WO2012053086A1 - 出力モード切替え増幅器 - Google Patents

出力モード切替え増幅器 Download PDF

Info

Publication number
WO2012053086A1
WO2012053086A1 PCT/JP2010/068575 JP2010068575W WO2012053086A1 WO 2012053086 A1 WO2012053086 A1 WO 2012053086A1 JP 2010068575 W JP2010068575 W JP 2010068575W WO 2012053086 A1 WO2012053086 A1 WO 2012053086A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
node
harmonic
mode switching
circuit
Prior art date
Application number
PCT/JP2010/068575
Other languages
English (en)
French (fr)
Inventor
堀口 健一
直子 松永
大塚 浩志
正敏 中山
和宏 弥政
井上 晃
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020137001940A priority Critical patent/KR101460459B1/ko
Priority to PCT/JP2010/068575 priority patent/WO2012053086A1/ja
Priority to US13/810,388 priority patent/US20130113561A1/en
Priority to JP2012539522A priority patent/JP5425316B2/ja
Priority to CN201080068918XA priority patent/CN103098368A/zh
Publication of WO2012053086A1 publication Critical patent/WO2012053086A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7239Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by putting into parallel or not, by choosing between amplifiers and shunting lines by one or more switch(es)

Definitions

  • the present invention relates to an output mode switching amplifier that switches an output mode between a high output and a low output.
  • the size of the amplifier is usually determined in preparation for when the radiated power from the antenna becomes maximum. For this reason, when the terminal is used near the base station, the amplifier operates in a low output state away from saturation, and there is a problem that efficiency is lowered.
  • the impedance matching of the transistor with respect to the transmission signal frequency is performed by using a matching circuit provided on the transistor input / output side and the bypass path. Impedance matching for the wave) or matching of the second harmonic impedance by sharing the parameter combination of the matching circuit used for matching the fundamental impedance. For this reason, it is difficult to set the matching for the fundamental impedance and the matching for the second harmonic impedance independently, and it is difficult to set both the matching for the fundamental impedance and the second harmonic impedance to the optimum values. There was a problem that efficiency decreased.
  • An object of the present invention is to provide an output mode switching amplifier capable of setting the matching with respect to the fundamental wave impedance and the second harmonic impedance to an optimum state and increasing the efficiency of the amplifier.
  • the present invention bypasses the transistor between the first node and the second node, and the signal amplifying transistor connected between the first node on the input side and the second node on the output side.
  • An output mode switching amplifier comprising: a second harmonic reflection circuit that reflects a second harmonic of a transmission signal connected to the bypass path.
  • an output mode switching amplifier in which matching with respect to the fundamental wave impedance and the double wave impedance can be set to an optimum state, and the efficiency of the amplifier is increased.
  • FIG. 1 shows a configuration diagram of an output mode switching amplifier according to Embodiment 1 of the present invention.
  • FIG. The block diagram of the output mode switching amplifier by Embodiment 2 of this invention is shown.
  • FIG. 1 is a block diagram of an output mode switching amplifier according to Embodiment 1 of the present invention.
  • a transistor 3 for signal amplification, a matching circuit 8 constituting a bypass path, and a microstrip line 15 are connected in series.
  • the circuit is connected in parallel.
  • a second harmonic reflection circuit 16 is connected to the third node 13 which is a connection point between the matching circuit 8 of the bypass path and the microstrip line 15, and the tip thereof is a power supply terminal.
  • the matching circuits 4, 5, and 14 are connected in series.
  • the voltage control circuit 9 supplies a bias voltage to the transistor 5 and a switch, which will be described later, and controls switching of operation.
  • the input signal is amplified by the transistor 3 at the time of high output (amplification mode), and the signal is output by bypassing the transistor 3 by the bypass path at the time of low output (bypass mode).
  • a bias voltage that can be amplified by the transistor 3 is applied from the voltage control circuit 9 to the transistor 3 in the bypass mode, and a bias voltage that does not perform signal amplification because the transistor 3 is turned off.
  • the amplification mode and the bypass mode are switched.
  • the second harmonic reflection circuit 16 connected to the bypass path has an impedance that is open to the fundamental wave and substantially short-circuited to the second harmonic.
  • the second harmonic impedance viewed from the transistor 3 is determined by a path connected to the second harmonic reflection circuit 16 through the microstrip line 15, and the output side viewed from the transistor 3 depending on the length of the microstrip line 15.
  • the reflection phase angle of the second harmonic impedance is determined. That is, the microstrip line 15 forms a part of the bypass path and also functions as a line for adjusting the second harmonic reflection phase angle.
  • the second harmonic impedance viewed from the output side from the transistor 3 is in a state close to a short circuit, for example, a transmission signal when viewed from the reflection phase angle (that is, the bypass path (including the second harmonic reflection circuit 16) from the second node 12). Is set such that the impedance reflection phase angle of the second harmonic is within 180 ⁇ 45 deg.
  • the fundamental impedance when the output side is viewed from the transistor 3 is determined by the matching circuit 14. Since the fundamental wave impedance when the second harmonic reflection circuit 16 is viewed from the third node 13 is open, the fundamental wave impedance of the path connecting from the transistor 3 through the microstrip line 15 to the second harmonic reflection circuit 16 is microstrip. When the length of the line 15 is sufficiently shorter than the wavelength, the line 15 is almost open, and the fundamental impedance viewed from the transistor 3 is not affected.
  • the reflection phase angle of the second harmonic impedance can be adjusted without affecting the fundamental impedance when the output side is viewed from the transistor 3 depending on the length of the microstrip line 15.
  • the matching with respect to the impedance and the second harmonic impedance can be optimized independently, and the efficiency of the amplifier can be increased.
  • a heterojunction bipolar transistor may be used as the transistor 3.
  • the fundamental wave impedance of the second harmonic reflection circuit 16 is not open (the reflection phase angle is 0 deg), but the reflection phase angle (that is, the transmission signal frequency when the second harmonic reflection circuit 16 side is viewed from the third node 13). (Impedance reflection phase angle) may be within ⁇ 30 deg.
  • FIG. FIG. 2 shows a configuration diagram of an output mode switching amplifier according to the second embodiment of the present invention.
  • a first switch 17 that performs ON / OFF switching by controlling a bias voltage from the voltage control circuit 9, for example.
  • the second switch 18 is inserted. Further, a specific example of the configuration of the second harmonic reflection circuit 16 and the matching circuits 4, 5, 8, and 14 is shown.
  • the input signal is amplified by the transistor 3 at the time of high output (amplification mode), and the signal is output by bypassing the transistor 3 by the bypass path at the time of low output (bypass mode).
  • the voltage control circuit 9 sets a bias voltage at the transistor 3 so that the signal can be amplified by the transistor 3, and the switch 17 is turned on (passed) and the switch 18 is turned off (open). A voltage is set for each switch.
  • a bias voltage is set so that the transistor 3 is in an OFF state and signal amplification is not performed, and a bias voltage that sets the switch 17 to OFF and the switch 18 to ON is set to each switch.
  • the matching circuit 4 includes a switch 4a and a capacitor 4b connected between a signal path (signal line) and the ground, and the voltage control circuit 9 is maintained so that a matching state can be maintained in both the amplification mode and the bypass mode.
  • the switch 4a is switched by controlling the bias voltage.
  • the matching circuit 14 includes a line 14a (for example, a microstrip line) in series with the signal line and a parallel capacitor 14b, and performs matching of the fundamental wave impedance on the output side.
  • the second harmonic wave reflection circuit 16 includes a plurality of parallel capacitors 16a and 16b and a serial line 16c (for example, a microstrip line), and is shared with the bias circuit.
  • a power supply terminal 19 is connected to the tip of the second harmonic wave reflection circuit 16.
  • the fundamental wave is open as the impedance when the second wave reflection circuit 16 is viewed from the third node 13 and the amplitude component of the reflection coefficient is close to 1 in the second harmonic wave. .
  • the matching circuit 5 is constituted by capacitors 5a and 5b in series with the signal line and an inductor 5c in parallel, and the matching circuit 8 is constituted by a high impedance line 8a connected in series with the bypass path. Since the matching circuit 5 functions as a high-pass filter, a characteristic in which the phase advances with respect to the frequency is obtained, and since the matching circuit 8 functions as a low-pass filter, a characteristic in which the phase is delayed with respect to the frequency is obtained.
  • the passing phase of the path from the first node 10 through the transistor 5 to the second node 12 in the amplification mode, and the node 12 from the first node 10 in the bypass mode through the bypass path is possible to set the difference in the passing phase of the route to the path to be small, for example, within ⁇ 30 deg.
  • the second harmonic impedance when the output side is viewed from the transistor 3 is determined by a path connected to the second harmonic reflection circuit 16 through the microstrip line 15, and the output side from the transistor 3 is determined by the length of the microstrip line 15.
  • the second harmonic impedance viewed from the output side from the transistor 3 is in a state close to a short circuit, for example, a transmission signal when viewed from the reflection phase angle (that is, the bypass path (including the second harmonic reflection circuit 16) from the second node 12). Is set such that the impedance reflection phase angle of the second harmonic is within 180 ⁇ 45 deg.
  • the fundamental impedance when the output side is viewed from the transistor 3 is determined by the matching circuit 14. Since the fundamental wave impedance when the second harmonic reflection circuit 16 is viewed from the third node 13 is open, the fundamental wave impedance of the path connecting from the transistor 3 through the microstrip line 15 to the second harmonic reflection circuit 16 is microstrip. When the length of the line 15 is sufficiently shorter than the wavelength, the line 15 is almost open, and the fundamental impedance viewed from the transistor 3 is not affected.
  • the reflection phase angle of the second harmonic impedance can be adjusted without affecting the fundamental impedance when the output side is viewed from the transistor 3 depending on the length of the microstrip line 15.
  • the matching with respect to the impedance and the second harmonic impedance can be optimized independently, and the efficiency of the amplifier can be increased.
  • a heterojunction bipolar transistor may be used as the transistor 3.
  • the fundamental wave impedance of the second harmonic reflection circuit 16 is not open (the reflection phase angle is 0 deg), but the reflection phase angle (that is, the transmission signal frequency when the second harmonic reflection circuit 16 side is viewed from the third node 13). (Impedance reflection phase angle) may be within ⁇ 30 deg.
  • the output mode switching amplifier according to the present invention can be applied to amplifiers in various fields and has a considerable effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

 入力側の第1のノード(10)と出力側の第2のノード(12)の間に接続された信号増幅用のトランジスタ(3)と、前記第1のノードと第2のノードの間で前記トランジスタを迂回するバイパス経路(10,8,13)と、前記トランジスタにバイアス電圧を印加して、送信信号を前記トランジスタで増幅するか、送信信号を前記トランジスタでは増幅せず前記バイパス経路を経由して出力するかを切り替える電圧制御回路(9)と、前記バイパス経路に接続された送信信号の2倍高調波を反射する2倍波反射回路(16)と、を備えた出力モード切替え増幅器。

Description

出力モード切替え増幅器
 この発明は、高出力時と低出力時で出力モードを切り替える出力モード切替え増幅器に関する。
 小型化と通話時間の伸張が強く求められる携帯電話端末では、電力増幅器の低消費電力化が望まれる。一般に、増幅器では飽和に近づく程、効率は高くなり、飽和から離れた低出力の状態では効率は低くなる。このため、バッテリの小型化や通話時間の面からは、できるだけ増幅器は効率の高い、飽和に近い状態で使用することが望まれている。
 携帯電話では、端末から基地局までの距離が遠いときにはアンテナから大きな電力を空間に放射し、端末から基地局までの距離が近いときにはアンテナからの放射電力は小さくなる。このため、通常、増幅器はアンテナからの放射電力が最大となるときに備えてそのサイズが決定される。このため、基地局の近くで端末を使用したときには増幅器は飽和から離れた低出力の状態で動作することとなり、効率が低下するという課題があった。
 この課題に対して、バイパス経路を設け、低出力時にはトランジスタを迂回する方法が提案されている(下記特許文献1)。この増幅器では、高出力時にはトランジスタによって入力信号の増幅を行い(増幅モード)、低出力時にはトランジスタと並列に接続されたバイパス経路によってトランジスタを迂回して信号を出力する(バイパスモード)。高出力時にはトランジスタで信号増幅ができるような電圧を、また、低出力時にはトランジスタがOFF状態となって信号増幅を行わないような電圧を電圧制御回路からトランジスタへと与えることによって、増幅モードとバイパスモードの切り替えを行う。従ってこの増幅器では、一般に効率が低下する低出力モードではトランジスタをOFF状態にして信号をバイパスさせるために、低出力時の消費電力を削減することができる。
特開2005-244862号公報
 従来の出力モード切替え増幅器では、送信信号周波数(基本波)に対するトランジスタのインピーダンス整合をトランジスタ入出力側およびバイパス経路に設けた整合回路を用いて行っており、送信信号の2倍高調波(2倍波)に対するインピーダンス整合を行っていない、あるいは、基本波インピーダンスの整合に使っていた整合回路のパラメータ組み合わせを共用することで2倍波インピーダンスの整合を行っていた。このため、基本波インピーダンスに対する整合と2倍波インピーダンスに対する整合を独立的に設定することが難しく、基本波インピーダンスおよび2倍波インピーダンスに対する整合を両者共に最適値へと設定することが難しく、増幅器の効率が低下する課題があった。
 この発明は、基本波インピーダンスおよび2倍波インピーダンスに対する整合を最適な状態に設定することを可能とし、増幅器の効率を高めた出力モード切替え増幅器を提供することを目的とする。
 この発明は、入力側の第1のノードと出力側の第2のノードの間に接続された信号増幅用のトランジスタと、前記第1のノードと第2のノードの間で前記トランジスタを迂回するバイパス経路と、前記トランジスタにバイアス電圧を印加して、送信信号を前記トランジスタで増幅するか、送信信号を前記トランジスタでは増幅せず前記バイパス経路を経由して出力するかを切り替える電圧制御回路と、前記バイパス経路に接続された送信信号の2倍高調波を反射する2倍波反射回路と、を備えたことを特徴とする出力モード切替え増幅器にある。
 この発明では、基本波インピーダンスおよび2倍波インピーダンスに対する整合を最適な状態に設定することを可能とし、増幅器の効率を高めた出力モード切替え増幅器を提供することができる。
この発明の実施の形態1による出力モード切替え増幅器の構成図を示す。 この発明の実施の形態2による出力モード切替え増幅器の構成図を示す。
 以下、この発明による出力モード切替え増幅器を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、また重複する説明は省略する。
 実施の形態1.
 図1はこの発明の実施の形態1による出力モード切替え増幅器の構成図を示す。図1において、入力側の第1のノード10と出力側の第2のノード12の間には、信号増幅用のトランジスタ3と、バイパス経路を構成する整合回路8とマイクロストリップ線路15との直列回路とが並列に接続されている。またバイパス経路の整合回路8とマイクロストリップ線路15との接続点である第3のノード13には、2倍波反射回路16が接続され、その先が電源端子となっている。
 また増幅器の入力であるRF入力端子1と第1のノード10の間、第1のノード10とトランジスタ3との間、および第2のノード12と増幅器の出力であるRF出力端子2の間には整合回路4,5,14がそれぞれ直列に接続されている。電圧制御回路9はトランジスタ5や後述するスイッチにバイアス電圧を供給して動作の切り替え制御を行う。
 図1の増幅器では、高出力時にはトランジスタ3によって入力信号の増幅を行い(増幅モード)、低出力時にはバイパス経路によってトランジスタ3を迂回して信号を出力する(バイパスモード)。増幅モードでは、トランジスタ3で信号増幅ができるようなバイアス電圧を、また、バイパスモードではトランジスタ3がOFF状態となって信号増幅を行わないようなバイアス電圧を電圧制御回路9からトランジスタ3へと与えることによって、増幅モードとバイパスモードの切り替えを行う。
 また、バイパス経路に接続された2倍波反射回路16は、基本波に対しては開放、2倍波に対してはほぼ短絡となるようなインピーダンスを有する。トランジスタ3から出力側を見た2倍波インピーダンスは、マイクロストリップ線路15を経て2倍波反射回路16に繋がる経路によって決定され、マイクロストリップ線路15の長さによって、トランジスタ3から出力側を見た2倍波インピーダンスの反射位相角を決定する。つまり、マイクロストリップ線路15はバイパス経路の一部をなすとともに、2倍波反射位相角を調整するための線路としても機能する。ここでは、トランジスタ3から出力側を見た2倍波インピーダンスを短絡に近い状態、例えば反射位相角(すなわち第2のノード12からバイパス経路(2倍波反射回路16を含む)を見た送信信号の2倍高調波のインピーダンス反射位相角)が180±45deg以内となるように設定する。
 一方、トランジスタ3から出力側を見た基本波インピーダンスは、整合回路14によって決定される。第3のノード13から2倍波反射回路16を見た基本波インピーダンスは開放となるため、トランジスタ3からマイクロストリップ線路15を経て2倍波反射回路16に繋がる経路の基本波インピーダンスは、マイクロストリップ線路15の長さが波長に比べて十分短いときにはほぼ開放となり、トランジスタ3から出力側を見た基本波インピーダンスには影響を与えない。
 従って、この増幅器ではマイクロストリップ線路15の長さによって、トランジスタ3から出力側を見た基本波インピーダンスに影響を与えることなく、2倍波インピーダンスの反射位相角のみを調整することができ、基本波インピーダンスおよび2倍波インピーダンスに対する整合をそれぞれ独立して最適化することが可能となり、増幅器の効率を高めることができる。
 なお、この実施の形態において、トランジスタ3としてヘテロ接合バイポーラトランジスタを用いても良い。また、2倍波反射回路16の基本波インピーダンスは開放(反射位相角が0deg)ではなく、反射位相角(すなわち第3のノード13から2倍波反射回路16側を見た送信信号周波数でのインピーダンス反射位相角)が±30deg以内であってもよい。
 実施の形態2.
 図2はこの発明の実施の形態2による出力モード切替え増幅器の構成図を示す。第1のノード10と整合回路5の間、および第1のノード10と整合回路8の間には例えば電圧制御回路9からのバイアス電圧の制御によりON/OFF切り替えを行うそれぞれ第1のスイッチ17、第2のスイッチ18が挿入されている。また2倍波反射回路16および各整合回路4,5,8,14の構成の具体例が示されている。
 図2の増幅器では、高出力時にはトランジスタ3によって入力信号の増幅を行い(増幅モード)、低出力時にはバイパス経路によってトランジスタ3を迂回して信号を出力する(バイパスモード)。増幅モードでは、電圧制御回路9によって、トランジスタ3で信号増幅ができるようなバイアス電圧がトランジスタ3に設定された上、スイッチ17がON(通過)、スイッチ18がOFF(開放)となるようなバイアス電圧が各スイッチに設定される。一方、バイパスモードでは、トランジスタ3がOFF状態となって信号増幅を行わないようなバイアス電圧が設定された上、スイッチ17がOFF、スイッチ18がONとなるようなバイアス電圧が各スイッチに設定される。
 整合回路4は、信号経路(信号線)とグラウンドの間に接続したスイッチ4aとキャパシタ4bによって構成され、増幅モードとバイパスモードのどちらに対しても整合状態が維持できるように、電圧制御回路9のバイアス電圧制御によりスイッチ4aの切り替えを行う。
 整合回路14は、信号線路に対して直列の線路14a(例えばマイクロストリップ線路)と、並列のキャパシタ14bによって構成され、出力側の基本波インピーダンスの整合を行う。
 2倍波反射回路16は、複数の並列のキャパシタ16a,16bと直列の線路16c(例えばマイクロストリップ線路)によって構成され、バイアス回路と共用する。2倍波反射回路16の先には電源端子19が接続されている。2倍波反射回路16では、第3のノード13から2倍波反射回路16を見たインピーダンスとして、基本波では開放、2倍波では反射係数の振幅成分が1近くとなるような条件を作り出す。
 整合回路5は、信号線路に対して直列のキャパシタ5a,5bと並列のインダクタ5cによって構成され、整合回路8はバイパス経路に対して直列に接続された高インピーダンス線路8aによって構成される。整合回路5は高域通過フィルタとして働くために、周波数に対して位相が進む特性が得られ、整合回路8は低域通過フィルタとして働くために、周波数に対して位相が遅れる特性が得られる。
 このためこの実施の形態では、増幅モードにける第1のノード10からトランジスタ5を経て第2のノード12に至る経路の通過位相と、バイパスモードにおける第1のノード10からバイパス経路を経てノード12に至る経路の通過位相の差を小さく、例えば±30deg以内に設定することが可能となる。
 また、トランジスタ3から出力側を見た2倍波インピーダンスは、マイクロストリップ線路15を経て2倍波反射回路16に繋がる経路によって決定され、マイクロストリップ線路15の長さによって、トランジスタ3から出力側を見た2倍波インピーダンスの反射位相角を決定する。つまり、マイクロストリップ線路15はバイパス経路の一部をなすとともに、2倍波反射位相角を調整するための線路としても機能する。ここでは、トランジスタ3から出力側を見た2倍波インピーダンスを短絡に近い状態、例えば反射位相角(すなわち第2のノード12からバイパス経路(2倍波反射回路16を含む)を見た送信信号の2倍高調波のインピーダンス反射位相角)が180±45deg以内となるように設定する。
 一方、トランジスタ3から出力側を見た基本波インピーダンスは、整合回路14によって決定される。第3のノード13から2倍波反射回路16を見た基本波インピーダンスは開放となるため、トランジスタ3からマイクロストリップ線路15を経て2倍波反射回路16に繋がる経路の基本波インピーダンスは、マイクロストリップ線路15の長さが波長に比べて十分短いときにはほぼ開放となり、トランジスタ3から出力側を見た基本波インピーダンスには影響を与えない。
 従って、この増幅器ではマイクロストリップ線路15の長さによって、トランジスタ3から出力側を見た基本波インピーダンスに影響を与えることなく、2倍波インピーダンスの反射位相角のみを調整することができ、基本波インピーダンスおよび2倍波インピーダンスに対する整合をそれぞれ独立して最適化することが可能となり、増幅器の効率を高めることができる。
 なお、この実施の形態において、トランジスタ3としてヘテロ接合バイポーラトランジスタを用いても良い。また、2倍波反射回路16の基本波インピーダンスは開放(反射位相角が0deg)ではなく、反射位相角(すなわち第3のノード13から2倍波反射回路16側を見た送信信号周波数でのインピーダンス反射位相角)が±30deg以内であってもよい。
産業上の利用の可能性
 この発明による出力モード切替え増幅器は、種々の分野の増幅器に適用可能であり、相当の効果を奏する。
 1 RF入力端子、2 RF出力端子、3 トランジスタ(信号増幅用)、4,5,8,14 整合回路、4a,17,18 スイッチ、4b,5a,5b,14b,16a,16b キャパシタ、5c インダクタ、8a 高インピーダンス線路、9 電圧制御回路、10 第1のノード、12 第2のノード、13 第3のノード、14a,16c 線路、15 マイクロストリップ線路、16 2倍波反射回路、19 電源端子。

Claims (7)

  1.  入力側の第1のノードと出力側の第2のノードの間に接続された信号増幅用のトランジスタと、
     前記第1のノードと第2のノードの間で前記トランジスタを迂回するバイパス経路と、
     前記トランジスタにバイアス電圧を印加して、送信信号を前記トランジスタで増幅するか、送信信号を前記トランジスタでは増幅せず前記バイパス経路を経由して出力するかを切り替える電圧制御回路と、
     前記バイパス経路に接続された送信信号の2倍高調波を反射する2倍波反射回路と、
     を備えたことを特徴とする出力モード切替え増幅器。
  2.  第1のノードとトランジスタの間に接続された第1のスイッチと、
     前記第1のノードとバイパス経路の間に接続された第2のスイッチと、
     を備え、
     電圧制御回路がさらに、送信信号を前記トランジスタに入力するかまたはバイパス経路へ入力するかを、前記第1のスイッチおよび第2のスイッチにバイアス電圧を印加して切り替えることを特徴とする請求項1に記載の出力モード切替え増幅器。
  3.  バイパス経路において、第2のノードと2倍波反射回路の間に挿入接続されたマイクロストリップ線路と、
     前記第2のノードと増幅器の出力端子の間に挿入接続された第1の整合回路と、
     をさらに備えたことを特徴とする請求項1または2に記載の出力モード切替え増幅器。
  4.  バイパス経路と2倍波反射回路の接続点である第3のノードから2倍波反射回路側を見た送信信号周波数でのインピーダンス反射位相角が±30deg以内であることを特徴とする請求項1または2に記載の出力モード切替え増幅器。
  5.  第2のノードからバイパス経路を見た送信信号の2倍高調波のインピーダンス反射位相角が180±45deg以内であることを特徴とする請求項1または2に記載の出力モード切替え増幅器。
  6.  第1のノードとトランジスタの間に接続され信号経路に対して直列のキャパシタと並列のインダクタを含む第2の整合回路をさらに備え、
     前記第1のノードから前記第2の整合回路、トランジスタを経由して第2のノードに至る第1の経路と、前記第1のノードからバイパス経路を経由して前記第2のノードに至る第2の経路の通過位相の差が30deg以内であることを特徴とする請求項1または2に記載の出力モード切替え増幅器。
  7.  トランジスタが、ヘテロ接合バイポーラトランジスタであることを特徴とする請求項1から6までのいずれか1項に記載の出力モード切替え増幅器。
PCT/JP2010/068575 2010-10-21 2010-10-21 出力モード切替え増幅器 WO2012053086A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137001940A KR101460459B1 (ko) 2010-10-21 2010-10-21 출력 모드 전환 증폭기
PCT/JP2010/068575 WO2012053086A1 (ja) 2010-10-21 2010-10-21 出力モード切替え増幅器
US13/810,388 US20130113561A1 (en) 2010-10-21 2010-10-21 Output mode switching amplifier
JP2012539522A JP5425316B2 (ja) 2010-10-21 2010-10-21 出力モード切替え増幅器
CN201080068918XA CN103098368A (zh) 2010-10-21 2010-10-21 输出模式切换放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/068575 WO2012053086A1 (ja) 2010-10-21 2010-10-21 出力モード切替え増幅器

Publications (1)

Publication Number Publication Date
WO2012053086A1 true WO2012053086A1 (ja) 2012-04-26

Family

ID=45974822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068575 WO2012053086A1 (ja) 2010-10-21 2010-10-21 出力モード切替え増幅器

Country Status (5)

Country Link
US (1) US20130113561A1 (ja)
JP (1) JP5425316B2 (ja)
KR (1) KR101460459B1 (ja)
CN (1) CN103098368A (ja)
WO (1) WO2012053086A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037422A1 (ja) * 2013-09-11 2015-03-19 株式会社リコー 無線通信装置および携帯機器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI595745B (zh) * 2016-03-28 2017-08-11 立積電子股份有限公司 放大器
KR102185059B1 (ko) 2018-08-17 2020-12-01 삼성전기주식회사 아이솔레이션 특성이 개선된 증폭 장치
JP2021106334A (ja) * 2019-12-26 2021-07-26 株式会社村田製作所 高周波回路
CN113824409B (zh) * 2021-09-02 2023-08-15 郑州中科集成电路与系统应用研究院 一种基于可重构宽带阻抗变换网络的宽带可重构多功能功放系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244862A (ja) * 2004-02-27 2005-09-08 Wavics Inc バイパススイッチなしでバイアス変調オプションを有する複数電力モード用電力増幅器
JP2008187661A (ja) * 2007-01-31 2008-08-14 Nec Electronics Corp 移相器、ビット移相器
JP2010141758A (ja) * 2008-12-15 2010-06-24 Nec Corp 無線通信装置及び近距離無線通信回路の通信モード切り替え方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290157A (ja) * 2001-03-27 2002-10-04 Mobile Communications Tokyo Inc 高周波電力増幅装置
JP3877558B2 (ja) * 2001-09-11 2007-02-07 株式会社ルネサステクノロジ 高周波電力増幅器、高周波電力増幅器モジュール及び携帯電話機
KR100518938B1 (ko) * 2003-01-03 2005-10-05 주식회사 웨이브아이씨스 고효율 다중 모드 전력 증폭 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244862A (ja) * 2004-02-27 2005-09-08 Wavics Inc バイパススイッチなしでバイアス変調オプションを有する複数電力モード用電力増幅器
JP2008187661A (ja) * 2007-01-31 2008-08-14 Nec Electronics Corp 移相器、ビット移相器
JP2010141758A (ja) * 2008-12-15 2010-06-24 Nec Corp 無線通信装置及び近距離無線通信回路の通信モード切り替え方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037422A1 (ja) * 2013-09-11 2015-03-19 株式会社リコー 無線通信装置および携帯機器
US9684808B2 (en) 2013-09-11 2017-06-20 Ricoh Company, Ltd. Wireless communication apparatus and mobile device
RU2666129C2 (ru) * 2013-09-11 2018-09-06 Рикох Компани, Лтд. Устройство беспроводной связи и мобильное устройство

Also Published As

Publication number Publication date
CN103098368A (zh) 2013-05-08
JP5425316B2 (ja) 2014-02-26
KR20130033415A (ko) 2013-04-03
US20130113561A1 (en) 2013-05-09
JPWO2012053086A1 (ja) 2014-02-24
KR101460459B1 (ko) 2014-11-11

Similar Documents

Publication Publication Date Title
US9899962B2 (en) Power amplifier
JP4941553B2 (ja) 増幅装置及びドハティ増幅回路の制御方法
EP1912328B1 (en) Highly efficient amplifier
US9203362B2 (en) Quadrature lattice matching network
US8947165B2 (en) Multi-mode Doherty power amplifier
WO2012098754A1 (ja) 出力モード切替増幅器
JP5425316B2 (ja) 出力モード切替え増幅器
JP2002026668A (ja) 送信電力増幅装置及びその方法
WO2013039030A1 (ja) 電力増幅器およびその動作方法
JP2010021719A (ja) ドハティ増幅器
US8207790B2 (en) High frequency power amplifier
JP2006333022A (ja) 高周波電力増幅装置
JP5313970B2 (ja) 高周波電力増幅器
KR102163049B1 (ko) 전력 증폭기 및 전력 증폭기의 출력 제어 방법
JP2005341447A (ja) 高周波電力増幅器
TWI683533B (zh) 放大電路
JP2012253675A (ja) 可変出力増幅器
JP2002135060A (ja) 電力増幅装置及び方法
JP2007281714A (ja) インピーダンス変換回路及びそれを用いた電力増幅装置
JP5099908B2 (ja) ドハティ合成回路及びドハティ増幅器
JP2001127568A (ja) 高周波用電力増幅器
JP2004159102A (ja) 高周波電力増幅回路
WO2014178141A1 (ja) 出力モード切替電力増幅器
WO2014076797A1 (ja) 可変出力増幅器
WO2014170955A1 (ja) 高効率電力増幅器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068918.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012539522

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13810388

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137001940

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858642

Country of ref document: EP

Kind code of ref document: A1