WO2012051942A1 - 薄膜片式保险丝及其制备方法 - Google Patents

薄膜片式保险丝及其制备方法 Download PDF

Info

Publication number
WO2012051942A1
WO2012051942A1 PCT/CN2011/080967 CN2011080967W WO2012051942A1 WO 2012051942 A1 WO2012051942 A1 WO 2012051942A1 CN 2011080967 W CN2011080967 W CN 2011080967W WO 2012051942 A1 WO2012051942 A1 WO 2012051942A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuse
resin
thin film
ceramic substrate
film chip
Prior art date
Application number
PCT/CN2011/080967
Other languages
English (en)
French (fr)
Inventor
麦俊
林瑞芬
张远生
杨晓平
邓进甫
袁广华
Original Assignee
广东风华高新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东风华高新科技股份有限公司 filed Critical 广东风华高新科技股份有限公司
Publication of WO2012051942A1 publication Critical patent/WO2012051942A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/046Fuses formed as printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H69/00Apparatus or processes for the manufacture of emergency protective devices
    • H01H69/02Manufacture of fuses
    • H01H69/022Manufacture of fuses of printed circuit fuses

Definitions

  • the invention relates to a chip type electronic component, in particular to a film chip type fuse and a preparation method thereof. Background technique
  • the common chip fuse has four structures: one is to use the casting lamination method to complete the electrode and the fuse structure, to cut into a rectangular shape, and finally to form a tip; the second is to press the FR4 plate with copper foil to form a single The layer PCB structure, after the through hole is formed into a tip, is cut to form a rectangular shape; the third is to use a thick film printed electrode and a fuse body on the alumina ceramic substrate, and a protective layer is formed by coating with resin or glass, and then passes along the original substrate.
  • the groove folds are folded into a rectangular shape; the fourth is to use a sputtered copper conductive layer on the alumina ceramic substrate, and then obtain the desired pattern by wet etching, and then thicken the copper layer by electroplating, and finally the resin package
  • the protective layer is overlaid and then folded into a rectangular shape by folding along the groove folds on the original substrate.
  • the working principle of the fuse is through the thermal effect of the fuse resistor, and the fuse is blown in time when the rated fuse current is passed.
  • the resistance control of the fuse is the key to product yield control.
  • the impedance of the fuse is negative to the signal in the circuit, so the resistance of the fuse is usually as low as possible.
  • Some portable products typically use fuses of a few dozen milliohms or even milliohms in order to reduce power consumption.
  • the above four types of fuses are manufactured by using a thick film, a thin film resistor, an MLCC or a PCB. In these ways, it is impossible to accurately control the fuse pattern and resistance at the same time. Summary of the invention
  • an object of the present invention is to provide a thin film chip type fuse which has high fuse characteristics and excellent reliability.
  • Another object of the present invention is to provide a method for preparing a thin film chip type fuse, which combines the characteristics of a thick film and a thin film process, and can accurately control the pattern structure and resistance of the fuse fuse body during manufacture, thereby achieving extreme High yield rate for the production of fuse products.
  • a thin film chip fuse comprising a ceramic substrate, characterized in that: the back surface of the ceramic substrate is provided with a back electrode layer; the front side is pasted with a pre-packaged fuse body, the fuse link The inner and outer sides are laminated by a resin or a polyimide material; the ends of the ceramic substrate are covered with end electrodes.
  • the pre-packaged fuse is a layer of a first casting resin or a polyimide material, and then a copper foil of a predetermined thickness is pressed into a single body, and the copper foil is patterned by cold ablation to form a fuse body. Finally, the fuse is laminated again with a resin or polyimide material.
  • the resin is selected from epoxy resins having a glass transition temperature of 170 ° C or higher.
  • a method for preparing a film chip fuse comprising the steps of:
  • step (3) Paste the pre-packaged fuse of step (2) on the front side of the ceramic substrate.
  • the copper foil is laser etched by a UV laser or a picosecond/femtosecond ultrashort pulse laser.
  • the resin in the step (2) is selected from epoxy resins having a glass transition temperature of 17 CTC or more.
  • the hot pressing temperature is 150 to 280 ° C, and the pressure is 5 to 15 kg / cm 2 .
  • the invention adopts a ceramic substrate as a carrier, and the product has good insulation sealing property and resistance to mechanical collision and bending resistance; selecting different substrate modifying materials for different products can greatly improve product melting characteristics; combining film deposition technology with laser 5% ⁇ The cold-baked technology to achieve the fuse-shaped pattern, the graphics accuracy can reach the micron level, the resistance accuracy can reach more than 0.5%.
  • FIGS. 1 to 4 are schematic views showing the structure of the side, the top surface, the bottom surface and the cross section of the film chip fuse of the present invention; and Figs. 5 to 10 are respectively schematic views of the products obtained in the steps of the preparation of the film chip fuse of the present invention.
  • Figure 11 is a schematic view showing the structure of a ceramic substrate of the present invention.
  • the present invention is a thin film chip type fuse comprising a ceramic substrate 1 having a back electrode layer 2 on the back surface thereof; a pre-packaged fuse body 4 is pasted on the front surface, and the fuse is blown
  • the inner and outer sides of the body 4 are press-fitted by the resin or polyimide material layers 3, 5; the end faces 6 of the ceramic substrate 1 are covered at both ends.
  • a method for preparing a film chip fuse includes the following steps:
  • the back electrode layer 2 is printed on the back surface of the alumina ceramic substrate 1 and sintered;
  • the inner and outer sides are prepared by pre-compression bonding the packaged fuse body 4 through the resin or polyimide material layers 3, 5:
  • a resin or polyimide material layer 3 is prepared, and then the copper foil of a predetermined thickness is heated. The pressure is integrated, the copper foil is patterned by cold ablation to form the fuse body 4, and finally the resin or polyimide material layer 5 is pressed and covered to cover the fuse body 4;
  • the pre-packaged fuse body 4 is adhered to the front surface of the ceramic substrate 1 by a thermosetting polyimide paste. Finally, the cutting is performed, and the ends are formed into ends.
  • epoxy resins with high glass transition temperature above Tgl 70 ° C
  • low water absorption low dielectric constant
  • low dielectric loss and high reliability are preferred.
  • BT resin and thermosetting PPE are preferred.
  • Resin cyanate resin.
  • the polyimide film is made of DuPont Kapton, and the corresponding thickness of copper foil is selected according to the product design. After coating the thermosetting polyimide adhesive, it is hot pressed, and the cured component is the same as the polyimide film material.
  • the hot pressing temperature is 150 to 280 ° C, and the pressure is 5 to 15 kg/cm 2 .
  • the fuse body 4 may be pre-compressed and packaged using a process such as RCC (resin coated copper foil) or a flexible circuit board (polyimide copper foil).
  • RCC resin coated copper foil
  • the RCC process is a semi-cured epoxy resin sheet obtained by casting an epoxy resin material, and is heat-pressed by a special pressing device using the viscosity of the resin itself and a copper foil of a predetermined thickness to achieve the process of adhesion and curing. , a special conductive sheet made of resin as a substrate.
  • the hot pressing temperature is 150 to 280 V, and the pressure is 5 to 15 kg/cm 2 .
  • the flexible circuit board process uses a polyimide film as a substrate, and a predetermined thickness of copper foil is pressed into one by a special glue and a pressing device.
  • Such preformed conductive materials are made of a copper foil as a conductive layer, a special resin or a polyimide as a substrate, and are closely attached. Due to the use of fixed-form materials, the production process only needs to be cast, pressed or single-pressed, and the manufacturing process is simple, which is very suitable for mass production.
  • the copper foil is patterned by cold ablation to form the fuse body 4. By using this method, the fuse body 4 pattern with very high resistance precision can be obtained without bonding the resin to the copper foil or Polyimide causes damage. Finally, the fuse-link body 4 is packaged, and after the conductive layer is patterned, the resin or polyimide material layer 5 is again pressed, and the patterned conductive layer is covered as a protective layer.
  • the thickness and composition of the conductive copper layer of the fuse structure 4 are uniform, the height of the pattern is uniform, and the height of the resistance is uniform. In addition, it also solves the problem that lead-free soldering of fuse products is prone to failure and long-term reliability is poor.
  • Step 1 Print the back electrode as shown in Figure 5.
  • the conductive paste is printed on the unit of the grooved surface of the ceramic substrate 1 by screen printing to form a back electrode; then the high temperature sintering (temperature is 800 to 850 ° C) to form the back electrode layer 2;
  • Step 2 Prefabricated conductive layer, as shown in Figure 6.
  • Process preformed conductive layers such as RCC (resin coated copper foil) and flexible circuit board (polyimide copper foil).
  • the RCC process is a special conductive material based on a resin by casting a special resin material and compressing a copper foil of a predetermined thickness by a special pressing device.
  • the flexible circuit board process uses a polyimide film as a substrate, and a copper foil of a predetermined thickness is pressed into a single body by a thermosetting polyimide glue and a press-bonding device.
  • the fuse body 4 is made of a copper foil as a conductive layer, and the substrate is a special resin or a layer of polyimide material 3, which is formed by close fitting;
  • Step 3 The conductive copper layer is patterned, as shown in Figure 7.
  • the conductive copper layer is patterned by a laser having cold ablation characteristics such as picosecond, femtosecond, and UV laser to form the fuse body 4 without affecting the characteristics of the underlying modified material at all. And by precisely controlling the length of the pattern to complete the resistance repair of the fuse body, to achieve a consistent height of the resistance;
  • Step 4 The protective layer is bonded, as shown in FIG. 8, the fuse body 4 is again pressed to press the resin or polyimide material layer 5, and the fuse body 4 is covered as a protective layer;
  • Step 5 The fitting of the pre-packaged fuse-link 4 is as shown in FIG. Pasting the pre-packaged fuse body 4 on the reverse side of the grooved surface of the ceramic substrate by thermosetting polyimide adhesive;
  • Step 6 Marking printing, as shown in Figure 10, printing the mark 7 on the protective surface
  • Step 7 cutting the pre-packaged fuse body 4 along the position of the ceramic substrate 1;
  • Step 8 using the lateral groove 10 of the ceramic substrate 1 to fold the substrate into strips;
  • Step 9 sputtering nickel chromium on the end surface of the strip product to form a terminal electrode 6 as shown in FIG. 4;
  • Step 10 Using the longitudinal grooving of the ceramic substrate itself, the strip product is broken into a single small unit;
  • Step 11 The small unit product is electroplated to form two layers on the surface of the terminal electrode for soldering and solderability purposes;
  • Step 12 Performance testing, packaging, storage.
  • the imide film is used as a substrate, and a copper foil of a predetermined thickness is pressed into a whole by a thermosetting polyimide and a pressing device, and the hot pressing temperature is 200 ° C, and the pressure is 10 kg/cm 2 ;
  • the conductive copper layer is patterned, and the resistance value of the fuse body is adjusted by precisely controlling the length of the pattern to achieve a uniform height of resistance; the fuse body 4 is again pressed and laminated with the polyimide material layer 5 as a protective layer.
  • the fuse body 4 is covered (the hot pressing parameter is the same as above); the mark 7 is printed on the protective surface; the ceramic substrate is folded into strips; nickel chromium is sputtered on the end surface of the strip product to form the terminal electrode 6; Split into a single small unit; the small unit product is electroplated, forming two layers on the surface of the terminal electrode for soldering and solderability purposes; performance testing, packaging, storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuses (AREA)

Description

薄膜片式保险丝及其制备方法 技术领域
本发明涉及片式电子元器件, 特别是一种薄膜片式保险丝及其制备方法。 背景技术
目前, 常见的片式保险丝有四种结构: 一是采用流延层压法完成电极、 熔断体结构, 切 割形成矩形外形, 最后电镀形成端头; 二是采用铜箔压合 FR4板材, 形成单层 PCB结构, 通 孔电镀形成端头后, 裁切形成矩形外形; 三是采用氧化铝陶瓷基片上厚膜印刷电极及熔断体, 由树脂或玻璃包覆形成保护层, 再通过沿原基片上的凹槽折条折粒形成矩形外形; 四是采用 氧化铝陶瓷基片上溅射铜导电层, 再通过湿法刻蚀方式得出所需要的图形, 然后通过电镀方 式加厚铜层, 最后树脂包覆形成保护层, 再通过沿原基片上的凹槽折条折粒形成矩形外形。
保险丝的工作原理即是通过保险丝电阻的热效应,在通过额定的熔断电流时及时的熔断。 保险丝的阻值控制是产品合格率控制的关键。 同时在正常工作的电路中, 保险丝的阻抗对电 路中的信号有负面, 故保险丝的阻值通常都尽可能低。 部分便携式产品为了降低功耗, 通常 会使用十几毫欧、 甚至几毫欧的保险丝。 以上四种类型的保险丝均是通过沿用厚膜、 薄膜电 阻、 MLCC或者 PCB的生产方式制造片式保险丝。 这几种方式都无法同时完成熔断体图形及阻 值的同时精确控制。 发明内容
为解决上述问题, 本发明的的目的在于提供一种薄膜片式保险丝, 其熔断特性高度一致, 且可靠性优异。
本发明的另一个目的是提供一种薄膜片式保险丝的制备方法, 其结合了厚膜、 薄膜工艺 的特点, 在制造时可精确的控制保险丝熔断体的图形结构及阻值, 从而达到以极高的合格率 生产的保险丝产品。
本发明的目的是这样实现的: 一种薄膜片式保险丝, 包括陶瓷基片, 其特征在于: 所述 陶瓷基片背面设有背电极层; 正面粘贴有预封装好的熔断体, 该熔断体内外两侧通过树脂或 聚酰亚胺材料层压合封装; 陶瓷基片两端包覆端电极。
所述的预封装好的熔断体是先流延树脂或聚酰亚胺材料层, 然后将预先设定厚度的铜箔 压合成为一体, 采用冷烧蚀对铜箔进行图形化形成熔断体, 最后再次以树脂或聚酰亚胺材料 层压合覆盖熔断体。 所述的树脂选自玻璃化温度在 170°C以上的环氧树脂。
一种薄膜片式保险丝的制备方法, 其特征在于包括以下步骤:
( 1 ) 于所述陶瓷基片背面印刷背电极层并烧结;
( 2 ) 制备内外两侧通过树脂或聚酰亚胺预先压合封装好的熔断体: 先准备树脂或聚酰 亚胺材料, 然后将预先设定厚度的铜箔压合成为一体, 采用冷烧蚀对铜箔进行图 形化形成熔断体, 最后再次以树脂或聚酰亚胺材料压合覆盖熔断体;
( 3 ) 将步骤 (2 ) 的预封装好的熔断体粘贴于陶瓷基片正面。
所述步骤(2 ) 中的冷烧蚀, 采用 UV激光或皮秒 /飞秒的超短脉冲激光对铜箔进行激光蚀 刻。
所述步骤 (2 ) 中的树脂选自玻璃化温度在 17CTC以上的环氧树脂。
所述步骤 (2 ) 中树脂或聚酰亚胺材料与铜箔压合时的热压温度 150〜280°C, 压力 5〜 15kg/ cm2。
本发明以陶瓷基板为载体, 产品具有良好的绝缘密封性和抗机械碰撞、 抗折弯能力; 针 对不同产品选择不同基片改性材料, 可大幅度提升产品熔断特性; 结合薄膜沉积技术与激光 冷烧蚀技术实现的熔断体图形化, 其图形精度可达到微米级, 阻值精度可达到 0. 5%以上。 附图说明
图 1-图 4分别是本发明薄膜片式保险丝的侧面、 顶面、 底面以及截面的结构示意图; 图 5-图 10分别是本发明薄膜片式保险丝的制备过程中各步骤制得的产品示意图; 图 11是本发明的陶瓷基片的结构示意图。 具体实施方式
以下结合附图进一步描述本发明, 但本发明并不限于所述特定例子。
如图 1-4所示, 本发明是一种薄膜片式保险丝, 包括陶瓷基片 1, 该陶瓷基片 1背面设 有背电极层 2; 正面粘贴有预封装好的熔断体 4, 该熔断体 4内外两侧通过树脂或聚酰亚胺材 料层 3、 5压合封装; 陶瓷基片 1两端包覆端电极 6。
一种薄膜片式保险丝的制备方法, 包括以下步骤:
首先, 于氧化铝陶瓷基片 1背面印刷背电极层 2并烧结;
然后, 制备内外两侧通过树脂或聚酰亚胺材料层 3、 5预先压合封装好的熔断体 4: 先制 备树脂或聚酰亚胺材料层 3, 然后将预先设定厚度的铜箔热压成为一体, 采用冷烧蚀对铜箔 进行图形化形成熔断体 4, 最后再次以树脂或聚酰亚胺材料层 5压合覆盖熔断体 4; 最后将预封装好的熔断体 4通过热固型聚酰亚胺胶粘贴于陶瓷基片 1正面。 最后进行切 割, 封端形成端头。
其中 RCC工艺所选用的树脂选择高玻璃化温度(Tgl70°C以上)、低吸水率、低介电常数、 低介质损耗、 高可靠性的环氧树脂为主, 优选 BT树脂、 热固型 PPE树脂、 氰酸树脂。 聚酰亚 胺薄膜选用杜邦 Kapton,并根据产品设计选用相应厚度铜箔,涂布热固型聚酰亚胺胶后热压, 固化后成分与聚酰亚胺薄膜材料一样。 热压温度 150〜280°C, 压力 5〜15kg/cm2
为了简化改性材料印刷及导电薄膜沉积过程,可使用 RCC (涂树脂铜箔)、柔性电路板(聚 酰亚胺铜箔)等工艺预先压合封装好熔断体 4。 RCC工艺为通过流延环氧树脂材料得到半固化 的环氧树脂薄片, 并通过专门压合设备利用树脂本身的粘性与预先设定厚度的铜箔进行热压 成为一体, 达到黏附及固化的过程, 制得以树脂为基材的特殊导电板材。 热压温度 150〜280 V, 压力 5〜15kg/cm2。 柔性电路板工艺为以聚酰亚胺薄膜为基材, 通过专门胶水及压合设备 将预先设定厚度的铜箔压合成为一体。 此类预成型的导电材料以铜箔为导电层, 以特种树脂 或聚酰亚胺为基材, 经过紧密贴合而成。 由于采用固定成型的材料, 生产过程仅需流延、 压 合或单压合一道工序, 制造过程简单, 非常适于大批量生产。 而对于导电层图形化, 采用冷 烧蚀对铜箔进行图形化形成熔断体 4, 采用此种方法可得到非常高阻值精度的熔断体 4图形, 而不会对铜箔所贴合树脂或聚酰亚胺造成损害。 最后熔断体 4封装, 导电层图形化后再次进 行压合树脂或聚酰亚胺材料层 5, 作为保护层将图形化后的导电层覆盖住。
采用本发明的方法, 熔断体 4主体结构导电铜层的厚度、成分高度一致, 图形高度一致, 阻值的高度一致。 另外还解决了保险丝产品无铅焊接容易失效, 长期可靠性较差的问题。
本发明薄膜片式保险丝及其制造方法, 如图 5-10所示, 具体包括以下步骤:
步骤一: 背电极印刷, 如图 5所示。 在陶瓷基片 1划槽面的每个单元上用丝网印刷的方式印 刷导电浆料形成背电极; 然后经高温烧结 (温度在 800〜850°C)后形成背电极层 2; 步骤二: 预制导电层, 如图 6所示。 RCC (涂树脂铜箔)、 柔性电路板 (聚酰亚胺铜箔) 等工 艺预成型的导电层。 RCC 工艺为通过流延特殊树脂材料, 并通过专门压合设备将预 先设定厚度的铜箔压合成为一体, 成为以树脂为基材的特殊导电板材。 柔性电路板 工艺为以聚酰亚胺薄膜为基材, 通过热固型聚酰亚胺胶及压合设备将预先设定厚度 的铜箔压合成为一体。 熔断体 4以铜箔为导电层, 基材为特种树脂或聚酰亚胺材料 层 3, 经过紧密贴合而成;
步骤三: 导电铜层图形化, 如图 7所示。 通过皮秒、 飞秒、 UV激光器等具有冷烧蚀特性的激 光器对导电铜层进行图形化形成熔断体 4, 同时又完全不会影响底层改性材料的特 性。并且通过精确控制图形长度来完成熔断体的阻值修调, 以达到阻值的高度一致; 步骤四: 保护层贴合, 如图 8所示, 熔断体 4再次进行压合树脂或聚酰亚胺材料层 5, 作为 保护层将熔断体 4覆盖住;
步骤五: 预封装好的熔断体 4的贴合, 如图 9所示。 在陶瓷基片划槽面的反面通过热固型聚 酰亚胺胶粘贴预封装好的熔断体 4;
步骤六: 标记印刷, 如图 10所示, 在保护表面印刷标记 7;
步骤七: 沿陶瓷基片 1划槽位置切割预封装好的熔断体 4;
步骤八: 利用陶瓷基片 1本身的横向划槽 10将基片折成条状;
步骤九: 在条状产品的端面上溅射镍铬, 形成如图 4所示的端电极 6;
步骤十: 利用陶瓷基片本身的纵向划槽 11, 将条状产品折裂成单个小单元;
步骤十一: 将小单元的产品经过电镀, 在端电极的表面形成两层镀层, 起到耐焊和可焊目的; 步骤十二: 性能测试, 包装, 入库。
实施例
在陶瓷基片划槽面的每个单元上用丝网印刷的方式印刷导电浆料形成背电极 2; 然后经 高温烧结 (温度在 800-85CTC)后形成背电极层; 预制导电层, 以聚酰亚胺薄膜为基材, 通过 热固型聚酰亚胺及压合设备将预先设定厚度的铜箔压合成为一体, 热压温度 200 °C, 压力 10kg/cm2 ; 通过 UV激光器对导电铜层进行图形化, 并通过精确控制图形长度来完成熔断体的 阻值修调, 以达到阻值的高度一致; 熔断体 4再次进行压合聚酰亚胺材料层 5, 作为保护层 将熔断体 4覆盖住 (热压参数同上); 在保护表面印刷标记 7; 将陶瓷基片折成条状; 在条状 产品的端面上溅射镍铬, 形成端电极 6; 将条状产品折裂成单个小单元; 将小单元的产品经 过电镀, 在端电极的表面形成两层镀层, 起到耐焊和可焊的目的; 性能测试, 包装, 入库。

Claims

权 利 要 求 书
1、一种薄膜片式保险丝,包括陶瓷基片,其特征在于: 所述陶瓷基片背面设有背电极层; 正面粘贴有预封装好的熔断体, 该熔断体内外两侧通过树脂或聚酰亚胺材料层压合封装; 陶 瓷基片两端包覆端电极。
2、 根据权利要求 1所述的薄膜片式保险丝, 其特征在于: 所述的预封装好的熔断体是先 流延树脂或聚酰亚胺材料层, 然后将预先设定厚度的铜箔压合成为一体, 采用冷烧蚀对铜箔 进行图形化形成熔断体, 最后再次以树脂或聚酰亚胺材料层压合覆盖熔断体。
3、 根据权利要求 1所述的薄膜片式保险丝, 其特征在于: 所述的树脂选自玻璃化温度在 17CTC以上的环氧树脂。
4、 一种薄膜片式保险丝的制备方法, 其特征在于包括以下步骤:
( 1 ) 于所述陶瓷基片背面印刷背电极层并烧结;
( 2 ) 制备内外两侧通过树脂或聚酰亚胺预先压合封装好的熔断体: 先制备树脂或聚酰 亚胺材料层, 然后与预先设定厚度的铜箔压合成为一体, 采用冷烧蚀对铜箔进行 图形化形成熔断体, 最后再次以树脂或聚酰亚胺材料层压合覆盖熔断体;
( 3 ) 将步骤 (2 ) 的预封装好的熔断体粘贴于陶瓷基片正面。
5、 根据权利要求 4所述的薄膜片式保险丝的制备方法, 其特征在于: 所述步骤 (2 ) 中 的冷烧蚀, 采用 UV激光或皮秒 /飞秒的超短脉冲激光对铜箔进行激光蚀刻。
6、 根据权利要求 4所述的薄膜片式保险丝的制备方法, 其特征在于: 所述步骤 (2 ) 中 的树脂选自玻璃化温度在 17CTC以上的环氧树脂。
7、 根据权利要求 4所述的薄膜片式保险丝的制备方法, 其特征在于: 所述步骤 (2 ) 中 树脂或聚酰亚胺材料层与铜箔压合时的热压温度 150〜280°C, 压力 5〜15kg/cm2
PCT/CN2011/080967 2010-10-22 2011-10-19 薄膜片式保险丝及其制备方法 WO2012051942A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010515440.2 2010-10-22
CN 201010515440 CN101964287B (zh) 2010-10-22 2010-10-22 薄膜片式保险丝及其制备方法

Publications (1)

Publication Number Publication Date
WO2012051942A1 true WO2012051942A1 (zh) 2012-04-26

Family

ID=43517128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080967 WO2012051942A1 (zh) 2010-10-22 2011-10-19 薄膜片式保险丝及其制备方法

Country Status (2)

Country Link
CN (1) CN101964287B (zh)
WO (1) WO2012051942A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964287B (zh) * 2010-10-22 2013-01-23 广东风华高新科技股份有限公司 薄膜片式保险丝及其制备方法
CN102623254A (zh) * 2012-04-25 2012-08-01 东莞市贝特电子科技股份有限公司 片式保险丝的制造方法
CN108281215B (zh) * 2018-01-24 2020-09-25 北京元六鸿远电子科技股份有限公司 低温固化热塑性聚酰亚胺mlcc用银端电极浆料及其制备方法
CN110828243B (zh) * 2019-11-06 2021-04-30 南京隆特电子有限公司 一种薄膜型熔断器及制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228188A (en) * 1992-02-28 1993-07-20 Avx Corporation Method of making thin film surface mount fuses
CN1551276A (zh) * 2003-04-14 2004-12-01 釜屋电机株式会社 芯片熔断器
CN1700383A (zh) * 2004-05-18 2005-11-23 大毅科技股份有限公司 薄膜保险丝及其制造方法
CN101964287A (zh) * 2010-10-22 2011-02-02 广东风华高新科技股份有限公司 薄膜片式保险丝及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726621A (en) * 1994-09-12 1998-03-10 Cooper Industries, Inc. Ceramic chip fuses with multiple current carrying elements and a method for making the same
DE69600974T2 (de) * 1995-06-07 1999-06-10 Littelfuse Inc Verbessertes verfahren und gerät für oberflächenmontierte sicherungsvorrichtung
JPH10162715A (ja) * 1996-11-28 1998-06-19 Kyocera Corp チップヒューズ
US6034589A (en) * 1998-12-17 2000-03-07 Aem, Inc. Multi-layer and multi-element monolithic surface mount fuse and method of making the same
US20090027821A1 (en) * 2007-07-26 2009-01-29 Littelfuse, Inc. Integrated thermistor and metallic element device and method
CN101447370B (zh) * 2008-11-25 2010-08-25 南京萨特科技发展有限公司 一种高可靠性片式保险丝的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228188A (en) * 1992-02-28 1993-07-20 Avx Corporation Method of making thin film surface mount fuses
CN1551276A (zh) * 2003-04-14 2004-12-01 釜屋电机株式会社 芯片熔断器
CN1700383A (zh) * 2004-05-18 2005-11-23 大毅科技股份有限公司 薄膜保险丝及其制造方法
CN101964287A (zh) * 2010-10-22 2011-02-02 广东风华高新科技股份有限公司 薄膜片式保险丝及其制备方法

Also Published As

Publication number Publication date
CN101964287A (zh) 2011-02-02
CN101964287B (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
JP3840921B2 (ja) プリント基板のおよびその製造方法
US7341890B2 (en) Circuit board with built-in electronic component and method for manufacturing the same
JP4341588B2 (ja) 多層基板及びその製造方法
CN204707339U (zh) 多层基板
US20090151990A1 (en) Multilayer wiring board and method of making the same
JP2007324550A (ja) 多層基板
JP5874746B2 (ja) 固体電解コンデンサ、電子部品モジュール、固体電解コンデンサの製造方法および電子部品モジュールの製造方法
WO2012051942A1 (zh) 薄膜片式保险丝及其制备方法
JP2004140018A (ja) 多層基板の製造方法、多層基板、及びそれを用いたモバイル機器
JP6502205B2 (ja) 多層配線基板およびその製造方法
JP3951409B2 (ja) Icカードとその製造法
JP4285339B2 (ja) 回路モジュールおよび回路モジュールの製造方法
JP5170570B2 (ja) 樹脂多層モジュール及び樹脂多層モジュールの製造方法
JP5830864B2 (ja) キャパシタ内蔵配線板、キャパシタ内蔵配線板の製造方法
JP2001274555A (ja) プリント配線基板、プリント配線用素板、半導体装置、プリント配線基板の製造方法、及び半導体装置の製造方法
JP4627891B2 (ja) セラミック回路基板
KR20200132581A (ko) 세라믹 기판 제조 방법
JP2006121005A (ja) プリント基板及びその製造方法
WO2018074139A1 (ja) 多層基板およびその製造方法
JP2006093439A (ja) 多層基板及びその製造方法
TW200840450A (en) Multilayer wiring board and method of manufacturing the same
JP2004241405A (ja) 電子部品保温用素子のプリント配線基板への実装構造
JP2005045228A (ja) 光学情報記録媒体とその製造方法
JP6497486B2 (ja) 多層基板およびその製造方法
CN203134738U (zh) 一种过流过压保护元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11833848

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11833848

Country of ref document: EP

Kind code of ref document: A1