WO2012053267A1 - 光ファイバーおよびそれを用いた水中衝撃波発生装置 - Google Patents

光ファイバーおよびそれを用いた水中衝撃波発生装置 Download PDF

Info

Publication number
WO2012053267A1
WO2012053267A1 PCT/JP2011/067140 JP2011067140W WO2012053267A1 WO 2012053267 A1 WO2012053267 A1 WO 2012053267A1 JP 2011067140 W JP2011067140 W JP 2011067140W WO 2012053267 A1 WO2012053267 A1 WO 2012053267A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
laser
tip
laser converging
shock wave
Prior art date
Application number
PCT/JP2011/067140
Other languages
English (en)
French (fr)
Inventor
高山 和喜
裕朗 山本
下川 宏明
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to US13/880,530 priority Critical patent/US9433466B2/en
Priority to EP11834109.8A priority patent/EP2630918B1/en
Priority to CN201180050402.7A priority patent/CN103167836B/zh
Publication of WO2012053267A1 publication Critical patent/WO2012053267A1/ja
Priority to IL225765A priority patent/IL225765A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B2017/22024Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement with a part reflecting mechanical vibrations, e.g. for focusing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B2017/22025Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement applying a shock wave
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/206Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the laser light passing along a liquid-filled conduit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2272Optical elements at the distal end of probe tips with reflective or refractive surfaces for deflecting the beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • A61B2018/263Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy the conversion of laser energy into mechanical shockwaves taking place in a liquid

Definitions

  • the present invention relates to an optical fiber and an underwater shock wave generator using the same. Specifically, the present invention relates to an optical fiber for generating underwater shock waves by irradiating pulsed laser light in water and an underwater shock wave generating apparatus using the same.
  • the underwater shock wave generator of Patent Document 1 solves the problem of being able to treat an affected area in the deep part and the problem of not causing thrombosis due to the fact that heat is not generated at the treatment site. It was. In particular, it has been found that water enters a fine crack on the surface caused by molding or the like, and that when a laser beam is irradiated, the fracture starts from a slight crack. Therefore, it has been found that the tip of the optical fiber is damaged only by irradiating the laser beam once to several times, and the intensity of the shock wave generated thereby is drastically reduced. For this reason, in order to construct a better underwater shock wave generator, it is essential to improve the durability of the optical fiber.
  • An object of the present invention is to provide an optical fiber for an underwater shock wave generator that can efficiently generate a shock wave with large energy and has high durability, and a shock wave generator using the same.
  • the optical fiber of the present invention is an optical fiber for an underwater shock wave generator that generates underwater shock waves by irradiating pulsed laser light into water, and comprises a linear main body part and a laser converging part provided at the tip thereof.
  • the laser converging portion has a rotating body whose diameter decreases toward the tip and rotates about the axis, and the laser converging portion is substantially a flat portion whose tip is perpendicular to the axis. It has a truncated cone shape, and is characterized in that the inner angle with respect to the radial direction of the side of the axial cross section of the laser converging portion is gradually reduced toward the front.
  • Such an optical fiber is preferable in which the surface of the laser converging portion is a mirror surface.
  • the side of the axial cross section of the laser converging part is composed of a plurality of straight lines
  • the side of the axial cross section of the laser converging part is composed of a curve
  • the side of the laser converging part It is preferable that the side of the axial cross section is composed of straight lines and curves.
  • the underwater shock wave generator of the present invention includes the optical fiber of the present invention, a columnar reflector having a concave surface at the tip, a blocking film for closing the concave surface, and a liquid filled between the concave surface and the blocking film. It is composed of Further, the reflector has the concave surface having a spheroidal shape having a major axis as a rotation axis, and a central hole formed on the major axis and through which an optical fiber communicating with the concave surface is passed. The tip of the laser converging part is fixed so as to come to the focal point of the concave surface of the reflector.
  • the optical fiber of the present invention comprises a linear main body part and a laser converging part provided at the tip thereof, and the laser converging part has a rotating body whose diameter decreases toward the tip and rotates about the axis. Therefore, the laser light irradiated from the proximal end to the distal end of the optical fiber can be condensed, and a stronger shock wave can be efficiently generated at the pinpoint.
  • the inner angle with respect to the radial direction of the side of the axial cross section of the laser converging portion is configured to gradually decrease toward the tip, the laser light can be converged based on the ray tracing method.
  • tip of the said laser convergence part is exhibiting the substantially truncated cone which became a plane part perpendicular
  • the laser converging part has a substantially truncated cone with a diameter reduced toward the tip, and its mechanical strength is smaller than that of the cylindrical one, but the shock wave generated by the conventional molding method is stronger and more durable. A high one is obtained.
  • the side of the axial cross section of the laser converging part when the side of the axial cross section of the laser converging part is composed of a plurality of straight lines, the side of the axial cross section of the laser converging part is composed of one or more curves Alternatively, when the side of the axial cross section of the laser converging unit is composed of one or more curves, the laser light can be converged based on the ray tracing method, and a stable shock wave can be generated. .
  • the underwater shock wave generator of the present invention uses the optical fiber of the present invention, the durability of the optical fiber is high and the durability of the entire apparatus is also high. Further, since the laser beam is configured to converge at the tip of the optical fiber, the generated shock wave is accurately converged to the focal point outside the reflector, and the energy efficiency is high. In addition, a large shock wave can be generated at a distance farther from the apparatus. Therefore, it can be used for more advanced treatment.
  • FIG. 1a is a sectional side view showing an embodiment of the underwater shock wave generator of the present invention
  • FIG. 1b is a reflection diagram of shock waves generated by the underwater shock wave generator
  • 2a to 2e are external views showing one embodiment of the laser focusing section of the optical fiber of the present invention
  • FIG. 3A is a schematic diagram illustrating a mathematical expression of the laser converging unit in FIG. 2A
  • FIG. 3B is a converging diagram of the laser light when the laser converging unit of the optical fiber in FIG. 1b is a cross-sectional side view of the reflector of FIG. It is a graph which shows the relationship between the distance from the apparatus front-end
  • the underwater shock wave generator 10 includes an optical fiber 11, a reflector 12 that fixes the optical fiber, a blocking film 13 that closes the concave opening at the tip of the reflector 12, and a liquid that is filled between the concave surface and the blocking film. 14.
  • This underwater shock wave generator 10 is a small one attached to the distal end of the catheter 15.
  • the optical fiber 11 is composed of a linear main body portion 16 and a laser converging portion 17 provided at the tip thereof, and is made of quartz that has been subjected to dehydroxylation treatment.
  • the diameter of the main body 16 is 0.1 to 1.0 mm, 0.5 to 0.7 mm, particularly 0.6 mm.
  • the laser converging unit 17 has a rotating body that has a diameter that decreases toward the front and rotates about the axis of the main body, and a small, substantially conical tip whose tip is a flat surface portion 18a perpendicular to the axis of the main body. It has the shape of a table (see FIG. 2).
  • the ratio of the diameter of the distal flat surface portion 18a of the laser converging portion 17 to the diameter of the proximal end 18b is 1 / 1.5 to 1/6, preferably 1/2 to 1/3, particularly preferably 1/2.
  • the internal angle ⁇ with respect to the radial direction of the side of the axial cross section of the laser converging portion is configured to gradually decrease from the proximal end side toward the distal end side (toward the front side).
  • the height is preferably lower than the fiber diameter.
  • the surface of the laser converging portion 17 is a mirror surface, and there are no fine cracks or irregularities on the surface. For this reason, water can enter fine cracks and irregularities on the surface, and the laser converging portion 17 can be prevented from being broken starting from the cracks.
  • a method of mirror finishing of the laser converging unit 17 a method of creating an optical lens is used. Specifically, there is a method in which a predetermined tool for an optical lens is used to prepare a plurality of abrasives having a diameter of 24 microns to 1 micron, and polishing is performed in order from the largest to a mirror surface.
  • Examples of the substantially truncated cone shape of the laser converging unit 17 include FIGS. 2a to 2e.
  • the diameter Y of the distal end 18a is about half of the diameter X of the proximal end 18b, and the shape of the axial cross section is substantially trapezoidal.
  • the side of this trapezoid consists of three straight lines (17a 1 , 17a 2 , 17a 3 ), each from the base end (main body, left in the figure) side to the base of the trapezoid (approximately in the radial direction of the truncated cone).
  • the interior angles ( ⁇ A , ⁇ B , ⁇ C ) are configured to gradually decrease ( ⁇ A > ⁇ B > ⁇ C ).
  • the side of the trapezoid that is an axial cross-sectional shape is composed of three straight lines. However, if the following mathematical formula is satisfied, even if it is composed of two straight lines, four or more You may comprise from a straight line.
  • the laser beam reflected by the inner surface of the straight line C having an internal angle ⁇ n with respect to the radial direction is reflected on the surface A and the surface B formed by the base end and the distal end of the straight line. It always passes through the flat surface D. Therefore, the laser beam can be collected efficiently and a stronger shock wave can be generated.
  • the height of the substantially truncated cone is lower than the diameter of the fiber.
  • the diameter Y of the distal end 18a is about 1/6 with respect to the diameter X of the proximal end 18b, and the trapezoidal side of the axial cross section has three straight lines (17b 1 , 17b 2 17b 3 ). Further, the height (A ′ + B ′ + C ′) of the laser converging portion 17b is made the same as the diameter X of the base end 18b.
  • the internal angles ( ⁇ A , ⁇ B , ⁇ C ) with respect to the base of the trapezoid (substantially in the radial direction of the truncated cone) are gradually reduced from the base end (main body, left in the figure) side ( ⁇ A > ⁇ B > ⁇ C ), and all the laser reflected light is set to pass through the flat surface of the tip 18a.
  • the diameter Y of the distal end 18a is about 1/3 with respect to the diameter X of the proximal end 18b.
  • the side of the trapezoid of the axial cross section consists of two straight lines (17c 1 , 17c 2 ), each from the base end (main body, left in the figure) side to the base of the trapezoid (substantially in the radial direction of the truncated cone).
  • the interior angles ( ⁇ A , ⁇ B ) are configured to gradually decrease toward the front ( ⁇ A > ⁇ B ).
  • the internal angle ⁇ A of the straight line 17c 1 is set near the critical angle.
  • critical angle ⁇ c arcsin (n2 / n1), n1: optical fiber refractive index, n2: water refractive index
  • critical angle at which the laser beam passing through the straight line 17c1 and passing through the water is 67.84 degrees.
  • the substantially truncated cone is lower than the diameter of the fiber, and in that case, it is 76.8 degrees or less. Therefore, 67.84 degrees ⁇ A ⁇ 76.8 degrees.
  • the diameter Y of the distal end 18a is about half of the diameter X of the proximal end 18b.
  • a trapezoidal side 17d1 of the axial cross section is formed of a curved line protruding outward. On the other hand, the side 17d1 may be configured by two or more curved lines.
  • the diameter Y of the distal end 18a is half of the diameter X of the proximal end 18b.
  • the side of the trapezoid of the axial cross section is composed of one straight line 17e 1 and one curved line 17e 2 .
  • the laser converging parts 17a to 17e in FIGS. 2a to 2e have a substantially frustoconical shape in which the tip 18a of the laser converging part is smaller than the base end 18b, and the radial direction of the side of the axial sectional shape of the laser converging part 17 If the inner angle with respect to is gradually decreased continuously or discontinuously, the effects of the present invention such as improvement of the light collection efficiency and improvement of the durability of the laser focusing portion 17 of the optical fiber can be obtained. . Since the optical fiber 11 is configured in this manner, for example, as shown in FIG. 3B, when the laser beam R is irradiated onto the laser focusing unit 17a in FIG. 2A, the laser beam converges based on the ray tracing method.
  • the reflector 12 has a concave surface 22 having a spheroidal surface having a long axis rotation axis, and a center hole 23 formed at the axial center of the reflector and passing through the optical fiber 11 communicating with the concave surface 22. It is a cylindrical thing provided with.
  • the short diameter (opening diameter Z) of the concave surface 22 is preferably 2.0 to 2.5 mm, particularly 2.3 mm.
  • the major axis can be determined according to the depth of the affected area, but the major axis to minor axis ratio is preferably 1.2 to 1.6, and particularly preferably 1.4 to 1.45.
  • the blocking film 13 in FIG. 1 is a plastic thin film having elasticity.
  • examples of such a material include polyethylene.
  • Examples of the liquid 14 include water and saline.
  • the catheter 15 has flexibility, and is made of synthetic resin such as polyurethane, polyamide, an elastomer similar to them, or silicon rubber.
  • the underwater shock wave generator 10 of the present invention passes through the center hole 23 of the reflector 12 so that the tip 18a of the laser converging portion 17 of the optical fiber 11 is positioned at one focal point F1 of the concave surface 22 of the reflector 12. Is fixed (see FIG. 1b). Thereby, the laser light irradiated through the optical fiber 11 generates a shock wave at the focal point F1 of the concave surface 22 of the reflector. The generated shock wave is diffused 360 degrees from the focal point, but is reflected by the concave surface of the reflector 12 and converges toward the second focal point F2 outside the reflector 12. Thus, the underwater shock wave device 10 of the present invention can converge the shock wave at a certain distance from the tip.
  • the laser converging unit 17 of the optical fiber 11 is not damaged even when used a plurality of times, has high durability, and can generate a large shock wave with small energy.
  • the laser beam used in the underwater shock wave generator of the present invention has a pulse width of 50 to 120 nanoseconds, preferably 70 to 100 nanoseconds, particularly preferably 70 nanoseconds, and an energy of 30 mJ to 50 mJ per pulse. Things are used.
  • a Ho: YAG laser with a Q switch is preferable.
  • the tip of the next optical fiber was processed as follows.
  • the diameter X of the proximal end 18b is 0.6 mm
  • the diameter Y of the distal end 18a is 0.344 mm
  • the angle ( ⁇ ) of three straight lines (17a 1 , 17a 2 , 17a 3 ) constituting the side of the sectional shape A , ⁇ B , ⁇ C ) are 78.9 degrees, 73.4 degrees, 65.6 degrees
  • heights (A ′, B ′, C ′) are 0.175 mm, 0.186 mm, 0.072 mm.
  • a laser converging part 17a of FIG. 2a was produced (Example 1).
  • this laser converging part 17a is polished with a tool used for the method of producing an optical lens in order from a coarse abrasive (fused alumina (24 microns, 16 microns, 10 microns), cerium oxide (1 micron)) to form a mirror surface. did.
  • Example 2 The diameter X of the proximal end 18b is 0.6 mm, the diameter Y of the distal end 18a is 0.106 mm, and the angle ( ⁇ ) of three straight lines (17b 1 , 17b 2 , 17b 3 ) constituting the side of the cross-sectional shape 2b, wherein A 1 , ⁇ B , ⁇ C ) are 70 degrees, 61 degrees, 55 degrees and heights (A ′, B ′, C ′) are 0.457 mm, 0.060 mm, 0.083 mm.
  • the convergence part 17b was produced (Example 2).
  • Example 3 The diameter X of the proximal end 18b is 0.6 mm, the diameter Y of the distal end 18a is 0.148 mm, and the angles ( ⁇ A , ⁇ ) of two straight lines (17c 1 , 17c 2 ) constituting the side of the cross-sectional shape B ) was 69 degrees and 60 degrees, and the laser converging portion 17c of FIG. 2c having heights (A ′, B ′) of 0.213 mm and 0.242 mm was produced (Example 3).
  • Example 4 The optical fiber 11 provided with the laser converging part 17a of Example 1, and the reflector 12 provided with the concave surface (reflecting mirror) of a half-cut ellipsoid shape with a short diameter of 4 mm were prepared.
  • the concave surface 22 of the reflector 12 is filled with purified water (liquid 14), the open end of the reflector is sealed with a silicon rubber blocking film 13 having a thickness of 0.1 mm, and the underwater shock wave generator 10 (Embodiment 4). ) was manufactured.
  • the optical fiber laser converging part 17a was fixed so that the tip thereof was positioned at the first focal point of the reflector (F1 in FIG. 1b).
  • Example 1 A normal optical fiber having a cleaved cylindrical tip was prepared, and an underwater shock wave generator (Comparative Example 1) was manufactured using the reflector 12, the blocking film 13, and the liquid 14 of Example 1. The tip of the optical fiber was fixed at the first focal point of the reflector.
  • [Comparative Example 3] A laser converging portion having a base end diameter of 0.6 mm, a side surface of a cross-sectional shape being curved toward the tip, and a tip having a curved surface, which is aspherical (bullet shape) as a whole.
  • the prepared optical fiber was prepared.
  • the surface of the laser converging part was treated with sandpaper of number 4000 (rough surface).
  • An underwater shock wave generator (Comparative Example 3) was manufactured using the reflector 12, the blocking film 13, and the liquid 14 of Example 1. It fixed so that the front-end
  • Example 4 The underwater shock wave generators of Example 4 and Comparative Examples 1, 2, and 3 were irradiated with a Ho: YAG laser (oscillation period 3 Hz, energy at the laser emission end of 35 mJ / pulse) to generate shock waves.
  • the change of the shock wave maximum overpressure with respect to the distance from the tip of the apparatus is shown in FIG.
  • Example 4 when Example 4 was used, a shock wave (converged wave) of 55 to 65 MPa was confirmed. On the other hand, when Comparative Example 1 was used, only a shock wave (convergent wave) of around 15 MPa could be confirmed. Even when Comparative Examples 2 and 3 were used, only a shock wave of around 35 to 45 MPa could be confirmed.
  • Example 4 the maximum value was observed when the distance from the tip of the device was 2 mm or more, whereas in Comparative Examples 1 to 3, the maximum value was observed when the distance from the tip of the device was 2 mm before. . Further, regarding the durability of the optical fiber, Comparative Example 2 was damaged by continuous irradiation for 300 seconds, and Comparative Example 3 was damaged by continuous irradiation for 5 seconds. In Example 4, when the laser energy was 45 mJ / pulse, no damage was observed even when the 5-second continuous irradiation was repeated 80 times.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • Vascular Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Surgery Devices (AREA)
  • Laser Beam Processing (AREA)
  • Surgical Instruments (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

レーザー光の集光効率が良く、耐久性の高い光ファイバーおよびそれを用いた衝撃波発生装置を提供する。水中にレーザー光を照射して水中衝撃波を発生させる水中衝撃波発生装置10に用いられる光ファイバー11。光ファイバー11は、本体部16と、その先端に設けられたレーザー収束部17とからなり、レーザー収束部17が先端18aの径が基端18bの径より小さい略円錐台の形状を呈しており、かつ、軸線断面の側辺の半径方向に対する内角θが、先に向かって徐々に小さくなるように構成されている。

Description

光ファイバーおよびそれを用いた水中衝撃波発生装置
 本発明は、光ファイバーおよびそれを用いた水中衝撃波発生装置に関する。詳しくは、水中にパルスレーザー光を照射して水中衝撃波を発生するための光ファイバーおよびそれを用いた水中衝撃波発生装置に関する。
 近年、患部に対する非薬物療法として高周波アブレーション治療が広く普及している。しかし、この治療法は治療部位を電極により焼灼するため、頻脈性不整脈における深部の不整脈の治療が困難であり、また発生する熱により重篤な血栓閉塞症を患部に併発させるおそれがあるという問題がある。
 また、水中にパルスレーザー光を照射し発生させた水中衝撃波を収束させて、限局した空間に瞬間的に高圧を発生させ、尿路や腎臓結石を破砕除去する体外破砕術(Extracorporeal Shock Wave Lithotripsy (ESWL))が確立されている。
 本出願人は、例えば特許文献1に示すように、上記水中衝撃波収束法をカテーテルに組み入れ可能な大きさまでにまで小型化し、その水中衝撃波発生装置を提供することに成功している。
 また、非特許文献1の3.6で示すように、光ファイバーの表面を粗面とする方が鏡面とすることより強い衝撃波を発生させることが知られている。
特開2009-61083号公報
H. NOSE et al., Effect of Optical Fiber Output Surface on Laser InducedShock Wave and Its Application, Japanese Journal of Applied Physics Vol.43, No. 9A, 2004, pp. 6145-6151
 特許文献1の水中衝撃波発生装置は、深部にある患部を治療できるという課題、および、治療部位において熱を発生させないため血栓閉塞症を発生させないという課題を解決したが、耐久性が低いことがわかった。特に、成形などで生じた表面の微細な亀裂に水が入り込んだり、レーザー光を照射した際に、わずかな亀裂を起点として破壊が生じたりすることがわかった。そのため、1回から数回のレーザー光を照射するだけで、光ファイバーの先端が損傷してしまい、それにより発生する衝撃波の強さが激減してしまうことがわかった。このため、より良い水中衝撃波発生装置を構築するためには、光ファイバーの耐久性を向上させることが必要不可欠である。
 本発明は、エネルギーの大きい衝撃波を効率よく発生させることができ、かつ、耐久性の高い水中衝撃波発生装置用の光ファイバーおよびそれを用いた衝撃波発生装置を提供することを目的としている。
 本発明の光ファイバーは、水中にパルスレーザー光を照射して水中衝撃波を発生する水中衝撃波発生装置用の光ファイバーであって、線状の本体部と、その先端に設けられたレーザー収束部とからなり、前記レーザー収束部が、先に向かって径が小さくなり、軸中心に回転した回転体を呈しており、前記レーザー収束部は、その先端が前記軸に対して垂直な平面部となった略円錐台を呈しており、前記レーザー収束部の軸線断面の側辺の半径方向に対する内角が、先に向かって徐々に小さくなるように構成されていることを特徴としている。
 このような光ファイバーであって、前記レーザー収束部の表面が鏡面になっているものが好ましい。また、前記レーザー収束部の軸線断面の側辺が、複数の直線から構成されているもの、前記レーザー収束部の軸線断面の側辺が曲線から構成されているもの、または、前記レーザー収束部の軸線断面の側辺が直線および曲線から構成されているものが好ましい。
 本発明の水中衝撃波発生装置は、本発明の光ファイバーと、先端に凹面が形成された柱状の反射体と、その凹面を閉じる遮断膜と、前記凹面と遮断膜との間に充填される液体とから構成されている。また、反射体が、長軸を回転軸とした回転楕円面形状を有する前記凹面と、長軸上に形成され、前記凹面と連通する光ファイバーを通す中心孔とを有しており、前記光ファイバーは、レーザー収束部の先端が前記反射体の凹面の焦点にくるように固定されていることを特徴としている。
 本発明の光ファイバーは、線状の本体部と、その先端に設けられたレーザー収束部とからなり、前記レーザー収束部が、先に向かって径が小さくなり、軸中心に回転した回転体を呈しているため、光ファイバーの先端に基端から照射したレーザー光を集光させることでき、より強い衝撃波を効率よくピンポイントに発生させることができる。特に、前記レーザー収束部の軸線断面の側辺の半径方向に対する内角が、先に向かって徐々に小さくなるように構成されているため、光線追跡法に基づいてレーザー光を収束させることができる。また、前記レーザー収束部の先端が軸に対して垂直な平面部となった略円錐台を呈しているため、耐久性が高い。
 このような光ファイバーであって、前記レーザー収束部の表面が鏡面になっている場合、表面における微細な亀裂等を防止でき、その耐久性を向上させることができる。また、レーザー収束部の内面での乱反射を防ぎ、先端に向かって収束するレーザーエネルギー密度を高めることができる。特に、レーザー収束部を先端に向かって縮径した略円錐台としており、その機械的強度は円筒状のものより小さくなるが、従来の成形法のものより発生させる衝撃波が強く、かつ耐久性の高いものが得られる。
 このような光ファイバーであって、レーザー収束部の軸線断面の側辺が複数の直線から構成されている場合、レーザー収束部の軸線断面の側辺が1または2以上の曲線から構成されている場合、または、前記レーザー収束部の軸線断面の側辺が1または2以上の曲線から構成される場合、レーザー光を光線追跡法に基づいて収束させることができ、安定した衝撃波を発生させることができる。
 本発明の水中衝撃波発生装置は、本発明の光ファイバーを用いているため、光ファイバーの耐久性が高く、装置全体としての耐久性も高い。また、光ファイバーの先端にレーザー光が収束するように構成されているため、発生した衝撃波も反射体外の焦点に正確に収束し、エネルギー効率も高い。また、装置からより遠い距離で大きな衝撃波を発生させることができる。そのため、より一層高度な治療に用いることができる。
図1aは本発明の水中衝撃波発生装置の一実施形態を示す断面側面図であり、図1bはその水中衝撃波発生装置によって発生させた衝撃波の反射図である。 図2a~eはそれぞれ本発明の光ファイバーのレーザー収束部の一実施形態を示す外形図である。 図3aは図2aのレーザー収束部の数式を表す概略図であり、図3bは図2aの光ファイバーのレーザー収束部にレーザー光を照射したときのレーザー光の収束図である。 図1aの反射体を示す断面側面図である。 水中衝撃波発生装置によって発生させた衝撃波の装置先端からの距離と強さの関係を示すグラフである。
 次に図1を用いて本発明の水中衝撃波発生装置を説明する。
 水中衝撃波発生装置10は、光ファイバー11と、その光ファイバーを固定する反射体12と、その反射体12の先端の凹面開口部を閉じる遮断膜13と、凹面と遮断膜との間に充填される液体14とから構成される。この水中衝撃波発生装置10は、カテーテル15の先端に取り付けられる小型のものである。
 光ファイバー11は、線状の本体部16と、その先端に設けられたレーザー収束部17とからなり、脱水酸基処理をした石英製のものである。その本体部16の径としては、0.1~1.0mm、0.5~0.7mm、特に0.6mmのものが用いられる。
 レーザー収束部17は、先に向かって径が小さくなり、本体部の軸中心に回転した回転体を呈しており、先端が本体部の軸に対して垂直な平面部18aとなった小さい略円錐台の形状を呈している(図2参照)。レーザー収束部17の先端平面部18aの径の基端18bの径に対する比は1/1.5~1/6、好ましくは1/2~1/3、特に好ましくは1/2である。
 レーザー収束部の軸線断面の側辺の半径方向に対する内角θは、基端側から先端側に向かって(先に向かって)徐々に小さくなるように構成されている。また、レーザー収束部の耐久性を考慮するとその高さはファイバーの直径より低いことが好ましい。
 レーザー収束部17の表面は鏡面としており、表面の微細な亀裂や凹凸が無い。そのため、表面な微細な亀裂や凹凸に水が入り込み、その亀裂を起点としたレーザー収束部17の破壊を防止することができる。
 レーザー収束部17の鏡面仕上げの方法としては、光学レンズの作成方法が用いられる。詳しくは、光学レンズ用の所定の道具を用いて、径24ミクロンから径1ミクロンまでの複数の研磨剤を用意し、大きいものから順番に研磨して鏡面に仕上げる方法が挙げられる。
 このようなレーザー収束部17の略円錐台の形状として、図2a~eなどが挙げられる。
 図2aのレーザー収束部17aは、基端18bの径Xに対して先端18aの径Yが約半分となっているものであり、軸線断面の形状が略台形を呈する。この台形の側辺は3つの直線(17a、17a、17a)からなっており、それぞれ基端部(本体部、図中左)側から台形の底辺(略円錐台の半径方向)に対する内角(θ、θ、θ)が徐々に小さくなるように構成されている(θ>θ>θ)。
 図2aのレーザー収束部17aでは、軸線断面形状である台形の側辺が3つの直線からなるものを挙げたが、次の数式を満たせば、2つの直線から構成されても、4つ以上の直線から構成されてもよい。基端から先端に向かってそれぞれの直線の半径方向に対する内角(θ1、θ2、・・・θn-1、θn)とする。

(数1)
0.4 < tan(2θn-1/2π)/tanθn < 0.5
n-1/2π<θn+1n、n=1,2,3…
ただし1/4π<θn<1/2π

 このように設定することによって、図3aに示すように、半径方向に対する内角がθnの直線Cの内面で反射したレーザー光は、その直線の基端、先端によって形成される面A、面Bの間の平坦面Dを必ず通過する。そのため、レーザー光を効率よく集光でき、一層強い衝撃波を発生させることができる。また、レーザー収束部の耐久性を考慮すると略円錐台の高さはファイバーの直径より低いことが好ましい。
 図2bのレーザー収束部17bは、基端18bの径Xに対して先端18aの径Yが約1/6となっており、軸線断面の台形の側辺が3つの直線(17b、17b、17b)からなっている。また、このレーザー収束部17bの高さ(A’+B’+C’)を基端18bの径Xと同じにしている。それぞれ基端部(本体部、図中左)側から台形の底辺(略円錐台の半径方向)に対する内角(θ、θ、θ)が徐々に小さくなるように構成されており(θ>θ>θ)、全てのレーザー反射光が先端18aの平坦面を通過するように設定されている。
 図2cのレーザー収束部17cは、基端18bの径Xに対して先端18aの径Yが約1/3となっているものである。軸線断面の台形の側辺は2つの直線(17c、17c)とからなっており、それぞれ基端部(本体部、図中左)側から台形の底辺(略円錐台の半径方向)に対する内角(θ、θ)が先に向かって徐々に小さくなるように構成されている(θ>θ)。
 この実施形態では、直線17cの内角θAを臨界角付近に設定している。つまり、水の屈折率を1.329、光ファイバーの屈折率を1.435としたとき、臨界角の定義(臨界角θc=arcsin(n2/n1)、n1:光ファイバーの屈折率、n2:水の屈折率)より直線17c1を通過して水中に透過するレーザー光が理論上無くなる臨界角度は、67.84度である。さらに、レーザー収束部の耐久性を考慮すると略円錐台はファイバーの直径より低いことが好まく、その場合は76.8度以下となる。したがって,67.84度<θA<76.8度としている。
 図2dのレーザー収束部17dは、基端18bの径Xに対して先端18aの径Yが約半分となっている。軸線断面の台形の側辺17d1が外向きに突出した湾曲線より構成されている。一方、側辺17d1は、2以上の湾曲線により構成されてもよい。
 図2eのレーザー収束部17eは、基端18bの径Xに対して先端18aの径Yが半分となっている。軸線断面の台形の側辺が一つの直線17eと、1つの湾曲線17eより構成されている。
 図2a~eのレーザー収束部17a~eは、レーザー収束部の先端18aが基端18bより小さくなった略円錐台形状を呈し、かつ、レーザー収束部17の軸線断面形状の側辺の半径方向に対する内角が先に向かって連続的にあるいは不連続的に徐々に小さくなっていれば、集光効率の向上、および、光ファイバーのレーザー収束部17の耐久性の向上という本発明の効果が得られる。
 このように光ファイバー11は構成されているため、例えば図3bに示すように、図2aのレーザー収束部17aにレーザー光Rを照射するとレーザー光は光線追跡法に基づいて収束する。
 反射体12は、図4に示すように、長軸回転軸とした回転楕円面形状を有する凹面22と、反射体の軸中心に形成され、凹面22と連通する光ファイバー11を通す中心孔23とを備えている円柱状のものである。凹面22の短径(開口部直径Z)としては、2.0~2.5mm、特に2.3mmが好ましい。長径は、患部の深度に応じて決定することができるが、長短径比が1.2~1.6、特に1.4~1.45が好ましい。
 図1の遮断膜13は、プラスチック製の薄膜であって、弾力性を有するものが用いられる。そのような材質として、ポリエチレン等が挙げられる。
 液体14としては、水、食塩水等が挙げられる。
 カテーテル15は、可撓性を有するものであり、ポリウレタン、ポリアミド、それらに類するエラストマー、シリコンゴムなどの合成樹脂製が用いられる。
 本発明の水中衝撃波発生装置10は、光ファイバー11のレーザー収束部17の先端18aが反射体12の凹面22の一つの焦点F1に位置するように、反射体12の中心孔23に通して光ファイバー11を固定する(図1b参照)。これにより、光ファイバー11を介して照射されたレーザー光は反射体の凹面22の焦点F1で衝撃波を発生する。発生された衝撃波は、その焦点から360度に拡散されるが、反射体12の凹面に反射され、反射体12の外の第2の焦点F2に向かって収束する。このように、本発明の水中衝撃波装置10は、先端からある一定の距離に衝撃波を収束させることができる。例えば、頻脈性不整脈における深部の不整脈治療を正確に、かつ、安全に行うことができる。特に、光ファイバー11のレーザー収束部17は、複数回使用しても損傷せず耐久性が高く、小さいエネルギーで大きな衝撃波を発生させることができる。
 本発明の水中衝撃波発生装置に使用するレーザー光としては、パルス幅が50~120ナノ秒、好ましくは70~100ナノ秒、特に好ましくは70ナノ秒であり、エネルギーが1パルスあたり30mJ~50mJのものが使用される。このようなレーザーとして、Qスイッチ付きHo:YAGレーザーが好ましい。
 次の光ファイバーの先端を次のように加工した。
[実施例1]
 基端18bの径Xが0.6mmであり、先端18aの径Yが0.344mmであり、断面形状の側辺を構成する3つの直線(17a、17a、17a)の角度(θ、θ、θ)が78.9度、73.4度、65.6度であり、高さ(A’、B’、C’)が0.175mm、0.186mm、0.072mmである図2aのレーザー収束部17aを作製した(実施例1)。
 このレーザー収束部17aの表面を、光学レンズの作成方法に使用する道具で、粗い研磨剤(溶融アルミナ(24ミクロン、16ミクロン、10ミクロン)、酸化セリウム(1ミクロン))から順に磨いて鏡面とした。
[実施例2]
 基端18bの径Xが0.6mmであり、先端18aの径Yが0.106mmであり、断面形状の側辺を構成する3つの直線(17b、17b、17b)の角度(θ、θ、θ)が70度、61度、55度であり、高さ(A’、B’、C’)が0.457mm、0.060mm、0.083mmである図2bのレーザー収束部17bを作製した(実施例2)。
[実施例3]
 基端18bの径Xが0.6mmであり、先端18aの径Yが0.148mmであり、断面形状の側辺を構成する2つの直線(17c、17c)の角度(θ、θ)が69度、60度であり、高さ(A’、B’)が0.213mm、0.242mmである図2cのレーザー収束部17cを作製した(実施例3)。
[実施例4]
 実施例1のレーザー収束部17aを備えた光ファイバー11と、短径4mmの半切楕円体形状の凹面(反射鏡)を備えた反射体12とを用意した。その反射体12の凹面22に精製水(液体14)を満たし、その反射体の開口端を厚さ0.1mmのシリコンゴム製の遮断膜13で密封し、水中衝撃波発生装置10(実施例4)を製造した。光ファイバーのレーザー収束部17aは、その先端が反射体の第1の焦点(図1bのF1)と位置するように固定した。
[比較例1]
 へき開処理をした円筒状の先端を有する通常の光ファイバーを用意し、実施例1の反射体12、遮断膜13、液体14で水中衝撃波発生装置(比較例1)を製造した。光ファイバーの先端は、反射体の第1焦点に固定した。
[比較例2]
 基端の径が0.6mmであり、先端の径Yが0.35mmであり、高さZが0.43mmである回転円錐台のレーザー収束部を備えた光ファイバーを用意した。レーザー収束部の表面は、ナンバー4000の紙やすりで処理した(粗面)。実施例1の反射体12、遮断膜13、液体14で水中衝撃波発生装置(比較例2)を製造した。光ファイバーのレーザー収束部の先端が、反射体の第1焦点に配置されるように固定した。
[比較例3]
 基端の径が0.6mmであり、断面形状の側面が先端に向かってが湾曲しており、先端が曲面となっている全体として非球形状(弾丸形状)となっているレーザー収束部を備えた光ファイバーを用意した。レーザー収束部の表面は、ナンバー4000の紙やすりで処理した(粗面)。実施例1の反射体12、遮断膜13、液体14で水中衝撃波発生装置(比較例3)を製造した。光ファイバーのレーザー収束部の先端が、反射体の第1焦点に配置されるように固定した。
 実施例4および比較例1、2、3の水中衝撃波発生装置にHо:YAGレーザー(発振周期3Hz、レーザー出射端におけるエネルギーが35mJ/pulse)を照射し、衝撃波を発生させた。装置の先端からの距離に対する衝撃波最大過剰圧の変化を図5に示す。
 図5に示すように、実施例4を用いた場合、55~65MPaの衝撃波(収束波)が確認できた。
 一方、比較例1を用いた場合、15MPa前後の衝撃波(収束波)しか確認できなかった。比較例2、3を用いた場合でも、35~45MPa前後の衝撃波しか確認できなかった。
 また、実施例4では、装置の先端からの距離が2mm以上において最大値が観測されたのに対し、比較例1~3では、装置の先端からの距離が2mm前において最大値が観測された。
 また、光ファイバーの耐久性は、比較例2は300秒の連続照射で損傷し、比較例3は5秒の連続照射でレーザー収束部が損傷した。実施例4では、レーザーエネルギーが45mJ/pulseのとき,5秒連続照射を80回繰り返しても損傷は認められなかった。
 10 水中衝撃波発生装置
 11 光ファイバー
 12 反射体
 13 遮断膜
 14 液体
 15 カテーテル
 16本体部
 17 レーザー収束部
 17a~17e レーザー収束部
 17a~17a、17b~17b、17c、17c 側辺
 18a 先端
 18b 基端
 22 凹面
 23 中心孔

Claims (6)

  1. 水中にレーザー光を照射して水中衝撃波を発生させる水中衝撃波発生装置用の光ファイバーであって、
    線状の本体部と、その先端に設けられたレーザー収束部とからなり、
    前記レーザー収束部が、先に向かって径が小さくなり、軸中心に回転した回転体を呈しており、
    前記レーザー収束部は、その先端が前記軸に対して垂直な平面部となった略円錐台を呈しており、
    前記レーザー収束部の軸線断面の側辺の半径方向に対する内角が、先に向かって徐々に小さくなるように構成されている、
    光ファイバー。
  2. 前記レーザー収束部の表面が鏡面になっている、
    請求項1記載の光ファイバー。
  3. 前記レーザー収束部の軸線断面の側辺が複数の直線から構成される、
    請求項1記載の光ファイバー。
  4. 前記レーザー収束部の軸線断面の側辺が曲線から構成される、
    請求項1記載の光ファイバー。
  5. 前記レーザー収束部の軸線断面の側辺が直線および曲線から構成される、
    請求項1記載の光ファイバー。
  6. 請求項1ないし5いずれか記載の光ファイバーと、先端に凹面が形成された柱状の反射体と、その凹面を閉じる遮断膜と、前記凹面と遮断膜との間に充填される液体とから構成されており、
    前記反射体が、長軸を回転軸とした回転楕円面形状を有する前記凹面と、長軸上に形成され、前記凹面と連通する光ファイバーを通す中心孔とを有しており、
    前記光ファイバーは、レーザー収束部の先端が前記反射体の凹面の焦点にくるように固定されている、
    水中衝撃波発生装置。
PCT/JP2011/067140 2010-10-19 2011-07-27 光ファイバーおよびそれを用いた水中衝撃波発生装置 WO2012053267A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/880,530 US9433466B2 (en) 2010-10-19 2011-07-27 Optical fiber and an underwater shockwave generating device employing the same
EP11834109.8A EP2630918B1 (en) 2010-10-19 2011-07-27 Optical fiber and underwater shockwave generating device employing same
CN201180050402.7A CN103167836B (zh) 2010-10-19 2011-07-27 光纤以及利用了该光纤的水中冲击波发生装置
IL225765A IL225765A (en) 2010-10-19 2013-04-15 An optical fiber and an underwater shock wave generator that uses it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-234858 2010-10-19
JP2010234858A JP5435739B2 (ja) 2010-10-19 2010-10-19 光ファイバーおよびそれを用いた水中衝撃波発生装置

Publications (1)

Publication Number Publication Date
WO2012053267A1 true WO2012053267A1 (ja) 2012-04-26

Family

ID=45974992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067140 WO2012053267A1 (ja) 2010-10-19 2011-07-27 光ファイバーおよびそれを用いた水中衝撃波発生装置

Country Status (6)

Country Link
US (1) US9433466B2 (ja)
EP (1) EP2630918B1 (ja)
JP (1) JP5435739B2 (ja)
CN (1) CN103167836B (ja)
IL (1) IL225765A (ja)
WO (1) WO2012053267A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300235B2 (ja) * 2012-12-26 2018-03-28 国立大学法人東北大学 衝撃波収束装置、衝撃波発生装置及び衝撃波アブレーションシステム
US20160081749A1 (en) 2014-09-24 2016-03-24 Ams Research, Llc Surgical laser systems and laser lithotripsy techniques
CN112153947A (zh) * 2018-03-29 2020-12-29 声波创新株式会社 冲击波生成装置和冲击波消融系统
WO2020017639A1 (ja) * 2018-07-20 2020-01-23 株式会社ニューロシューティカルズ 光照射装置
US20220273324A1 (en) * 2021-03-01 2022-09-01 Bolt Medical, Inc. Valvuloplasty treatment assembly and method using directed bubble energy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137551A (ja) * 1974-04-19 1975-10-31
JPH0947518A (ja) * 1995-06-26 1997-02-18 Lederle Japan Ltd フォトダイナミックセラピ用光ファイバレーザ導光プローブ
WO2008114869A1 (ja) * 2007-03-22 2008-09-25 Fujikura Ltd. 光ファイババンドルおよび光照射装置
JP2009061083A (ja) 2007-09-06 2009-03-26 Hi-Lex Corporation 衝撃波アブレーションシステム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273109A (en) * 1976-07-06 1981-06-16 Cavitron Corporation Fiber optic light delivery apparatus and medical instrument utilizing same
JPH0741082B2 (ja) * 1984-09-14 1995-05-10 オリンパス光学工業株式会社 レ−ザプロ−ブ
US4721357A (en) * 1985-11-27 1988-01-26 American Telephone And Telegraph Company, At&T Technologies, Inc. Methods of and apparatus for reconfiguring optical fiber connector components and products produced thereby
US5459803A (en) * 1993-02-18 1995-10-17 The Furukawa Electric Co., Ltd. Quartz-based optical fiber with a lens and its manufacturing method
CN1032954C (zh) * 1993-11-22 1996-10-09 黄益富 一次性血管内照射塑料光纤针
EP0752601B1 (en) * 1994-03-24 2003-05-14 Kanagawa Academy Of Science And Technology Optical fiber and its manufacture
GB2291214A (en) * 1994-06-24 1996-01-17 Medical Light Technologies Ltd Light delivery using fibre optics with ellipsoidal contact probe
US5735844A (en) * 1995-02-01 1998-04-07 The General Hospital Corporation Hair removal using optical pulses
US5953477A (en) * 1995-11-20 1999-09-14 Visionex, Inc. Method and apparatus for improved fiber optic light management
US6174424B1 (en) * 1995-11-20 2001-01-16 Cirrex Corp. Couplers for optical fibers
JPH1033549A (ja) * 1996-07-24 1998-02-10 Shinji Kokubu レーザプローブ
JP2001255255A (ja) * 2000-01-07 2001-09-21 Ricoh Co Ltd 光ファイバプローブ、走査近接場光顕微鏡装置及び光記録媒体再生装置並びに光ファイバプローブの製造方法
JP3820958B2 (ja) * 2001-10-26 2006-09-13 日本板硝子株式会社 光ファイバ結合系
US20030165290A1 (en) * 2002-03-04 2003-09-04 Bhagavatula Venkata A. Optical signal altering lensed apparatus and method of manufacture
JP2004215862A (ja) * 2003-01-15 2004-08-05 Tohoku Techno Arch Co Ltd 衝撃波発生装置
JP2004357792A (ja) * 2003-06-02 2004-12-24 Keio Gijuku 高強度パルス光照射により誘起される音圧波による血管再狭窄予防治療用装置
US7356225B2 (en) * 2004-07-22 2008-04-08 Ondine International Ltd Fiber optic probe tip
US7421186B2 (en) * 2005-01-10 2008-09-02 Biolase Technology, Inc. Modified-output fiber optic tips
WO2008088062A1 (ja) * 2007-01-17 2008-07-24 Keio University 血管拡張装置
JP5059074B2 (ja) * 2009-09-18 2012-10-24 株式会社モリタ製作所 歯科用レーザ照射チップ
CN101670153B (zh) * 2009-09-25 2011-05-11 桂林康兴医疗器械有限公司 一种多功能光针刀

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137551A (ja) * 1974-04-19 1975-10-31
JPH0947518A (ja) * 1995-06-26 1997-02-18 Lederle Japan Ltd フォトダイナミックセラピ用光ファイバレーザ導光プローブ
WO2008114869A1 (ja) * 2007-03-22 2008-09-25 Fujikura Ltd. 光ファイババンドルおよび光照射装置
JP2009061083A (ja) 2007-09-06 2009-03-26 Hi-Lex Corporation 衝撃波アブレーションシステム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. NOSE ET AL.: "Effect of Optical Fiber Output Surface on Laser Induced Shock Wave and Its Application", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 43, no. 9A, 2004, pages 6145 - 6151
See also references of EP2630918A4

Also Published As

Publication number Publication date
US20130274726A1 (en) 2013-10-17
US9433466B2 (en) 2016-09-06
EP2630918B1 (en) 2017-03-08
JP5435739B2 (ja) 2014-03-05
EP2630918A4 (en) 2014-06-25
EP2630918A1 (en) 2013-08-28
IL225765A0 (en) 2013-06-27
CN103167836B (zh) 2015-12-16
CN103167836A (zh) 2013-06-19
IL225765A (en) 2017-09-28
JP2012085812A (ja) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5435739B2 (ja) 光ファイバーおよびそれを用いた水中衝撃波発生装置
US20090093737A1 (en) Ultrasound apparatus with treatment lens
ES2306524T3 (es) Pieza de mano medica para una fuente de radiacion laser.
US4608979A (en) Apparatus for the noninvasive shock fragmentation of renal calculi
US9795511B2 (en) Device for laser cutting within transparent materials
JP6574079B2 (ja) 光ベースの皮膚トリートメント装置
WO2013150415A1 (en) Light based skin treatment device avoiding liob in air
US20020183728A1 (en) Laser probe
JP6483647B2 (ja) レーザ加工装置
JP7269662B2 (ja) 衝撃波発生装置および衝撃波アブレーションシステム
US9456835B2 (en) Methods and apparatuses for generating a steerable pressure field in a shock wave lithotripter
JP2007313549A (ja) 衝撃波発生装置、表面処理方法、非破壊検査方法および治療方法
JP6549878B2 (ja) レーザ光照射装置およびレーザピーニング処理方法
RU192565U1 (ru) Устройство для лазерной сварки с помощью лазерного излучения
US20160147002A1 (en) Light Field-Modulable Optical Needle Assembly
KR102658567B1 (ko) 편광기능을 활용하여 프랙셔널을 구현한 ipl 도광장치
US11839394B2 (en) Reflector for acoustic pressure wave head
JPH02174839A (ja) 焦点が合わされた衝撃波を発生する装置
JP2005261599A (ja) 衝撃波発生装置及びこれを用いた結石破砕装置
Melnik et al. Forming of laser beams by optical fibers with beveled tips
Veiko et al. New method of fiber optic tool fabrication based on laser technologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834109

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 225765

Country of ref document: IL

REEP Request for entry into the european phase

Ref document number: 2011834109

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011834109

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13880530

Country of ref document: US