WO2012053121A1 - 吸水性樹脂粒子の製造方法及び吸水性樹脂粒子 - Google Patents

吸水性樹脂粒子の製造方法及び吸水性樹脂粒子 Download PDF

Info

Publication number
WO2012053121A1
WO2012053121A1 PCT/JP2010/070905 JP2010070905W WO2012053121A1 WO 2012053121 A1 WO2012053121 A1 WO 2012053121A1 JP 2010070905 W JP2010070905 W JP 2010070905W WO 2012053121 A1 WO2012053121 A1 WO 2012053121A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
absorbent resin
resin particles
ethylenically unsaturated
unsaturated monomer
Prior art date
Application number
PCT/JP2010/070905
Other languages
English (en)
French (fr)
Inventor
平郡篤
谷村健二
小野田裕一
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to US13/878,616 priority Critical patent/US8951637B2/en
Priority to CN201080069642.7A priority patent/CN103154043B/zh
Priority to AU2010362811A priority patent/AU2010362811B2/en
Priority to CA2814797A priority patent/CA2814797C/en
Priority to EP10858674.4A priority patent/EP2631251B1/en
Priority to KR1020137012467A priority patent/KR101715443B1/ko
Priority to ES10858674T priority patent/ES2715966T3/es
Priority to JP2012539558A priority patent/JP5658759B2/ja
Publication of WO2012053121A1 publication Critical patent/WO2012053121A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a method for producing water-absorbing resin particles and water-absorbing resin particles obtained thereby. More specifically, a production method for obtaining water-absorbent resin particles having an excellent water absorption rate and a high equilibrium swelling performance by passing through specific production conditions, and having an excellent particle size and excellent handling properties, The present invention relates to a water-absorbent resin particle having excellent water-stopping performance.
  • water-absorbing resin particles have been used in industrial materials such as disposable diapers, sanitary materials such as sanitary items, daily necessities such as pet sheets, agricultural and horticultural materials such as water retention materials and soil improvement materials, waterproofing materials for cables, and anti-condensation materials. Widely used in various fields.
  • the water-absorbent resin particles used in such applications include hydrolysates of starch-acrylonitrile graft copolymers, neutralized starch-acrylic acid graft copolymers, vinyl acetate-acrylic esters. A saponified copolymer, a partially neutralized polyacrylic acid, and the like are known.
  • the performance required for the water-absorbent resin particles includes a high water absorption amount, an excellent water absorption rate, a high swelling performance, and an appropriate medium particle size according to the application.
  • the water-stop material for cables is a product in which water-absorbing resin particles are fixed between two or more liquid-permeable sheets using an adhesive or the like as necessary.
  • the waterproofing material for cables is used to wind and protect the center portion of a power cable or an optical communication cable, and the cable is formed by covering the outer periphery with a material such as rubber.
  • Power cables and optical communication cables absorb water to prevent external materials from deteriorating and moisture that leaks from the cracks that reach the center of the cable will lead to power loss and communication noise. At the same time, it swells to give pressure in the cable, thereby preventing water from reaching the center of the cable.
  • the performance required as a water-absorbing resin for water-stopping materials used in power cables and communication cables is to prevent water from entering from the outside due to cable breakage at an early stage and to maintain the water-stopping effect over a long period of time. Therefore, it is required to be able to produce efficiently and to be excellent in handling properties as a powder during production. Therefore, the water-absorbing resin particles used for water-stopping materials have high swelling performance, high water absorption speed, moderate particle size, and good handling properties in order to realize these performances. It is required to be.
  • a method for improving the swelling performance of the water absorbent resin particles a method of controlling the crosslink density of the water absorbent resin particles is conceivable.
  • a method in which an aqueous acrylic acid / acrylate solution is subjected to reverse phase suspension polymerization in the presence of a surfactant of HLB 8 to 12 and then a crosslinking agent is added to perform a crosslinking reaction see Patent Document 1).
  • a surfactant of HLB 8 to 12 a surfactant of HLB 8 to 12
  • a crosslinking agent is added to perform a crosslinking reaction
  • An object of the present invention is to provide a method for producing water-absorbing resin particles having an excellent water absorption rate and high equilibrium swelling performance, and having an appropriate particle size and excellent handling properties, and a water-absorbing resin obtained thereby To provide particles.
  • the present invention relates to a method for producing water absorbent resin particles as shown below, and water absorbent resin particles obtained thereby. That is, Item 1.
  • a first reverse phase suspension polymerization using a water-soluble radical polymerization initiator in a petroleum hydrocarbon dispersion medium in the presence of a surfactant having an HLB of 8 to 12, (B) and further intermediate crosslinking A step of adding an agent to perform an intermediate crosslinking reaction, (C) in a state where the surfactant is dissolved in the petroleum hydrocarbon dispersion medium, a water-soluble ethylenically unsaturated monomer is added, and an internal crosslinking agent
  • a second reverse phase suspension polymerization is performed using a water-soluble radical polymerization initiator to produce a water-absorbing resin precursor, and (D) the water content of the water-absorbing resin precursor is determined.
  • a method of manufacturing a water-absorbing resin particles characterized by having a step of post-crosslinking reaction Item 2.
  • Production method of resin particles Item 3.
  • Item 4 The water absorption according to Item 1, 2, or 3, wherein the addition ratio of the intermediate crosslinking agent is 0.0001 to 0.026 mol% with respect to the total molar amount of the water-soluble ethylenically unsaturated monomer.
  • Method for producing conductive resin particles Item 5.
  • Item 1, 2, 3 or 4 water-absorbent resin particles obtained using the method for producing water-absorbent resin particles according to claim 4, Item 6.
  • Item 6. The water absorption according to Item 5, wherein the equilibrium swelling performance is 12 to 28 mm, the water absorption rate is 1 to 5 seconds, the physiological saline water retention capacity is 20 to 60 g / g, and the median particle size is 100 to 400 ⁇ m. Resin particles.
  • the present invention is described in detail below.
  • a water-soluble ethylenically unsaturated monomer is added in the absence of an internal crosslinking agent, in the presence of a surfactant having an HLB of 8 to 12, Performing a first reversed-phase suspension polymerization using a water-soluble radical polymerization initiator in a hydrocarbon dispersion medium.
  • water-soluble ethylenically unsaturated monomer examples include (meth) acrylic acid (in the present specification, “acryl” and “methacryl” are collectively referred to as “(meth) acryl”; the same applies hereinafter), 2- (meth) acrylamide-2-methylpropanesulfonic acid and / or its alkali salt, (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) Nonionic monomers such as acrylamide and polyethylene glycol mono (meth) acrylate, and N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, and diethylaminopropyl (meth) Amino group-containing unsaturated monomers such as acrylamide and its quaternary It can be mentioned things like, may be at least one selected from
  • the water-soluble ethylenically unsaturated monomer can be usually used as an aqueous solution.
  • concentration of the water-soluble ethylenically unsaturated monomer in the aqueous solution is preferably in the range of 20% by mass to the saturated concentration.
  • W / O type (Water in Oil type) reversed-phase suspension state is good and it is easy to obtain a suitable particle size, and the swelling performance of the resulting water-absorbent resin particles becomes high, 30 to 45% by mass Is more preferably 35 to 45% by mass.
  • the water-soluble ethylenically unsaturated monomer has an acid group such as (meth) acrylic acid or 2- (meth) acrylamido-2-methylpropanesulfonic acid
  • the acid group is converted to an alkali metal salt such as an alkali metal salt.
  • You may neutralize with a neutralizing agent.
  • alkaline neutralizer include aqueous solutions of sodium hydroxide, potassium hydroxide, and ammonium hydroxide. These alkaline neutralizers may be used alone or in combination.
  • the degree of neutralization of all acid groups by the alkaline neutralizing agent increases the swelling ability by increasing the osmotic pressure of the resulting water-absorbent resin particles, and there is a problem with safety due to the presence of the excess alkaline neutralizing agent. From the viewpoint of preventing the occurrence of this, the range of 10 to 100 mol% is preferable, the range of 30 to 90 mol% is more preferable, and the range of 50 to 80 mol% is still more preferable.
  • water-soluble radical polymerization initiator examples include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl.
  • Peroxides such as cumyl peroxide, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, t-butyl peroxypivalate, and hydrogen peroxide
  • 2,2′-azobis [2- (N-phenylamidino) propane] dihydrochloride
  • 2,2′-azobis [2- (N-allylamidino) propane] dihydrochloride
  • 4,4′-azobis (4-cyano And azo compounds such as valeric acid).
  • These water-soluble radical polymerization initiators may be used alone or
  • the addition amount of the water-soluble radical polymerization initiator is usually 0.005 to 1 mol% with respect to the total molar amount of the water-soluble ethylenically unsaturated monomer. If the amount of the water-soluble radical polymerization initiator added is less than 0.005 mol%, it takes a long time for the polymerization reaction, which is not preferable. If the addition amount exceeds 1 mol%, a rapid polymerization reaction occurs, which is not preferable.
  • the water-soluble radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate and L-ascorbic acid.
  • a chain transfer agent may be added in order to control the swelling performance of the water absorbent resin particles.
  • chain transfer agents include hypophosphites, thiols, thiolic acids, secondary alcohols, amines, and the like.
  • the water-soluble ethylenically unsaturated monomer is dispersed in a petroleum hydrocarbon in the absence of an internal crosslinking agent and in the presence of a surfactant having an HLB of 8-12.
  • the first feature is to perform the first reversed-phase suspension polymerization using a water-soluble radical polymerization initiator in a medium.
  • aqueous solution polymerization if the polymerization reaction is carried out in the absence of an internal cross-linking agent, it is possible to improve the swelling performance of the water absorbent resin particles, particularly the equilibrium swelling performance, but the water absorbent resin precursor obtained after the polymerization is very It is difficult to obtain water-absorbing resin particles having a large particle size, good swelling performance, and suitable particle size. Met.
  • the water-absorbing resin precursor can be obtained without using an internal cross-linking agent during the polymerization reaction, a lump is partially formed, or particles adhere to each other in the drying process. And tend to aggregate.
  • the inventors have conducted reverse-phase suspension polymerization using a specific surfactant, petroleum-based hydrocarbon dispersion medium, and a water-soluble ethylenically unsaturated monomer aqueous solution in the absence of an internal crosslinking agent. It was found that particles having a form suitable for water-stopping material use can be obtained more easily by carrying out the above. Furthermore, it has been found that high-performance water-absorbent resin particles suitable for water-stopping materials can be obtained by performing a specific crosslinking reaction and post-crosslinking reaction on the obtained particles, and the present invention has been completed.
  • the internal crosslinking agent refers to a compound that contributes to the formation of a bridge structure between polymer chains during the polymerization of monomers.
  • a compound having two or more polymerizable unsaturated groups polymerizable in the water-soluble ethylenically unsaturated monomer, a functional group contained in the water-soluble ethylenically unsaturated monomer It refers to a compound having two or more functional groups capable of reacting with (for example, a carboxyl group in the case of acrylic acid) in the molecule.
  • a surfactant having an HLB of 8 to 12 is used.
  • a surfactant having an HLB of 8 to 12 the state of W / O type reverse phase suspension is improved, and particles having a suitable particle size can be obtained.
  • the HLB of the surfactant is preferably 8.5 to 10.5.
  • surfactant examples include sorbitan fatty acid ester and (poly) glycerin fatty acid ester [(poly) means both with and without the prefix “poly”. The same shall apply hereinafter), sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene Nonionic surfactants such as castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, polyethylene glycol fatty acid ester; Fatty acid salt, alkylbenzene sulfonate, alkylmethyl taurate, polyoxyethylene alkyl Phenyl ether
  • a sorbitan fatty acid ester from the viewpoint of obtaining water-absorbent resin particles having a favorable W / O-type reverse phase suspension and having a suitable particle size, and being easily available industrially, Polyglycerin fatty acid esters and sucrose fatty acid esters are preferably used, and among them, sorbitan fatty acid esters are more preferably used from the viewpoint of the water absorption rate of the water-absorbing resin particles obtained.
  • These surfactants may be used alone or in combination of two or more.
  • the amount of the surfactant added is the first reverse phase suspension.
  • the amount is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 3 parts by weight, and more preferably 0.3 to 2 parts by weight based on 100 parts by weight of the aqueous solution of the water-soluble ethylenically unsaturated monomer to be subjected to turbid polymerization. Part by mass is more preferable.
  • the surfactant and the polymer protective colloid may be used in combination for the purpose of stabilizing the state of W / O type reverse phase suspension.
  • the polymer protective colloid include, for example, maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene-propylene-diene-terpolymer), anhydrous Maleic acid-modified polybutadiene, ethylene-maleic anhydride copolymer, ethylene-propylene-maleic anhydride copolymer, butadiene-maleic anhydride copolymer, oxidized polyethylene, ethylene-acrylic acid copolymer, ethyl cellulose, ethyl hydroxy Examples include ethyl cellulose.
  • maleic anhydride-modified polyethylene maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene-propylene copolymer, oxidized polyethylene, ethylene-acrylic acid copolymer Polymers are preferred.
  • These polymer protective colloids may be used alone or in combination of two or more.
  • the addition amount of the polymer protective colloid is selected from the viewpoint of selecting an effective addition amount that stabilizes the state of W / O-type reverse phase suspension and provides a suspension stabilization effect.
  • the amount is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass, and more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the aqueous solution of the water-soluble ethylenically unsaturated monomer added by suspension polymerization. 2 parts by mass is more preferable.
  • Examples of the petroleum hydrocarbon dispersion medium include aliphatic hydrocarbons such as n-hexane, n-heptane, and ligroin; alicyclic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, and methylcyclohexane; benzene, toluene And aromatic hydrocarbons such as xylene, and the like. These may be used alone or in admixture of two or more.
  • n-hexane, n-heptane and cyclohexane are preferably used from the viewpoint of industrial availability, and in particular, the W / O type reverse phase in the present invention. From the viewpoint of obtaining water-absorbing resin particles having a favorable suspended state and suitable particle diameter, and from the viewpoint of good water-absorbing performance of the water-absorbing resin particles obtained, n-heptane is more preferably used.
  • the amount of the petroleum hydrocarbon dispersion medium added is 100% by mass of a water-soluble ethylenically unsaturated monomer that is subjected to reverse phase suspension polymerization from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature.
  • the amount is preferably 50 to 600 parts by mass, more preferably 100 to 550 parts by mass with respect to parts.
  • the reaction temperature at the time of performing the first reverse phase suspension polymerization varies depending on the type of the water-soluble radical polymerization initiator to be used, and thus cannot be generally determined.
  • the reaction temperature is preferably 20 to 110 ° C., more preferably 20 to 110 ° C. from the viewpoint of shortening the polymerization time by allowing the polymerization to proceed rapidly, removing the heat of polymerization, and performing the reaction smoothly. Is 40-90 ° C.
  • the reaction time is usually 0.5 to 4 hours.
  • step (B) a step of further adding an intermediate crosslinking agent to carry out an intermediate crosslinking reaction is then performed.
  • the water-absorbent resin particles obtained by the first reversed-phase suspension polymerization were cross-linked, thereby adding a water-soluble ethylenically unsaturated monomer in the step (C) described later.
  • the said (B) process and the (C) process mentioned later may be performed once or more, and may be performed twice or more as needed.
  • Examples of the intermediate crosslinking agent used in the intermediate crosslinking reaction in the step (B) include ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerol, polyoxyethylene glycol, polyoxypropylene glycol, polyoxypropylene glycol, and the like.
  • Polyols such as glycerin; glycidyl ether compounds such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether; epichlorohydrin, epibromhydrin, ⁇ -methylepichlorohydrin, etc.
  • Halo epoxy compounds compounds having two or more reactive functional groups such as isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl 3-oxetanemethanol, 3-ethyl-3-oxetanemethanol, 3-butyl-3-oxetanemethanol, 3-methyl-3-oxetaneethanol, 3-ethyl-3-oxetaneethanol, 3-butyl-3-oxetaneethanol, etc.
  • Oxetane compounds such as 1,2-ethylenebisoxazoline; carbonate compounds such as ethylene carbonate; and hydroxyalkylamide compounds such as bis [N, N-di ( ⁇ -hydroxyethyl)] adipamide.
  • intermediate cross-linking agents diglycidyl ether compounds are preferable from the viewpoint of excellent reactivity, and ethylene glycol diglycidyl is particularly preferable from the viewpoint of high water solubility and good handleability as an intermediate cross-linking agent.
  • Ether, propylene glycol diglycidyl ether, glycerin diglycidyl ether, and polyethylene glycol diglycidyl ether are more preferable, and ethylene glycol diglycidyl ether and propylene glycol diglycidyl ether are more preferable from the viewpoint of high water absorption performance of the resulting water-absorbent resin particles.
  • These intermediate crosslinking agents may be used alone or in combination of two or more.
  • the addition amount of the intermediate crosslinking agent used in the step (B) is based on the molar amount of the water-soluble ethylenically unsaturated monomer subjected to the polymerization immediately before the addition of the intermediate crosslinking agent in the step (B). 0.0001 to 0.026 mol% is preferable, 0.0005 to 0.021 mol% is more preferable, and 0.0025 to 0.015 mol% is still more preferable.
  • the added amount of the intermediate crosslinking agent is less than 0.0001 mol%, the polymerized particles absorb the water-soluble ethylenically unsaturated monomer when a water-soluble ethylenically unsaturated monomer described later is added.
  • the polymer is subjected to the next polymerization, so that the surface state of the water-absorbent resin particles obtained may change and the water absorption performance may be deteriorated. That is, there is a tendency that the water absorption rate becomes slow and the swelling performance becomes low. Moreover, when the addition amount of the said intermediate crosslinking agent exceeds 0.026 mol%, there exists a possibility that a crosslinking reaction may advance excessively and the water absorption performance of the water-absorbing resin particle obtained may become low.
  • the “molar amount of the water-soluble ethylenically unsaturated monomer subjected to the polymerization immediately before the addition of the intermediate crosslinking agent in the step (B)” means that when the step (B) is the first time, A) means the molar amount of the water-soluble ethylenically unsaturated monomer added in the step, and when the step (B) is the second or later, the water-soluble ethylenically unsaturated monomer added in the previous step (C). It means a saturated monomer.
  • the solvent for adding the intermediate crosslinking agent is not particularly limited as long as the intermediate crosslinking agent can be uniformly dispersed.
  • Water may be used, and a hydrophilic organic solvent may be used. It may be used.
  • the hydrophilic organic solvent include lower alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane and tetrahydrofuran, and amides such as N, N-dimethylformamide.
  • sulfoxides such as dimethyl sulfoxide.
  • the reaction temperature of the intermediate crosslinking reaction in the step (B) is preferably 60 ° C. or higher, more preferably from 70 ° C. to the boiling point of the solvent used in the polymerization. If the reaction temperature is less than 60 ° C., the intermediate crosslinking reaction is difficult to proceed, and the water absorption performance of the resulting water absorbent resin may be lowered.
  • the reaction time of the intermediate cross-linking reaction in the step (B) varies depending on the reaction temperature, the type and amount of the intermediate cross-linking agent, and cannot be determined unconditionally, but is usually preferably 1 to 200 minutes. More preferably, it is ⁇ 100 minutes, and more preferably 10-60 minutes.
  • step (C) in the state where the surfactant is dissolved in the petroleum-based hydrocarbon dispersion medium, a water-soluble ethylenically unsaturated monomer is added,
  • a step of producing a water-absorbing resin precursor by performing a second reverse phase suspension polymerization using a water-soluble radical polymerization initiator In the absence of an internal cross-linking agent in step (C) means that no internal cross-linking agent is added in the polymerization reaction in step (C).
  • water-absorbing resin particles excellent in swelling performance can be produced with high productivity by performing reverse phase suspension polymerization a plurality of times.
  • Examples of the water-soluble ethylenically unsaturated monomer used in the step (C) include (meth) acrylic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid and / or an alkali salt thereof (meta )
  • Nonionic monomers such as acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, and polyethylene glycol mono (meth) acrylate, and N , N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, and amino group-containing unsaturated monomers such as diethylaminopropyl (meth) acrylamide and quaternized products thereof.
  • water-soluble ethylenically unsaturated monomers (meth) acrylic acid or an alkali salt thereof, (meth) acrylamide, and N, N-dimethylacrylamide are preferred from the viewpoint of easy industrial availability.
  • the water-soluble ethylenically unsaturated monomer can be usually used as an aqueous solution.
  • concentration of the water-soluble ethylenically unsaturated monomer in the aqueous solution is preferably in the range of 20% by mass to the saturated concentration.
  • the acid group When the water-soluble ethylenically unsaturated monomer used in the step (C) has an acid group such as (meth) acrylic acid or 2- (meth) acrylamide-2-methylpropanesulfonic acid, the acid group May be neutralized with an alkaline neutralizing agent such as an alkali metal salt.
  • an alkaline neutralizing agent such as an alkali metal salt.
  • alkaline neutralizer include aqueous solutions of sodium hydroxide, potassium hydroxide, and ammonium hydroxide. These alkaline neutralizing agents may be used alone or in combination of two or more.
  • the degree of neutralization of all acid groups by the alkaline neutralizing agent increases the swelling ability by increasing the osmotic pressure of the resulting water-absorbent resin particles, and there is a problem with safety due to the presence of the excess alkaline neutralizing agent. From the viewpoint of preventing the occurrence of this, the range of 10 to 100 mol% is preferable, the range of 30 to 90 mol% is more preferable, and the range of 50 to 80 mol% is still more preferable.
  • the amount of the water-soluble ethylenically unsaturated monomer used in the step (C) is 50 to 100 parts by mass with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer subjected to polymerization in the step (A). 200 parts by mass is preferable, 70 to 180 parts by mass is more preferable, and 90 to 150 parts by mass is still more preferable.
  • productivity with respect to the polymerization reaction time may be lowered.
  • the addition amount of the water-soluble ethylenically unsaturated monomer used in the polymerization reaction operation in the step (C) exceeds 200 parts by mass, the productivity for the polymerization reaction time is high, but the water solubility used for the polymerization reaction is high.
  • the amount of the ethylenically unsaturated monomer may increase, making it difficult to control the polymerization reaction.
  • the surfactant is dissolved in the petroleum hydrocarbon dispersion medium in the reaction mixture after the intermediate crosslinking reaction in the step (B) is completed. It is necessary to add in the state.
  • the water-soluble ethylenically unsaturated monomer is added in a state where the surfactant is not dissolved in the petroleum hydrocarbon dispersion medium, the water-soluble ethylenically unsaturated monomer added by the polymerized particles is absorbed. Then, they are aggregated and integrated (agglomerated).
  • the “state in which the surfactant is dissolved in the petroleum hydrocarbon dispersion medium” can be created, for example, by controlling the temperature of the reaction mixture after the intermediate crosslinking reaction is completed.
  • the temperature of the reaction mixture varies depending on the type of the surfactant and cannot be determined unconditionally. For example, it is preferably 40 to 65 ° C., more preferably 50 to 60 ° C.
  • the temperature of the reaction mixture is less than 40 ° C., the surfactant is precipitated, so that the surfactant effect is lowered, and the polymerized particles absorb the water-soluble ethylenically unsaturated monomer added, and aggregate and integrate. May become agglomerated (agglomerated).
  • the temperature of the reaction mixture exceeds 65 ° C., there is a risk that a polymerization reaction occurs when the water-soluble ethylenically unsaturated monomer is added, such being undesirable.
  • water-soluble radical polymerization initiator used in the step (C) examples include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t- Peroxides such as butyl peroxide, t-butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, t-butyl peroxypivalate, and hydrogen peroxide; 2′-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2′-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2′-azobis ⁇ 2- [ 1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ dihydrochloride, 2,2′-azobi ⁇ 2-Methy
  • the amount of the water-soluble radical polymerization initiator used in the step (C) varies depending on the type of polymerization initiator and the reaction conditions, and thus cannot be determined unconditionally, but is usually added in the step (A).
  • the amount is 0.005 to 1 mol% based on the molar amount of the water-soluble ethylenically unsaturated monomer. If the amount of the water-soluble radical polymerization initiator added is less than 0.005 mol%, it takes a long time for the polymerization reaction, which is not preferable. If the amount of the water-soluble radical polymerization initiator added exceeds 1 mol%, an abrupt polymerization reaction occurs, which is not preferable.
  • the water-soluble radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • the polymerization reaction is performed in the absence of an internal crosslinking agent from the viewpoint of enhancing the swelling performance of the water-absorbent resin particles, particularly the equilibrium swelling performance.
  • a chain transfer agent from a viewpoint of controlling the swelling performance of the water absorbent resin particle obtained.
  • chain transfer agents include hypophosphites, thiols, thiolic acids, secondary alcohols, amines, and the like.
  • the reaction temperature varies depending on the type of the water-soluble radical polymerization initiator to be used, and thus cannot be determined unconditionally. Usually, the reaction temperature is preferably 20 to 110 ° C.
  • the reaction time is usually 0.5 to 4 hours.
  • the water-absorbent resin precursor obtained through the steps (A) to (C) can be obtained in various forms such as a spherical shape, a granular shape, a crushed shape, a confetti shape, and an aggregate thereof.
  • the water-absorbent resin precursor is preferably obtained in the form of granules. A granular shape having uniform irregularities on the surface is more preferable.
  • amorphous silica can be added to form aggregated particles.
  • the amorphous silica include dry silica and wet silica. Among these amorphous silicas, wet silica is preferably used.
  • the addition amount of the amorphous silica is preferably 0.0001 to 100 parts by mass with respect to the total mass of the water-soluble ethylenically unsaturated monomer subjected to polymerization in the steps (A) and (C). The amount is 1 part by mass, more preferably 0.001 to 0.5 part by mass, and still more preferably 0.01 to 0.2 part by mass.
  • the total mass of the water-soluble ethylenically unsaturated monomer component constituting the water-absorbing resin precursor is calculated from the total mass of the water-soluble ethylenically unsaturated monomer used in the polymerization reaction, from the theoretical polymer solids. As a minute, it can be obtained by calculation.
  • the water content of the water-absorbent resin precursor is then compared with the water-soluble ethylenically unsaturated monomer component constituting the water-absorbent resin precursor. After adjusting to 30 to 100% by mass, a post-crosslinking reaction step is performed.
  • a method of adjusting the water content of the water-absorbent resin precursor to 30 to 100% by mass with respect to the water-soluble ethylenically unsaturated monomer component constituting the water-absorbent resin precursor (hereinafter simply referred to as primary drying).
  • the water-absorbent resin precursor is dispersed in a petroleum-based hydrocarbon dispersion medium and dehydrated by azeotropic distillation by heating from the outside, or the water-absorbent resin by decantation. Examples thereof include a method of taking out the precursor and drying it under reduced pressure, a method of filtering the water-absorbent resin precursor with a filter and drying it under reduced pressure.
  • a method in which a water-absorbent resin precursor obtained by polymerization is dispersed in a petroleum hydrocarbon dispersion medium and dehydrated by azeotropic distillation is preferred because of its simplicity in the production process.
  • a post-crosslinking agent is added to the obtained water-absorbent resin precursor to perform a post-crosslinking reaction.
  • a post-crosslinking agent is added to the obtained water-absorbent resin precursor to perform a post-crosslinking reaction.
  • a compound having in the molecule two or more functional groups capable of reacting with a functional group contained in the water-soluble ethylenically unsaturated monomer for example, a carboxyl group in the case of acrylic acid
  • a water-soluble compound for example, polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin, etc.
  • Glycidyl ether compounds such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether; haloepoxy such as epichlorohydrin, epibromohydrin, ⁇ -methylepichlorohydrin Compound: Compound having two or more reactive functional groups such as isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetanemethanol, 3-ethyl-3-oxetanemethanol, 3- Oxetane compounds such as butyl-3-oxetanemethanol, 3-methyl-3-oxetaneethanol, 3-ethyl-3-oxetaneethanol, 3-butyl-3-oxetaneethanol; oxazoline compounds such as 1,2-ethylenebisoxazoline; And carbonate compounds such as ethylene carbonate
  • diglycidyl ether compounds are preferred from the viewpoint of excellent reactivity, and ethylene glycol diglycidyl ether is particularly preferred from the viewpoint of high water solubility and good handleability as a crosslinking agent.
  • Propylene glycol diglycidyl ether, glycerin diglycidyl ether, and polyethylene glycol diglycidyl ether are more preferable, and ethylene glycol diglycidyl ether and propylene glycol diglycidyl ether are more preferable from the viewpoint of high swelling performance of the water-absorbent resin particles obtained.
  • the post-crosslinking agent may be the same as or different from the intermediate crosslinking agent.
  • the amount of the post-crosslinking agent added is preferably 0.001 to 3 mol%, preferably 0.005 to 2%, based on the total molar amount of the water-soluble ethylenically unsaturated monomer constituting the water absorbent resin precursor.
  • the mol% is more preferable, 0.01 to 1 mol% is more preferable, and 0.02 to 0.5 mol% is particularly preferable. If the amount of the post-crosslinking agent added relative to the total molar amount of the water-soluble ethylenically unsaturated monomer is less than 0.001 mol%, the surface of the water-absorbent resin particles tends to have a viscosity during water absorption because the crosslinking is weak.
  • the initial swelling performance tends to be low, and if it exceeds 3 mol%, the water retention amount of the resulting water-absorbent resin particles is lowered, and the swelling performance may be lowered accordingly.
  • the total molar amount of the water-soluble ethylenically unsaturated monomer component constituting the water-absorbent resin precursor is the same as that of the water-soluble ethylenically unsaturated monomer used in the steps (A) and (C). It can be obtained by calculation from the total molar amount.
  • the mixing of the water absorbent resin precursor and the post-crosslinking agent is performed after adjusting the water content of the water absorbent resin precursor to a specific range.
  • the post-crosslinking reaction can proceed more suitably by controlling the moisture content during the reaction between the water absorbent resin precursor and the post-crosslinking agent.
  • the water content of the water-absorbent resin precursor in the post-crosslinking step is 30 to 100% by mass, preferably 30 to 90% by mass, based on the water-soluble ethylenically unsaturated monomer component constituting the water-absorbent resin precursor. More preferably, it is 35 to 80% by mass.
  • the moisture content is less than 30% by mass, the post-crosslinking agent is not uniformly dispersed in the water absorbent resin precursor.
  • the moisture content exceeds 100% by mass, it becomes difficult to crosslink the surface layer of the water-absorbent resin precursor, and performance such as swelling performance is deteriorated.
  • the moisture content is post-crosslinked to an amount obtained by subtracting the amount of moisture extracted outside by the primary drying step from the amount of moisture contained in the monomer aqueous solution before polymerization (the amount of moisture in the primary dry gel).
  • the water-soluble ethylenically unsaturated monomer constituting the water-absorbent resin precursor after calculating the water content of the water-absorbent resin precursor by adding the amount of water used as necessary when adding the agent It can obtain
  • the mass of the water-soluble ethylenically unsaturated monomer component constituting the water-absorbent resin precursor is the total mass of the water-soluble ethylenically unsaturated monomer used in the steps (A) and (C). From the above, the theoretical polymer solid content can be obtained by calculation.
  • the amount of water used as needed when adding the post-crosslinking agent relative to the amount of water in the primary dry gel is such that the post-crosslinking agent is made uniform while rationally shortening the drying step and improving the economics of the process. From the viewpoint of dispersion, 100: 0 to 60:40 is preferable, 99: 1 to 70:30 is more preferable, 98: 2 to 80:20 is still more preferable, and 98: 2 to 90:10 is even more preferable.
  • water or a hydrophilic organic solvent may be used as a solvent for uniformly dispersing the post-crosslinking agent.
  • the hydrophilic organic solvent include lower alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane and tetrahydrofuran, amides such as N, N-dimethylformamide, And sulfoxides such as dimethyl sulfoxide. Each of these may be used alone, or may be mixed with water or used in combination of two or more as required.
  • the reaction temperature when the water-absorbing resin precursor is post-crosslinked with a post-crosslinking agent is preferably 60 ° C. or higher, more preferably 70 to 200 ° C., and still more preferably 80 to 150 ° C. If the reaction temperature is less than 60 ° C., the post-crosslinking reaction is difficult to proceed, and the reaction tends to require an excessive amount of time. If the reaction temperature exceeds 200 ° C., the resulting water-absorbent resin particles are decomposed or the water-absorbent resin There is a risk of coloring the particles.
  • the post-crosslinking reaction time varies depending on the reaction temperature, the type and amount of the post-crosslinking agent, and cannot be determined unconditionally, but is usually 1 to 300 minutes, preferably 5 to 200 minutes.
  • water-absorbing resin particles having high swelling performance can be obtained by the method of the present invention. It is considered that, by subjecting the water absorbent resin precursor adjusted to a specific moisture content to a post-crosslinking reaction under specific conditions, the crosslink density balance between the surface vicinity and the inside of the water absorbent resin particles is most suitable.
  • the drying step may be performed by removing moisture, organic solvent, and the like by distillation by adding energy such as heat from the outside (
  • this drying step is also referred to as secondary drying).
  • secondary drying By performing such secondary drying, powdery water-absorbing resin particles are obtained.
  • the method of secondary drying is not particularly limited.
  • the mixture of resin particles after being dispersed in a petroleum hydrocarbon dispersion medium and then subjected to a crosslinking reaction is distilled to simultaneously remove moisture and the petroleum hydrocarbon dispersion medium.
  • examples thereof include a method of removing, a method of taking out resin particles by decantation and drying under reduced pressure, and a method of separating resin particles by a filter and drying under reduced pressure.
  • a method of simultaneously removing moisture and petroleum hydrocarbon dispersion medium by distilling a mixture of resin particles after being dispersed in a petroleum hydrocarbon dispersion medium and subjected to a crosslinking reaction is preferable.
  • water-absorbing resin particles of the present invention By using the method for producing water-absorbing resin particles of the present invention, water-absorbing resin particles having both excellent water absorption speed and high equilibrium swelling performance, moderate particle size and good handling properties can be obtained. Such water-absorbing resin particles are also one aspect of the present invention.
  • the water-absorbent resin particles of the present invention preferably have an equilibrium swelling performance of 10 to 28 mm. By having such a high swelling performance, after preventing initial flooding due to cracks in the cable external material, it maintains a long-term flood prevention effect and exhibits an appropriate swelling pressure that does not promote cable material degradation. can do. Further, the equilibrium swelling performance is more preferably 11 to 24 mm, further preferably 12 to 20 mm, and particularly preferably 13 to 18 mm.
  • the water absorbent resin particles of the present invention preferably have a physiological saline water absorption rate of 1 to 10 seconds. By having such an excellent water absorption speed, it is possible to prevent water from entering due to cable cracks more quickly.
  • the water absorption speed is more preferably 1 to 8 seconds, and further preferably 1 to 5 seconds.
  • the water absorbent resin particles of the present invention preferably have a median particle size of 100 to 400 ⁇ m. By having such a median particle size, it is possible to maintain good handling properties as a powder during the production of the water-stopping material and to make the water-stopping material thin.
  • the median particle diameter is more preferably 120 to 350 ⁇ m, and further preferably 130 to 300 ⁇ m.
  • the physiological saline water retention capacity of the water-absorbent resin particles of the present invention is not particularly limited, but it is preferably 20 to 60 g / g, more preferably 25 to 55 g / g because it is preferable to absorb more water.
  • the equilibrium swelling performance, physiological saline water absorption rate, physiological saline water retention capacity, and median particle size of the water-absorbent resin particles of the present invention are all values measured by the measurement methods described in the examples described later. .
  • the water-absorbent resin particles of the present invention may further contain additives such as heat-resistant stabilizers, antioxidants and antibacterial agents.
  • the amount of the additive varies depending on the use of the water-absorbent resin particles, the kind of the additive, etc., but the total mass of the water-soluble ethylenically unsaturated monomer added in the steps (A) and (C) is 100.
  • the amount is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, and still more preferably 0.1 to 2 parts by mass with respect to parts by mass.
  • the total mass of the water-soluble ethylenically unsaturated monomer component constituting the water-absorbing resin precursor is calculated from the total mass of the water-soluble ethylenically unsaturated monomer used in the polymerization reaction, from the theoretical polymer solids. As a minute, it can be obtained by calculation.
  • Example 1 (First reverse phase suspension polymerization) A round bottom cylinder with an inner diameter of 100 mm, equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade (a fluororesin coated on the surface) having two inclined paddle blades with a blade diameter of 50 mm as a stirrer A type separable flask was prepared. To this flask, 360 g of n-heptane was taken, and 1.47 g of sorbitan monolaurate (trade name: Nonion LP-20R, manufactured by NOF Corporation) having an HLB of 8.6 as a surfactant was added up to 50 ° C.
  • sorbitan monolaurate trade name: Nonion LP-20R, manufactured by NOF Corporation
  • the mass of the water-soluble ethylenically unsaturated monomer in this monomer aqueous solution was 91.0 g, and the water content was 148.6 g.
  • the rotation speed of the stirrer was set to 450 r / min, the monomer aqueous solution for the first polymerization was added to the separable flask, the system was replaced with nitrogen gas for 30 minutes, and then placed in a 70 ° C. water bath. The temperature was increased by immersion, and the first reverse phase suspension polymerization was performed for 1 hour.
  • the rotation speed of the stirrer was set to 1000 r / min, and the reaction mixture after completion of the intermediate crosslinking reaction was cooled to 60 ° C. (in a state where sorbitan monolaurate was dissolved in n-heptane)
  • the monomer aqueous solution for the second polymerization adjusted to 14 ° C. was dropped into the system, and the system was stirred for 30 minutes at the rotational speed while maintaining the system temperature (47 ° C.) when the dropping was completed.
  • the inside of the system was replaced with nitrogen gas, and then the temperature was increased by immersing in a 70 ° C. water bath, and the second reverse phase suspension polymerization was performed for 1 hour to obtain a water absorbent resin precursor.
  • Example 2 As an intermediate crosslinking agent to be added in the (intermediate crosslinking reaction) of Example 1, instead of 0.41 g (0.000047 mol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution, a 2% by mass ethylene glycol diglycidyl ether aqueous solution. Using 1.24 g (0.00014 mol) and further in the (post-crosslinking reaction) of Example 1, water and n-heptane were azeotroped to reduce the amount of water extracted from the system from 197.3 g.
  • Example 3 In Example 1 (second reversed phase suspension polymerization), the cooling temperature of the reaction mixture after completion of the intermediate crosslinking reaction was changed from 60 ° C. to 50 ° C., and the temperature inside the system when dripping was completed was changed. Except that the temperature was changed from 47 ° C. to 41 ° C., the same operation as in Example 1 was performed (the water content with respect to the water-soluble ethylenically unsaturated monomer component constituting the water-absorbent resin precursor was 41% by mass), granule 189.5 g of a water-absorbent resin particle was obtained.
  • Example 4 (First reverse phase suspension polymerization) A round bottom cylinder with an inner diameter of 100 mm, equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade (a fluororesin coated on the surface) having two inclined paddle blades with a blade diameter of 50 mm as a stirrer A type separable flask was prepared. To this flask, 400 g of n-heptane was taken, and 1.30 g of sorbitan monolaurate (manufactured by NOF Corporation, trade name: Nonion LP-20R) having an HLB of 8.6 as a surfactant was added, up to 50 ° C.
  • sorbitan monolaurate manufactured by NOF Corporation, trade name: Nonion LP-20R
  • the mass of the water-soluble ethylenically unsaturated monomer in this monomer aqueous solution was 80.2 g, and the water content was 130.9 g.
  • the rotation speed of the stirrer was set to 450 r / min, the monomer aqueous solution for the first polymerization was added to the separable flask, the system was replaced with nitrogen gas for 30 minutes, and then placed in a 70 ° C. water bath. The temperature was increased by immersion, and the first reverse phase suspension polymerization was performed for 1 hour.
  • the rotation speed of the stirrer was set to 1000 r / min, and the reaction mixture after completion of the intermediate crosslinking reaction was cooled to 60 ° C. (in a state where sorbitan monolaurate was dissolved in n-heptane)
  • the monomer aqueous solution for the second polymerization adjusted to 14 ° C. was dropped into the system, and the system was stirred for 30 minutes at the rotation speed while maintaining the system temperature (50 ° C.) when the dropping was completed.
  • the inside of the system was replaced with nitrogen gas, and then the temperature was increased by immersing in a 70 ° C. water bath, and a second reverse phase suspension polymerization was performed for 1 hour to obtain a water-absorbing resin particle precursor.
  • Example 5 To the liquid containing the water-absorbent resin precursor obtained after the (second-time reversed-phase suspension polymerization) in Example 1, an amorphous silica powder (manufactured by Tokuyama Soda Co., Ltd., trade name: Toxeal P) Except for adding 0.04 g, the same operation as in Example 1 was performed to obtain 188.6 g of granular water-absorbent resin particles in which the particles were aggregated.
  • an amorphous silica powder manufactured by Tokuyama Soda Co., Ltd., trade name: Toxeal P
  • Example 6 In Example 1 (post-crosslinking reaction), the amount of water withdrawn out of the system was changed from 197.3 g to 120.8 g by azeotropic distillation of water and n-heptane. Except that instead of 7.36 g (0.000845 mol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution, it was changed to 1.84 g (0.000211 mol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution. Then, the same operation as in Example 1 was performed, and the water-absorbing ethylenically unsaturated monomer component constituting the water-absorbing resin precursor was 80% by mass. Obtained.
  • Example 7 In Example 1 (post-crosslinking reaction), the amount of water withdrawn out of the system was changed from 197.3 g to 159.0 g by azeotropically boiling water and n-heptane. Except that 7.36 g (0.000845 mol) of a 2% by weight aqueous ethylene glycol diglycidyl ether solution was replaced with 3.68 g (0.000423 mol) of a 2% by weight aqueous ethylene glycol diglycidyl ether solution. Then, the same operation as in Example 1 was performed, and the water-absorbing ethylenically unsaturated monomer component constituting the water-absorbing resin precursor was 60% by mass. 191.3 g of granular water-absorbing resin particles Obtained.
  • the rotation rate of the stirrer was set to 700 r / min, the monomer aqueous solution was added to the separable flask, the inside of the system was replaced with nitrogen gas for 30 minutes, and then immersed in a 70 ° C. water bath to raise the temperature. Reverse phase suspension polymerization was carried out for 1 hour.
  • the rotation rate of the stirrer was set to 700 r / min, the monomer aqueous solution was added to the separable flask, the inside of the system was replaced with nitrogen gas for 30 minutes, and then immersed in a 70 ° C. water bath to raise the temperature. Reverse phase suspension polymerization was carried out for 1 hour to obtain a water-absorbing resin precursor.
  • the mass of the water-soluble ethylenically unsaturated monomer in this monomer aqueous solution was 91.0 g, and the water content was 148.6 g.
  • the rotation speed of the stirrer was set to 450 r / min, the monomer aqueous solution for the first polymerization was added to the separable flask, the system was replaced with nitrogen gas for 30 minutes, and then placed in a 70 ° C. water bath. The temperature was increased by immersion, and the first reverse phase suspension polymerization was performed for 1 hour.
  • the rotation speed of the stirrer was set to 1000 r / min, and the reaction mixture after completion of the intermediate crosslinking reaction was cooled to 60 ° C. (in a state where sorbitan monolaurate was dissolved in n-heptane)
  • the monomer aqueous solution for the second polymerization adjusted to 14 ° C. was dropped into the system, and the system was stirred for 30 minutes at the rotational speed while maintaining the system temperature (47 ° C.) when the dropping was completed.
  • the inside of the system was replaced with nitrogen gas, and then the temperature was increased by immersing in a 70 ° C. water bath, and a second reverse phase suspension polymerization was performed for 1 hour to obtain a water-absorbing resin particle precursor.
  • Example 4 After completion of (first reverse phase suspension polymerization) in Example 1, the same operation as in Example 1 was performed, except that ethylene glycol diglycidyl ether was not added as an intermediate crosslinking agent. However, when the monomer aqueous solution for the second polymerization was dropped into the system, the stirring load of the stirrer increased and the stirring became impossible, so the subsequent steps were canceled.
  • the rotation speed of the stirrer was set to 700 r / min, the monomer aqueous solution for the first polymerization was added to the separable flask, the system was replaced with nitrogen gas for 30 minutes, and then placed in a 70 ° C. water bath. The temperature was increased by immersion, and the first reverse phase suspension polymerization was performed for 1 hour.
  • the rotation speed of the stirrer was set to 1000 r / min, and the reaction mixture after completion of the intermediate crosslinking reaction was cooled to 50 ° C. (a state where the sucrose fatty acid ester was dissolved in n-heptane),
  • the monomer aqueous solution for the second polymerization adjusted to 14 ° C. is dropped into the system, and stirring is performed for 30 minutes at the rotation speed while maintaining the system temperature (47 ° C.) when the dropping is completed.
  • the inside of the system was replaced with nitrogen gas, and then the temperature was increased by immersing in a 70 ° C. water bath, and the second reverse phase suspension polymerization was performed for 1 hour to obtain a water absorbent resin precursor.
  • Example 6 As an intermediate crosslinking agent to be added in the (intermediate crosslinking reaction) of Example 1, instead of 0.41 g (0.000047 mol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution, a 2% by mass ethylene glycol diglycidyl ether aqueous solution. 1.24 g (0.00014 mol) was used. Further, in Example 1 (second-phase reversed-phase suspension polymerization), the cooling temperature of the reaction mixture after completion of the intermediate crosslinking reaction was changed from 60 ° C. to 30 ° C., and the temperature inside the system when the dropping was completed The same operation as in Example 1 was performed except that the temperature was changed from 47 ° C. to 28 ° C.
  • the mass of the water-soluble ethylenically unsaturated monomer in this monomer aqueous solution was 91.0 g, and the water content was 148.6 g.
  • the rotation speed of the stirrer was set to 450 r / min, the monomer aqueous solution for the first polymerization was added to the separable flask, the system was replaced with nitrogen gas for 30 minutes, and then placed in a 70 ° C. water bath. The temperature was increased by immersion, and the first reverse phase suspension polymerization was performed for 1 hour.
  • the number of revolutions of the stirrer was set to 1000 r / min, and the reaction mixture after completion of the first reverse-phase suspension polymerization reaction was 60 ° C.
  • the second monomer aqueous solution for polymerization adjusted to 14 ° C. was dropped into the system, and the dropping was completed.
  • the system temperature 47 ° C.
  • the system was agitated for 30 minutes at the same time as the system was replaced with nitrogen gas, and then immersed in a 70 ° C. water bath to raise the temperature. Phase suspension polymerization was carried out for 1 hour to obtain a water absorbent resin precursor.
  • Example 8 In Example 1 (post-crosslinking reaction), except that the amount of water withdrawn out of the system was changed from 197.3 g to 71.6 g by azeotropic distillation of water and n-heptane. The same operation was performed to obtain 191.0 g of granular water-absorbent resin particles (the water content with respect to the water-soluble ethylenically unsaturated monomer component constituting the water-absorbent resin precursor was 110% by mass).
  • the cotton bag was dehydrated using H-122) for 1 minute, and the weight Wa (g) of the cotton bag containing the swollen gel after dehydration was measured.
  • the same operation was performed without adding the water-absorbent resin particles, the empty mass Wb (g) when the cotton bag was wet was measured, and the water retention capacity was calculated from the following equation.
  • Water retention capacity of water-absorbent resin particles (g / g) [Wa-Wb] (g) / mass of water-absorbent resin particles (g)
  • the mass of the water-absorbent resin particles remaining on each sieve is calculated as a percentage by mass with respect to the total amount, and by integrating in order from the larger particle diameter, the water-absorbent resin particles remaining on the sieve and the sieve
  • the relationship between the mass percentage and the integrated value was plotted on a logarithmic probability paper. By connecting the plots on the probability paper with a straight line, the particle diameter corresponding to an integrated mass percentage of 50% by mass was defined as the median particle diameter.
  • the swelling performance measuring device X shown in FIG. 1 includes a moving distance measuring device 1, a concave circular cup 2 (height 30 mm, inner diameter 80.5 mm), and a plastic convex circular cylinder 3 (outer diameter 80 mm, water-absorbing resin particles). 60 through holes 7 having a diameter of 2 mm are equally provided on the contact surface) and the nonwoven fabric 4.
  • the swelling performance measuring apparatus X can measure the displacement of the distance by the laser beam 6 in units of 0.01 mm.
  • the concave circular cup 2 can uniformly spread a predetermined amount of water-absorbing resin particles.
  • the convex circular cylinder 3 can uniformly apply a load of 90 g to the water absorbent resin particles 5.
  • a sample (water-absorbent resin particles 5) 0.1 g is uniformly sprayed on the concave circular cup 2, and the nonwoven fabric 4 is laid thereon.
  • the convex circular cylinder 3 is placed gently on the nonwoven fabric 4 and installed so that the laser beam 6 of the sensor of the moving distance measuring device 1 comes to the center of the cylinder. 130 g of ion-exchanged water previously adjusted to 20 ° C.
  • the moving distance of the convex circular cylinder 3 10 minutes after the start of water absorption was defined as the equilibrium swelling performance.
  • each of the water-absorbent resin particles obtained in Examples 1 to 7 has an excellent water absorption rate and high equilibrium swelling performance, and has a moderate median particle size. Recognize. On the other hand, it can be seen that the water-absorbent resin particles obtained in the comparative example have insufficient water absorption speed and swelling performance.
  • the water-absorbent resin particles of the present invention are used for sanitary materials such as disposable diapers, sanitary products, pet sheets, agricultural and horticultural materials such as water retention materials and soil improvement materials, water-stopping materials for power and communication cables, and anti-condensation materials. It can be used in various fields such as for industrial materials, and is particularly suitable for industrial materials such as water / waterstop materials for power / communication cables.

Abstract

 優れた吸水速度及び高い平衡膨潤性能を有し、かつ、粒径が適度でハンドリング性が良好である吸水性樹脂粒子の製造方法、それにより得られる吸水性樹脂粒子を提供する。 本発明は、水溶性エチレン性不飽和単量体を逆相懸濁重合して吸水性樹脂粒子を製造する方法であって、(A)水溶性エチレン性不飽和単量体を、内部架橋剤の非存在下、HLBが8~12の界面活性剤の存在下、石油系炭化水素分散媒中で水溶性ラジカル重合開始剤を用いて第一回目の逆相懸濁重合を行う工程、(B)更に中間架橋剤を加えて中間架橋反応を行う工程、(C)前記界面活性剤が石油系炭化水素分散媒に溶解している状態で、水溶性エチレン性不飽和単量体を添加し、内部架橋剤の非存在下、水溶性ラジカル重合開始剤を用いて第二回目の逆相懸濁重合を行い、吸水性樹脂前駆体を作製する工程、及び、(D)前記吸水性樹脂前駆体の水分率を、前記吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対して30~100質量%に調整した後、後架橋反応させる工程を有する吸水性樹脂粒子の製造方法である。

Description

吸水性樹脂粒子の製造方法及び吸水性樹脂粒子
 本発明は、吸水性樹脂粒子の製造方法、それにより得られる吸水性樹脂粒子に関する。更に詳しくは、特定の製造条件を経ることで、優れた吸水速度及び高い平衡膨潤性能を有し、かつ、粒径が適度な大きさでハンドリング性に優れた吸水性樹脂粒子を得る製造方法、それにより得られる止水性能に優れた吸水性樹脂粒子に関する。
 近年、吸水性樹脂粒子は、紙おむつ、生理用品等の衛生材料用、ペットシート等の日用品、保水材、土壌改良材等の農園芸材料用、ケーブル用止水材、結露防止材等の工業資材用等、種々の分野に広く使用されている。このような用途に使用される吸水性樹脂粒子の種類としては、例えば、澱粉-アクリロニトリルグラフト共重合体の加水分解物、澱粉-アクリル酸グラフト共重合体の中和物、酢酸ビニル-アクリル酸エステル共重合体のケン化物、ポリアクリル酸部分中和物等が知られている。一般的に、吸水性樹脂粒子に求められる性能としては、高い吸水量、優れた吸水速度、高い膨潤性能及び用途に応じた適切な中位粒径等が挙げられる。
 このうち、ケーブル用止水材は、2枚以上の液体透過性シートの間に、必要に応じて粘着剤等を用いて吸水性樹脂粒子を固定したものであり、電気、通信産業の発展に伴って、需要が増大している。ケーブル用止水材は、電力ケーブルや光通信ケーブルの中心部を巻いて保護するように用いられ、更に外周をゴム等の素材で覆ってケーブルが形成される。電力ケーブルや光通信ケーブルでは、外部素材が劣化し、発生した亀裂から漏れこんだ水分がケーブル中心部に達すると、電力低下や通信ノイズに繋がることから、これを防止するため、水を吸収するとともに、膨潤してケーブル内に圧力を持たせることで、ケーブル中心部に水が到達するのを防止するものである。
 電力ケーブルや通信ケーブルに用いられる止水材用途の吸水性樹脂として求められる性能としては、ケーブルの破損による外部からの浸水を早期に防止すること、長期に渡る止水効果を維持することに加えて、効率よく製造できることや、製造の際に粉体としてのハンドリング性に優れること等も求められている。従って、止水材用途に使用する吸水性樹脂粒子には、これらの性能を実現するため、高い膨潤性能を有し、吸水速度が速く、かつ、粒子径が適度な大きさでハンドリング性が良好であることが求められている。
 吸水性樹脂粒子の膨潤性能を向上させる方法としては、吸水性樹脂粒子の架橋密度をコントロールする方法が考えられる。例えば、アクリル酸/アクリル酸塩水溶液をHLB8~12の界面活性剤共存下に逆相懸濁重合させたのち(重合後直ぐに)架橋剤を加えて架橋反応を行う方法(特許文献1参照)等が提案されている。
 また、高い吸水量及び高い膨潤性能を有し、かつ、粒径の小さい吸水性樹脂粒子を製造する方法としては、例えば、水溶性エチレン性不飽和単量体を逆相懸濁重合させる方法において、1段目の重合後、界面活性剤及び/又は高分子保護コロイドが炭化水素系溶媒に溶解している状態で、2段目に用いる水溶性エチレン性不飽和単量体を添加して、重合する方法(特許文献2参照)が提案されている。
特開昭56-131608号公報 国際公開WO2004/083284号パンフレット
 しかし、特許文献1に開示されている方法によっても、近年止水材用途に求められるような膨潤性能を有する吸水性樹脂粒子を得るには至っていなかった。
 また、特許文献2に開示されている方法により得られる吸水性樹脂粒子は、粒子径が小さいため、ハンドリング性が低いという問題があった。
 本発明の目的は、優れた吸水速度及び高い平衡膨潤性能を有し、かつ、粒径が適度な大きさでハンドリング性に優れた吸水性樹脂粒子の製造方法、及びそれにより得られる吸水性樹脂粒子を提供することにある。
 本発明は、以下に示すとおりの吸水性樹脂粒子の製造方法、それにより得られる吸水性樹脂粒子に関する。
 即ち、
 項1.水溶性エチレン性不飽和単量体を逆相懸濁重合して吸水性樹脂粒子を製造する方法であって、(A)水溶性エチレン性不飽和単量体を、内部架橋剤の非存在下、HLBが8~12の界面活性剤の存在下、石油系炭化水素分散媒中で水溶性ラジカル重合開始剤を用いて第一回目の逆相懸濁重合を行う工程、(B)更に中間架橋剤を加えて中間架橋反応を行う工程、(C)前記界面活性剤が石油系炭化水素分散媒に溶解している状態で、水溶性エチレン性不飽和単量体を添加し、内部架橋剤の非存在下、水溶性ラジカル重合開始剤を用いて第二回目の逆相懸濁重合を行い、吸水性樹脂前駆体を作製する工程、及び、(D)前記吸水性樹脂前駆体の水分率を、前記吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対して30~100質量%に調整した後、後架橋反応させる工程を有することを特徴とする吸水性樹脂粒子の製造方法、
 項2.HLBが8~12の界面活性剤は、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、及び、ショ糖脂肪酸エステルからなる群より選ばれる少なくとも1種の化合物であることを特徴とする項1記載の吸水性樹脂粒子の製造方法、
 項3.中間架橋剤が、グリシジルエーテル化合物であることを特徴とする項1又は2記載の吸水性樹脂粒子の製造方法、
 項4.中間架橋剤の添加割合が、水溶性エチレン性不飽和単量体の総モル量に対して、0.0001~0.026モル%であることを特徴とする項1、2又は3記載の吸水性樹脂粒子の製造方法、
 項5.項1、2、3又は4記載の吸水性樹脂粒子の製造方法を用いて得られることを特徴とする吸水性樹脂粒子、
 項6.平衡膨潤性能が12~28mm、吸水速度が1~5秒、生理食塩水保水能が20~60g/g、及び、中位粒径が100~400μmであることを特徴とする項5記載の吸水性樹脂粒子、である。
 以下に本発明を詳細に説明する。
 本発明の吸水性樹脂粒子の製造方法では、まず、(A)水溶性エチレン性不飽和単量体を、内部架橋剤の非存在下、HLBが8~12の界面活性剤の存在下、石油系炭化水素分散媒中で水溶性ラジカル重合開始剤を用いて第一回目の逆相懸濁重合を行う工程を行う。
 前記水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸(本明細書においては「アクリ」及び「メタアクリ」を合わせて「(メタ)アクリ」と表記する。以下同様)、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及び/又はそのアルカリ塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、及びポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体、並びに、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、及び、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体やその4級化物等を挙げることができ、これらの群から選ばれる少なくとも1種を用いることができる。これらの水溶性エチレン性不飽和単量体のなかでも、工業的に入手が容易である観点から、(メタ)アクリル酸又はそのアルカリ塩、(メタ)アクリルアミド、N,N-ジメチルアクリルアミドが好適に用いられる。
 前記水溶性エチレン性不飽和単量体は、通常、水溶液として用いることができる。前記水溶液における水溶性エチレン性不飽和単量体の濃度は、20質量%~飽和濃度の範囲であることが好ましい。また、W/O型(Water in Oil型)逆相懸濁の状態が良好で好適な粒径を得やすく、得られる吸水性樹脂粒子の膨潤性能が高くなるという観点から、30~45質量%がより好ましく、35~45質量%であることが更に好ましい。
 前記水溶性エチレン性不飽和単量体は、(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸のように酸基を有する場合、その酸基をアルカリ金属塩等のアルカリ性中和剤によって中和しておいてもよい。このようなアルカリ性中和剤としては、水酸化ナトリウム、水酸化カリウム、及び、水酸化アンモニウム等の水溶液が挙げられる。これらアルカリ性中和剤は単独で用いても、併用してもよい。
 前記アルカリ性中和剤による全酸基に対する中和度は、得られる吸水性樹脂粒子の浸透圧を高めることで膨潤能力を高め、かつ、余剰のアルカリ性中和剤の存在により、安全性等に問題が生じないようにする観点から、10~100モル%の範囲が好ましく、30~90モル%の範囲がより好ましく、50~80モル%の範囲が更に好ましい。
 前記水溶性ラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、及び過硫酸ナトリウム等の過硫酸塩類、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、及び過酸化水素等の過酸化物類、並びに、2,2’-アゾビス〔2-(N-フェニルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス〔2-(N-アリルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス{2-〔1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル〕プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-〔1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル〕プロピオンアミド}、2,2’-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド〕、及び4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物等が挙げられる。これら水溶性ラジカル重合開始剤は、単独で用いても、2種以上を併用してもよい。
 前記水溶性ラジカル重合開始剤の添加量は、通常、水溶性エチレン性不飽和単量体の総モル量に対して0.005~1モル%である。前記水溶性ラジカル重合開始剤の添加量が0.005モル%未満であると、重合反応に多大な時間を要するので、好ましくない。添加量が1モル%を超えると、急激な重合反応が起こるので、好ましくない。
 なお、前記水溶性ラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄及びL-アスコルビン酸等の還元剤を併用して、レドックス重合開始剤として用いることもできる。
 また、吸水性樹脂粒子の膨潤性能を制御するために、連鎖移動剤を添加してもよい。このような連鎖移動剤としては、例えば、次亜リン酸塩類、チオール類、チオール酸類、第2級アルコール類、アミン類等が挙げられる。
 本発明の吸水性樹脂粒子の製造方法では、前記水溶性エチレン性不飽和単量体を、内部架橋剤の非存在下、HLBが8~12の界面活性剤の存在下、石油系炭化水素分散媒中で水溶性ラジカル重合開始剤を用いて第一回目の逆相懸濁重合を行うことを第一の特徴とする。
 水溶液重合では、内部架橋剤の非存在下で重合反応を行うと、吸水性樹脂粒子の膨潤性能、特に平衡膨潤性能を高めることが可能となるが、重合後に得られる吸水性樹脂前駆体が非常に粘調で、裁断が困難となるため、後工程の乾燥工程や粉砕工程で多大な負荷が掛かり、膨潤性能が良好で、かつ、適度な粒子径を有する吸水性樹脂粒子を得ることは困難であった。
 また、従来の逆相懸濁重合では、重合反応時に内部架橋剤を使用しなくても吸水性樹脂前駆体が得られるものの、部分的に塊状物が生成したり、乾燥工程において粒子同士が粘着して凝集したりする傾向があった。
 本発明者らは、鋭意検討した結果、内部架橋剤の非存在下、特定の界面活性剤、石油系炭化水素分散媒、水溶性エチレン性不飽和単量体水溶液を用いて逆相懸濁重合を行うことで、止水材用途に好適な形態の粒子がより簡便に得られることを見出した。更に、得られた粒子に特定の架橋反応、後架橋反応を行うことで、止水材用途に好適な高性能の吸水性樹脂粒子が得られることを見出し、本発明の完成に至った。
 なお、本発明において、内部架橋剤とは、単量体の重合中に高分子鎖間の橋架け構造を形成するのに寄与する化合物のことをいう。具体的には、前記水溶性エチレン性不飽和単量体と重合可能な重合性不飽和基を分子内に2個以上有する化合物、前記水溶性エチレン性不飽和単量体中に含まれる官能基(例えば、前記アクリル酸の場合はカルボキシル基)と反応しうる官能基を分子内に2個以上有する化合物等のことをいう。
 本発明では、HLBが8~12の界面活性剤を用いる。前記HLBが8~12の界面活性剤を用いることで、W/O型逆相懸濁の状態が良好となり、好適な粒子径を有する粒子が得られる。なお、前記界面活性剤のHLBは8.5~10.5が好ましい。
 前記界面活性剤としては、例えば、ソルビタン脂肪酸エステル、(ポリ)グリセリン脂肪酸エステル〔(ポリ)とは「ポリ」の接頭語がある場合とない場合の双方を意味する。以下同じ〕、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル、等のノニオン系界面活性剤;脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテルのリン酸エステル、及びポリオキシエチレンアルキルアリルエーテルのリン酸エステル等のアニオン系界面活性剤等が挙げられる。これらの界面活性剤のなかでも、W/O型逆相懸濁の状態が良好で好適な粒径の吸水性樹脂粒子が得られる観点、工業的に入手が容易という観点から、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルが好適に用いられ、なかでも、得られる吸水性樹脂粒子の吸水速度の観点から、ソルビタン脂肪酸エステルがより好適に用いられる。これらの界面活性剤は、単独で使用してもよいし、2種以上を併用してもよい。
 前記界面活性剤の添加量は、W/O型逆相懸濁の状態を安定させ、かつ懸濁安定化効果が得られる効率的な添加量を選択する観点から、第一回目の逆相懸濁重合に付される水溶性エチレン性不飽和単量体の水溶液100質量部に対して、0.1~5質量部が好ましく、0.2~3質量部がより好ましく、0.3~2質量部が更に好ましい。
 本発明では、W/O型逆相懸濁の状態を安定させる目的で、前記界面活性剤と高分子保護コロイドとを併用してもよい。前記高分子保護コロイドとしては、例えば、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン-プロピレン-ジエン-ターポリマー)、無水マレイン酸変性ポリブタジエン、エチレン-無水マレイン酸共重合体、エチレン-プロピレン-無水マレイン酸共重合体、ブタジエン-無水マレイン酸共重合体、酸化型ポリエチレン、エチレン-アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。なかでも、W/O型逆相懸濁の安定性の面から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン-プロピレン共重合体、酸化型ポリエチレン、エチレン-アクリル酸共重合体が好ましい。これらの高分子保護コロイドは、単独で使用してもよいし、2種以上を併用してもよい。
 前記高分子保護コロイドの添加量は、W/O型逆相懸濁の状態を安定させ、かつ懸濁安定化効果が得られる効率的な添加量を選択する観点から、第一回目の逆相懸濁重合で添加される水溶性エチレン性不飽和単量体の水溶液100質量部に対して、0.1~5質量部が好ましく、0.2~3質量部がより好ましく、0.3~2質量部が更に好ましい。
 前記石油系炭化水素分散媒としては、例えば、n-ヘキサン、n-ヘプタン、リグロイン等の脂肪族炭化水素;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等を挙げることができ、それらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。これらの石油系炭化水素分散媒のなかでは、工業的に入手が容易である観点から、n-ヘキサン、n-ヘプタン及びシクロヘキサンが好適に用いられ、なかでも、本発明におけるW/O型逆相懸濁の状態が良好で好適な粒径の吸水性樹脂粒子が得られる観点、得られる吸水性樹脂粒子の吸水性能も良好な観点から、n-ヘプタンがより好適に用いられる。
 前記石油系炭化水素分散媒の添加量は、重合熱を適度に除去し、重合温度を制御しやすくする観点から、逆相懸濁重合に付される水溶性エチレン性不飽和単量体100質量部に対して、好ましくは50~600質量部、より好ましくは100~550質量部である。
 本発明において、第一回目の逆相懸濁重合を行う際の反応温度は、使用する水溶性ラジカル重合開始剤の種類によって異なるので、一概には決定することができない。通常、該反応温度は、重合を迅速に進行させることで重合時間を短くし、かつ重合熱を除去することが簡単で、かつ円滑に反応を行う観点から、好ましくは20~110℃、より好ましくは40~90℃である。反応時間は、通常、0.5~4時間である。
 本発明の吸水性樹脂粒子の製造方法では、次いで、(B)更に中間架橋剤を加えて中間架橋反応を行う工程を行う。このような工程を行うことで、第一回目の逆相懸濁重合により得られる吸水性樹脂粒子を架橋することにより、後述する(C)工程において水溶性エチレン性不飽和単量体を添加した際に、重合後の粒子が添加した水溶性エチレン性不飽和単量体を吸収することを防ぐことができ、吸収することにより起こる吸水性樹脂粒子の表面状態の変化、吸水性能の悪化を防ぐ。すなわち、吸水速度が遅くなり、膨潤性能が低くなることを防ぐこととなる。
 なお、前記(B)工程及び後述する(C)工程は、1回以上行い、必要により2回以上行ってもよい。
 前記(B)工程の中間架橋反応において用いられる中間架橋剤としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のグリシジルエーテル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物等が挙げられる。
 これらの中間架橋剤のなかでも、反応性に優れている観点から、ジグリシジルエーテル化合物が好ましく、なかでも、水溶性が高く、中間架橋剤としてのハンドリング性が良いという観点から、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテルがより好ましく、得られる吸水性樹脂粒子の吸水性能が高いという観点から、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテルが更に好ましい。これらの中間架橋剤は、それぞれ単独で用いてもよく、2種以上を組み合わせて使用してもよい。
 前記(B)工程において用いられる中間架橋剤の添加量は、前記(B)工程の中間架橋剤を添加する直前の重合に付した水溶性エチレン性不飽和単量体のモル量に対して、0.0001~0.026モル%が好ましく、0.0005~0.021モル%がより好ましく、0.0025~0.015モル%が更に好ましい。前記中間架橋剤の添加量が0.0001モル%未満であると、後述の水溶性エチレン性不飽和単量体を添加した際に、重合した粒子が水溶性エチレン性不飽和単量体を吸収した状態で次の重合に付されるため、得られる吸水性樹脂粒子の表面状態が変化して、吸水性能が悪化するおそれがある。すなわち、吸水速度が遅くなり、膨潤性能が低くなる傾向がある。また、前記中間架橋剤の添加量が0.026モル%を超えると、過度に架橋反応が進行し、得られる吸水性樹脂粒子の吸水性能が低くなるおそれがある。
 なお、「前記(B)工程の中間架橋剤を添加する直前の重合に付した水溶性エチレン性不飽和単量体のモル量」とは、(B)工程が1回目の場合は、前記(A)工程において添加した水溶性エチレン性不飽和単量体のモル量を意味し、(B)工程が2回目以降の場合は、1回前の(C)工程において添加した水溶性エチレン性不飽和単量体を意味する。
 前記(B)工程において、中間架橋剤を添加する場合の溶媒としては、中間架橋剤を均一に分散させることが可能であれば特に限定されず、水を用いてもよく、親水性有機溶媒を用いてもよい。前記親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール等の低級アルコール類、アセトン、メチルエチルケトン等のケトン類、ジオキサン、テトラヒドロフラン等のエーテル類、N,N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類等が挙げられる。これらの溶媒は、それぞれ単独で用いてもよく、2種以上を組み合わせて使用してもよい。
 前記(B)工程における中間架橋反応の反応温度は60℃以上であることが好ましく、70℃~前記重合に使用した溶媒の沸点までがより好ましい。前記反応温度が60℃未満であると、中間架橋反応が進みにくく、得られる吸水性樹脂の吸水性能が低くなるおそれがある。
 前記(B)工程における中間架橋反応の反応時間は、反応温度、前記中間架橋剤の種類及び添加量等によって異なるので一概には決定することができないが、通常、1~200分間が好ましく、5~100分間がより好ましく、10~60分間が更に好ましい。
 本発明の吸水性樹脂粒子の製造方法では、次いで、(C)前記界面活性剤が石油系炭化水素分散媒に溶解している状態で、水溶性エチレン性不飽和単量体を添加し、内部架橋剤の非存在下、水溶性ラジカル重合開始剤を用いて第二回目の逆相懸濁重合を行い、吸水性樹脂前駆体を作製する工程を行う。
 なお、本(C)工程における内部架橋剤の非存在下とは、(C)工程の重合反応において内部架橋剤を添加しないことを意味する。
 本発明では、逆相懸濁重合を複数回行うことで、膨潤性能に優れた吸水性樹脂粒子を生産性高く製造することができる。
 前記(C)工程において用いられる水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及び/又はそのアルカリ塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、及びポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体、並びに、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、及びジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体やその4級化物等を挙げることができ、これらの群から選ばれる少なくとも1種を用いることができる。これらの水溶性エチレン性不飽和単量体のなかでも、工業的に入手が容易である観点から、(メタ)アクリル酸又はそのアルカリ塩、(メタ)アクリルアミド、N,N-ジメチルアクリルアミドが好適に用いられる。
 前記水溶性エチレン性不飽和単量体は、通常、水溶液として用いることができる。前記水溶液における水溶性エチレン性不飽和単量体の濃度は、20質量%~飽和濃度の範囲であることが好ましい。また、W/O型(Water in Oil型)逆相懸濁の状態が良好で好適な粒径を得やすく、得られる吸水性樹脂粒子の膨潤性能が高くなるという観点から、30~45質量%がより好ましく、35~45質量%であることが更に好ましい。
 前記(C)工程において用いられる水溶性エチレン性不飽和単量体は、(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸のように酸基を有する場合、その酸基をアルカリ金属塩等のアルカリ性中和剤によって中和しておいてもよい。このようなアルカリ性中和剤としては、水酸化ナトリウム、水酸化カリウム、及び、水酸化アンモニウム等の水溶液等が挙げられる。これらのアルカリ性中和剤は単独で用いてもよく、2種以上を組み合わせて使用してもよい。
 前記アルカリ性中和剤による全酸基に対する中和度は、得られる吸水性樹脂粒子の浸透圧を高めることで膨潤能力を高め、かつ、余剰のアルカリ性中和剤の存在により、安全性等に問題が生じないようにする観点から、10~100モル%の範囲が好ましく、30~90モル%の範囲がより好ましく、50~80モル%の範囲が更に好ましい。
 前記(C)工程において用いられる水溶性エチレン性不飽和単量体の添加量は、前記(A)工程において重合に付した水溶性エチレン性不飽和単量体100質量部に対して、50~200質量部が好ましく、70~180質量部がより好ましく、90~150質量部が更に好ましい。前記(C)工程において用いられる水溶性エチレン性不飽和単量体の添加量が50質量部未満であると、重合反応時間に対する生産性が低くなることがある。また、前記(C)工程の重合反応の操作に用いられる水溶性エチレン性不飽和単量体の添加量が200質量部を超えると、重合反応時間に対する生産性は高いが、重合反応に用いる水溶性エチレン性不飽和単量体の量が多くなり、重合反応の制御が困難となるおそれがある。
 前記(C)工程において用いられる水溶性エチレン性不飽和単量体は、前記(B)工程の中間架橋反応が終了した反応混合物中において、前記界面活性剤が石油系炭化水素分散媒に溶解している状態で、添加する必要がある。前記水溶性エチレン性不飽和単量体は、前記界面活性剤が石油系炭化水素分散媒に溶解していない状態で添加すると、重合した粒子が添加した水溶性エチレン性不飽和単量体を吸収し、凝集して一体化(塊状化)してしまう。
 「前記界面活性剤が石油系炭化水素分散媒に溶解している状態」は、例えば、前記中間架橋反応が終了した反応混合物の温度を制御することにより、作り出すことができる。前記反応混合物の温度は、前記界面活性剤の種類により異なるので一概には決定することができないが、例えば、好ましくは40~65℃であり、より好ましくは50~60℃である。反応混合物の温度が40℃未満であると、界面活性剤が析出することにより界面活性効果が低くなり、重合した粒子が添加した水溶性エチレン性不飽和単量体を吸収し、凝集して一体化(塊状化)することがある。また、反応混合物の温度が65℃を超えると、水溶性エチレン性不飽和単量体を添加している際に重合反応が起こる等の危険があるので好ましくない。
 前記(C)工程において用いられる水溶性ラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、及び過硫酸ナトリウム等の過硫酸塩類、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、及び過酸化水素等の過酸化物類、並びに、2,2’-アゾビス〔2-(N-フェニルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス〔2-(N-アリルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス{2-〔1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル〕プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-〔1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル〕プロピオンアミド}、2,2’-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド〕、及び4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物等が挙げられる。これらのラジカル重合開始剤は、単独で用いてもよく、2種以上を組み合わせて使用してもよい。
 前記(C)工程において用いられる水溶性ラジカル重合開始剤の添加量は、重合開始剤の種類や、反応条件によって異なるので、一概には決められないが、通常、前記(A)工程において添加する水溶性エチレン性不飽和単量体のモル量に対して0.005~1モル%である。水溶性ラジカル重合開始剤の添加量が0.005モル%未満であると、重合反応に多大な時間を要するので、好ましくない。水溶性ラジカル重合開始剤の添加量が1モル%を超えると、急激な重合反応が起こるので、好ましくない。
 なお、前記水溶性ラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、及びL-アスコルビン酸等の還元剤を併用して、レドックス重合開始剤として用いることもできる。
 前記(C)工程では、吸水性樹脂粒子の膨潤性能、特に平衡膨潤性能を高める観点から、内部架橋剤非存在下で重合反応を行う。
 また、得られる吸水性樹脂粒子の膨潤性能を制御する観点から、連鎖移動剤を使用してもよい。このような連鎖移動剤としては、例えば、次亜リン酸塩類、チオール類、チオール酸類、第2級アルコール類、アミン類等が挙げられる。
 前記(C)工程において、反応温度は、使用する水溶性ラジカル重合開始剤の種類によって異なるので、一概には決定することができない。通常、該反応温度は、重合を迅速に進行させることで重合時間を短くする観点、重合熱を除去することが容易である観点、円滑に反応を行う観点から、好ましくは20~110℃であり、より好ましくは40~90℃である。反応時間は、通常、0.5~4時間である。
 通常、前記(A)~(C)工程を経て得られる吸水性樹脂前駆体は、球状、顆粒状、破砕状、金平糖状及びそれらの凝集物などの様々な形態で得られるが、本発明においては、乾燥工程において粒子同士が粘着して凝集しにくく、かつ、止水材用途に好適な形態の粒子がより簡便に得られる観点から、吸水性樹脂前駆体は顆粒状で得られることが好ましく、表面に一様な凹凸のある顆粒状がより好ましい。
 また、後述の(D)工程の直前に粒子径をコントロールする観点から、非晶質シリカを添加し凝集粒子にすることもできる。非晶質シリカとしては、乾式シリカや、湿式シリカ等が挙げられ、これらの非晶質シリカの中でも湿式シリカが好適に用いられる。
 非晶質シリカの添加量としては、前記(A)工程及び(C)工程において重合に付した水溶性エチレン性不飽和単量体の総質量100質量部に対して、好ましくは0.0001~1質量部、より好ましくは0.001~0.5質量部、更に好ましくは0.01~0.2質量部である。
 なお、前記吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分の総質量は、重合反応に用いた水溶性エチレン性不飽和単量体の総質量から、理論上のポリマー固形分として、計算により求めることができる。
 本発明の吸水性樹脂粒子の製造方法では、次いで、(D)前記吸水性樹脂前駆体の水分率を、前記吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対して30~100質量%に調整した後、後架橋反応させる工程を行う。
 前記吸水性樹脂前駆体の水分率を、前記吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対して30~100質量%に調整する方法(以下、単に1次乾燥ともいう)としては、特に限定されないが、前記吸水性樹脂前駆体が石油系炭化水素分散媒に分散した状態で、外部から加熱することにより共沸蒸留による脱水を行う方法、デカンテーションにより吸水性樹脂前駆体を取り出し、減圧乾燥する方法、フィルターにより吸水性樹脂前駆体をろ別し、減圧乾燥する方法等が挙げられる。なかでも、製造工程における簡便さから、重合により得られる吸水性樹脂前駆体を石油系炭化水素分散媒に分散し、共沸蒸留による脱水を行う方法が好ましい。
 前記1次乾燥工程を行った後、得られた吸水性樹脂前駆体に後架橋剤を添加し、後架橋反応を行う。前記のようにして得られた吸水性樹脂前駆体に対して、特定の条件での後架橋反応を施すことにより、優れた膨潤性能を有する吸水性樹脂粒子が得られる。
 前記後架橋剤としては、前記水溶性エチレン性不飽和単量体中に含まれる官能基(例えば、前記アクリル酸の場合はカルボキシル基)と反応しうる官能基を分子内に2個以上有する化合物であり、また、好ましくは水溶性の化合物であり、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のグリシジルエーテル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物等が挙げられる。これらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。
 これらの後架橋剤のなかでも、反応性に優れている観点から、ジグリシジルエーテル化合物が好ましく、なかでも、水溶性が高く、架橋剤としてのハンドリング性が良いという観点から、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテルがより好ましく、得られる吸水性樹脂粒子の膨潤性能が高いという観点から、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテルがさらに好ましい。
 なお、前記後架橋剤は、前記中間架橋剤と同じものであってもよく、異なるものであってもよい。
 前記後架橋剤の添加量は、前記吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体の総モル量に対して、0.001~3モル%が好ましく、0.005~2モル%がより好ましく、0.01~1モル%が更に好ましく、0.02~0.5モル%が特に好ましい。前記水溶性エチレン性不飽和単量体の総モル量に対する後架橋剤添加量が0.001モル%未満であると、架橋が弱いために、吸水性樹脂粒子表面が、吸水時に粘性をおびやすく、初期膨潤性能が低くなる傾向があり、3モル%を超えると、得られる吸水性樹脂粒子の保水量が低下し、それに伴い膨潤性能が低くなるおそれがある。
 なお、前記吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分の総モル量は、前記(A)工程及び(C)工程で用いた水溶性エチレン性不飽和単量体の総モル量から、計算により求めることができる。
 本発明において、前記吸水性樹脂前駆体と後架橋剤との混合は、前記吸水性樹脂前駆体の水分率を特定の範囲に調整した後に行う。このように、吸水性樹脂前駆体と後架橋剤との反応時における水分率をコントロールすることにより、より好適に後架橋反応を進行させることができる。
 後架橋工程における吸水性樹脂前駆体の水分率は、吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対して30~100質量%であり、好ましくは30~90質量%であり、より好ましくは35~80質量%である。前記水分率が30質量%未満であると、後架橋剤が吸水性樹脂前駆体に均一に分散しない。前記水分率が100質量%を超えると、吸水性樹脂前駆体の表面層を架橋することが困難となり、膨潤性能等の性能が低下する。
 なお、前記水分率は、重合前の単量体水溶液に含まれる水分量から、1次乾燥工程により外部に抽出された水分量を差し引いた量(1次乾燥ゲルの水分量)に、後架橋剤を添加する際に必要に応じて用いられる水分量を合計することにより、吸水性樹脂前駆体の水分量を算出した後、吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分の質量に対する吸水性樹脂前駆体の水分量の割合を算出することによって求めることできる。
 なお、前記吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分の質量は、前記(A)工程及び(C)工程で用いた水溶性エチレン性不飽和単量体の総質量から、理論上のポリマー固形分として、計算により求めることができる。
 1次乾燥ゲルの水分量に対する、後架橋剤を添加する際に必要に応じて用いられる水分量は、乾燥工程を合理的に短縮してプロセスの経済性を高めつつ、後架橋剤を均一に分散させる観点から、100:0~60:40が好ましく、99:1~70:30がより好ましく、98:2~80:20が更に好ましく、98:2~90:10がより更に好ましい。
 前記吸水性樹脂前駆体と後架橋剤との混合の際には、後架橋剤を均一に分散させるための溶媒として、水を用いてもよく、親水性有機溶媒を用いてもよい。親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール等の低級アルコール類、アセトン、メチルエチルケトン等のケトン類、ジオキサン、テトラヒドロフラン等のエーテル類、N,N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類等が挙げられる。これらは、それぞれ単独で用いてもよく、必要に応じて、水と混合したり、2種以上を混合して用いてもよい。
 前記吸水性樹脂前駆体を後架橋剤で後架橋反応させる際の反応温度は60℃以上であることが好ましく、70~200℃がより好ましく、80~150℃が更に好ましい。反応温度が60℃未満であると、後架橋反応が進みにくく、反応に過大な時間を要する傾向があり、反応温度が200℃を超えると、得られる吸水性樹脂粒子の分解や、吸水性樹脂粒子の着色が発生するおそれがある。
 前記後架橋の反応時間は、反応温度、後架橋剤の種類及び量等によって異なるので一概には決定することができないが、通常、1~300分間、好ましくは5~200分間である。
 本発明の方法により、高い膨潤性能を有する吸水性樹脂粒子が得られる理由は明確ではないが、内部架橋剤の非存在下で適度な粒子の大きさを有する吸水性樹脂前駆体を得たのち、特定の水分率に調整した吸水性樹脂前駆体に、特定条件の後架橋反応を施すことにより、吸水性樹脂粒子の表面近傍と内部の架橋密度バランスが最も好適になるためと考えられる。
 本発明では、前記(D)工程の後架橋反応を行った後、熱等のエネルギーを外部から加えることにより、水分、有機溶媒等を蒸留により除去することによって、乾燥工程を行ってもよい(以下、この乾燥工程を2次乾燥ともいう)。このような2次乾燥を行うことで、粉末状の吸水性樹脂粒子が得られる。
 前記2次乾燥の方法としては、特に限定されず、例えば、石油系炭化水素分散媒に分散した後架橋反応後の樹脂粒子の混合物を、蒸留することにより水分と石油系炭化水素分散媒を同時に除去する方法、デカンテーションにより樹脂粒子を取り出し、減圧乾燥する方法、フィルターにより樹脂粒子をろ別し、減圧乾燥する方法等が挙げられる。なかでも、製造工程における簡便さから、石油系炭化水素分散媒に分散した後架橋反応後の樹脂粒子の混合物を、蒸留することにより水分と石油系炭化水素分散媒を同時に除去する方法が好ましい。
 本発明の吸水性樹脂粒子の製造方法を用いることで、優れた吸水速度及び高い平衡膨潤性能を併せ持ち、かつ、粒径が適度でハンドリング性が良好である吸水性樹脂粒子を得ることができる。このような吸水性樹脂粒子もまた本発明の1つである。
 本発明の吸水性樹脂粒子は、平衡膨潤性能が10~28mmであることが好ましい。このように高い膨潤性能を有することで、ケーブル外部素材の亀裂による初期浸水を防止した後、長時間の浸水防止効果を維持し、かつケーブルの素材劣化を促進しない程度の適度な膨潤圧力を発揮することができる。また、前記平衡膨潤性能は、11~24mmであることがより好ましく、12~20mmであることが更に好ましく、13~18mmが特に好ましい。
 本発明の吸水性樹脂粒子は、生理食塩水の吸水速度が1~10秒であることが好ましい。このように優れた吸水速度を有することで、ケーブルの亀裂による浸水をより速く防止することができる。また、前記吸水速度は、1~8秒がより好ましく、1~5秒が更に好ましい。
 本発明の吸水性樹脂粒子は、中位粒径が100~400μmであることが好ましい。このような中位粒径を有することで、止水材の製造時における粉体としてのハンドリング性を良好に保ち、かつ、止水材を薄くすることができる。また、前記中位粒径は、120~350μmがより好ましく、130~300μmが更に好ましい。
 本発明の吸水性樹脂粒子の生理食塩水保水能は特に限定されないが、より多くの水を吸収するほうが好ましいことから、20~60g/gが好ましく、25~55g/gがより好ましい。
 本発明の吸水性樹脂粒子の平衡膨潤性能、生理食塩水の吸水速度、生理食塩水保水能及び中位粒径は、いずれも後述する実施例に記載の測定方法によって測定したときの値である。
 本発明の吸水性樹脂粒子には、更に目的に応じて、耐熱性安定剤、酸化防止剤、抗菌剤等の添加剤を添加してもよい。
 前記添加剤の量は、吸水性樹脂粒子の用途、添加剤の種類等によって異なるが、前記(A)工程及び(C)工程において添加された水溶性エチレン性不飽和単量体の総質量100質量部に対して、好ましくは0.001~10質量部、より好ましくは0.01~5質量部、更に好ましくは0.1~2質量部である。
 なお、前記吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分の総質量は、重合反応に用いた水溶性エチレン性不飽和単量体の総質量から、理論上のポリマー固形分として、計算により求めることができる。
 本発明によれば、優れた吸水速度及び高い平衡膨潤性能を有し、かつ、粒径が適度でハンドリング性に優れた吸水性樹脂粒子の製造方法、それにより得られる吸水性樹脂粒子を提供することができる。
膨潤性能測定装置の概略説明図である。
 以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
 [実施例1]
 (第一回目の逆相懸濁重合)
 還流冷却器、滴下ロート、窒素ガス導入管、撹拌機として翼径50mmの4枚傾斜パドル翼を2段で有する撹拌翼(フッ素樹脂を表面にコートしたもの)を備えた内径100mmの丸底円筒型セパラブルフラスコを準備した。このフラスコにn-ヘプタン360gをとり、界面活性剤としてのHLBが8.6のソルビタンモノラウレート(日油株式会社製、商品名:ノニオンLP-20R)1.47gを添加し、50℃まで昇温して界面活性剤を溶解したのち、内温を47℃まで冷却した。
 一方、500mL容の三角フラスコに80.5質量%のアクリル酸水溶液92g(1.03モル)を入れ、これを氷冷しながら20.9質量%の水酸化ナトリウム水溶液147.6gを滴下して75モル%の中和を行ったのち、過硫酸カリウム0.101g(0.00037モル)を加えて溶解し、第一回目の重合用の単量体水溶液を調製した。なお、この単量体水溶液における水溶性エチレン性不飽和単量体の質量は91.0g、水分量は148.6gであった。
 撹拌機の回転数を450r/minとして、前記第一回目の重合用の単量体水溶液を前記セパラブルフラスコに添加して、系内を窒素ガスで30分間置換した後、70℃の水浴に浸漬して昇温し、第一回目の逆相懸濁重合を1時間行った。
 (中間架橋反応)
 第一回目の逆相懸濁重合反応の終了後、得られた反応混合物に、中間架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液0.41g(0.000047モル)を添加して、75℃で30分間、中間架橋反応を行った。
 (第二回目の逆相懸濁重合)
 次に、前記第一回目の重合用の単量体とは別に、500mL容の三角フラスコに80.5質量%のアクリル酸水溶液92g(1.03モル)を入れ、これを氷冷しながら26.9質量%の水酸化ナトリウム水溶液114.7gを滴下して75モル%の中和を行ったのち、過硫酸カリウム0.101g(0.00037モル)を加えて溶解し、第二回目の重合用の単量体水溶液を調製した。なお、この単量体水溶液における水溶性エチレン性不飽和単量体の質量は91.0g、水分量は115.7gであった。
 前記中間架橋反応の終了後、撹拌機の回転数を1000r/minとして、中間架橋反応終了後の反応混合物を60℃に冷却し(ソルビタンモノラウレートが、n-ヘプタンに溶解している状態)、14℃に調整した前記第二回目の重合用の単量体水溶液を系内に滴下し、滴下が終了したときの系内温度(47℃)に保ちながら、前記回転数で30分間攪拌を行うと同時に系内を窒素ガスで置換した後、70℃の水浴に浸漬して昇温し、第二回目の逆相懸濁重合を1時間行い、吸水性樹脂前駆体を得た。
 (後架橋反応)
 得られた吸水性樹脂前駆体を含有する液体を、120℃の油浴を使用して昇温し、水とn-ヘプタンとを共沸することにより、n-ヘプタンを還流しながら、197.3gの水を系外へ抜き出した後、後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液7.36g(0.00085モル)を添加した。このときの水分量は74.6gであり、吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対する水分率は、41質量%であった。後架橋剤混合物を調製後、80℃で2時間保持した。その後、n-へプタンを蒸発させて乾燥することによって、顆粒状の吸水性樹脂粒子を190.5g得た。
 [実施例2]
 実施例1の(中間架橋反応)において添加する中間架橋剤として、2質量%のエチレングリコールジグリシジルエーテル水溶液0.41g(0.000047モル)に代えて、2質量%のエチレングリコールジグリシジルエーテル水溶液1.24g(0.00014モル)を用い、更に実施例1の(後架橋反応)において、水とn-ヘプタンとを共沸することにより、系外に抜き出す水の量を、197.3gから198.1gに変更した(吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対する水分率は、41質量%)以外は、実施例1と同様の操作を行い、顆粒状の吸水性樹脂粒子を188.5g得た。
 [実施例3]
 実施例1の(第二回目の逆相懸濁重合)において、中間架橋反応終了後の反応混合物の冷却温度を60℃から50℃に変更し、かつ、滴下が終了したときの系内温度を47℃から41℃に変更した以外は、実施例1と同様の操作を行い(吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対する水分率は、41質量%)、顆粒状の吸水性樹脂粒子を189.5g得た。
 [実施例4]
 (第一回目の逆相懸濁重合)
 還流冷却器、滴下ロート、窒素ガス導入管、撹拌機として翼径50mmの4枚傾斜パドル翼を2段で有する撹拌翼(フッ素樹脂を表面にコートしたもの)を備えた内径100mmの丸底円筒型セパラブルフラスコを準備した。このフラスコにn-ヘプタン400gをとり、界面活性剤としてのHLBが8.6のソルビタンモノラウレート(日油株式会社製、商品名:ノニオンLP-20R)1.30gを添加し、50℃まで昇温して界面活性剤を溶解したのち、内温を47℃まで冷却した。
 一方、500mL容の三角フラスコに80.5質量%のアクリル酸水溶液81g(0.91モル)を入れ、これを氷冷しながら20.9質量%水酸化ナトリウム水溶液130.0gを滴下して75モル%の中和を行ったのち、過硫酸カリウム0.0892g(0.00033モル)を加えて溶解し、第一回目の重合用の単量体水溶液を調製した。なお、この単量体水溶液における水溶性エチレン性不飽和単量体の質量は80.2g、水分量は130.9gであった。
 撹拌機の回転数を450r/minとして、前記第一回目の重合用の単量体水溶液を前記セパラブルフラスコに添加して、系内を窒素ガスで30分間置換した後、70℃の水浴に浸漬して昇温し、第一回目の逆相懸濁重合を1時間行った。
 (中間架橋反応)
 第一回目の逆相懸濁重合反応の終了後、得られた反応混合物に、中間架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液0.36g(0.000041モル)を添加して、75℃で30分間、中間架橋反応を行った。
 (第二回目の逆相懸濁重合)
 次に、前記第一回目の重合用の単量体とは別に、500mL容の三角フラスコに80.5質量%のアクリル酸水溶液81g(0.91モル)を入れ、これを氷冷しながら26.9質量%の水酸化ナトリウム水溶液101.0gを滴下して75モル%の中和を行ったのち、過硫酸カリウム0.0892g(0.00033モル)を加えて溶解し、第二回目の重合用の単量体水溶液を調製した。なお、この単量体水溶液における水溶性エチレン性不飽和単量体の質量は80.2g、水分量は101.9gであった。
 前記中間架橋反応の終了後、撹拌機の回転数を1000r/minとして、中間架橋反応終了後の反応混合物を60℃に冷却し(ソルビタンモノラウレートが、n-ヘプタンに溶解している状態)、14℃に調整した前記第二回目の重合用の単量体水溶液を系内に滴下し、滴下が終了したときの系内温度(50℃)に保ちながら、前記回転数で30分間攪拌を行うと同時に系内を窒素ガスで置換した後、70℃の水浴に浸漬して昇温し、第二回目の逆相懸濁重合を1時間行い、吸水性樹脂粒子前駆体を得た。
 (後架橋反応)
 得られた吸水性樹脂前駆体を含有する液体を、120℃の油浴を使用して昇温し、水とn-ヘプタンを共沸することにより、n-ヘプタンを還流しながら、181.8gの水を系外へ抜き出した後、後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液6.48g(0.00074モル)を添加した。このときの水分量は、57.6gであり、吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対する水分率は35.9質量%であった。後架橋剤混合物を調製後、80℃で2時間保持した。その後、n-へプタンを蒸発させて乾燥することによって、顆粒状の吸水性樹脂粒子を164.7g得た。
 [実施例5]
 実施例1の(第二回目の逆相懸濁重合)を行った後に得られる吸水性樹脂前駆体を含有する液体に、非晶質シリカ粉末(徳山ソーダ株式会社製、商品名:トクシールP)0.04gを添加した以外は、実施例1と同様の操作を行い、粒子が凝集した顆粒状の吸水性樹脂粒子188.6gを得た。
 [実施例6]
 実施例1の(後架橋反応)において、水とn-ヘプタンとを共沸することにより、系外に抜き出す水の量を、197.3gから120.8gに変更した、更に添加する後架橋剤として、2質量%のエチレングリコールジグリシジルエーテル水溶液7.36g(0.000845モル)に代えて、2質量%のエチレングリコールジグリシジルエーテル水溶液1.84g(0.000211モル)に変えた、以外は、実施例1と同様の操作を行い、(吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対する水分率は、80質量%)顆粒状の吸水性樹脂粒子を191.1g得た。
 [実施例7]
 実施例1の(後架橋反応)において、水とn-ヘプタンとを共沸することにより、系外に抜き出す水の量を、197.3gから159.0gに変更した、更に添加する後架橋剤として、2質量%のエチレングリコールジグリシジルエーテル水溶液7.36g(0.000845モル)に代えて、2質量%のエチレングリコールジグリシジルエーテル水溶液3.68g(0.000423モル)に変えた、以外は、実施例1と同様の操作を行い、(吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対する水分率は、60質量%)顆粒状の吸水性樹脂粒子を191.3g得た。
 [比較例1]
 (逆相懸濁重合)
 還流冷却器、滴下ロート、窒素ガス導入管、撹拌機として翼径50mmの4枚傾斜パドル翼を2段で有する撹拌翼(フッ素樹脂を表面にコートしたもの)を備えた内径100mmの丸底円筒型セパラブルフラスコを準備した。このフラスコにn-ヘプタン453gをとり、界面活性剤としてのHLBが8.6のソルビタンモノラウレート(日油株式会社製、商品名:ノニオンLP-20R)1.90gを添加し、50℃まで昇温して界面活性剤を溶解したのち、内温を47℃まで冷却した。
 一方、500mL容の三角フラスコに80.5質量%のアクリル酸水溶液48.5g(0.54モル)を入れ、これを氷冷しながら22.6質量%の水酸化ナトリウム水溶液76.7gを滴下して80モル%の中和を行ったのち、過硫酸カリウム0.13g(0.00037モル)を加えて溶解し、単量体水溶液を調製した。なお、この単量体水溶液における水溶性エチレン性不飽和単量体の質量は48.6g、水分量は76.6gであった。
 撹拌機の回転数を700r/minとして、前記単量体水溶液を前記セパラブルフラスコに添加して、系内を窒素ガスで30分間置換した後、70℃の水浴に浸漬して昇温し、逆相懸濁重合を1時間行った。
 (後架橋反応)
 逆相懸濁重合反応の終了後、得られた反応混合物に、後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液5.0g(0.00057モル)を添加した。このときの水分量は、81.5gであり、吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対して167.9質量%であった。その後、75℃で30分間、後架橋反応を行った。
 次いで、得られた反応液を120℃の油浴を使用して昇温し、水とn-ヘプタンを共沸することにより、n-ヘプタンを還流しながら、65.0gの水を系外へ抜き出し、その後、n-へプタンを蒸発させて乾燥することによって、顆粒状の吸水性樹脂粒子50.0gを得た。
 [比較例2]
 (逆相懸濁重合)
 還流冷却器、滴下ロート、窒素ガス導入管、撹拌機として翼径50mmの4枚傾斜パドル翼を2段で有する撹拌翼(フッ素樹脂を表面にコートしたもの)を備えた内径100mmの丸底円筒型セパラブルフラスコを準備した。このフラスコにn-ヘプタン453gをとり、界面活性剤としてのHLBが8.6のソルビタンモノラウレート(日油株式会社製、商品名:ノニオンLP-20R)1.104gを添加し、50℃まで昇温して界面活性剤を溶解したのち、内温を47℃まで冷却した。
 一方、500mL容の三角フラスコに80.5質量%のアクリル酸水溶液92g(1.03モル)を入れ、これを氷冷しながら20.9質量%の水酸化ナトリウム水溶液147.6gを滴下して75モル%の中和を行ったのち、過硫酸カリウム0.101g(0.00037モル)を加えて溶解し、単量体水溶液を調製した。なお、この単量体水溶液における水溶性エチレン性不飽和単量体の質量は91.0g、水分量は148.6gであった。
 撹拌機の回転数を700r/minとして、前記単量体水溶液を前記セパラブルフラスコに添加して、系内を窒素ガスで30分間置換した後、70℃の水浴に浸漬して昇温し、逆相懸濁重合を1時間行い、吸水性樹脂前駆体を得た。
 (後架橋反応)
 得られた吸水性樹脂前駆体を含有する液体を、120℃の油浴を使用して昇温し、水とn-ヘプタンを共沸することにより、n-ヘプタンを還流しながら、125.8gの水を系外へ抜き出した後、後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液5.52g(0.00063モル)を添加した。このときの水分量は、28.2gであり、吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対して31質量%であった。後架橋剤を添加後、80℃で2時間保持した。その後、n-へプタンを蒸発させて乾燥することによって、顆粒状の吸水性樹脂粒子を94.5g得た。
 [比較例3]
 (第一回目の逆相懸濁重合)
 還流冷却器、滴下ロート、窒素ガス導入管、撹拌機として翼径50mmの4枚傾斜パドル翼を2段で有する撹拌翼(フッ素樹脂を表面にコートしたもの)を備えた内径100mmの丸底円筒型セパラブルフラスコを準備した。このフラスコにn-ヘプタン360gをとり、界面活性剤としてのHLBが8.6のソルビタンモノラウレート(日油株式会社製、商品名:ノニオンLP-20R)1.47gを添加し、50℃まで昇温して界面活性剤を溶解したのち、内温を47℃まで冷却した。
 一方、500mL容の三角フラスコに80.5質量%のアクリル酸水溶液92g(1.03モル)を入れ、これを氷冷しながら20.9質量%の水酸化ナトリウム水溶液147.6gを滴下して75モル%の中和を行ったのち、過硫酸カリウム0.101g(0.00037モル)を加えて溶解し、第一回目の重合用の単量体水溶液を調製した。なお、この単量体水溶液における水溶性エチレン性不飽和単量体の質量は91.0g、水分量は148.6gであった。
 撹拌機の回転数を450r/minとして、前記第一回目の重合用の単量体水溶液を前記セパラブルフラスコに添加して、系内を窒素ガスで30分間置換した後、70℃の水浴に浸漬して昇温し、第一回目の逆相懸濁重合を1時間行った。
 (中間架橋反応)
 第一回目の逆相懸濁重合反応の終了後、得られた反応混合物に、中間架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液5.0g(0.00057モル)を添加して、75℃で30分間、中間架橋反応を行った。
 (第二回目の逆相懸濁重合)
 次に、前記第一回目の重合用の単量体とは別に、500mL容の三角フラスコに80.5質量%のアクリル酸水溶液92g(1.03モル)を入れ、これを氷冷しながら20.9質量%の水酸化ナトリウム水溶液147.6gを滴下して75モル%の中和を行ったのち、過硫酸カリウム0.101g(0.00037モル)を加えて溶解し、第二回目の重合用の単量体水溶液を調製した。なお、この単量体水溶液における水溶性エチレン性不飽和単量体の質量は91.0g、水分量は148.6gであった。
 前記中間架橋反応の終了後、撹拌機の回転数を1000r/minとして、中間架橋反応終了後の反応混合物を60℃に冷却し(ソルビタンモノラウレートが、n-ヘプタンに溶解している状態)、14℃に調整した前記第二回目の重合用の単量体水溶液を系内に滴下し、滴下が終了したときの系内温度(47℃)に保ちながら、前記回転数で30分間攪拌を行うと同時に系内を窒素ガスで置換した後、70℃の水浴に浸漬して昇温し、第二回目の逆相懸濁重合を1時間行い、吸水性樹脂粒子前駆体を得た。
 (後架橋反応)
 得られた吸水性樹脂粒子前駆体を含む反応混合物に、後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液5.0g(0.00057モル)を添加した。このときの水分量は、163.6gであり、吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対して169.5質量%であった。その後、75℃で30分間、後架橋反応を行った。
 次いで、120℃の油浴を使用して昇温し、水とn-ヘプタンを共沸することにより、n-ヘプタンを還流しながら、125.0gの水を系外へ抜き出し、その後、n-へプタンを蒸発させて乾燥することによって、顆粒状の吸水性樹脂粒子を190.7g得た。
 [比較例4]
 実施例1の(第一回目の逆相懸濁重合)の終了後に、中間架橋剤としてエチレングリコールジグリシジルエーテルを添加しなかった以外は、実施例1と同様の操作を行った。
 しかしながら、第二回目の重合用の単量体水溶液を系内に滴下している際に、攪拌機の攪拌負荷が大きくなり、攪拌できない状態になったので、以降の工程をとりやめた。
 [比較例5]
 (第一回目の逆相懸濁重合)
 還流冷却器、滴下ロート、窒素ガス導入管、撹拌機として翼径50mmの4枚傾斜パドル翼を2段で有する撹拌翼を備えた内径100mmの丸底円筒型セパラブルフラスコを準備した。このフラスコにn-ヘプタン340gをとり、界面活性剤としてHLBが3.0のショ糖脂肪酸エステル(三菱化学フーズ株式会社製、商品名:S-370)0.92gを添加し、80℃まで昇温して界面活性剤を溶解させたのち、内温を35℃にした。
 一方、500mL容の三角フラスコに80.5質量%のアクリル酸水溶液92g(1.03モル)を入れ、氷冷しながら20.9質量%の水酸化ナトリウム水溶液147.6gを滴下して75モル%の中和を行ったのち、過硫酸カリウム0.092g(0.00034モル)を加えて溶解し、第一回目の重合用の単量体水溶液を調製した。なお、この単量体水溶液における水溶性エチレン性不飽和単量体の質量は91.0g、水分量は148.6gであった。
 撹拌機の回転数を700r/minとして、前記第一回目の重合用の単量体水溶液を前記セパラブルフラスコに添加して、系内を窒素ガスで30分間置換した後、70℃の水浴に浸漬して昇温し、第一回目の逆相懸濁重合を1時間行った。
 (中間架橋反応)
 第一回目の逆相懸濁重合反応の終了後、得られた反応混合物に、中間架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液0.41g(0.000047モル)を添加して、75℃で30分間、中間架橋反応を行った。
 (第二回目の逆相懸濁重合)
 次に、前記第一回目の重合用の単量体とは別に、500mL容の三角フラスコに80.5質量%のアクリル酸水溶液92g(1.03モル)を入れ、これを氷冷しながら20.9質量%の水酸化ナトリウム水溶液147.6gを滴下して75モル%の中和を行ったのち、過硫酸カリウム0.092g(0.00034モル)を加えて溶解し、第二回目の重合用の単量体水溶液を調製した。なお、この単量体水溶液における水溶性エチレン性不飽和単量体の質量は91.0g、水分量は148.6gであった。
 中間架橋反応の終了後、撹拌機の回転数を1000r/minとして、中間架橋反応終了後の反応混合物を50℃に冷却し(ショ糖脂肪酸エステルが、n-ヘプタンに溶解している状態)、14℃に調整した前記第二回目の重合用の単量体水溶液を系内に滴下し、滴下が終了したときの系内温度(47℃)に保ちながら、前記回転数で30分間攪拌を行うと同時に系内を窒素ガスで置換した後、70℃の水浴に浸漬して昇温し、第二回目の逆相懸濁重合を1時間行い、吸水性樹脂前駆体を得た。
 (後架橋反応)
 得られた吸水性樹脂前駆体を含有する液体を、120℃の油浴を使用して昇温し、水とn-ヘプタンを共沸することにより、n-ヘプタンを還流しながら、250.0gの水を系外に抜き出した後、後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液5.5g(0.000631モル)を添加した。このときの水分量は、52.9gであり、吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対する水分率は29.1質量%であった。後架橋剤を添加後、80℃で2時間保持した。その後、n-ヘプタンと水とを加熱留去することにより、真球状の吸水性樹脂粒子191.1gを得た。
 [比較例6]
 実施例1の(中間架橋反応)において添加する中間架橋剤として、2質量%のエチレングリコールジグリシジルエーテル水溶液0.41g(0.000047モル)に代えて、2質量%のエチレングリコールジグリシジルエーテル水溶液1.24g(0.00014モル)を用いた。更に実施例1の(第二回目の逆相懸濁重合)において、中間架橋反応終了後の反応混合物の冷却温度を60℃から30℃に変更し、かつ、滴下が終了したときの系内温度を47℃から28℃になった以外は、実施例1と同様の操作を行った。(第二回目の重合用の単量体水溶液を系内に滴下する際、ソルビタンモノラウレートはn-ヘプタンに未溶解の状態であった。)
 しかしながら、第二回目の重合用の単量体水溶液を系内に滴下している際に、攪拌機の攪拌負荷が大きくなり、攪拌できない状態になったので、以降の工程をとりやめた。
 [比較例7]
 (第一回目の逆相懸濁重合)
 還流冷却器、滴下ロート、窒素ガス導入管、撹拌機として翼径50mmの4枚傾斜パドル翼を2段で有する撹拌翼(フッ素樹脂を表面にコートしたもの)を備えた内径100mmの丸底円筒型セパラブルフラスコを準備した。このフラスコにn-ヘプタン360gをとり、界面活性剤としてのHLBが8.6のソルビタンモノラウレート(日油株式会社製、商品名:ノニオンLP-20R)1.47gを添加し、50℃まで昇温して界面活性剤を溶解したのち、内温を47℃まで冷却した。
 一方、500mL容の三角フラスコに80.5質量%のアクリル酸水溶液92g(1.03モル)を入れ、これを氷冷しながら20.9質量%の水酸化ナトリウム水溶液147.6gを滴下して75モル%の中和を行ったのち、過硫酸カリウム0.101g(0.00037モル)とエチレングリコールジグリシジルエーテル0.0082g(0.000047モル)を加えて溶解し、第一回目の重合用の単量体水溶液を調製した。なお、この単量体水溶液における水溶性エチレン性不飽和単量体の質量は91.0g、水分量は148.6gであった。
 撹拌機の回転数を450r/minとして、前記第一回目の重合用の単量体水溶液を前記セパラブルフラスコに添加して、系内を窒素ガスで30分間置換した後、70℃の水浴に浸漬して昇温し、第一回目の逆相懸濁重合を1時間行った。
 (第二回目の逆相懸濁重合)
 次に、前記第一回目の重合用の単量体とは別に、500mL容の三角フラスコに80.5質量%のアクリル酸水溶液92g(1.03モル)を入れ、これを氷冷しながら26.9質量%の水酸化ナトリウム水溶液114.7gを滴下して75モル%の中和を行ったのち、過硫酸カリウム0.101g(0.00037モル)を加えて溶解し、第二回目の重合用の単量体水溶液を調製した。なお、この単量体水溶液における水溶性エチレン性不飽和単量体の質量は91.0g、水分量は115.7gであった。
 第一回目の逆相懸濁重合反応の終了後(架橋反応の終了後)、撹拌機の回転数を1000r/minとして、第一回目の逆相懸濁重合反応終了後の反応混合物を60℃に冷却し(ソルビタンモノラウレートが、n-ヘプタンに溶解している状態)、14℃に調整した前記第二回目の重合用の単量体水溶液を系内に滴下し、滴下が終了したときの系内温度(47℃)に保ちながら、前記回転数で30分間攪拌を行うと同時に系内を窒素ガスで置換した後、70℃の水浴に浸漬して昇温し、第二回目の逆相懸濁重合を1時間行い、吸水性樹脂前駆体を得た。
 (後架橋反応)
 得られた吸水性樹脂前駆体を含有する液体を、120℃の油浴を使用して昇温し、水とn-ヘプタンを共沸することにより、n-ヘプタンを還流しながら、196.9gの水を系外へ抜き出した後、後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液7.36g(0.00085モル)を添加した。このときの水分量は74.6gであり、吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対して37質量%であった。後架橋剤混合物を調製後、80℃で2時間保持した。その後、n-へプタンを蒸発させて乾燥することによって、顆粒状の吸水性樹脂粒子を190.5g得た。
 [比較例8]
 実施例1の(後架橋反応)において、水とn-ヘプタンとを共沸することにより、系外に抜き出す水の量を、197.3gから71.6gに変更した以外は、実施例1と同様の操作を行い、(吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対する水分率は、110質量%)顆粒状の吸水性樹脂粒子を191.0g得た。
 (評価)
 実施例及び比較例で得られた吸水性樹脂粒子について、以下の評価を行った。結果を表1に示した。
 (1)吸水性樹脂粒子の生理食塩水保水能
 500mL容のビーカーに、0.9質量%食塩水(生理食塩水)500gを量り取り、600r/minで撹拌させながら、吸水性樹脂粒子2.0gを、ママコが発生しないように分散させた。前記回転数で撹拌させた状態で30分間放置し、吸水性樹脂粒子を十分に膨潤させた。その後、綿袋(メンブロード60番、横100mm×縦200mm)中に注ぎ込み、綿袋の上部を輪ゴムで縛り、遠心力が167Gとなるよう設定した脱水機(国産遠心機株式会社製、品番:H-122)を用いて綿袋を1分間脱水し、脱水後の膨潤ゲルを含んだ綿袋の質量Wa(g)を測定した。吸水性樹脂粒子を添加せずに同様の操作を行ない、綿袋の湿潤時の空質量Wb(g)を測定し、以下の式から保水能を算出した。
 吸水性樹脂粒子の生理食塩水保水能(g/g)=[Wa-Wb](g)/吸水性樹脂粒子の質量(g)
 (2)吸水性樹脂粒子の生理食塩水吸水速度
 本試験は、25℃±1℃に調節された室内で行った。100mL容のビーカーに、生理食塩水50±0.1gを量りとり、マグネチックスターラーバー(8mmφ×30mmのリング無し)を投入し、ビーカーを恒温水槽に浸漬して、液温を25±0.2℃に調節した。次に、マグネチックスターラー上にビーカーを置いて、回転数600r/minとして、生理食塩水に渦を発生させた後、吸水性樹脂粒子2.0±0.002gを、前記ビーカーに素早く添加し、ストップウォッチを用いて、吸水性樹脂粒子の添加後から液面の渦が収束する時点までの時間(秒)を測定し、吸水性樹脂粒子の吸水速度とした。
 (3)吸水性樹脂粒子の中位粒径
 吸水性樹脂粒子100gに、滑剤として、0.5gの非晶質シリカ(エボニックデグサジャパン株式会社製、商品名:Sipernat 200)を混合した。
 上記吸水性樹脂粒子を、JIS標準篩の目開250μmの篩を用いて通過させ、その通過量が50質量%以上の場合には(A)の篩の組み合わせを、その通過量が50質量%未満の場合には(B)の篩の組み合わせを用いて中位粒径を測定した。
 (A)JIS標準篩を上から、目開き425μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、目開き106μmの篩、目開き75μmの篩、目開き45μmの篩及び受け皿の順に組み合わせた。
 (B)JIS標準篩を上から、目開き850μmの篩、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き150μmの篩及び受け皿の順に組み合わせた。
 組み合わせた最上の篩に、前記吸水性樹脂粒子を入れ、ロータップ式振とう器を用いて20分間振とうさせて分級した。
 分級後、各篩上に残った吸水性樹脂粒子の質量を全量に対する質量百分率として計算し、粒子径の大きい方から順に積算することにより、篩の目開きと篩上に残った吸水性樹脂粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒径とした。
 (4)吸水性樹脂粒子の平衡膨潤性能
 吸水開始から10分後の平衡膨潤性能を、膨潤性能測定装置を用いて測定した。膨潤性能測定装置の概略説明図を図1に示す。図1に示した膨潤性能測定装置Xは、移動距離測定装置1と凹型円形カップ2(高さ30mm、内径80.5mm)、プラスチック製の凸型円形シリンダー3(外径80mm、吸水性樹脂粒子との接触面に直径2mmの貫通孔7が均等に60個配設)及び不織布4からなっている。膨潤性能測定装置Xは、レーザー光6により距離の変位を0.01mm単位で測定することができるようになっている。凹型円形カップ2は、所定量の吸水性樹脂粒子を均一に散布することができるようになっている。凸型円形シリンダー3は、吸水性樹脂粒子5に対して90gの荷重を均一に加えることができるようになっている。
 凹型円形カップ2に試料(吸水性樹脂粒子5)0.1gを均一に散布し、その上に不織布4を敷く。凸型円形シリンダー3を不織布4の上に静かにのせ、移動距離測定装置1のセンサーのレーザー光6がシリンダーの中央部にくるように設置する。予め20℃に調節したイオン交換水130gを凹型円形カップ2内に投入し、吸水性樹脂粒子5が膨潤して凸型円形シリンダー3を押し上げた距離を測定する。吸水開始から10分後における凸型円形シリンダー3の移動距離を平衡膨潤性能とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~7で得られた吸水性樹脂粒子は、いずれも、優れた吸水速度及び高い平衡膨潤性能を有し、かつ、中位粒径が適度であることがわかる。一方、比較例で得られた吸水性樹脂粒子は、吸水速度や膨潤性能が充分ではないことがわかる。
 本発明の吸水性樹脂粒子は、紙おむつ、生理用品、ペットシート等の衛生材料用、保水材、土壌改良材等の農園芸材料用、電力・通信用ケーブル用止水材、結露防止材等の工業資材用等種々の分野で使用することができ、特に電力・通信用ケーブル用止水材等の工業資材用に好適に用いられる。
 1 移動距離測定装置
 2 凹型円形カップ
 3 凸型円形シリンダー
 4 不織布
 5 吸水性樹脂粒子
 6 レーザー光
 7 貫通孔
 X 膨潤性能測定装置 

Claims (6)

  1.  水溶性エチレン性不飽和単量体を逆相懸濁重合して吸水性樹脂粒子を製造する方法であって、
     (A)水溶性エチレン性不飽和単量体を、内部架橋剤の非存在下、HLBが8~12の界面活性剤の存在下、石油系炭化水素分散媒中で水溶性ラジカル重合開始剤を用いて第一回目の逆相懸濁重合を行う工程、
     (B)更に中間架橋剤を加えて中間架橋反応を行う工程、
     (C)前記界面活性剤が石油系炭化水素分散媒に溶解している状態で、水溶性エチレン性不飽和単量体を添加し、内部架橋剤の非存在下、水溶性ラジカル重合開始剤を用いて第二回目の逆相懸濁重合を行い、吸水性樹脂前駆体を作製する工程、及び、
     (D)前記吸水性樹脂前駆体の水分率を、前記吸水性樹脂前駆体を構成する水溶性エチレン性不飽和単量体成分に対して30~100質量%に調整した後、後架橋反応させる工程を有する
    ことを特徴とする吸水性樹脂粒子の製造方法。
  2.  HLBが8~12の界面活性剤は、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、及び、ショ糖脂肪酸エステルからなる群より選ばれる少なくとも1種の化合物であることを特徴とする請求項1記載の吸水性樹脂粒子の製造方法。
  3.  中間架橋剤が、グリシジルエーテル化合物であることを特徴とする請求項1又は2記載の吸水性樹脂粒子の製造方法。
  4.  中間架橋剤の添加割合が、水溶性エチレン性不飽和単量体の総モル量に対して、0.0001~0.026モル%であることを特徴とする請求項1、2又は3記載の吸水性樹脂粒子の製造方法。
  5.  請求項1、2、3又は4記載の吸水性樹脂粒子の製造方法を用いて得られることを特徴とする吸水性樹脂粒子。
  6.  平衡膨潤性能が12~28mm、吸水速度が1~5秒、生理食塩水保水能が20~60g/g、及び、中位粒径が100~400μmであることを特徴とする請求項5記載の吸水性樹脂粒子。
     
PCT/JP2010/070905 2010-10-18 2010-11-24 吸水性樹脂粒子の製造方法及び吸水性樹脂粒子 WO2012053121A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/878,616 US8951637B2 (en) 2010-10-18 2010-11-24 Method for producing water-absorbent resin particles and water-absorbent resin particles
CN201080069642.7A CN103154043B (zh) 2010-10-18 2010-11-24 吸水性树脂颗粒的制造方法和吸水性树脂颗粒
AU2010362811A AU2010362811B2 (en) 2010-10-18 2010-11-24 Method for producing water-absorbent resin particles and water-absorbent resin particles
CA2814797A CA2814797C (en) 2010-10-18 2010-11-24 Method for producing water-absorbent resin particles and water-absorbent resin particles
EP10858674.4A EP2631251B1 (en) 2010-10-18 2010-11-24 Method for producing water-absorbent resin particles and water-absorbent resin particles
KR1020137012467A KR101715443B1 (ko) 2010-10-18 2010-11-24 흡수성 수지 입자의 제조 방법 및 흡수성 수지 입자
ES10858674T ES2715966T3 (es) 2010-10-18 2010-11-24 Método para producir partículas de resina absorbente de agua y partículas de resina absorbente de agua
JP2012539558A JP5658759B2 (ja) 2010-10-18 2010-11-24 吸水性樹脂粒子の製造方法及び吸水性樹脂粒子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-233906 2010-10-18
JP2010233906 2010-10-18

Publications (1)

Publication Number Publication Date
WO2012053121A1 true WO2012053121A1 (ja) 2012-04-26

Family

ID=45974853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070905 WO2012053121A1 (ja) 2010-10-18 2010-11-24 吸水性樹脂粒子の製造方法及び吸水性樹脂粒子

Country Status (10)

Country Link
US (1) US8951637B2 (ja)
EP (1) EP2631251B1 (ja)
JP (1) JP5658759B2 (ja)
KR (1) KR101715443B1 (ja)
CN (1) CN103154043B (ja)
AU (1) AU2010362811B2 (ja)
CA (1) CA2814797C (ja)
ES (1) ES2715966T3 (ja)
TW (1) TWI485163B (ja)
WO (1) WO2012053121A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421134A (zh) * 2012-05-17 2013-12-04 浙江卫星石化股份有限公司 一种电缆或光缆用高吸水树脂的制备方法
WO2014034897A1 (ja) 2012-08-30 2014-03-06 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2014112722A1 (ko) * 2013-01-15 2014-07-24 주식회사 엘지화학 고흡수성 수지의 제조 방법
EP2740747A4 (en) * 2011-08-03 2015-03-18 Sumitomo Seika Chemicals WATER ABSORBING RESIN PARTICLES, METHOD FOR PRODUCING WATER ABSORBENT RESIN PARTICLES, ABSORBENT BASKETS, ABSORBENT ARTICLES AND WATERPROOF MATERIAL
KR20150054796A (ko) * 2012-09-10 2015-05-20 스미토모 세이카 가부시키가이샤 흡수성 수지, 흡수체 및 흡수성 물품
WO2018181565A1 (ja) * 2017-03-31 2018-10-04 住友精化株式会社 吸水性樹脂粒子
WO2020122218A1 (ja) * 2018-12-12 2020-06-18 住友精化株式会社 吸水性樹脂粒子、吸収体及び吸収性物品
WO2020122213A1 (ja) * 2018-12-12 2020-06-18 住友精化株式会社 吸水性樹脂粒子
WO2020184393A1 (ja) * 2019-03-08 2020-09-17 住友精化株式会社 吸水性樹脂粒子、吸収体及び吸収性物品
WO2020203723A1 (ja) * 2019-03-29 2020-10-08 住友精化株式会社 吸水性樹脂及び止水材

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505594A4 (en) * 2009-11-27 2013-11-06 Sumitomo Seika Chemicals PROCESS FOR PRODUCING WATER-ABSORBING RESIN PARTICLES, WATER ABSORBING RESIN PARTICLES, WATER-STOPPING MATERIAL, AND ABSORBENT ARTICLE
JPWO2013051417A1 (ja) * 2011-10-06 2015-03-30 住友精化株式会社 吸水性樹脂粒子の製造方法
KR101564526B1 (ko) * 2015-01-30 2015-10-29 에스케이이노베이션 주식회사 흡수성 수지 및 이의 제조 방법
BR112019020501B1 (pt) * 2017-03-31 2022-08-23 Sumitomo Seika Chemicals Co., Ltd Partículas de resina absorventes de água
EP3779048A4 (en) * 2018-03-27 2022-01-12 Sumitomo Seika Chemicals Co., Ltd. SAND BAG AND METHOD OF PRODUCTION
CN111885997B (zh) * 2018-03-27 2023-05-09 住友精化株式会社 吸水性磨砂剂、其制造方法、以及化妆品
JPWO2021117785A1 (ja) * 2019-12-13 2021-06-17

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227301A (ja) * 1990-01-31 1991-10-08 Sumitomo Seika Chem Co Ltd 吸水性樹脂の製造方法
JPH0912613A (ja) * 1995-06-28 1997-01-14 Mitsubishi Chem Corp 吸水性樹脂の製造方法
JPH11279207A (ja) * 1998-03-26 1999-10-12 Kao Corp 高吸水性樹脂の製法
WO2004083284A1 (ja) * 2003-03-17 2004-09-30 Sumitomo Seika Chemicals Co., Ltd. 吸水性樹脂粒子の製造方法
JP2006131767A (ja) * 2004-11-05 2006-05-25 San-Dia Polymer Ltd 吸水性樹脂の製造方法
JP2006342306A (ja) * 2005-06-10 2006-12-21 Sumitomo Seika Chem Co Ltd 多孔質吸水性ポリマー粒子の製造法
WO2007004529A1 (ja) * 2005-07-04 2007-01-11 Sumitomo Seika Chemicals Co., Ltd. 吸水性樹脂の製造方法
WO2009025235A1 (ja) * 2007-08-23 2009-02-26 Sumitomo Seika Chemicals Co., Ltd. 衛生材用途に適した吸水性樹脂
JP2009132755A (ja) * 2007-11-28 2009-06-18 Sumitomo Seika Chem Co Ltd 吸水性樹脂粒子の製造方法
WO2009096268A1 (ja) * 2008-02-01 2009-08-06 Toagosei Co., Ltd. 重合体微粒子の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025045B2 (ja) 1980-03-19 1985-06-15 製鉄化学工業株式会社 塩水吸収能のすぐれたアクリル酸重合体の製造方法
JPS6018690B2 (ja) 1981-12-30 1985-05-11 住友精化株式会社 吸水性樹脂の吸水性改良方法
JPH0356502A (ja) * 1989-07-25 1991-03-12 Sanyo Chem Ind Ltd 吸水性樹脂の製造法
DK0533192T3 (da) * 1991-09-20 1997-06-30 Lucky Ltd Fremgangsmåde til fremstilling af en stærkt vandabsorberende harpiks
US20030153887A1 (en) * 2001-04-16 2003-08-14 Yasuhiro Nawata Water-absorbing resin suitable for absorbing viscous liquids containing high-molecular compound, and absorbent and absorbent article each comprising the same
TWI302541B (en) * 2003-05-09 2008-11-01 Nippon Catalytic Chem Ind Water-absorbent resin and its production process
EP2014683B1 (en) * 2006-04-27 2012-10-10 Sumitomo Seika Chemicals Co., Ltd. Process for production of water-absorbable resin
EP2505594A4 (en) * 2009-11-27 2013-11-06 Sumitomo Seika Chemicals PROCESS FOR PRODUCING WATER-ABSORBING RESIN PARTICLES, WATER ABSORBING RESIN PARTICLES, WATER-STOPPING MATERIAL, AND ABSORBENT ARTICLE

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227301A (ja) * 1990-01-31 1991-10-08 Sumitomo Seika Chem Co Ltd 吸水性樹脂の製造方法
JPH0912613A (ja) * 1995-06-28 1997-01-14 Mitsubishi Chem Corp 吸水性樹脂の製造方法
JPH11279207A (ja) * 1998-03-26 1999-10-12 Kao Corp 高吸水性樹脂の製法
WO2004083284A1 (ja) * 2003-03-17 2004-09-30 Sumitomo Seika Chemicals Co., Ltd. 吸水性樹脂粒子の製造方法
JP2006131767A (ja) * 2004-11-05 2006-05-25 San-Dia Polymer Ltd 吸水性樹脂の製造方法
JP2006342306A (ja) * 2005-06-10 2006-12-21 Sumitomo Seika Chem Co Ltd 多孔質吸水性ポリマー粒子の製造法
WO2007004529A1 (ja) * 2005-07-04 2007-01-11 Sumitomo Seika Chemicals Co., Ltd. 吸水性樹脂の製造方法
WO2009025235A1 (ja) * 2007-08-23 2009-02-26 Sumitomo Seika Chemicals Co., Ltd. 衛生材用途に適した吸水性樹脂
JP2009132755A (ja) * 2007-11-28 2009-06-18 Sumitomo Seika Chem Co Ltd 吸水性樹脂粒子の製造方法
WO2009096268A1 (ja) * 2008-02-01 2009-08-06 Toagosei Co., Ltd. 重合体微粒子の製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3023442A1 (en) * 2011-08-03 2016-05-25 Sumitomo Seika Chemicals CO. LTD. Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
EP2740747A4 (en) * 2011-08-03 2015-03-18 Sumitomo Seika Chemicals WATER ABSORBING RESIN PARTICLES, METHOD FOR PRODUCING WATER ABSORBENT RESIN PARTICLES, ABSORBENT BASKETS, ABSORBENT ARTICLES AND WATERPROOF MATERIAL
US9199218B2 (en) 2011-08-03 2015-12-01 Sumitomo Seika Chemicals Co., Ltd. Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
EP3398974A1 (en) * 2011-08-03 2018-11-07 Sumitomo Seika Chemicals CO. LTD. Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
CN103421134A (zh) * 2012-05-17 2013-12-04 浙江卫星石化股份有限公司 一种电缆或光缆用高吸水树脂的制备方法
WO2014034897A1 (ja) 2012-08-30 2014-03-06 株式会社日本触媒 粒子状吸水剤及びその製造方法
KR20150054796A (ko) * 2012-09-10 2015-05-20 스미토모 세이카 가부시키가이샤 흡수성 수지, 흡수체 및 흡수성 물품
EP2893974A1 (en) * 2012-09-10 2015-07-15 Sumitomo Seika Chemicals Co., Ltd. Water-absorbing resin, water-absorbing body, and water-absorbing product
EP2893974A4 (en) * 2012-09-10 2016-04-20 Sumitomo Seika Chemicals WATER ABSORPTION RESIN, WATER ABSORPTION BODY, AND WATER ABSORPTION PRODUCT
KR102073446B1 (ko) 2012-09-10 2020-02-05 스미토모 세이카 가부시키가이샤 흡수성 수지, 흡수체 및 흡수성 물품
US10265226B2 (en) 2012-09-10 2019-04-23 Sumitomo Seika Chemicals Co., Ltd. Water-absorbent resin, water-absorbent material, and water-absorbent article
WO2014112722A1 (ko) * 2013-01-15 2014-07-24 주식회사 엘지화학 고흡수성 수지의 제조 방법
US9109097B2 (en) 2013-01-15 2015-08-18 Lg Chem, Ltd. Method of preparing super absorbent polymer
WO2018181565A1 (ja) * 2017-03-31 2018-10-04 住友精化株式会社 吸水性樹脂粒子
JPWO2018181565A1 (ja) * 2017-03-31 2020-02-06 住友精化株式会社 吸水性樹脂粒子
US11420184B2 (en) 2017-03-31 2022-08-23 Sumitomo Seika Chemicals Co., Ltd. Water-absorbent resin particle
JP7291622B2 (ja) 2017-03-31 2023-06-15 住友精化株式会社 吸水性樹脂粒子
WO2020122218A1 (ja) * 2018-12-12 2020-06-18 住友精化株式会社 吸水性樹脂粒子、吸収体及び吸収性物品
WO2020122213A1 (ja) * 2018-12-12 2020-06-18 住友精化株式会社 吸水性樹脂粒子
WO2020184393A1 (ja) * 2019-03-08 2020-09-17 住友精化株式会社 吸水性樹脂粒子、吸収体及び吸収性物品
WO2020203723A1 (ja) * 2019-03-29 2020-10-08 住友精化株式会社 吸水性樹脂及び止水材

Also Published As

Publication number Publication date
CA2814797A1 (en) 2012-04-26
TWI485163B (zh) 2015-05-21
KR20130140723A (ko) 2013-12-24
CA2814797C (en) 2017-07-18
US8951637B2 (en) 2015-02-10
AU2010362811B2 (en) 2015-05-07
US20130260151A1 (en) 2013-10-03
CN103154043B (zh) 2015-04-22
EP2631251A4 (en) 2015-08-19
AU2010362811A1 (en) 2013-05-23
CN103154043A (zh) 2013-06-12
TW201217401A (en) 2012-05-01
KR101715443B1 (ko) 2017-03-10
JPWO2012053121A1 (ja) 2014-02-24
EP2631251B1 (en) 2019-01-23
ES2715966T3 (es) 2019-06-07
JP5658759B2 (ja) 2015-01-28
EP2631251A1 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5658759B2 (ja) 吸水性樹脂粒子の製造方法及び吸水性樹脂粒子
JP6126655B2 (ja) 吸水性樹脂粒子の製造方法
CN106046224B (zh) 吸水性树脂粒子
JP6567503B2 (ja) 吸水性樹脂粒子の製造方法
JP7063634B2 (ja) 架橋重合体の製造方法および吸水性樹脂の製造方法
JP5927289B2 (ja) 吸水性樹脂粒子の製造方法
WO2015016075A1 (ja) 吸水性樹脂粒子の製造方法
JP5336066B2 (ja) 吸水性樹脂粒子の製造方法
JP5558824B2 (ja) 吸水性樹脂の製造方法
JP2008007567A (ja) 吸水性樹脂粒子の製造方法およびそれによって得られる吸水性樹脂粒子
JP6890190B2 (ja) 発熱体組成物用吸水性樹脂粉末、及び発熱体組成物
US10427135B2 (en) Aminopolycarboxylic acids useful as processing aids in the manufacture of superabsorbents
JPWO2005012369A1 (ja) 吸水性樹脂の製造方法
WO2019074099A1 (ja) 吸水性樹脂及び吸収性物品
JP5551438B2 (ja) 吸水性樹脂の製造方法およびそれにより得られる吸水性樹脂
WO2020203723A1 (ja) 吸水性樹脂及び止水材
JP2013100543A (ja) 吸水性樹脂粒子の製造方法
WO2020203722A1 (ja) 吸水性樹脂及び止水材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069642.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012539558

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010858674

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2814797

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137012467

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010362811

Country of ref document: AU

Date of ref document: 20101124

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13878616

Country of ref document: US