 5 shown in FIG. 17C damage the inner thigh side fascia e, cause loss meat m the inner thigh a, also can not cut the femoral periosteum, femoral periosteum remains on femoral, meat It will be a bad case that will worsen the yield.
  • a is covered with a shintama b. Since the boundary between Uchimo a and Shintama b is a three-dimensional curved surface, in order to cut along the fascia e with a straight knife-like cutting blade, first, from the lower part of the lower leg bone 2 It is necessary to insert a cutting blade into the fascia e. That is, first be a slit cut line C 1, when cut in a subsequent cutting line C 2, that triggers the knife-like cutting blade enters smoothly between the fascia e.
  • the cutting line C 1 only the cutting inner thigh a, when in a position that does not cut the Shintama b cutting blade 58a is turned on, the cutting line C 2, cutting blade 58a is The thigh can enter the inside of a, and can be cut open so as to slide on the fascia e on the shintama b side.
  • the cutting line C 1 is displaced upward or downward, when cutting the cutting line C 2, the cutting blade is less likely to enter the fascia e.
  • X-ray image analysis of the workpiece w is performed, the shape and position of the bone of the knee joint 5 can be accurately grasped, and the operation trajectory of the cutting blade 58a can be accurately positioned according to this, so that the cutting line C 1 can be accurately positioned. Therefore, it is possible to incision by the cutting line C 3 shown in FIG. 17A. Therefore, the yield can be improved without damaging a or shintama b.
  • This flat bone cutting step is a step of cutting biological tissues such as muscles and tendons attached to the side surfaces of the flat bone 6 with the rotating round blade 20.
  • the rotary round blades 20 arranged in the vertical direction are lowered to form a cut surface i along the side surface of the further bone 6.
  • FIG. 19 shows a driving device 90 for the rotating round blade 20.
  • a drive motor for the rotary round blade 20 is built in a motor casing 92.
  • An air cylinder 96 is fixed to the lift 94 in the vertical direction.
  • the frame 92a of the motor casing 92 is coupled to the arm 100 at a certain angle, and the coupling portion between the frame 92a and the arm 100 and the piston rod 98 of the air cylinder 96 are coupled to the shaft 93 so as to be rotatable.
  • the other end of the arm 100 is rotatably attached to a support shaft 102 attached to a lifting platform 94.
  • the axis 20a of the motor casing 92 and the rotating round blade 20 is inclined in accordance with the vertical movement of the piston rod 98, and the angle of the rotating round blade 20 can be made variable.
  • the boss portion 94 a of the lifting platform 94 is guided by a guide bar 104 erected in the vertical direction on the platform 103.
  • a screw rod 106 is erected adjacent to the guide bar 104, and the screw rod 106 is rotationally driven by a drive motor 108. Due to the rotation of the screw rod 106, the lifting platform 94 moves up and down.
  • the comparison reference point B is set to the knee joint 5 among the comparison reference points A to H, and the cutting start height of the cutting plane i is set to the same height as the comparison reference point B. By setting, the cutting start height of the cutting plane i can be accurately positioned.
  • comparison reference point E is set at the lower end of the flat bone 6, and the cutting end height of the cutting plane i is set to the same height as the comparison reference point E, whereby the cutting end height of the cutting plane i is set. Positioning can be performed with high accuracy.
  • the meat separation process in the femur 3 of this embodiment will be described with reference to FIG.
  • rotating round blades 24 arranged in the horizontal direction are used.
  • the rotary round blade 24 is moved in the horizontal direction to approach the work w (r), and the living tissue attached to the lower end of the further bone 6 and the surface of the femur 3 is cut.
  • the meat portion 7 is separated from the femur 3 by simultaneously performing the cutting operation and lifting the clamp device 12 and pressing the meat portion with the separator 22.
  • the cutting position j is located at the lower end of the flat bone 6 and coincides with the comparison reference point E.
  • the rotating round blade 24 cuts the living tissue adhering to the lower end of the flat bone 6.
  • the cutting position k is located at the femoral head
  • the cutting position n is located at the lower end of the femoral head. While pressing and peeling the meat part adhering to the femur 3 with the separator 22, the biological tissue on the surface of the femur is cut at the cutting position k, and the femur 3 and the meat part are separated at the cutting position n.
  • the rotary round blade 20 is set to the cutting position j, k and n can be accurately positioned. Therefore, the meat separation process of the femur 3 can be performed efficiently and the meat yield can be improved.
  • comparison reference points A to H are set as bone feature parts, X-ray image analysis is performed for each workpiece w, and a comparison reference point corresponding to the operation locus of the target cutting blade.
  • Comparison reference points A to H of the two-dimensional position coordinates A 0 to H 0 and the workpiece w obtained by X-ray image analysis The amount of positional deviation with respect to the two-dimensional position coordinate is obtained, the three-dimensional position coordinate of the target motion trajectory is corrected by the amount of positional deviation, and the cutting blade is operated along this corrected motion trajectory.
  • the cutting blade can be operated with an accurate motion trajectory along the surface of the bone.
  • the workpiece w is clamped at an abnormal position with respect to the clamping device 12, and the difference between the two-dimensional position coordinates of the bone of the workpiece w obtained by X-ray image analysis and the height of the workpiece w at the time of muscle placement in the subsequent process. Is detected in advance and the two-dimensional position coordinates obtained by X-ray image analysis are corrected to the normal position at the time of creasing, so the cutting blade is overloaded at the time of creasing You can avoid the situation of joining.
  • the position information is obtained by X-ray image analysis of the workpiece w, and the torque value applied to the cutting blade is measured, and this torque value is set for the target reaction force data. Since the operation of the cutting blade is changed so as to be within the range, the cutting blade can be further accurately moved along the surface of the bone. Therefore, it is possible to further improve the meat yield, to avoid overloading the cutting blade, and to prevent damage to the cutting blade, bone cutting, and the like.
  • a check point is set at a position where the cutting blade tends to bite into the bone on the movement trajectory of the cutting blade, that is, the knee joint 5 and the femoral head, and the torque value applied to the cutting blade from the upstream region of the check point is monitored. Since the torque value is controlled so as not to be excessive, it is possible to prevent the cutting blade from biting into the bone at the check point.
  • the torque value applied to the cutting blade during no-load operation is stored in the storage unit 62, and the torque value is compared with the torque value applied to the cutting blade during the creasing process, so that the cutting blade is quickly damaged. Can be found. And the operation
  • the creasing step (1) the bone shape of the workpiece w by the X-ray image analysis, the position can be accurately grasped, a cut line C 1 and C 2 can be accurately positioned. Therefore, it is possible to accurately cut between a and shintama b without damaging the fascia e, and it is possible to eliminate the occurrence of lost meat. Further, in the bone cutting process, the cutting start point and the cutting end point of the cutting plane i can be accurately positioned based on the set comparison reference points B and E. Therefore, the meat yield can be improved and the operation efficiency of the automatic deboning apparatus 10 can be improved.
  • the cutting positions j, k, and n by the rotating round blade 24 can be accurately positioned based on the set comparison reference points E to H, so that the meat yield can be improved.
  • the operational efficiency of the automatic deboning apparatus 10 can be improved.
  • FIG. 22A shows the amount of remaining meat remaining on the workpiece w after the deboning process according to the present embodiment
  • FIG. 22B shows the deboning process disclosed in Patent Document 1 or 2 where X-ray image analysis is not performed.
  • the amount of remaining meat remaining in the post-work w is shown. From these figures, it can be seen that the present embodiment can reduce the amount of remaining meat by 10 g or more than the conventional method.
  • FIG. 23A and FIG. 23B show the result of muscle insertion below the knee joint according to the present embodiment
  • FIG. 23C shows the result of muscle insertion of the knee joint part by the conventional deboning process without X-ray image analysis.
  • points A, B, C, and D indicate comparison reference points A, B, C, and D in FIG.
  • M indicates a bone cut portion where a part of the lower leg bone 2 is cut by the cutting blade
  • N indicates a remaining meat portion where the remaining meat remains attached to the lower leg bone 2. . It can be seen that the meat part is more accurately cut along the bone surface in this embodiment.
  • FIG. 24A shows the result of muscle placement at the femur site according to the present embodiment
  • FIG. 24B shows the result of muscle placement at the femur site by the conventional deboning process.
  • the femoral periosteum cut and the bracing around the femoral ball 3a are stably performed, and the amount of remaining meat is reduced.
  • the femoral head crack has occurred in the sites O and Q.
  • FIG. 25A shows the remaining state of the workpiece w after meat separation according to the present embodiment
  • FIG. 25B shows the remaining state after meat separation by the conventional deboning process
  • FIG. 25A shows the remaining thickness of the knee joint 5, the femur 3 and the femoral ball 3a.
  • the amount of remaining meat is less than 40 g
  • R is a bone cut site, and the surface of the bone is cut in places at this site R.
  • U is a remaining portion, and the remaining portion remains attached at this portion U.
  • FIG. 26 to FIG. 28 show the state of the cut surface of fascia e at the boundary between a and shintama b in the scoring step (1) of this embodiment.
  • FIG. 26 shows a good cut surface obtained by this embodiment.
  • the fascia e on the shintama side is not damaged and remains in good condition.
  • reference numeral 3 denotes a femur.
  • FIGS. 27 and 28 are shown as comparative examples, and are bad cutting examples in which X-ray image analysis of the workpiece w is not performed.
  • the fascia on the side of shintama b is cut and red meat comes out.
  • the part of the shintama must be removed when removing the fascia on the side of the thigh. Part of the meat is lost.
  • Fig. 28 the fascia of a is cut out and red meat is coming out. Since some of the stuff is attached on the shintama b, when shintama fascia is removed, some of the stuff must be removed. It becomes. In addition, since the periosteum of the femur 3 is not cut at the location V, the meat yield deteriorates.
  • FIG. 29 shows a pretreatment process by an operator's manual operation
  • FIG. 30 shows a deboning process by an automatic deboning apparatus.
  • the framework of the heel / body portion 110 after the carcass is largely divided is constituted by a spine 112, a rib 114, a spinous process 116, a humerus 118, and a forearm bone 120. Arms, how unit 110, along the cutting line C 6, is divided into a loin portion 124 it was somethin arms 122.
  • the roasted portion 124 divided from the forehead portion 122 is sent to another deboning process.
  • the umbilicus 122 is removed from the fat layer 126 at the neck of the umbilicus 122, and then the flesh 128 on the boundary side with the shoulder is turned.
  • the upper meat 132 of the scapula 130 is peeled off.
  • the automatic deboning apparatus of this embodiment has the same configuration as that of the first embodiment. Therefore, first, a plurality of comparison reference points A, B, C,... Are set at easy-to-identify locations on the bone outline.
  • the controller of the automatic deboning device the three-dimensional position coordinates of the target movement trajectory of the cutting blade in the creasing process and the meat separation process, and data on the normal torque value applied to the cutting blade during the cutting operation, etc. Saved.
  • X-ray irradiation and X-ray image processing are performed on the umbilical portion 122, and the target motion trajectory is corrected based on the two-dimensional position coordinates obtained by the X-ray image processing.
  • creasing shown by incision line S 5 in incision making (1) is performed, then the creasing shown by incision line S 6 in incision making (2) is performed, then, scapula 130 is removed.
  • the torque value applied to the cutting blade is compared with the above-mentioned normal torque value data, and the operation trajectory of the cutting blade is applied so that the cutting blade is not overloaded. Is controlled.
  • the present embodiment can obtain the same effects as those of the first embodiment.
  • the present invention in the automated deboning process of the meat carcass for meat or the thigh, accurate creasing along the bone surface is possible, the yield is improved, and the cutting blade is excessively cut. The load can be prevented.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Processing Of Meat And Fish (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

ワークの自動脱骨工程において、切断刃に対する過負荷を発生せず、切断刃の損傷等を低減して運転効率を高く維持し、かつ肉の歩留まりを向上させることを目的とする。自動脱骨装置10において、筋入れ部50のワーク搬送方向上流側にX線照射部30が設けられている。X線照射部30では、X線照射装置34からワークwに向けてX線rが照射され、ワークwを透過したX線透過画像は画像解析処理部40で画像処理され、骨部位の二次元位置座標を得る。筋入れ部50では、切断刃58a~cを備えた3基のロボットアーム52a~cが設けられている。コントローラ60の記憶部62には、切断刃58a~cの目標動作軌跡の3次元位置座標が保存されている。ワーク1個毎に画像解析処理部40で得た骨部位の2次元位置座標によって目標動作軌跡を修正する。

Description

X線を用いた骨付き肉の脱骨方法及び装置
 本発明は、食肉として供される家畜屠体のうで部位又はもも部位の骨肉分離工程において、X線を用いて骨の輪郭を正確に把握することで、歩留まりが良く、かつ切断刃の損傷等を回避可能な脱骨方法及び装置に関する。
 豚、牛、羊など食肉として供される家畜屠体のうで部位又はもも部位(以下「ワーク」という。)の脱骨工程は、大きく分けて、寛骨等を除去する前処理工程と、前腕骨、上腕骨、又は下腿骨、大腿骨等の表面に沿って長手方向に切込みを入れる筋入れ工程と、筋入れ工程後に肉の引き剥がしを行なう肉分離工程とからなる。ワークは重量物であるため、その解体脱骨作業を人手で行なうと重労働を余儀なくされる。そのため、ワークをギャンブレル又はクランプ装置等の懸垂装置で懸垂し、搬送しながら、オペレータが脱骨処理を行なっていたが、依然として重労働を余儀なくされていた。
 そのため、本発明者等は、先に、前処理工程を除き、その後の工程を自動化した脱骨手段を、特許文献1(国際公開WO2008/136513A1号公報)、及び特許文献2(国際公開WO2009/139032A1号公報)で提案している。
 この自動化手段の筋入れ工程は、前記懸垂装置でワークを足首を介して懸垂しながら、ワークの肉の中に埋没している骨を取り出す際に、懸垂装置によるクランプ位置を基点としたワークの骨の全長を測定する。この全長情報から、経験則により埋没している骨の輪郭を推測する。次に、切断刃を装備したロボットアームを操作し、該切断刃を推測された骨の輪郭に沿って動作させ、筋入れを実施している。
 この方式で全体処理数の80%程度はうまくいくが、ワークの大きさには個体差があるため、残りの20%は、骨に肉が残り、歩留まりが悪くなることがあった。また、切断刃が骨に食い込んで、切断刃に過負荷が加わり、切断刃が損傷して脱骨装置を停止させたことがあった。家畜屠体のうで部位又はもも部位は、関節部位や骨頭部位に凹凸変異点が多く存在し、ワークの個体差が大きいとき、これらの部位で骨の表面に沿って正確に切断刃を動作させるのは容易でない。
 脱骨工程においては、骨周りの筋、腱等の生体組織を正確に切断する必要があるが、肉に完全に埋没している骨の複雑な円弧状形状は、外側から視認できない。また、季節による肉付きの変化、農場による肉付きの違い等により、ワークの寸法自体にばらつきがあるので、ワークによっては完全に筋や腱を切ることができないことがある。また、ロボットアームの動作によっては、筋入れの際に切断刃に前述のような過負荷が加わるため、過負荷にならないように、個体誤差を見込んで安全サイドで切断刃を動作させていた。そのため、肉の歩留まりが低下する場合があった。
 特許文献3(特開平6-324006号公報)には、X線照射手段を用いて、肉の筋、腱、骨等の位置を読み取り、これを2次元以上の座標上に示し、この処理データに基づいて、切断部で切断動作を行なわせる技術事項が開示されている。
国際公開WO2008/136513A1号公開公報 国際公開WO2009/139032A1号公開公報 特開平6-324006号公開公報
 特許文献3に開示された技術事項は、X線照射手段を用いて、肉の筋、腱、骨等の位置を読み取り、この読み取り結果を肉の筋の切断や骨の分離に利用するというアイデアを提示したにすぎない。従って、特許文献3に開示された技術事項を特許文献1又は特許文献2に開示された自動脱骨手段に応用したとしても、前記問題点を解消できない。即ち、複雑な形状を有し、懸垂され、一定の速度又は断続的なタクト送りで高速移動するワークに対して、切断刃に対する過負荷を発生せず、運転効率を落とさず、かつ歩留まりを高く維持した脱骨処理を可能とするためには、多くの生産技術上の問題を残している。
 本発明は、かかる従来技術の課題に鑑み、ワークの自動脱骨工程において、切断刃に対する過負荷を発生せず、切断刃の損傷等を低減して運転効率を高く維持し、かつ従来の自動化手段より歩留まりを向上させることを目的とする。
 かかる目的を達成するため、本発明のX線を用いた骨付き肉の脱骨方法は、予め決められた動作軌跡に基づいて動作する切断刃を備えた多軸多関節アームを用い、家畜屠体のうで部位又はもも部位を足首を介し懸垂した状態で、うで部位又はもも部位の脱骨処理を行なう方法において、うで部位又はもも部位の骨の輪郭線上に比較基準ポイントを設定すると共に、切断刃の目標となる動作軌跡の3次元位置座標と、この目標動作軌跡の3次元位置座標に対応した比較基準ポイントの2次元位置座標とを予め設定する前工程と、うで部位又はもも部位毎にX線を照射し、透過されたX線画像を解析してうで部位又はもも部位の骨の輪郭線の2次元位置座標を得るX線画像解析工程と、目標動作軌跡に対応した比較基準ポイントの2次元位置座標と、X線画像解析工程で得られた比較基準ポイントの2次元位置座標との位置ずれ量を求め、位置ずれ量だけ目標動作軌跡を修正した修正動作軌跡を求める動作軌跡修正工程と、動作軌跡修正工程で求めた修正動作軌跡で切断刃を動作させ、うで部位又はもも部位の筋入れ又は肉分離を行なう切断刃動作工程と、からなるものである。
 本発明方法では、ワークの骨の輪郭線上で位置を特定しやすい箇所に1個以上の比較基準ポイントを設定する。また、目標動作軌跡の3次元位置座標及び目標動作軌跡に対応した比較基準ポイントの2次元位置座標を予め設定しておく。この2次元位置座標とX線画像解析工程で得られた比較基準ポイントの2次元位置座標との位置ずれ量を求め、位置ずれ量だけ目標動作軌跡を修正する。この工程をワーク毎に行なうことで、各ワークの骨の輪郭に沿って正確に切断刃を動作させることができる。そのため、切断刃の骨への食込みをなくし、切断刃の損傷を低減できて、運転効率を高く維持できると共に、歩留まりを向上できる。
 このように、本発明方法によれば、X線画像を解析することにより、ワーク毎に、肉内部の骨形状、特に関節部位や骨頭部位の複雑な形状と位置が正確に検出できるので、骨形状を経験則により推定していた従来の処理方法と比較して、精度の高い脱骨処理が可能になる。これによって、肉の歩留まりを向上させ、骨の切断を回避し、肉中への骨片などの異物混入を防止できる。また、切断刃に過負荷が発生するのを回避できるので、切断刃の駆動装置の容量及び動力を低減できる。
 本発明方法において、X線画像解析工程で得られたうで部位又はもも部位の骨の輪郭線の2次元位置座標から、うで部位又はもも部位の足首のクランプ位置直下の足首骨径W及び直上の足首骨径Wを求める足首計測工程と、足首計測工程で足首骨径Wが足首骨径Wより大のとき、X線画像解析工程で得られた2次元位置座標から、クランプ位置から関節までの長さL及び関節から骨頭端までの長さLを求めるワーク長さ計測工程と、長さLと長さLとの比が正常値でないとき、この長さ比を正常値に変更して、X線画像解析工程で得られた2次元位置座標を修正する画像情報修正工程と、をさらに行なうようにするとよい。
 足首部は、下腿骨の中央部に骨の断面径が極小になる部位があり、この極小部位付近を懸垂装置でクランプし、懸垂する。この時、通常は、ワークの自重でワークが下降し、クランプ位置は該極小部位から先端寄りの拡径部位でワークは懸垂装置に係止する。そのため、すべてのワークを足首の先端からほぼ一定の高さで懸垂できる。この位置で懸垂した状態でX線画像解析を行ない、X線画像解析で得られた骨の輪郭の2次元位置情報に基づいて、切断刃の動作軌跡を設定する。
 しかし、W>Wとなる位置でクランプしてしまった時、ワークは前記拡径部位まで下降しない場合がある。この状態でX線画像解析され、その後の脱骨工程で、切断刃による負荷がワークに加わることで、ワークが通常のクランプ位置まで下降すると、切断刃の動作軌跡が実際のワークの位置と合わなくなり、切断刃に過負荷が加わる事態が発生する。そこで、前記足首計測工程、画像情報修正工程及び画像情報修正工程を行なうことで、ワークのクランプ位置が異常となったときでも、切断刃の動作軌跡を実際のワークの骨の輪郭に合わせることができる。
 本発明方法において、前工程で、切断刃が目標動作軌跡で動作した時の切断刃に加わる反力を予め測定し、その目標反力データを保存すると共に、切断刃動作工程で、うで部位又はもも部位の骨の表面に沿って長手方向に切込みを入れる筋入れを行い、切断動作中に切断刃に加わる反力を測定し、測定した反力と目標反力データとの差分が設定範囲外であるとき、動作軌跡修正工程で修正した修正動作軌跡を該差分が設定範囲内となるように変更するようにするとよい。例えば、測定反力が閾値の上限を超えたとき、切断刃を骨から離脱する方向に移動させ、測定反力を閾値以下に戻すようにする。また、測定反力が閾値を下回ったとき、切断刃を骨に接近させ、測定反力を閾値内に戻す。
 このように、切断刃に加わる反力を計測することで、切断刃をさらに正確に骨の表面に沿わせて動作させることができる。そのため、肉の歩留まりをさらに向上でき、切断刃に加わる過負荷を回避でき、刃折れや骨の切断を回避できる。
 なお、切断刃に加わる反力は、例えば、切断刃を駆動する電動モータの電流値や電力値を検出することで求めることができる。あるいは切断刃などに歪ゲージを付設し、該歪ゲージの値から求めることができる。また、有負荷運転時に計測した反力データから無負荷運転時に計測した反力データを減算することで、切断刃に加わる重力や重力に起因した曲げモーメントの変動に影響されない正確な反力を求めることができる。
 本発明方法において、切断刃の動作軌跡上で切断刃に過負荷が生じやすい箇所にチェックポイントを設定し、チェックポイントの上流側領域で、切断動作中に切断刃に加わる反力を測定し、測定した反力と目標反力データとの差分が設定範囲外であるとき、この差分が設定範囲内となるように反力測定ポイントからチェックポイントまでの修正動作軌跡を変更するとよい。凹凸変異点が多い関節部位又は骨頭部位にチェックポイントを設定する。これによって、凹凸変異点が多い関節部位又は骨頭部位で、切断刃に過負荷が発生するのを未然に防止でき、切断刃の骨への食込みや切断刃破損、及び骨の切断等を防止できる。
 本発明方法において、前工程で、無負荷運転時に切断刃に加わる反力を予め測定し、その無負荷反力データを保存しておき、切断刃の切断動作中に切断刃に加わる反力と無負荷反力データとを比較し、これらの差が設定範囲外であるとき、切断刃が損傷したと判定し、運転を止めるようにするとよい。これによって、切断刃の損傷を速やかに発見して、脱骨装置の運転を停止できる。なお、この設定範囲は、測定反力と目標反力データとの差分に対する設定範囲とは異なり、独自に設定されるものである。
 また、前記本発明方法の実施に直接使用可能な本発明のX線を用いた骨付き肉の脱骨装置は、予め決められた動作軌跡に基づいて動作する切断刃を備えた多軸多関節アームと、家畜屠体のうで部位又はもも部位を懸垂搬送する装置とを備え、うで部位又はもも部位を懸垂した状態で脱骨処理を行なう装置において、多軸多関節アームよりうで部位又はもも部位の搬送方向上流側に配置され、懸垂状態のうで部位又はもも部位に対してX線を照射するX線照射部と、うで部位又はもも部位を透過したX線が入射するX線入射部と、X線入射部に入射した透過X線画像を解析して骨の輪郭線の2次元位置情報を得る画像解析処理部と、前記切断刃の動作を制御するコントローラと、を備え、コントローラは、うで部位又はもも部位の骨の輪郭線上に比較基準ポイントを設定する比較基準ポイント設定部と、切断刃の目標となる動作軌跡の3次元位置座標、及びこの目標動作軌跡の3次元位置座標に対応した比較基準ポイントの2次元位置座標を記憶する記憶部と、目標動作軌跡に対応した比較基準ポイントの2次元位置座標と、画像解析処理部で得られた比較基準ポイントの2次元位置座標との位置ずれ量を求め、位置ずれ量だけ目標動作軌跡を修正した修正動作軌跡を求める動作軌跡修正部と、を備え、動作軌跡修正部で求めた修正動作軌跡で切断刃を動作させるものである。
 本発明装置では、比較基準ポイント設定部で、ワークの骨の輪郭線上で位置を特定しやすい箇所に1個以上の比較基準ポイントを設定する。また、目標動作軌跡の3次元位置座標及び目標動作軌跡に対応した比較基準ポイントの2次元位置座標を予め設定し、これらの情報を記憶部に記憶されておく。動作軌跡修正部で、記憶された比較基準ポイントの2次元位置座標と、画像解析処理部で得られた比較基準ポイントの2次元位置座標との位置ずれ量を求め、位置ずれ量だけ目標動作軌跡を修正する。この工程をワーク毎に行なうことで、各ワークの骨の輪郭に沿って正確に切断刃を動作させることができる。そのため、切断刃の骨への食込みをなくし、切断刃の損傷を低減できて、運転効率を高く維持できると共に、歩留まりを向上できる。また、切断刃に過負荷が発生するのを回避できるので、切断刃の駆動装置の容量及び動力を低減できる。
 本発明装置のコントローラは、画像解析処理部で得られた骨の輪郭線の2次元位置座標から、懸垂搬送装置のクランプ位置直下の足首骨径W及び直上の足首骨径Wを求める足首計測部と、足首計測部で足首骨径Wが足首骨径Wより大のとき、画像解析処理部で得られた骨の2次元位置座標から、クランプ位置から関節までの長さL及び関節から骨頭端までの長さLを求めるワーク長さ計測部と、長さLと長さLとの比が正常範囲でないとき、この長さ比を正常値に変更して、画像解析処理部で得られた骨の2次元位置情報を修正する画像情報修正部と、を備えているとよい。
 X線画像解析によりW及びWを計測し、W>Wとなったとき、さらにX線画像解析により長さL及びLを計測する。LとLとの比が正常範囲でないとき、これらの比を正常値に変更してチェックポイントの2次元位置情報を算出し直す。これによって、ワークのクランプ位置が異常となったときでも、切断刃の動作軌跡を実際のワークの骨の輪郭に合わせることができる。
 本発明装置において、切断刃に加わる反力を測定する反力測定装置を備え、コントローラの記憶部は、切断刃が目標動作軌跡で動作した時の切断刃に加わる反力を測定した目標反力データを記憶し、コントローラは、切断刃の切断動作中に反力測定装置で測定された反力と目標反力データとの差分が設定範囲外であるとき、測定反力が設定範囲内となるように切断刃の動作軌跡を変更する動作軌跡変更部を備えているとよい。動作軌跡変更部は、
例えば、測定反力が閾値の上限を超えたとき、切断刃を骨から離脱する方向に移動させ、測定反力を閾値以下に戻すようにすると共に、測定反力が閾値を下回ったとき、切断刃を骨に接近させ、測定反力を閾値内に戻すものである。
 このように、切断刃に加わる反力を測定し、その反力データから動作軌跡変更部で動作軌跡を補正するようにしたので、切断刃をさらに正確に骨の表面に沿わせて動作させることができる。そのため、肉の歩留まりをさらに向上でき、切断刃に加わる過負荷を回避でき、刃折れや骨の切断を回避できる。
 本発明装置において、コントローラで、切断刃の動作軌跡上で切断刃に過負荷が生じやすい箇所にチェックポイントを設定し、反力測定装置で、該チェックポイントの上流側領域で切断動作中に切断刃に加わる反力を測定し、動作軌跡変更部で、測定した反力と前記目標反力データとの差分が設定範囲外であるとき、該差分が設定範囲内となるように反力測定ポイントからチェックポイントまでの修正動作軌跡を変更するとよい。凹凸変異点が多い関節部位又は骨頭部位にチェックポイントを設定することで、切断刃に過負荷が発生するのを未然に防止でき、切断刃の骨への食込みや切断刃の破損、及び骨の切断等を防止できる。
 本発明装置のコントローラは、記憶部に無負荷運転時に切断刃に加わる反力の測定データが記憶され、切断刃の切断動作中に切断刃に加わる反力と記憶された無負荷反力データとを比較し、これらの差が設定範囲外であるとき、切断刃が損傷したと判定し、運転停止指令を発信する判定部を備えているとよい。これによって、切断刃の損傷を速やかに発見して、脱骨装置の運転を停止できる。なお、この設定範囲は、測定反力と目標反力データとの差分に対する設定範囲とは異なり、独自に設定されるものである。
 本発明方法によれば、予め決められた動作軌跡に基づいて動作する切断刃を備えた多軸多関節アームを用い、家畜屠体のうで部位又はもも部位を足首を介し懸垂した状態で、うで部位又はもも部位の脱骨処理を行なう方法において、うで部位又はもも部位の骨の輪郭線上に比較基準ポイントを設定すると共に、切断刃の目標となる動作軌跡の3次元位置座標と、この目標動作軌跡の3次元位置座標に対応した比較基準ポイントの2次元位置座標とを予め設定する前工程と、うで部位又はもも部位毎にX線を照射し、透過されたX線画像を解析してうで部位又はもも部位の骨の輪郭線の2次元位置座標を得るX線画像解析工程と、目標動作軌跡に対応した比較基準ポイントの2次元位置座標と、X線画像解析工程で得られた比較基準ポイントの2次元位置座標との位置ずれ量を求め、位置ずれ量だけ目標動作軌跡を修正した修正動作軌跡を求める動作軌跡修正工程と、動作軌跡修正工程で求めた修正動作軌跡で切断刃を動作させ、うで部位又はもも部位の筋入れ又は肉分離を行なう切断刃動作工程とからなり、個々のワークのX線画像を解析することにより、ワーク毎に、肉内部の骨形状、特に関節部位や大腿骨頭の複雑な骨の形状と位置が正確に検出できるので、骨形状を経験則により推定していた従来の処理方法と比較して、精度の高い脱骨処理が可能になる。これによって、肉の歩留まりを向上させ、切断刃の損傷や骨の切断を回避し、肉中への骨片などの異物混入を防止できると共に、高効率な脱骨処理を可能とする。
 また、本発明装置によれば、予め決められた動作軌跡に基づいて動作する切断刃を備えた多軸多関節アームと、家畜屠体のうで部位又はもも部位を懸垂搬送する装置とを備え、うで部位又はもも部位を懸垂した状態で脱骨処理を行なう装置において、多軸多関節アームよりうで部位又はもも部位の搬送方向上流側に配置され、懸垂状態のうで部位又はもも部位に対してX線を照射するX線照射部と、うで部位又はもも部位を透過したX線が入射するX線入射部と、X線入射部に入射した透過X線画像を解析して骨の輪郭線の2次元位置情報を得る画像解析処理部と、前記切断刃の動作を制御するコントローラと、を備え、コントローラは、うで部位又はもも部位の骨の輪郭線上に比較基準ポイントを設定する比較基準ポイント設定部と、切断刃の目標となる動作軌跡の3次元位置座標、及びこの目標動作軌跡の3次元位置座標に対応した比較基準ポイントの2次元位置座標を記憶する記憶部と、目標動作軌跡に対応した比較基準ポイントの2次元位置座標と、画像解析処理部で得られた比較基準ポイントの2次元位置座標との位置ずれ量を求め、位置ずれ量だけ目標動作軌跡を修正した修正動作軌跡を求める動作軌跡修正部と、を備え、動作軌跡修正部で求めた修正動作軌跡で切断刃を動作させるように構成したので、前記本発明方法と同様の作用効果を得ることに加え、高効率な自動脱骨装置を実現できる。
本発明を豚もも部位の脱骨処理に適用した第1実施形態に係る前処理工程の工程図である。 前記第1実施形態の自動脱骨脱骨処理の工程図である。 前記第1実施形態の自動脱骨装置のブロック線図である。 前記第1実施形態で、切断刃の動作軌跡及び比較基準ポイントを設定した豚もも部位の構成図である。 前記第1実施形態で、左脚豚もも部位のX線透過画像を示す図である。 前記第1実施形態で、右脚豚もも部位のX線透過画像を示す図である。 前記第1実施形態で、自動脱骨装置の運転手順(前半)を示すフローチャートである。 前記第1実施形態で、自動脱骨装置の運転手順(後半)を示すフローチャートである。 前記第1実施形態で、切断刃に加わるトルク値を示す線図である。 前記第1実施形態で、ワーク自動投入装置の正面図である。 前記第1実施形態で、ワークの正常クランプ位置を示す説明図である。 前記第1実施形態で、ワークの異常クランプ位置を示す説明図である 前記第1実施形態で、画像情報修正工程を示すフローチャートである。 前記第1実施形態で、ワークの正常クランプ状態を示すX線透過画像の図である。 前記第1実施形態で、ワークの異常クランプ状態を示すX線透過画像の図である。 前記第1実施形態で、ワークの骨組みの説明図である。 前記第1実施形態で、筋入れ工程(1)の切断刃の動作軌跡を示す説明図である。 図14中のX-X矢視図である。 図14中のY-Y矢視図である。 筋入れ工程(1)で、良好な切断ラインを示す説明図である。 筋入れ工程(1)で、悪い切断ラインを示す説明図である。 筋入れ工程(1)で、別な悪い切断ラインを示す説明図である。 前記第1実施形態で、さら骨カット工程を示す説明図である。 前記さら骨カット工程の切断刃駆動装置の正面図である。 前記さら骨カット工程の切断刃の動作を示す拡大図である。 前記第1実施形態で、大腿骨からの肉分離工程の説明図である。 前記第1実施形態のワークの残肉量を示す図表である。 従来の脱骨処理で、ワークの残肉量を示す図表である。 前記第1実施形態で、ワークのひざ関節の残肉状態を示す図である。 前記第1実施形態で、ワークのひざ関節下の残肉状態を示す図である。 従来の脱骨処理方法で、ワークの残肉状態を示す図である。 前記第1実施形態で、ワークの大腿骨の筋入れ結果を示す図である。 従来の脱骨処理方法で、ワークの大腿骨の筋入れ結果を示す図である。 前記第1実施形態で、肉分離後のワークの残肉状態を示す図である。 従来の脱骨処理方法で、肉分離後のワークの残肉状態を示す図である。 前記第1実施形態の筋入れ工程(1)での筋入れ結果を示す図である。 筋入れ工程(1)の筋入れ結果の比較例を示す図である。 筋入れ工程(1)の筋入れ結果の別な比較例を示す図である。 本発明を豚うで部位の脱骨処理に適用した第2実施形態に係る前処理工程の工程図である。 前記第2実施形態の自動脱骨脱骨処理の工程図である。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
 本発明を豚のもも部位の脱骨工程に適用した第1実施形態を図1~図28に基づいて説明する。図1は、脱骨対象となる豚もも部位w(以下「ワークw」という。)を示している。図1において、ワークwの骨は、足首1側から、下腿骨2、大腿骨3、寛骨4、及び下腿骨2と大腿骨3とを接合しているひざ関節5付近に位置するさら骨(膝蓋骨)6で構成され、これらの骨に肉部7が付着している。ワークwは、本実施形態の自動脱骨装置で脱骨処理される前に、前処理として、オペレータが手作業で寛骨4を除去し、その後、投入装置により自動脱骨装置のクランプ装置12に懸垂される。ワークwは、クランプ装置12で懸垂された状態で自動脱骨装置を構成する各処理装置間を移動する。
 図2は、本実施形態に係る脱骨工程全体を示すフロー図であり、図2により、本実施形態の脱骨工程全体の概略を説明する。図2において、まず左右判別工程では、2組の測定板14a及び14bによって、ワークwの左右部位の肉厚を測定し、左右部位の肉厚の差によりワークwが右脚か又は左脚かを判定する。次に、全長測定工程で、ワークwの骨の全長を測定する。ワークwには、ひざ関節5と大腿骨3の骨頭部位に凹凸部位が存在する。大腿骨3の骨頭部位には、球状の大腿球3aと大転子3bとが存在する。大腿骨3の最下端に位置する大腿球3aに測定板16を下方から当て、クランプ装置12の上面位置に当る基準点Pと測定板16との距離から骨の全長を測定する。
 次に、X線照射工程で、ワークwにX線を照射し、ワークwを透過したX線画像を解析し、骨の輪郭の2次元位置情報を得る。次に、足首カット工程では、筋入れ工程の前段階として、水平方向に配置された回転丸刃18により、足首1の周囲に切込みを入れ、足首周囲に付着した筋、腱等の生体組織を切断する。次に、3段階の筋入れ工程(1)~(3)を行い、骨の長手方向に向け骨の表面に沿わせて、夫々筋入れラインS~Sで示す切込みを入れる。次に、さら骨カット工程で、上下方向に配置された回転丸刃20で、切込みラインSに示すように、さら骨6の側面に沿う切込みを入れる。これによって、さら骨側面に付着した生体組織を切断し、後工程での肉分離を容易にする。
 次に、下腿骨分離工程(1)及び下腿骨分離工程(2)で、セパレータ22を肉部7の上面に押し当て、セパレータ22を引き下げることで、下腿骨2から肉部7を引き剥がす。次に、大腿骨分離工程で、大腿骨3の骨頭付近に付着した筋、腱等の生体組織を丸刃24で切断しながら、セパレータ22を引き下げることで、大腿骨3から肉部7を分離する。
 図3は、本実施形態に係る自動脱骨装置10の一部(X線照射部30及び筋入れ部50)を示す。図3において、各処理ステーション間を結ぶように、水平方向に搬送チェーン26が配設され、搬送チェーン26は、従動スプロケット28と駆動スプロケット(図示省略)との間に掛け渡され、該駆動スプロケットによって矢印方向に移動する。搬送チェーン26には等間隔で多数のクランプ装置12が装着され、ワークwは、各クランプ装置12に足首1を介して吊下され、矢印方向に搬送される。
 X線照射部30には、X線ボックス32の内部にX線照射装置34が設けられている。X線ボックス32の前方に遮蔽壁36で囲まれた領域が配置され、該領域内にX線ラインセンサ38が配置されている。ワークwの搬送路が遮蔽壁36を横切って配置され、ワークwが該遮蔽領域に進入するとき、搬送路に面した遮蔽壁36が開く。ワークwが遮蔽壁36内に進入すると、遮蔽壁36は閉じられる。遮蔽壁36には、X線rがワークwに向けて照射される位置に照射窓35が設けられ、X線rが、X線照射装置34から照射窓35を通してワークwに照射される。ワークwを透過したX線透過画像は、X線ラインセンサ38に入力される。X線ラインセンサ38に入力されたX線透過画像は、自動脱骨装置10の運転全般を制御するコントローラ80のディスプレイ82に表示される。
 X線ラインセンサ38に入力されたX線透過画像は、画像解析処理部40で画像解析され、ワークwの骨の輪郭の2次元位置座標を得ることができる。この2次元位置座標はコントローラ80、及び後述するロボットコントローラ60に送られる。X線照射部30のワーク搬送方向下流側には、筋入れ部50が配置されている。ここでは、搬送チェーン26に沿って、3段階の筋入れ工程を行なう3基の筋入れロボット52a~cが配設されている。各筋入れロボットは、夫々4ないし6軸の多軸多関節アーム54a~c、及びこれら多軸多関節アームを動作させる電動モータ56a~cを備えている。各多軸多関節アームの先端には、ナイフ状の切断刃58a~cが装着されている。
 また、電動モータ56a~cを制御することで、多軸多関節アーム54a~cを制御し、切断刃58a~cの動作を制御するロボットコントローラ60と、運転中各切断刃に付加されるトルクを検出するトルクセンサ59a~cとが設けられている。該トルクセンサは、電動モータ56a~cに流れる電流値を検出することで、切断刃に付加されるトルク値を検出する。自動脱骨装置10の運転中、トルクセンサ59a~cによって、常に電動モータ56a~cに負荷されるトルク値を検出し、各トルクセンサの検出信号は、ロボットコントローラ60に入力される。各ワークwの搬送位置は、エンコーダ57によって検出され、コントローラ80及びロボットコントローラ60に入力される。
 図4に、切断刃の動作軌跡の一例として、筋入れ工程(1)で適用される右脚ワークw(r)用動作軌跡を示す。図中、ステップ1は目標動作軌跡を示す。目標動作軌跡は平均的な大きさ及び形状のワークwを仮定している。予め骨の輪郭線上に8箇所の比較基準ポイントA~Hが設定され、目標動作軌跡上にティーチングポイントc00~c99が設定されている。該比較基準ポイントは骨形状の特徴がある部位に設定される。
 図4のステップ2は、X線ラインセンサ38に入力されたワークw(r)の透過画像を示す。ステップ1の比較基準ポイントAの2次元位置座標と、ステップ2の比較基準ポイントAの2次元位置座標(透過画像を画像解析処理部40で解析して求めた2次元位置座標)とを比較し、その位置ずれ量ΔAを求める。次に、位置ずれ量ΔAだけステップ2のティーチングポイントc00~c09の3次元位置座標を修正する。以下同様にして、各比較基準ポイントの位置ずれ量を求め、この位置ずれ量だけ、夫々の比較基準ポイントに対応するティーチングポイントの位置を修正する。
 比較基準ポイントとティーチングポイントとの対応関係をステップ3に示している。例えば、比較基準ポイントBの位置ずれ量だけ、ティーチングポイントc10の位置を修正し、比較基準ポイントCの位置ずれ量だけ、ティーチングポイントc11及びc12の位置を修正する。ステップ3は修正した動作軌跡を示す。こうして、修正した動作軌跡で切断刃58aを動作させる。
 また、ティーチングポイントのうち、切断刃58aが骨に食込むリスクが生じる可能性が高いティーチングポイントをチェックポイントとして設定する。ステップ3で、チェックポイントは、c09、c11、c19及びc32(二重丸で表示)である。設定したチェックポイントの上流側領域から切断刃58aに加わるトルク値のモニターを開始する。モニター結果に応じて、修正されたティーチングポイントをさらに変更する。即ち、チェックポイントの上流側領域で、トルク値が設定範囲の上限値を上回れば、骨から切断刃58aを離脱する方向に動作軌跡を変更し、トルク値が下限値を下回れば、修正されたティーチングポイントを骨に近づける方向へ動作軌跡を変更する。
 例えば、チェックポイントc19では、切断刃58aが大腿骨頭に食い込むリスクが高い。そのため、ティーチングポイントc16から切断刃58aに加わるトルク値をモニターし、前述のようにして、ティーチングポイントc16~c19を変更する。
 図5A及び図5Bは、X線ラインセンサ38に入力された実際のX線透過画像を示す。図5Aが左脚ワークであり、図5Bが右脚ワークを示す。ワークwの凹凸部位は、ひざ関節5の付近と、大腿骨3の骨頭付近であり、特にこれら凹凸部位の筋入れを正確に行なうため、これら凹凸部位の位置情報を正確に知る必要がある。そこで、これら凹凸部位に比較基準ポイントA~Hを設定している。下腿骨中央部や大腿骨中央部の直線状の骨部には比較基準ポイントを設けていないが、この部分の骨の輪郭は、クランプ装置12の基準点Pと関節や骨頭の比較基準ポイントにより補間することで形状を特定できる。画像解析処理部40で、これら比較基準ポイントの2次元位置座標を得て、これらの位置情報に基づいて、切断刃58aの目標動作軌跡を修正している。
 図3において、比較基準ポイント設定部64は、X線照射工程の前に、ワークwのひざ関節5及び大腿骨3の骨頭部位の輪郭上に、比較基準ポイントA~Hを設定する。ロボットコントローラ60の記憶部62には、比較基準ポイントA~Hの2次元位置座標と、切断刃58a~cが目標とする動作軌跡の3次元位置座標と、切断刃が目標動作軌跡で動作した時、該切断刃に加わるトルク値の測定データ(以下「目標トルクデータ」という。)と、ワークなしで切断刃を動作させた無負荷運転時に、切断刃に付加されたトルク値の測定データ(以下「無負荷トルクデータ」という。)とが記憶されている。目標動作軌跡は、平均的な大きさ、形状の豚もも部位を想定して設定される。
 動作軌跡修正部66は、目標動作軌跡に対応した比較基準ポイントA~Hの2次元位置座標と、画像解析処理部40で得られたX線透過画像の比較基準ポイントA~Hの2次元位置座標との位置ずれ量を求め、該位置ずれ量だけ目標動作軌跡即ち、ティーチングポイントを修正した修正動作軌跡を求める。足首計測部68は、画像解析処理部40で得られた骨の2次元位置座標から、図12A及び図12Bに示すように、クランプ装置12の基準点Pの直下の足首骨径W及び基準点Pの直上の足首骨径Wを求める。
 ワーク長さ計測部70は、画像解析処理部40で得られた骨の2次元位置座標から、図13に示すように、クランプ基準点Pからひざ関節5までの長さL及びひざ関節5から大腿球3aの下端までの長さLを求める。画像情報修正部72では、比率(L/L)が正常範囲でないとき、この比率を正常値に変更して、画像解析処理部40で得られたX線透過画像の2次元位置座標を修正する。動作軌跡変更部74は、記憶部62に記憶された目標動作軌跡で発生するトルク値と、切断動作中実際にトルクセンサ59a~cで検出されたトルク値との差分が設定範囲内となるように、動作軌跡を変更する指令を電動モータ56a~cに発信する。
 判定部76は、切断動作中に切断刃に付加されるトルク値と、記憶部62に記憶された無負荷トルクデータとを比較し、これらの差分が設定範囲内であるとき、切断刃が損傷したと判定し、コントローラ80に対し、自動脱骨装置10の運転を停止する信号を発信する。警報装置78は、前記差分が設定範囲内であるとき、アラームを発生させる。
 次に、自動脱骨装置10の運転操作手順を図6A及び図6Bのフロー図により説明する。図6Aに運転操作手順の前半が示され、図6Bに運転操作手順の後半が示されている。枠40A内は画像解析処理部40で行なわれる操作であり、枠80A内はコントローラ80で行なわれる操作であり、枠60A内はロボットコントローラ60で行なわれる操作である。自動脱骨装置10が始動し、ワークwの搬送が開始されると(S10)、X線照射部30が画像解析処理開始可能状態となる(S12)。次に、コントローラ80から遮蔽壁36の遮蔽指令が出される(S14)。遮蔽壁36が遮蔽状態にならないとき、自動脱骨装置10の始動時に戻り、遮蔽状態となったことが確認されると(S16)、コントローラ80からX線照射開始指令が出される(S18)。
 次に、コントローラ80から照射窓35の開指令が出され(S20)、かつ撮影開始指令が出されると(S22)、X線照射装置34から照射窓35を通してX線rが照射される。ワークwを透過したX線rはX線ラインセンサ38に入力される。次に、コントローラ80から、撮像終了指令(S24)、及びX線照射終了指令(S26)が発信され、X線照射が終了すると、照射窓35の閉指令が出される(S28)。照射窓35が閉じたことが確認されれば(S30)、遮蔽壁36の開指令が出される(S33)。照射窓35が閉じないとき(S30)、自動脱骨装置10の運転を停止する(S32)。
 撮影が終了すると(S24)、画像解析処理部40からX線ラインセンサ38にX線透過画像を要求する指令が出され(S34)、画像解析処理部40にX線透過画像が取り込まれ(S36)、画像処理が行なわれる(S38)。この画像処理は、フィルタ処理や2値化処理等を行い、2値化画像を得る。そして、この2値化画像を2次元座標上に表示して、ワークwの2次元位置座標を得る。この画像処理は、特許文献3にも開示されているように公知である。画像解析処理部40で得られたワークwの2次元位置座標をコントローラ80に送信する(S40)。
 コントローラ80では、ワークwの2次元位置座標を受信したら、これをロボットコントローラ60に送ると共に(S42)、ワークwの左脚・右脚の別によって装置の動作を選択しながら、図2に示す足首カット工程を実施する(S46)。ロボットコントローラ60では、動作軌跡修正部66で、記憶部62に保存された目標動作軌跡の比較基準ポイントA~Hの2次元位置座標と、画像解析処理部40で得られたX線透過画像の比較基準ポイントA~Hの2次元位置座標とを比較し、その位置ずれ量を求め、前述のように、位置ずれ量だけティーチングポイントの3次元位置座標を修正する(S44)。
 その後、コントローラ80は、ロボットコントローラ60に筋入れ工程開始指令を出す(S48)。これを受けて、ロボットコントローラ60では、筋入れ工程の開始指令を筋入れロボット52a~cに発信する(S50)。筋入れ工程の開始と共に、トルクセンサ59a~cで、駆動モータ56a~cに加わるトルク値の測定を開始する(S52)。該トルク値の測定開始後、筋入れ工程を終了するまで、トルク値T<T-β(設定値)であれば(S54)、判定部76で、切断刃58a~cが損傷して無負荷状態であると判定する。そして、警報装置78でアラームを発すると共に(S56)、自動脱骨装置10の運転を停止させる(S58)。なお、設定値(T-β)は、βの値を独自に設定することで、閾値T又はTと別個の値とすることができる。
 切断刃58a~cがチェックポイントc09、c11、c19又はc32の上流側領域に達したとき(S60)、トルク値Tを確認する(S62)。閾値(下限)T≦T≦閾値(上限)Tのとき、ティーチングポイントを変更せず、そのまま筋入れを行ない、切断刃58a~cをチェックポイントまで移動させる(S68)。トルク値T>Tのとき、動作軌跡変更部74によって、切断刃を骨表面から離脱する方向に、現在位置からチェックポイントまでのティーチングポイントを変更する(S64)。
また、トルク値T<Tのとき、動作軌跡変更部74によって、切断刃が骨表面に接近する方向に、現在位置からチェックポイントまでのティーチングポイントを変更する(S66)。なお、閾値(下限)T及び閾値(上限)Tは、動作軌跡上の各ティーチングポイントで異なった値が予め設定され、記憶部62に記憶されている。
 筋入れ工程が終了したら(S70)、ワークwの左脚・右脚の別によって装置の動作を選択しながら、さら骨カット工程を行なう(S72)。さらに、同様の動作選択をし、下腿骨分離工程(1)(S74)、下腿骨分離工程(2)(S76)、及び大腿骨分離工程(S78)を順々に行なう。
 図7は、筋入れ工程(1)の実験データの一例であり、縦軸が電動モータ56aに負荷されたトルク値Tであり、横軸が動作軌跡中のティーチングポイントを示す。横軸の数字は、図2に示すティーチングポイントの数字に相当する。図7において、曲線Hが、切断刃58aが無負荷状態の時に電動モータ56aに負荷されるトルク値を示す無負荷トルクデータ曲線であり、曲線Iは、切断刃が目標動作軌跡で動作し、切断刃58aに対して過負荷が加わらず、かつ歩留まりが良好であった時のトルク値を示す目標トルクデータ曲線である。
 曲線Jは、実際に自動脱骨装置10を運転したときのトルク実測値を示す実測トルク曲線である。実測トルク曲線Jのティーチングポイントc18~c22付近(大腿骨頭付近に位置する。)で、トルク値Tが曲線Iで示す目標値より大きくなったことを示している。そのため、動作軌跡変更部74で切断刃58aを骨部位から離脱する方向にシフトしたことで、ティーチングポイントc22以降、トルク値Tを正常値に戻すことができたことを示している。
 図8に示すように、X線照射部30よりワークwの移動方向上流側に、ワークwをクランプ装置12に懸垂させる自動投入装置84が設けられている。ワークwは自動投入装置84から一旦クランプ台86に引き渡され、その後、プッシャー(図示省略)に押され、クランプ台86上を滑ってクランプ装置12に挿入される。なお、下腿骨2は、脛骨2aとひ骨2bとで構成されている。
 図9は、正常なクランプ位置Kでクランプ装置12に引き渡された状態を示す。図13に示すように、足首1は、先端より下腿骨2側に骨の断面径が極小になる部位2cがあり、この極小部位2c付近でクランプ装置12に挿入される。その後、通常は、ワークwの自重でワークwが下降し、該極小部位2cから先端寄りの拡径部位2dでクランプ装置12に係止する。
 しかし、図10中、ステップ1に示すように、ワークwの足首1の骨が細い、又は皮が厚いなどの理由で、足首1より下側でクランプされ、正常なクランプ位置Kより上方へΔhだけずれた状態となり、ワークwの自重でもワークwが下降しないときがある。この状態でX線照射を行ない、その後、図10中、ステップ2に示すように、筋入れ工程で切断刃による下方への負荷がワークwに加わると、ワークwが拡径部位2dまでΔhだけ下降する。そのため、X線照射時と筋入れ時とで、ワークwの高さにΔhだけのずれが生じる。従って、切断刃の動作軌跡が実際のワークの位置と合わなくなり、そのまま筋入れを行なうと、切断刃に過負荷が生じ、切断刃の破損に繋がる。これを防止する手段を図11~図13によって説明する。
 正常なクランプ状態では、クランプ位置の直下骨径より直上骨径のほうが大きいはずである。この特性を利用してクランプ位置が正常であるかどうかを判定する。この判定手順を図11のフローチャートにより説明する。まず、X線照射部30でワークwのX線画像を取得する(S90)。このX線画像の例を図12A及び図12Bに示す。図12Aは、正常なクランプ位置を示し、図12Bは異常なクランプ位置を示す。次に、画像解析処理部40で得られたワークwの2次元位置座標から、コントローラ60の足首計測部68で、直下骨径Wと直上骨径Wを求める(S92及びS94)。
 差分(W-W)が正のとき(S96)、画像解析処理部40で得られたワークwの2次元位置座標から、ワーク長さ計測部70で、図13に示す長さL及び長さLを求める(S98)。差分(W-W)が負のとき、画像解析処理部40で得られた2次元位置座標を修正しない。なお、長さLは、クランプ位置からひざ関節5までの長さであり、長さLは、ひざ関節5から大腿球3aの下端までの長さである。次に、比率(L/L)が正常範囲でないとき(S100)、正常の比率で2次元位置座標を再計算し(S102)、2次元位置座標を修正する(S104)。なお、正常範囲とは、豚のもも部位に場合、比率(L/L)=1.5~1.8の範囲である。修正された2次元位置座標は、コントローラ80に送信される(S106)。
 次に、筋入れ工程(1)での筋入れ方法を、右脚ワークw(r)を例に取って図14~図17により説明する。図16に示すように、大腿骨3の周囲の肉部は、うちももa、しんたまb及びそとももcで構成され、そとももcの外側に脂肪層dが存在している。筋入れ工程(1)では、筋入れロボット52aの切断刃58aによって、まず、下腿骨2の下部からさら骨6の上部にかけて、切断ラインCに沿って斜めに切れ込みを入れる(c01~c04)。その後、再度上方から下方へ切断ラインCに沿って切り込みを入れる(c06~c99)。切断ラインCによって、切断刃58aをうちももaとしんたまbとの境界にある筋膜eに沿わせながら、うちももaとしんたまb間を切断し、大腿骨表面の骨膜を切断する。ハッチングfは、うちももaとしんたまb間の切断面を示し、ハッチングgは下腿骨2及び大腿骨3の表面に沿った切断面を示す。
 図17A~図17Cは切断ラインの良否を示す図である。図17Aに示す筋入れラインCは、筋膜eに沿った切断ラインであり、筋膜eを傷付けない良好な筋入れが可能である。図17Bに示す切断ラインCは、しんたま側筋膜eを傷付け、しんたまbのロス肉mが生じる不良な筋入れである。図17Cに示す切断ラインCは、うちもも側筋膜eを傷付け、うちももaのロス肉mが生じ、また、大腿骨膜を切断できず、大腿骨膜が大腿骨側に残り、肉の歩留まりが悪化する不良な筋入れとなる。
 図14~図16に示すように、うちももaはしんたまbに覆いかぶさるようになっている。うちももaとしんたまbとの境界は、3次元曲面で構成されているため、直線状のナイフ状切断刃で筋膜eに沿って切り開くためには、最初に下腿骨2の下部から筋膜eに切断刃を刺し込むことが必要になる。即ち、最初に切断ラインCの切込みを行なうことが、その後の切断ラインCの切込み時に、ナイフ状切断刃が筋膜eの間にスムーズに入るきっかけとなる。
 図14及び図15に示すように、切断ラインCで、うちももaのみを切断し、しんたまbを切断しない位置に切断刃58aが入ると、切断ラインCで、切断刃58aがうちももaの内側に入り込み、しんたまb側の筋膜eの上を滑るように切り開くことができる。切断ラインCが上方向又は下方向にずれると、切断ラインCの切断時に、切断刃が筋膜eに入り込みにくくなる。本実施形態では、ワークwのX線画像解析を行い、ひざ関節5の骨の形状や位置を精度良く把握でき、これに合わせて切断刃58aの動作軌跡を精度良く位置決めできるため、切断ラインCを精度良く位置決めできる。そのため、図17Aに示す切断ラインCによる筋入れが可能になる。従って、うちももaやしんたまbを傷付けず、これらの歩留まりを向上できる。
 次に、本実施形態のさら骨カット工程を、右脚ワークw(r)を例に取って図18~図20により説明する。このさら骨カット工程は、回転丸刃20によって、さら骨6の側面に付着した筋、腱等の生体組織を切断する工程である。図18において、上下方向に配置された回転丸刃20を下降させ、さら骨6の側面に沿う切断面iを形成する。
 図19に、回転丸刃20の駆動装置90を示す。回転丸刃20の駆動モータはモータケーシング92に内蔵されている。昇降台94に、上下方向にエアシリンダ96が固定されている。モータケーシング92のフレーム92aは、アーム100と一定角度を有して結合され、フレーム92aとアーム100の結合部、及びエアシリンダ96のピストンロッド98は、軸93に回動可能に結合されている。アーム100の他端は、昇降台94に取り付けられた支軸102に回動可能に取り付けられている。
 これによって、図20に示すように、ピストンロッド98の上下動に応じて、モータケーシング92及び回転丸刃20の軸線20aが傾き、回転丸刃20の角度を可変とすることができる。昇降台94のボス部94aは、架台103上に上下方向に立設されたガイドバー104に案内される。ガイドバー104に隣接してネジ棒106が立設され、ネジ棒106は駆動モータ108によって回転駆動される。ネジ棒106の回転によって、昇降台94が昇降する。
 かかる構成において、図20に示すように、回転丸刃20を下降させながら、湾曲しているさら骨6の側面に回転丸刃20を沿わせる動作が可能になる。従って、さら骨6の側面に付着している生体組織を切断でき、肉の歩留まりを向上できる。また、図18に示すように、比較基準ポイントA~Hのうち、比較基準ポイントBをひざ関節5に設定しており、切断面iの切断開始高さを比較基準ポイントBと同一高さに設定することで、切断面iの切断開始高さを精度良く位置決めできる。また、比較基準ポイントEをさら骨6の下端に設定しており、切断面iの切断終了高さを比較基準ポイントEと同一高さに設定することで、切断面iの切断終了高さを精度良く位置決めできる。
 次に、本実施形態の大腿骨3での肉分離工程を図21により説明する。この肉分離工程では、水平方向に配置された回転丸刃24を用いる。j、k及びnの位置で、回転丸刃24を水平方向に移動してワークw(r)に接近させ、さら骨6の下端部及び大腿骨3の表面に付着した生体組織を切断する。この切断動作と、図2に示すように、クランプ装置12の引き上げ及びセパレータ22による肉部の押えを同時に行なうことで、大腿骨3から肉部7を分離する。
 切断位置jはさら骨6の下端に位置し、比較基準ポイントEと一致している。切断位置Jで回転丸刃24により、さら骨6の下端に付着した生体組織を切断する。切断位置kは大腿骨頭に位置し、切断位置nは大腿骨頭下端に位置している。セパレータ22で大腿骨3に付着している肉部を押え引き剥がしながら、切断位置kで大腿骨表面の生体組織を切断し、切断位置nで大腿骨3と肉部とを分離する。本実施形態では、比較基準ポイントEと切断位置kと同一高さに設定し、比較基準ポイントHと切断位置nとを同一高さに設定しているので、回転丸刃20を切断位置j、k、nに正確に位置決めできる。そのため、大腿骨3の肉分離工程を効率良く実施できると共に、肉の歩留まりを向上できる。
 本実施形態によれば、比較基準ポイントA~Hを骨の特徴部位に設定し、ワークwを1個毎にX線画像解析を行い、目標となる切断刃の動作軌跡に対応した比較基準ポイントA~Hの2次元位置座標と、X線画像解析で得られたワークwの比較基準ポイントA~H
の2次元位置座標との位置ずれ量を求め、該位置ずれ量だけ目標動作軌跡の3次元位置座標を修正し、この修正動作軌跡で切断刃を動作させるようにしたので、個々のワークに対して、骨の表面に沿った正確な動作軌跡で切断刃を動作させることができる。
 そのため、切断刃の骨への食込みをなくし、切断刃の損傷を低減できて、運転効率を高く維持できると共に、肉の歩留まりを向上できる。また、切断刃による骨の切断を回避でき、肉中への骨片の混入を防止できると共に、切断刃に過負荷が発生するのを回避できるので、切断刃の駆動装置の容量及び動力を低減できる。
 また、クランプ装置12に対してワークwが異常位置でクランプされ、X線画像解析で得られたワークwの骨の2次元位置座標と、後工程の筋入れ時におけるワークwの高さとの違いが発生しても、それを事前に検出し、X線画像解析で得られた2次元位置座標を筋入れ時の正常位置に修正するようにしているので、筋入れ時に切断刃に過負荷が加わる事態を回避できる。
 また、筋入れ工程(1)~(3)で、ワークwのX線画像解析による位置情報の取得と共に、切断刃に加わるトルク値を計測し、このトルク値が目標反力データに対して設定範囲内となるように切断刃の動作を変更しているので、切断刃をさらに骨の表面に沿わせて正確に動作させることができる。そのため、肉の歩留まりをさらに向上できると共に、切断刃に過負荷が加わるのを回避でき、切断刃の損傷や骨の切断等を防止できる。
 また、切断刃の動作軌跡上で切断刃が骨に食込みやすい箇所、即ち、ひざ関節5及び大腿骨頭にチェックポイントを設定し、該チェックポイントの上流側領域から切断刃に加わるトルク値を監視し、該トルク値が過大とならないように制御しているので、該チェックポイントでの切断刃の骨への食込みを未然に防止できる。
 また、無負荷運転時に切断刃に加わるトルク値を記憶部62に保存させ、該トルク値と、筋入れ工程中に切断刃に加わるトルク値とを比較することで、切断刃の損傷を速やかに発見できる。そして、自動脱骨装置10の運転を速やかに停止させ、事後処理を速やかに行なうことができる。
 また、筋入れ工程(1)では、X線画像解析によってワークwの骨の形状、位置を精度良く把握できるため、切断ラインC及びCを精度良く位置決めできる。そのため、うちももaとしんたまb間を筋膜eを傷付けることなく正確に切断でき、ロス肉の発生をなくすことができる。さら骨カット工程では、設定された比較基準ポイントB及びEに基づいて、切断面iの切断開始点及び切断終了点を精度良く位置決めできる。そのため、肉の歩留まりを向上できると共に、自動脱骨装置10の運転効率を向上できる。また、大腿骨からの肉分離工程では、設定された比較基準ポイントE~Hに基づいて、回転丸刃24による切断位置j、k及びnを正確に位置決めできるので、肉の歩留まりを向上できると共に、自動脱骨装置10の運転効率を向上できる。
 図22Aは、本実施形態に係る脱骨処理程後、ワークwに残った残肉量を示し、図22Bは、X線画像解析を行なわない、特許文献1又は2に開示された脱骨処理後ワークwに残った残肉量を示す。これらの図から、本実施形態のほうが残肉量を従来方法より10g以上削減できることがわかる。
 また、本実施形態に係る脱骨処理及び特許文献1又は2に開示された脱骨処理を実際に行い、そのときのワークwの残肉状態を観察した。図23A及び図23Bは、本実施形態によるひざ関節下方の筋入れ結果を示し、図23Cは、X線画像解析を行なわない、前記従来の脱骨処理によるひざ関節部分の筋入れ結果を示す。図23B中、ポイントA、B、C及びDは、図5中の比較基準ポイントA、B、C及びDを示す。図23C中、Mは、切断刃によって下腿骨2の一部がカットされた骨カット部位を示し、Nは、下腿骨2に残肉が付着したままになっている残肉部位を示している。本実施形態のほうが、骨表面に沿って肉部が正確に切断されていることがわかる。
 図24Aは、本実施形態による大腿骨部位の筋入れ結果を示し、図24Bは、前記従来の脱骨処理による大腿骨部位の筋入れ結果を示す。図24Aでは、大腿骨膜のカット及び大腿球3a周囲の筋入れが安定してなされ、残肉量が低減されている。これに対し、図24Bでは、部位O及びQで、大腿骨頭割れが生じている。
 図25Aは、本実施形態による肉分離後のワークwの残肉状態を示し、図25Bは、前記従来の脱骨処理による肉分離後の残肉状態を示す。図25Aは、夫々ひざ関節5、大腿骨3及び大腿球3aの残肉状態を示す。残肉量が40g未満に収まっており、図25Bでは、Rは骨カット部位であり、この部位Rで所々に骨の表面がカットされている。また、Uは残肉部位であり、この部位Uで残肉が付着したままになっている。
 図26~図28は、本実施形態の筋入れ工程(1)において、うちももaとしんたまb間の境界にある筋膜eの切断面の状態を示す。図26は本実施形態によって得られた良好な切断面を示している。しんたま側の筋膜eが傷付けられず、良好な状態で残存している。図中、符号3は大腿骨である。図27及び図28は、比較例として示すもので、ワークwのX線画像解析を行なわない悪い切断例である。図27では、しんたまb側の筋膜が切れて、赤身が出てしまっている。さらに、うちももaの上にしんたまの一部が付着しているため、うちもも側の筋膜を除去する際に、しんたまの一部を除去しなければならなくなり、しんたまの一部がロス肉となる。
 図28では、うちももaの筋膜が切れて、赤身が出てしまっている。しんたまbの上にうちももの一部が付着しているため、しんたまの筋膜を除去する際に、うちももの一部を除去しなければならなくなり、うちももの一部がロス肉となる。また、Vの箇所で、大腿骨3の骨膜が切れていないため、肉の歩留まりが悪化する。
(実施形態2)
 次に、本発明を豚のうで部位の脱骨工程に適用した第2実施形態を図29及び図30により説明する。図29はオペレータの手作業による前処理工程を示し、図30は自動脱骨装置による脱骨工程を示す。図29において、枝肉を大分割した後のうで・かた部110の骨組みは、背骨112、肋骨114、棘突起116、上腕骨118及び前腕骨120で構成されている。うで・かた部110は、切断ラインCに沿って、うで部122とかたロース部124とに分割される。うで部122から分割されたかたロース部124は別な脱骨工程に回される。うで部122は、次工程で、うで部122のネック部にある脂肪層126を除去され、次に、肩部との境界側にあるばら肉128をめくる。次に、肩甲骨130の上側肉132を剥す。
 次に、図30に示すように、すね肉133を切り開き、前腕骨120を露出させ、足首をクランプ装置12に懸垂する。ここから、自動脱骨装置による自動脱骨工程が開始される。本実施形態の自動脱骨装置は、第1実施形態と同様の構成をもっている。そこで、まず、骨の輪郭線上の特定しやすい箇所に複数の比較基準ポイントA、B、C、・・・・が設定される。また、自動脱骨装置のコントローラの記憶部に、筋入れ工程及び肉分離工程における切断刃の目標動作軌跡の3次元位置座標、及び切断動作中、切断刃に加わる正常なトルク値のデータ等が保存されている。次工程で、うで部122のX線照射とX線画像処理が行なわれ、X線画像処理で得られた2次元位置座標に基づいて、目標動作軌跡を修正している。
 次に、筋入れ工程(1)で筋入れラインSで示す筋入れが行なわれ、次に、筋入れ工程(2)で筋入れラインSで示す筋入れが行なわれ、その後、肩甲骨130が除去される。筋入れ工程(1)及び(2)では、切断動作中、切断刃に加わるトルク値と前記の正常なトルク値データとを比較し、切断刃に過負荷が加わらないように切断刃の動作軌跡が制御される。
 次に、筋入れラインSで示す前腕骨部分の筋入れが行なわれ、肉部134と分離された前腕骨120と、まだ肉部134が付着している上腕骨118とが分離される。上腕骨118は水平方向に配置されたレール136に懸垂される。その後、上腕骨118をレール136に懸垂した状態で、上腕骨118から肉部134を分離する工程が行なわれ、最後にレール136に残った上腕骨118が排出される。
 以上の構成及び運転操作手順を行なうことで、本実施形態でも、第1実施形態と同様の作用効果を得ることができる。
 本発明によれば、食肉用家畜屠体のうで部位又はもも部位の自動化された脱骨工程において、骨表面に沿う正確な筋入れを可能とし、歩留まりを向上させ、かつ切断刃の過負荷を防止できる。

Claims (11)

  1.  予め決められた動作軌跡に基づいて動作する切断刃を備えた多軸多関節アームを用い、家畜屠体のうで部位又はもも部位を足首を介し懸垂した状態で、うで部位又はもも部位の脱骨処理を行なう方法において、
     うで部位又はもも部位の骨の輪郭線上に比較基準ポイントを設定すると共に、前記切断刃の目標となる動作軌跡の3次元位置座標と、この目標動作軌跡の3次元位置座標に対応した該比較基準ポイントの2次元位置座標とを予め設定する前工程と、
     うで部位又はもも部位毎にX線を照射し、透過されたX線画像を解析してうで部位又はもも部位の骨の輪郭線の2次元位置座標を得るX線画像解析工程と、
     前記目標動作軌跡に対応した比較基準ポイントの2次元位置座標と、前記X線画像解析工程で得られた比較基準ポイントの2次元位置座標との位置ずれ量を求め、該位置ずれ量だけ前記目標動作軌跡を修正した修正動作軌跡を求める動作軌跡修正工程と、
     該動作軌跡修正工程で求めた修正動作軌跡で切断刃を動作させ、うで部位又はもも部位の筋入れ又は肉分離を行なう切断刃動作工程と、からなることを特徴とするX線を用いた骨付き肉の脱骨方法。
  2.  請求項1に記載のX線を用いた骨付き肉の脱骨方法において、
     前記X線画像解析工程で得られたうで部位又はもも部位の骨の輪郭線の2次元位置座標から、うで部位又はもも部位の足首のクランプ位置直下の足首骨径W及び直上の足首骨径Wを求める足首計測工程と、
     該足首計測工程で足首骨径Wが足首骨径Wより大のとき、前記X線画像解析工程で得られた2次元位置座標から、前記クランプ位置から関節までの長さL及び関節から骨頭端までの長さLを求めるワーク長さ計測工程と、
     長さLと長さLとの比が正常範囲でないとき、この長さ比を正常値に変更して、前記X線画像解析工程で得られた2次元位置座標を修正する画像情報修正工程と、を付加することを特徴とするX線を用いた骨付き肉の脱骨方法。
  3.  請求項1に記載のX線を用いた骨付き肉の脱骨方法において、
     前記前工程で、切断刃が前記目標動作軌跡で動作した時の切断刃に加わる反力を予め測定し、その目標反力データを保存すると共に、
     前記切断刃動作工程で、うで部位又はもも部位の骨の表面に沿って長手方向に切込みを入れる筋入れを行い、切断動作中に切断刃に加わる反力を測定し、測定した反力と前記目標反力データとの差分が設定範囲外であるとき、前記動作軌跡修正工程で修正した修正動作軌跡を該差分が設定範囲内となるように変更することを特徴とするX線を用いた骨付き肉の脱骨方法。
  4.  切断動作中の前記切断刃に加わる反力を、有負荷運転時に切断刃に加わる反力から無負荷運転時に切断刃に加わる反力を減算して求めることを特徴とする請求項3に記載のX線を用いた骨付き肉の脱骨方法。
  5.  請求項3に記載のX線を用いた骨付き肉の脱骨方法において、
     前記切断刃の動作軌跡上で切断刃に過負荷が生じやすい箇所にチェックポイントを設定し、該チェックポイントの上流側領域で、切断動作中に切断刃に加わる反力を測定し、測定した反力と前記目標反力データとの差分が設定範囲外であるとき、該差分が設定範囲内となるように反力測定ポイントから該チェックポイントまでの修正動作軌跡を変更することを特徴とするX線を用いた骨付き肉の脱骨方法。
  6.  請求項3に記載のX線を用いた骨付き肉の脱骨方法において、
     前記前工程で、無負荷運転時に前記切断刃に加わる反力を予め測定し、その無負荷反力データを保存しておき、
     切断刃の切断動作中に切断刃に加わる反力と前記無負荷反力データとを比較し、これらの差が設定範囲外であるとき、切断刃が損傷したと判定し、運転を止める運転停止工程を付加することを特徴とするX線を用いた骨付き肉の脱骨方法。
  7.  予め決められた動作軌跡に基づいて動作する切断刃を備えた多軸多関節アームと、家畜屠体のうで部位又はもも部位を懸垂搬送する装置とを備え、うで部位又はもも部位を懸垂した状態で脱骨処理を行なう装置において、
     前記多軸多関節アームよりうで部位又はもも部位の搬送方向上流側に配置され、懸垂状態のうで部位又はもも部位に対してX線を照射するX線照射部と、うで部位又はもも部位を透過したX線が入射するX線入射部と、前記X線入射部に入射した透過X線画像を解析して骨の輪郭線の2次元位置情報を得る画像解析処理部と、前記切断刃の動作を制御するコントローラと、を備え、
     前記コントローラは、うで部位又はもも部位の骨の輪郭線上に比較基準ポイントを設定する比較基準ポイント設定部と、前記切断刃の目標となる動作軌跡の3次元位置座標、及びこの目標動作軌跡の3次元位置座標に対応した該比較基準ポイントの2次元位置座標を記憶する記憶部と、前記目標動作軌跡に対応した該比較基準ポイントの2次元位置座標と、前記画像解析処理部で得られた比較基準ポイントの2次元位置座標との位置ずれ量を求め、該位置ずれ量だけ前記目標動作軌跡を修正した修正動作軌跡を求める動作軌跡修正部と、を備え、該動作軌跡修正部で求めた修正動作軌跡で切断刃を動作させることを特徴とするX線を用いた骨付き肉の脱骨装置。
  8.  前記コントローラは、
     前記画像解析処理部で得られた骨の輪郭線の2次元位置座標から、懸垂搬送装置のクランプ位置直下の足首骨径W及び直上の足首骨径Wを求める足首計測部と、
     該足首計測部で足首骨径Wが足首骨径Wより大のとき、前記画像解析処理部で得られた骨の2次元位置座標から、前記クランプ位置から関節までの長さL及び関節から骨頭端までの長さLを求めるワーク長さ計測部と、
     長さLと長さLとの比が正常範囲でないとき、この長さ比を正常値に変更して、画像解析処理部で得られた骨の2次元位置情報を修正する画像情報修正部と、を備えていることを特徴とする請求項7に記載の骨付き肉の脱骨装置。
  9.  前記切断刃に加わる反力を測定する反力測定装置を備え、
     前記コントローラの記憶部は、切断刃が前記目標動作軌跡で動作した時の切断刃に加わる反力を測定した目標反力データを記憶し、
     前記コントローラは、切断刃の切断動作中に前記反力測定装置で測定された反力と前記目標反力データとの差分が設定範囲外であるとき、測定反力が設定範囲内となるように切断刃の動作軌跡を変更する動作軌跡変更部を備えていることを特徴とする請求項7に記載のX線を用いた骨付き肉の脱骨装置。
  10.  前記コントローラで、切断刃の動作軌跡上で切断刃に過負荷が生じやすい箇所にチェックポイントを設定し、
     前記反力測定装置で、該チェックポイントの上流側領域で切断動作中に切断刃に加わる反力を測定し、
     前記動作軌跡変更部で、測定した反力と前記目標反力データとの差分が設定範囲外であるとき、該差分が設定範囲内となるように反力測定ポイントから該チェックポイントまでの修正動作軌跡を変更するようにしたことを特徴とする請求項9に記載のX線を用いた骨付き肉の脱骨装置。
  11.  前記コントローラは、
     前記記憶部に無負荷運転時に切断刃に加わる反力の測定データが記憶され、切断刃の切断動作中に切断刃に加わる反力と記憶された無負荷反力データとを比較し、これらの差が設定範囲外であるとき、切断刃が損傷したと判定し、運転停止指令を発信する判定部を備えていることを特徴とする請求項9に記載のX線を用いた骨付き肉の脱骨装置。
PCT/JP2011/068482 2010-10-27 2011-08-12 X線を用いた骨付き肉の脱骨方法及び装置 WO2012056793A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11835934.8A EP2532246B1 (en) 2010-10-27 2011-08-12 Deboning method and deboning apparatus of bony chops with x-rays
ES11835934.8T ES2548545T3 (es) 2010-10-27 2011-08-12 Procedimiento de deshuesado y aparato de deshuesado de porciones con hueso con rayos X
JP2012524012A JP5384740B2 (ja) 2010-10-27 2011-08-12 X線を用いた骨付き肉の脱骨方法及び装置
DK11835934.8T DK2532246T3 (en) 2010-10-27 2011-08-12 Deboning and deboning the meat with bone using X-rays
BR112012019756-8A BR112012019756B1 (pt) 2010-10-27 2011-08-12 Aparelho e método para desossar carne com osso usando raio-x
US13/477,694 US8376814B2 (en) 2010-10-27 2012-05-22 Deboning method and apparatus for meat with bone using X-ray

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-241309 2010-10-27
JP2010241309 2010-10-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/477,694 Continuation US8376814B2 (en) 2010-10-27 2012-05-22 Deboning method and apparatus for meat with bone using X-ray

Publications (1)

Publication Number Publication Date
WO2012056793A1 true WO2012056793A1 (ja) 2012-05-03

Family

ID=45993523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068482 WO2012056793A1 (ja) 2010-10-27 2011-08-12 X線を用いた骨付き肉の脱骨方法及び装置

Country Status (7)

Country Link
US (1) US8376814B2 (ja)
EP (1) EP2532246B1 (ja)
JP (1) JP5384740B2 (ja)
BR (1) BR112012019756B1 (ja)
DK (1) DK2532246T3 (ja)
ES (1) ES2548545T3 (ja)
WO (1) WO2012056793A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136995A1 (ja) * 2012-03-13 2013-09-19 株式会社前川製作所 骨付き食肉の肩甲骨除去装置及び方法、並びに、該装置を備える骨付き食肉の脱骨システム
WO2013136996A1 (ja) * 2012-03-13 2013-09-19 株式会社前川製作所 骨付き食肉の腕部位の脱骨システム及び脱骨方法
WO2013136994A1 (ja) * 2012-03-13 2013-09-19 株式会社前川製作所 骨付き食肉のx線画像撮影装置及び方法、並びに、該装置を備える骨付き食肉の脱骨システム
WO2013136993A1 (ja) * 2012-03-13 2013-09-19 株式会社前川製作所 骨付き食肉の搬送装置及び方法、並びに、該装置を備える骨付き食肉の脱骨システム
JP2013255471A (ja) * 2012-06-14 2013-12-26 Mayekawa Mfg Co Ltd 骨付きモモ肉の脱骨装置及び脱骨方法
JP2014007982A (ja) * 2012-06-28 2014-01-20 Mayekawa Mfg Co Ltd 骨付き肉の骨部位検出方法及び装置
KR20160032426A (ko) * 2014-09-16 2016-03-24 주식회사 대부 엑스레이 뼈위치 확인을 이용한 도체 발골장치
US9326527B2 (en) 2014-03-06 2016-05-03 Mayekawa Mfg. Co., Ltd. Device and method for deboning bone-in leg
WO2019131357A1 (ja) * 2017-12-25 2019-07-04 株式会社前川製作所 骨付き肉の全長測定装置及び骨付き肉の全長測定方法
JP2020505953A (ja) * 2017-01-31 2020-02-27 フードメイト ベーフェー 連続する複数の動物脚から周囲の肉を連続的に収集するための方法および装置
WO2020218513A1 (ja) * 2019-04-26 2020-10-29 株式会社前川製作所 特徴点の認識システムおよび認識方法
JPWO2019131362A1 (ja) * 2017-12-25 2020-12-10 株式会社前川製作所 骨付き肉の筋入れ装置及び骨付き肉の筋入れ方法
JP2021511059A (ja) * 2018-01-30 2021-05-06 マレル・ミート・ベスローテン・フェンノートシャップMarel Meat B.V. 第1および第2の骨または軟骨部分を互いに分離するための分離装置
WO2023120419A1 (ja) * 2021-12-20 2023-06-29 株式会社前川製作所 食鳥腿肉脱骨装置及び食鳥腿肉脱骨方法
JP7466571B2 (ja) 2019-05-03 2024-04-12 マレル・ミート・ベスローテン・フェンノートシャップ 吊るされた半身の豚の枝肉からの前端の切断
JP7474272B2 (ja) 2019-05-03 2024-04-24 マレル・ミート・ベスローテン・フェンノートシャップ キャリアからぶら下がる半分の豚枝肉部分を処理するための方法及び装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK178447B1 (en) 2015-06-10 2016-02-29 Ihfood As Removing the spinal column from a half-carcass of a slaughtered animal
US10721947B2 (en) 2016-07-29 2020-07-28 John Bean Technologies Corporation Apparatus for acquiring and analysing product-specific data for products of the food processing industry as well as a system comprising such an apparatus and a method for processing products of the food processing industry
US10654185B2 (en) 2016-07-29 2020-05-19 John Bean Technologies Corporation Cutting/portioning using combined X-ray and optical scanning
CA3047323A1 (en) * 2016-12-28 2018-07-05 Cryovac, Llc Automated process for determining amount of meat remaining on animal carcass
JP2021000435A (ja) * 2019-06-19 2021-01-07 株式会社リコー 情報処理装置、生体情報計測装置、空間領域値の表示方法およびプログラム
AU2021457761A1 (en) 2021-07-26 2024-02-22 Fpi Food Processing Innovation Gmbh & Co. Kg Methods, devices and arrangement for locating bony parts present in a poultry leg
DK181309B1 (en) 2022-04-01 2023-08-08 Teknologisk Inst A system and a method for determination of the tissue composition in meat products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324006A (ja) 1993-04-30 1994-11-25 Snow Brand Milk Prod Co Ltd 肉組織の検査、加工方法およびその装置
JP2004045072A (ja) * 2002-07-09 2004-02-12 Ishii Ind Co Ltd 食肉識別方法及びその食肉識別装置
WO2008136513A1 (ja) 2007-05-02 2008-11-13 Mayekawa Mfg. Co., Ltd. 食肉用家畜屠体の筋入れ方法及び装置、並びに筋入れ用切断動作プログラム
JP2009518034A (ja) * 2005-12-09 2009-05-07 ストルク ペーエムテー ベー.フェー. 屠殺された家禽の体部位の加工方法とデバイス
WO2009139032A1 (ja) 2008-05-12 2009-11-19 株式会社前川製作所 うで部位又はもも部位の脱骨方法及び装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9525446D0 (en) * 1995-12-13 1996-02-14 Sun Valley Poultry Improvements relating to de-boning poultry
GB9712015D0 (en) * 1997-06-11 1997-08-06 Filar Limited Procedure and apparatus for deboning poultry
NL1010656C2 (nl) * 1998-11-26 2000-05-30 Stork Pmt Inrichting en werkwijze voor het detecteren van botbreuk bij geslachte dieren, in het bijzonder gevogelte.
US7621806B2 (en) * 2004-12-30 2009-11-24 John Bean Technologies Corporation Determining the position and angular orientation of food products
US7850513B1 (en) * 2006-05-12 2010-12-14 University Of Central Florida Research Foundation, Inc. High efficiency solar powered fans
CA2664277C (en) * 2006-10-06 2012-01-03 Nordischer Maschinenbau Rud. Baader Gmbh + Co.Kg Method and device for processing fish, poultry, or other meat products transported in multitude along a processing line
WO2008096459A1 (en) * 2007-02-06 2008-08-14 Mayekawa Mfg. Co., Ltd. Method and apparatus for deboning arm or leg part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324006A (ja) 1993-04-30 1994-11-25 Snow Brand Milk Prod Co Ltd 肉組織の検査、加工方法およびその装置
JP2004045072A (ja) * 2002-07-09 2004-02-12 Ishii Ind Co Ltd 食肉識別方法及びその食肉識別装置
JP2009518034A (ja) * 2005-12-09 2009-05-07 ストルク ペーエムテー ベー.フェー. 屠殺された家禽の体部位の加工方法とデバイス
WO2008136513A1 (ja) 2007-05-02 2008-11-13 Mayekawa Mfg. Co., Ltd. 食肉用家畜屠体の筋入れ方法及び装置、並びに筋入れ用切断動作プログラム
WO2009139032A1 (ja) 2008-05-12 2009-11-19 株式会社前川製作所 うで部位又はもも部位の脱骨方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2532246A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9513234B2 (en) 2012-03-13 2016-12-06 Mayekawa Mfg. Co., Ltd. Device and method for capturing X-ray image of bone-in meat and deboning system of bone-in meat including the device
WO2013136994A1 (ja) * 2012-03-13 2013-09-19 株式会社前川製作所 骨付き食肉のx線画像撮影装置及び方法、並びに、該装置を備える骨付き食肉の脱骨システム
WO2013136995A1 (ja) * 2012-03-13 2013-09-19 株式会社前川製作所 骨付き食肉の肩甲骨除去装置及び方法、並びに、該装置を備える骨付き食肉の脱骨システム
WO2013136993A1 (ja) * 2012-03-13 2013-09-19 株式会社前川製作所 骨付き食肉の搬送装置及び方法、並びに、該装置を備える骨付き食肉の脱骨システム
WO2013136996A1 (ja) * 2012-03-13 2013-09-19 株式会社前川製作所 骨付き食肉の腕部位の脱骨システム及び脱骨方法
JPWO2013136993A1 (ja) * 2012-03-13 2015-08-03 株式会社前川製作所 骨付き食肉の搬送装置及び方法、並びに、該装置を備える骨付き食肉の脱骨システム
US8992290B2 (en) 2012-03-13 2015-03-31 Mayekawa Mfg. Co., Ltd. Device and method for removing shoulder blade of bone-in meat and deboning system of bone-in meat including the device
US9033773B2 (en) 2012-03-13 2015-05-19 Mayekawa Mfg. Co., Ltd. Deboning system and deboning method for arm part of bone-in meat
US9033774B2 (en) 2012-03-13 2015-05-19 Mayekawa Mfg. Co., Ltd. Device and method for conveying bone-in meat and deboning system of bone-in meat including the device
JP2013255471A (ja) * 2012-06-14 2013-12-26 Mayekawa Mfg Co Ltd 骨付きモモ肉の脱骨装置及び脱骨方法
JP2014007982A (ja) * 2012-06-28 2014-01-20 Mayekawa Mfg Co Ltd 骨付き肉の骨部位検出方法及び装置
US9326527B2 (en) 2014-03-06 2016-05-03 Mayekawa Mfg. Co., Ltd. Device and method for deboning bone-in leg
KR20160032426A (ko) * 2014-09-16 2016-03-24 주식회사 대부 엑스레이 뼈위치 확인을 이용한 도체 발골장치
KR101693585B1 (ko) * 2014-09-16 2017-01-06 주식회사 대부 엑스레이 뼈위치 확인을 이용한 도체 발골장치
JP7123974B2 (ja) 2017-01-31 2022-08-23 フードメイト ベーフェー 連続する複数の動物脚から周囲の肉を連続的に収集するための方法および装置
JP2020505953A (ja) * 2017-01-31 2020-02-27 フードメイト ベーフェー 連続する複数の動物脚から周囲の肉を連続的に収集するための方法および装置
JPWO2019131357A1 (ja) * 2017-12-25 2020-12-10 株式会社前川製作所 骨付き肉の全長測定装置及び骨付き肉の全長測定方法
JPWO2019131362A1 (ja) * 2017-12-25 2020-12-10 株式会社前川製作所 骨付き肉の筋入れ装置及び骨付き肉の筋入れ方法
WO2019131357A1 (ja) * 2017-12-25 2019-07-04 株式会社前川製作所 骨付き肉の全長測定装置及び骨付き肉の全長測定方法
JP2021511059A (ja) * 2018-01-30 2021-05-06 マレル・ミート・ベスローテン・フェンノートシャップMarel Meat B.V. 第1および第2の骨または軟骨部分を互いに分離するための分離装置
JP7261804B2 (ja) 2018-01-30 2023-04-20 マレル・ミート・ベスローテン・フェンノートシャップ 第1および第2の骨または軟骨部分を互いに分離するための分離装置
JP2020183876A (ja) * 2019-04-26 2020-11-12 株式会社前川製作所 特徴点認識システムおよびワーク処理システム
WO2020218513A1 (ja) * 2019-04-26 2020-10-29 株式会社前川製作所 特徴点の認識システムおよび認識方法
JP7474272B2 (ja) 2019-05-03 2024-04-24 マレル・ミート・ベスローテン・フェンノートシャップ キャリアからぶら下がる半分の豚枝肉部分を処理するための方法及び装置
JP7466571B2 (ja) 2019-05-03 2024-04-12 マレル・ミート・ベスローテン・フェンノートシャップ 吊るされた半身の豚の枝肉からの前端の切断
WO2023120419A1 (ja) * 2021-12-20 2023-06-29 株式会社前川製作所 食鳥腿肉脱骨装置及び食鳥腿肉脱骨方法

Also Published As

Publication number Publication date
BR112012019756A2 (pt) 2016-06-28
JPWO2012056793A1 (ja) 2014-03-20
EP2532246A1 (en) 2012-12-12
DK2532246T3 (en) 2015-10-05
ES2548545T3 (es) 2015-10-19
BR112012019756B1 (pt) 2019-08-06
US20120295527A1 (en) 2012-11-22
US8376814B2 (en) 2013-02-19
EP2532246A4 (en) 2014-05-21
EP2532246B1 (en) 2015-07-15
JP5384740B2 (ja) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5384740B2 (ja) X線を用いた骨付き肉の脱骨方法及び装置
KR101777184B1 (ko) 뼈있는 다리의 발골 방법 및 장치
AU738848B2 (en) Apparatus and method for removing ribs
EP3508064B1 (en) System and method for processing slaughtered animals and/or parts thereof
US9033774B2 (en) Device and method for conveying bone-in meat and deboning system of bone-in meat including the device
WO2009139031A1 (ja) 骨付き肉の載架方法及び装置、並びに載架用動作プログラム
US8747193B2 (en) Meat fabrication system and method
US9513234B2 (en) Device and method for capturing X-ray image of bone-in meat and deboning system of bone-in meat including the device
JP4555331B2 (ja) 食肉ブロックの脱骨方法及び脱骨装置
JP2022530772A (ja) 吊るされた半身の豚の枝肉からの前端の切断
JP4190705B2 (ja) 腿肉分離方法とその装置
NZ525790A (en) Automatic cutting of products such as carcasses
JP2000106818A (ja) 半自動豚もも除骨機と該除骨機を使用した豚ももの除骨方法
DK2566339T3 (en) Separation of the spine from the middle part of a carcass
JP4908147B2 (ja) 骨付き肉の脱骨方法及び装置
JP4037282B2 (ja) 食肉脱骨方法と食肉脱骨装置
JP7225021B2 (ja) 骨付き肢肉の把持装置及び把持方法
JP2015039310A (ja) 脱骨装置の監視装置
KR20230088463A (ko) 가금류 몸통을 처리하기 위한 장치 및 방법
JP2013031916A (ja) 枝肉の分割方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012524012

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011835934

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012019756

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012019756

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120807