WO2012050048A1 - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
WO2012050048A1
WO2012050048A1 PCT/JP2011/073144 JP2011073144W WO2012050048A1 WO 2012050048 A1 WO2012050048 A1 WO 2012050048A1 JP 2011073144 W JP2011073144 W JP 2011073144W WO 2012050048 A1 WO2012050048 A1 WO 2012050048A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
current
magnetic sensor
sensor
magnetic
Prior art date
Application number
PCT/JP2011/073144
Other languages
English (en)
French (fr)
Inventor
真司 三ツ谷
Original Assignee
アルプス・グリーンデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス・グリーンデバイス株式会社 filed Critical アルプス・グリーンデバイス株式会社
Priority to JP2012538659A priority Critical patent/JP5659389B2/ja
Publication of WO2012050048A1 publication Critical patent/WO2012050048A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • the present invention relates to a current sensor that achieves high accuracy over a wide measurement range.
  • a large current such as a current for driving a motor of an electric vehicle is caused to flow through the metal plate.
  • the magnitude of the current flowed through the metal plate can be measured by a magnetic sensor placed around the metal plate.
  • the magnetic sensor is also affected by the external magnetic field, there is a problem that the detection accuracy of the current of the current sensor is low in a situation where the external magnetic field is strong.
  • the current sensor includes: a substrate having a front surface and a back surface; a first magnetic sensor mounted on the substrate; a second magnetic sensor mounted on the substrate; And the substrate includes a first arm, a second arm, and a connecting portion for connecting the first arm and the second arm,
  • the magnetic sensor is mounted on a first arm on the substrate such that the sensitivity axis direction is parallel to the surface of the substrate, and the second magnetic sensor has a sensitivity axis direction of the surface of the substrate Mounted on the second arm on the substrate in a direction parallel to the substrate, and the current path includes the front side of the first arm, the first arm, and the second arm. It is characterized in that it is disposed so as to pass through the space and the back side of the second arm.
  • the current path includes the front side of the first arm, the space between the first arm and the second arm, and the second It is not necessary to make a large curving of the current path because it is arranged to pass through the back of the arm. As a result, the length of the current path required for current measurement can be shortened, and miniaturization of the current sensor and space saving can be realized.
  • the current path had to be greatly curved, but the magnetic sensor in which the sensitivity axis was parallel to the substrate
  • the required current path length can be shortened.
  • the thickness of the current sensor according to this configuration is equal to the sum of the thickness of the current path, the thickness of the magnetic sensor and the thickness of the substrate, and the width of the current sensor according to this configuration is the width of the current path and the substrate It becomes the size which added the width of the connection part. Therefore, the thickness, width and length of the current sensor can be reduced in a well-balanced manner.
  • the cross-sectional area of the current path hardly changes, it is possible to prevent the increase in the resistance value of the current path.
  • the first magnetic sensor and the second magnetic sensor may be mounted such that the sensitivity axis direction is the same. According to this configuration, the differential output of the two magnetic sensors reliably cancels the influence of the external magnetic field such as the geomagnetism and enables highly accurate current measurement.
  • the first magnetic sensor and the second magnetic sensor may be mounted such that the sensitivity axis directions are opposite to each other. According to this configuration, by adding the outputs of the two magnetic sensors, the influence of the external magnetic field such as geomagnetism can be reliably canceled, and highly accurate current measurement can be performed.
  • the first magnetic sensor may be mounted on the surface of the substrate, and the second magnetic sensor may be mounted on the surface of the substrate. According to this configuration, since the magnetic sensor is mounted on one side, it is possible to improve the positional accuracy and the angular accuracy of the pair of magnetic sensors.
  • the first magnetic sensor may be mounted on the surface of the substrate, and the second magnetic sensor may be mounted on the back surface of the substrate. According to this configuration, it is easy to equalize the distance from the current path to the first magnetic sensor and the distance from the current path to the second magnetic sensor, so it is easy to improve the measurement accuracy.
  • the current path may be formed of a plate-like body bent in a thickness direction. According to this configuration, since the current path is processed by bending in the thickness direction, processing of the current path is facilitated. For example, if the bending angle is a right angle, space saving can be achieved. Further, for example, if the bending angle is an obtuse angle, the processing becomes easier.
  • the current path may have a pair of surfaces, and a recess may be formed on both surfaces, and the magnetic sensor may be accommodated in the recess. According to this configuration, since the magnetic sensor is accommodated in the recess, space saving can be sufficiently achieved.
  • the substrate may be a flexible substrate. According to this configuration, since the flexible substrate is deformed, even if the processing accuracy of the current path is low, the distance between the current path and the magnetic sensor can be made as designed, and the deterioration of the measurement accuracy can be prevented.
  • the magnetic sensor may include a magnetoresistive element. According to this configuration, it is easy to make the sensitivity axis direction parallel to the surface of the substrate.
  • a space-saving current sensor can be provided.
  • a current sensor capable of disposing a magnetic sensor without requiring punching of a metal plate and without reducing the cross-sectional area of the metal plate.
  • FIG. 2 is a diagram showing an example of a current sensor according to Embodiment 1;
  • FIG. 7 is a view showing a modified example of the current sensor according to the first embodiment.
  • 2 is an example of a block diagram of a current sensor according to Embodiment 1.
  • FIG. FIG. 7 is a diagram showing an example of a current sensor according to Embodiment 2;
  • FIG. 10 is a view showing a modification of the current sensor according to the second embodiment.
  • FIG. 14 is a diagram showing an example of a current sensor according to Embodiment 3.
  • FIG. 1 is a schematic view showing a current sensor according to Embodiment 1, which is an example of the present invention.
  • 1 (A) is a side view of the current sensor
  • FIG. 1 (B) is a plan view of the current sensor
  • FIG. 1 (C) is a perspective view of the current sensor.
  • the arrow of a continuous line shows the direction of an electric current
  • the arrow of a broken line shows the sensitivity axis direction of a magnetic sensor in FIG. 1 (B).
  • the current sensor shown in FIG. 1 includes a substrate 10 processed into a substantially U-shape in plan view, a first magnetic sensor 11A mounted on the surface (one surface) of the substrate 10, and a back surface of the substrate 10 And a current path (current line) 12 provided with a recess (also referred to as a recess) in accordance with the shape of the substrate.
  • the substrate 10 includes a first arm (extension) 13A and a second arm (extension) 13B extending in the same direction, and the first arm 13A and the second arm 13B. It is comprised from the connection part 13C connected.
  • the first magnetic sensor 11A is mounted on the surface side of the first arm 13A
  • the second magnetic sensor 11B is mounted on the back side of the second arm 13B.
  • the current path 12 is formed extending in the direction of current flow, and the first arm 13A and the second arm 13B are provided in the recessed portion of the current path 12 in the direction orthogonal to the extension direction of the current path 12 As inserted, the substrate 10 and the current path 12 are mounted. Thereby, the substrate 10 and the current path 12 can be easily mounted.
  • the first magnetic sensor 11A and the second magnetic sensor 11B are mounted on the substrate 10 such that the sensitivity axis direction thereof is parallel to the surface of the substrate 10 on which the magnetic sensor is mounted. .
  • the first arm 13A and the second arm 13B of the substrate 10 are current paths.
  • the current path 12 exists on the back surface side of the substrate 10, and in the region where the second magnetic sensor 11B is mounted, the current path 12 is the front surface side of the substrate 10 In the other regions, the current paths 12 are present along the substrate. In addition, the current path 12 exists in such a manner as to pass between the first arm 13A and the second arm 13B.
  • the surface on which the first magnetic sensor 11A is mounted is referred to as the surface of the substrate, and the opposite surface is referred to as the back surface.
  • the current to be measured is guided to the back surface side of the substrate 10 in the region where the first magnetic sensor 11A is mounted, and flows in the direction along the back surface of the substrate 10. Further, the current to be measured is led to the surface side of the substrate 10 in the region where the second magnetic sensor 11B is mounted, and flows in the direction along the surface of the substrate 10.
  • the current to be measured flows in the direction along the surface of the substrate 10 and flows through one surface of the first magnetic sensor 11A, and the second magnetic sensor It is arrange
  • Space saving can be achieved by arranging the current paths 12, the substrate 10, the first magnetic sensor 11A, and the second magnetic sensor 11B as shown in FIG.
  • a current sensor employing a configuration in which a pair of magnetic sensors are disposed such that the sensitivity axis direction is in a direction parallel to the surface of the substrate and the measured current flows in the direction perpendicular to the surface of the substrate.
  • the current to be measured flows in the direction along the surface of the substrate 10 in the configuration of this embodiment. Since the current path 12 is disposed in the second embodiment, the space required in the conventional configuration is not required, and space saving of the current sensor using two magnetic sensors can be achieved.
  • the current path has to be largely curved.
  • the sensitivity axis is parallel to the substrate Arranging the current path so as to pass the front side of the first arm, between the first arm and the second arm, and the back side of the second arm using a magnetic sensor of As a result, the length of the current path required for current measurement becomes short, and the current sensor can be miniaturized and space can be saved.
  • the positional accuracy and the angular accuracy of the magnetic sensors depend on the mounting accuracy of the plurality of substrates, as described above.
  • the positional accuracy and angular accuracy of the magnetic sensors are determined only by the mounting accuracy of the magnetic sensors. Therefore, the positional accuracy, the angular accuracy, and the like of the magnetic sensor can be improved as compared with the case where a plurality of substrates are used. Furthermore, the cost of parts and the cost of mounting can be reduced as compared to the case of using a plurality of substrates.
  • the substrate 10 and the current path 12 are, for example, the connecting portion 13C of the substrate 10 (the first arm 13A and the second arm 13B) from the viewpoint of improving the positional accuracy, angular accuracy, etc. of the magnetic sensor. It is desirable that they be fixed at the part connecting the
  • the first magnetic sensor 11A and the second magnetic sensor 11B are mounted such that the sensitivity axis directions are the same. Therefore, the absolute values of the output of the first magnetic sensor 11A and the output of the second magnetic sensor 11B due to the magnetic flux generated by the current become equal, and the output of the first magnetic sensor 11A and the output of the second magnetic sensor 11B Polarity is reversed.
  • the output of the first magnetic sensor 11A generated due to only the magnetic flux ⁇ when the magnetic flux ⁇ is generated around the current path 12 by the current led to the current path 12 is O1. Since the first magnetic sensor 11A and the second magnetic sensor 11B are mounted such that the sensitivity axis directions are the same, the absolute values of their outputs are equal, and the polarities of their outputs are opposite. Therefore, the output of the second magnetic sensor 11B generated due to only the magnetic flux ⁇ is -O1.
  • the output (noise) of the first magnetic sensor 11A due to the uniform external magnetic field is N1
  • the output of the second magnetic sensor 11B is also N1. Therefore, the output of the first magnetic sensor 11A including the noise component is O1 + N1
  • the first magnetic sensor 11A and the second magnetic sensor 11B are mounted such that the sensitivity axis directions are the same. It is not necessary to limit the mounting method of the sensor 11A and the second magnetic sensor 11B to this.
  • the sensitivity axis directions of the first magnetic sensor 11A and the second magnetic sensor 11B may be reversed.
  • the absolute values of the output of the first magnetic sensor 11A and the output of the second magnetic sensor 11B due to the magnetic flux generated by the current become equal, and the output of the first magnetic sensor 11A and the output of the second magnetic sensor 11B
  • the output of the first magnetic sensor 11A generated only due to the magnetic flux ⁇ is O1. Since the first magnetic sensor 11A and the second magnetic sensor 11B are mounted such that the sensitivity axis directions are opposite to each other, the absolute values of their outputs are equal and their outputs have the same polarity. Therefore, the output of the second magnetic sensor 11B generated due to only the magnetic flux ⁇ is O1. On the other hand, assuming that the output (noise) of the first magnetic sensor 11A due to the uniform external magnetic field is N1, the output of the second magnetic sensor 11B has the same absolute value and the opposite polarity, and hence becomes -N1. .
  • the output of the first magnetic sensor 11A including the noise component is O1 + N1
  • the first magnetic sensor 11A is mounted on one surface (front surface) of the substrate 10, and the second magnetic sensor 11B is mounted on the other surface (back surface) of the substrate 10.
  • the first magnetic sensor 11A and the second magnetic sensor 11B may be on the same surface of the substrate 10 (surface or back surface ) May be implemented. In this case, since the magnetic sensor is mounted on one side, it is possible to improve the positional accuracy and angular accuracy of the first magnetic sensor 11A and the second magnetic sensor 11B.
  • the first magnetic sensor 11A and the second magnetic sensor 11B are mounted such that the sensitivity axis directions are opposite, but the first magnetic sensor 11A and the second magnetic sensor It is not necessary to limit the method of 11B implementation to this.
  • the sensitivity axis directions of the first magnetic sensor 11A and the second magnetic sensor 11B may be mounted to be the same.
  • the substrate 10 is not particularly limited.
  • various substrates such as a glass cloth-based epoxy resin laminate and a paper phenol substrate can be used as the substrate 10.
  • the substrate 10 in the case of using a flexible substrate, the substrate 10 can be deformed in accordance with the shape of the current path 12, so that there is no need to improve the processing accuracy of the current path 12 and a current sensor with high accuracy can be realized inexpensively. .
  • FIG. 3 is an example of a block diagram of the current sensor according to the first embodiment.
  • the first magnetic sensor 11A and the second magnetic sensor 11B are magnetic balance type sensors, and include a feedback coil 211 disposed so as to be capable of generating a magnetic field in a direction to cancel the magnetic field generated by the current to be measured It comprises a bridge circuit 212 consisting of two magnetoresistance effect elements and two fixed resistance elements.
  • the control unit 210 amplifies the differential output of the bridge circuit 212 of the first magnetic sensor 11A and controls the feedback current of the feedback coil 211, and the feedback current of the first magnetic sensor 11A.
  • an I / V amplifier 222 for converting into a voltage.
  • control unit 210 amplifies the differential output of the bridge circuit 212 of the second magnetic sensor 11B, and controls the feedback current of the feedback coil 211, and the feedback of the second magnetic sensor 11B.
  • I / V amplifier 224 for converting current into voltage.
  • the differential unit 23 includes a differential amplifier 231 that amplifies the differential output of the I / V amplifiers 222 and 224.
  • the feedback coil 211 is disposed in the vicinity of the magnetoresistive element of the bridge circuit 212, and generates a cancellation magnetic field that cancels out the induction magnetic field generated by the current to be measured.
  • a magnetoresistive effect element of the bridge circuit 212 a GMR (Giant Magneto Resistance) element, a TMR (Tunnel Magneto Resistance) element, etc. can be mentioned.
  • the resistance value of the magnetoresistive element changes due to the application of the induction magnetic field from the current to be measured.
  • the bridge circuit 212 By forming the bridge circuit 212 with two magnetoresistive elements and two fixed resistance elements, a highly sensitive current sensor can be realized. Further, by using the magnetoresistive effect element, the sensitivity axis can be easily disposed in the direction parallel to the substrate surface on which the current sensor is disposed, and it becomes possible to use a planar coil.
  • the bridge circuit 212 has two outputs that generate a voltage difference according to the induced magnetic field generated by the current to be measured.
  • the two outputs of the bridge circuit 212 are amplified by the differential and current amplifiers 221 and 223, and the amplified output is given to the feedback coil 211 as a current (feedback current).
  • This feedback current corresponds to the voltage difference according to the induced magnetic field.
  • a canceling magnetic field is generated in the feedback coil 211 to cancel the induced magnetic field.
  • the current flowing through the feedback coil 211 when the induced magnetic field and the cancellation magnetic field are in an equilibrium state is converted into a voltage by the I / V amplifiers 222 and 224, and this voltage becomes a sensor output.
  • differential / current amplifier 221 feedback is set by setting the power supply voltage to a value close to the reference voltage of I / V conversion + (maximum value within the rating of feedback coil resistance ⁇ full-scale feedback coil current). The current is limited, and the effect of protecting the magnetoresistive element and the feedback coil can be obtained. Furthermore, although the difference between the two outputs of the bridge circuit 212 is amplified and used as a feedback current here, only the midpoint potential is output from the bridge circuit, and the feedback current is generated based on the potential difference with a predetermined reference potential. It may be
  • the differential amplifier 231 processes a differential value of output signals of the I / V amplifier 222 and the I / V amplifier 224 as a sensor output. By performing such processing, the influence of an external magnetic field such as geomagnetism on the output signals of the first magnetic sensor 11A and the second magnetic sensor 11B is canceled, and the current can be measured with high accuracy.
  • the current sensor according to the block diagram of FIG. 3 is merely an example, and it is of course possible to employ current sensors of other configurations.
  • an amplifier for summing output values may be provided instead of the differential amplifier 231.
  • the current to be measured flows in the direction along the surface of the substrate, thereby flowing on one surface side of one magnetic sensor, and the other It is possible to arrange the current path so as to flow through the other side of the magnetic sensor. Therefore, sufficient space saving of the current sensor can be achieved.
  • FIG. 4 is a schematic view showing an example of the current sensor according to the second embodiment.
  • 4 (A) is a side view of the current sensor
  • FIG. 4 (B) is a plan view of the current sensor
  • FIG. 4 (C) is a perspective view of the current sensor.
  • solid arrows indicate the direction of the current
  • broken arrows indicate the direction of the sensitivity axis of the magnetic sensor.
  • the current sensor shown in FIG. 4 includes a substrate 10 processed in a substantially U-shape, a first magnetic sensor 11A mounted on the surface of the substrate 10, and a second magnetic sensor mounted on the back of the substrate 10 11B and a current path 12 bent so as to pass through the magnetic sensor non-mounting surface side of the substrate 10.
  • the first magnetic sensor 11A and the second magnetic sensor 11B are mounted on the substrate 10 such that the sensitivity axis direction thereof is parallel to the surface of the substrate 10 on which the magnetic sensor is mounted.
  • the substrate 10 and the current path 12 are combined in such a manner that the substrate 10 is inserted into the space formed by bending the current path 12.
  • the current path 12 exists on the back surface side of the substrate 10, and in the region where the second magnetic sensor 11B is mounted, the current path 12 is the front surface side of the substrate 10 In the other regions, the current paths 12 are present along the substrate.
  • the current to be measured is guided to the back surface side of the substrate 10 in the region where the first magnetic sensor 11A is mounted, and flows in the direction along the back surface of the substrate 10. Further, the current to be measured is led to the surface side of the substrate 10 in the region where the second magnetic sensor 11B is mounted, and flows in the direction along the surface of the substrate 10.
  • the current to be measured flows in the direction along the surface of the substrate 10 and flows on one surface side of the first magnetic sensor 11A, and the second magnetic sensor It is arrange
  • the current sensor shown in FIG. 4 is characterized in that the current path is formed of a plate-like body bent so as to have a recess.
  • the processing of the current path 12 becomes easy, so the manufacture becomes easy.
  • the shape of the current path 12 need not be limited to that shown in FIG.
  • the arrangement, shape, and the like of the current path 12 can be appropriately changed in accordance with the function, shape, and the like of the magnetic sensor.
  • the current sensor shown in the first embodiment etc. can be mounted such that the sensitivity axis directions of the first magnetic sensor 11A and the second magnetic sensor 11B are the same. Is the same as
  • the first magnetic sensor 11A and the second magnetic sensor 11B may be mounted on the same surface (that is, the surface) of the substrate 10. In this case, since it is mounted on one side, it is possible to improve the positional accuracy and the angular accuracy of the first magnetic sensor 11A and the second magnetic sensor 11B.
  • the substrate 10 includes the first arm 13A and the second arm 13B, and the surface of the first arm 13A and the back of the second arm 13B.
  • the magnetic sensor is mounted on each and the first arm 13A and the second arm 13B are inserted into the recess, but the configuration mode of the substrate 10 or the like need not be limited to this. This point is also similar to the current sensor described in the first embodiment and the like.
  • the substrate 10 various substrates such as a glass cloth-based epoxy resin laminate and a paper phenol substrate can be used.
  • the substrate 10 in the case of using a flexible substrate, the substrate 10 can be deformed in accordance with the shape of the current path 12, so that there is no need to improve the processing accuracy of the current path 12 and a current sensor with high accuracy can be realized inexpensively. .
  • the electrical connection relationship of the current sensor shown in FIG. 4 is the same as that of the current sensor according to the first embodiment. That is, the electrical connection relationship can be configured according to the example of the block diagram and the like shown in the first embodiment. Of course, it goes without saying that other configurations may be adopted.
  • the current to be measured flows in the direction along the surface of the substrate, thereby flowing on one surface side of one magnetic sensor, and the other It is possible to arrange the current path so as to flow through the other side of the magnetic sensor. Also, the current path is formed of a plate-like body bent so as to have a recess. For this reason, space saving of the current sensor can be further achieved.
  • FIG. 6 is a schematic view showing an example of the current sensor according to the third embodiment.
  • FIG. 6A is a side view of the current sensor
  • FIG. 6B is a plan view of the current sensor.
  • solid arrows indicate the direction of current
  • broken arrows indicate the direction of the sensitivity axis of the magnetic sensor.
  • the current sensor shown in FIG. 6 includes a flat substrate 10, a first magnetic sensor 11A and a second magnetic sensor 11B mounted on the surface of the substrate 10, and a conductive plate 12A provided on the surface of the substrate 10. And a conductor plate 12C electrically connected to the conductor plate 12A through an opening provided in the substrate 10, and a conductor plate 12D electrically connected to the conductor plate 12B through an opening provided in the substrate 10 And.
  • the conductor plate 12C and the conductor plate 12D are electrically connected through the opening provided in the substrate 10, and together with the conductor plate 12A and the conductor plate 12B, constitute a current path.
  • the conductor plate 12C and the substrate 10 are combined in such a manner that the conductor plate 12C is inserted into the substrate 10 from the back surface side of the substrate 10, and the conductor plate 12D and the substrate 10 are such that the conductor plate 12D is the substrate 10 They are combined in such a manner as to be inserted into the substrate 10 from the front side.
  • the first magnetic sensor 11A and the second magnetic sensor 11B have a substrate 10 so that the sensitivity axis direction is parallel to the surface of the substrate 10 on which the magnetic sensor is mounted. Has been implemented. Further, in the area where the first magnetic sensor 11A is mounted, the conductor plate 12C exists on the back surface side of the substrate 10, and in the area where the second magnetic sensor 11B is mounted, the conductor plate 12D is the front surface side of the substrate 10 Exists in
  • the current to be measured is guided to the back surface side of the substrate 10 in the region where the first magnetic sensor 11A is mounted, and flows in the direction along the back surface of the substrate 10. Further, the current to be measured is led to the surface side of the substrate 10 in the region where the second magnetic sensor 11B is mounted, and flows in the direction along the surface of the substrate 10.
  • the current to be measured flows in the direction along the surface of the substrate 10 and flows on one surface side of the first magnetic sensor 11A, and the second magnetic sensor It is arrange
  • the current sensor shown in FIG. 6 is common to the current sensor shown in FIG. 4 in that the current path is formed of a plate-like body bent so as to have a recess.
  • the difference between the current sensor shown in FIG. 4 and the current sensor shown in FIG. 6 is whether or not the current path is integrally formed. That is, while the current path shown in FIG. 4 is integrally formed, in the current sensor shown in FIG. 6, the current path is provided on conductor plate 12A and conductor plate 12B provided on substrate 10. And a bent plate-like conductor plate 12C and conductor plate 12D.
  • the current sensor shown in the first embodiment etc. can be mounted such that the sensitivity axis directions of the first magnetic sensor 11A and the second magnetic sensor 11B are the same. Is the same as
  • the substrate 10 various substrates such as a glass cloth-based epoxy resin laminate and a paper phenol substrate can be used.
  • the substrate 10 in the case of using a flexible substrate, the substrate 10 can be deformed in accordance with the shape of the current path 12, so that there is no need to improve the processing accuracy of the current path 12 and a current sensor with high accuracy can be realized inexpensively. .
  • the electrical connection relationship of the current sensor shown in FIG. 6 is the same as that of the current sensor according to the first embodiment. That is, the electrical connection relationship can be configured according to the example of the block diagram and the like shown in the first embodiment. Of course, it goes without saying that other configurations may be adopted.
  • the current to be measured flows in the direction along the surface of the substrate, thereby flowing on one surface side of one magnetic sensor, and the other It is possible to arrange the current path so as to flow through the other side of the magnetic sensor. Also, the current path is formed of a plate-like body bent so as to have a recess. For this reason, space saving of the current sensor can be further achieved.
  • the present invention is not limited to the above-described first to third embodiments, and can be implemented with various modifications.
  • the connection relation, size, and the like of each element in the above-described first to third embodiments can be implemented with appropriate changes.
  • the types of the current sensor and the magnetic detection element are not limited to this.
  • the magnetic balance type current sensor may be configured using a Hall element or another magnetic detection element.
  • the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
  • the current sensor of the present invention can be used, for example, to detect the magnitude of the current for driving a motor of an electric car or a hybrid car.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

 省スペース化された電流センサを提供することを目的の一とする。又は、金属板の打ち抜き加工が不要で、金属板の断面積を減らさなくても磁気センサを配置することのできる電流センサを提供することを目的の一とする。表面と裏面とを有する基板(10)と、基板に実装された第1の磁気センサ(11A)と、基板に実装された第2の磁気センサ(11B)と、被測定電流が通流する電流路(12)と、を備え、基板は第1の腕部(13A)と、第2の腕部(13B)と、第1の腕部と第2の腕部とを繋ぐ連結部(13C)とを有し、第1の磁気センサは、感度軸方向が基板の面に平行な方向になるように基板上の第1の腕部に実装され、第2の磁気センサは、感度軸方向が前記基板の面に平行な方向になるように前記基板上の第2の腕部に実装され、電流路は、第1の腕部の表側と、第1の腕部と第2の腕部との間と、第2の腕部の裏側とを通過するように配置する。

Description

電流センサ
 本発明は、広い測定範囲にわたって高い精度を実現した電流センサに関する。
 例えば、電気自動車のモータ駆動用の電流のような大電流は、金属板を通じて流される。金属板を通じて流される電流の大きさは、金属板の周囲に配置した磁気センサによって測定することが可能である。しかし、磁気センサは、外部磁場の影響も受けるため、外部磁場が強い状況では、電流センサの電流の検知精度が低くなるという問題が生じる。
 上述のような問題を解消するために、磁気検出素子を用いた磁気センサの出力の絶対値が等しく、かつ磁気センサの出力の特性が逆になるような位置に2つの磁気センサを配置して、外部磁場の影響をキャンセルする技術が提案されている(例えば、特許文献1、2参照)。
特開2002-243766号公報 国際公開第01/023899号パンフレット
 しかしながら、特許文献1において提案される技術では、二つの磁気センサが実装される基板と、電流線との位置関係から、電流センサの十分な省スペース化が図れないという問題がある。また、特許文献2において提案される技術では、磁気センサに加わる磁界の向きを逆にするために金属板を打ち抜き加工して変形させるため、製造が容易でないという問題がある。さらに、特許文献2において提案される技術では、磁気センサを配置する部分において金属板の幅が狭くなるため、金属板の電気抵抗が大きくなってしまうという問題も生じる。本発明はかかる点に鑑みてなされたものであり、省スペース化された電流センサを提供することを目的の一とする。又は、金属板の打ち抜き加工が不要で、金属板の断面積を減らさなくても磁気センサを配置することのできる電流センサを提供することを目的の一とする。
 本発明の電流センサは、表面と裏面とを有する基板と、前記基板に実装された第1の磁気センサと、前記基板に実装された第2の磁気センサと、被測定電流が通流する電流路と、を備え、前記基板は、第1の腕部と、第2の腕部と、前記第1の腕部と前記第2の腕部とを繋ぐ連結部とを有し、前記第1の磁気センサは、感度軸方向が前記基板の面に平行な方向になるように前記基板上の第1の腕部に実装され、前記第2の磁気センサは、感度軸方向が前記基板の面に平行な方向になるように前記基板上の第2の腕部に実装され、前記電流路は、前記第1の腕部の表側と、前記第1の腕部と前記第2の腕部の間と、前記第2の腕部の裏側とを通過するように配置されたことを特徴とする。
 この構成によれば、感度軸が基板と平行な方向の磁気センサを用い、電流路は、第1の腕部の表側と、第1の腕部と第2の腕部の間と、第2の腕部の裏側とを通過するように配置されているため、電流路を大きく湾曲させる必要が無い。これにより、電流測定に必要な電流路の長さを短くして、電流センサの小型化、省スペース化を実現できる。すなわち、従来の電流センサでは、磁気センサの感磁面が基板の面に直交していたため、電流路を大きく湾曲させなくてはならなかったが、感度軸が基板と平行な方向の磁気センサを用い、第1の腕部の表側と、第1の腕部と第2の腕部の間と、第2の腕部の裏側とを通過するように電流路を配置することで、電流測定に必要な電流路の長さを短くできる。この構成に係る電流センサの厚みは、電流路の厚みと磁気センサの厚みと基板の厚みとを足し合わせた大きさになり、この構成に係る電流センサの幅は、電流路の幅と基板の連結部の幅とを足し合わせた大きさになる。このため、電流センサの厚み、幅、長さをバランス良く小さくできる。また、電流路の断面積がほとんど変わらないため、電流路の抵抗値の上昇を防止できる。
 本発明の電流センサにおいて、前記第1の磁気センサと、前記第2の磁気センサとは、感度軸方向が同じになるように実装されても良い。この構成によれば、2つの磁気センサの差動出力により、地磁気などの外部磁場の影響を確実にキャンセルし、高精度な電流測定が可能になる。
 本発明の電流センサにおいて、前記第1の磁気センサと、前記第2の磁気センサとは、感度軸方向が逆方向になるように実装されても良い。この構成によれば、2つの磁気センサの出力を合計することで、地磁気などの外部磁場の影響を確実にキャンセルし、高精度な電流測定を可能になる。
 本発明の電流センサにおいて、前記第1の磁気センサは、前記基板の表面に実装され、前記第2の磁気センサは、前記基板の表面に実装されても良い。この構成によれば、磁気センサが片面実装となるため、一対の磁気センサの位置精度、角度精度を高めることが可能である。
 本発明の電流センサにおいて、前記第1の磁気センサは、前記基板の表面に実装され、前記第2の磁気センサは、前記基板の裏面に実装されても良い。この構成によれば、電流路から第1の磁気センサまでの距離と、電流路から第2の磁気センサまでの距離を等しくすることが容易となるので測定精度を高めやすい。
 本発明の電流センサにおいて、前記電流路が厚み方向に折り曲げた板状体で構成されていても良い。この構成によれば、厚み方向への折り曲げ加工によって電流路が加工されるため、電流路の加工が容易となる。例えば、折り曲げる角度が直角であれば、省スペース化を図ることができる。また、例えば、折り曲げる角度が鈍角であれば、加工がより容易となる。
 本発明の電流センサにおいて、前記電流路が、一対の面を有し、両面に凹部がそれぞれ形成されており、前記凹部に前記磁気センサがそれぞれ収容されていても良い。この構成によれば、磁気センサが凹部に収容されるため、十分に省スペース化を図ることができる。
 本発明の電流センサにおいて、前記基板はフレキシブル基板であっても良い。この構成によれば、フレキシブル基板が変形するため、電流路の加工精度が低くても、電流路と磁気センサとの距離を設計値通りにすることができて、測定精度の悪化を防止できる。
 本発明の電流センサにおいて、前記磁気センサは磁気抵抗効果素子を有することがある。この構成によれば、感度軸方向を基板の面に平行にすることが容易となる。
 本発明によれば、省スペース化された電流センサを提供することができる。又は、金属板の打ち抜き加工が不要で、金属板の断面積を減らさなくても磁気センサを配置することのできる電流センサを提供することができる。
実施の形態1に係る電流センサの例を示す図である。 実施の形態1に係る電流センサの変形例を示す図である。 実施の形態1に係る電流センサのブロック図の例である。 実施の形態2に係る電流センサの例を示す図である。 実施の形態2に係る電流センサの変形例を示す図である。 実施の形態3に係る電流センサの例を示す図である。
(実施の形態1)
 図1は、本発明の一例である、実施の形態1に係る電流センサを示す模式図である。図1(A)は電流センサの側面図であり、図1(B)は電流センサの平面図であり、図1(C)は電流センサの斜視図である。また、図1(A)及び図1(B)において、実線の矢印は電流の向きを示し、図1(B)において、破線の矢印は磁気センサの感度軸方向を示す。
 図1に示される電流センサは、平面視略U字型に加工された基板10と、基板10の表面(一方の面)に実装された第1の磁気センサ11Aと、基板10の裏面(他方の面)に実装された第2の磁気センサ11Bと、基板の形状に合わせてくぼみ(凹部ともいう)が設けられた電流路(電流線)12と、を有する。基板10は、同一方向に延在する第1の腕部(延在部)13A及び第2の腕部(延在部)13Bと、これら第1の腕部13A及び第2の腕部13Bを連結する連結部13Cとから構成されている。第1の腕部13Aの表面側には第1の磁気センサ11Aが実装され、第2の腕部13Bの裏面側には第2の磁気センサ11Bが実装されている。電流路12は、電流の通流方向に延在形成され、電流路12の延在方向に直交する方向に、電流路12のくぼみ部分に第1の腕部13A及び第2の腕部13Bを差し込むようにして、基板10と電流路12とが装着される。これにより、基板10と電流路12との実装を容易に行うことができる。ここで、第1の磁気センサ11Aと、第2の磁気センサ11Bとは、その感度軸方向が基板10の磁気センサが実装される面に平行な方向になるように基板10に実装されている。また、基板10と電流路12とは、基板10の第1の腕部13A及び第2の腕部13B(第1の磁気センサ11A又は第2の磁気センサ11Bが実装された領域)が電流路12のくぼみに差し込まれるような態様で組み合わせられている。そして、第1の磁気センサ11Aが実装される領域において、電流路12は基板10の裏面側に存在し、第2の磁気センサ11Bが実装される領域において、電流路12は基板10の表面側に存在し、その他の領域において、電流路12は基板に沿う態様で存在している。また、電流路12は、第1の腕部13Aと第2の腕部13Bとの間を通る態様で存在している。なお、ここでは、第1の磁気センサ11Aが実装される面を基板の表面とし、その反対側の面を裏面とする。
 このような構成により、被測定電流は、第1の磁気センサ11Aが実装される領域において、基板10の裏面側に導かれ、基板10の裏面に沿う方向に流れる。また、被測定電流は、第2の磁気センサ11Bが実装される領域において、基板10の表面側に導かれ、基板10の表面に沿う方向に流れる。言い換えれば、本実施の形態の電流センサでは、被測定電流が、基板10の面に沿う方向に通流し、第1の磁気センサ11Aの一方の面側を通流すると共に、第2の磁気センサ11Bの他方の面側を通流するように配設されている。
 電流路12、基板10、第1の磁気センサ11A及び第2の磁気センサ11Bの配置を図1のようにすることで、省スペース化を達成することができる。例えば、感度軸方向が基板の面に平行な方向になるように一対の磁気センサを配置し、被測定電流が、基板の面に垂直な方向に通流する構成を採用した電流センサでは、直線状の電流路に対して対称な位置に二つの磁気センサを配置するスペースを必要としていたが、本実施の形態の構成では、被測定電流が、基板10の面に沿う方向に通流するように電流路12が配設されているため、従来の構成で必要とされていたスペースが不要になり、二つの磁気センサを用いる電流センサの省スペース化を図ることができる。また、磁気センサの感磁面が基板の面に直交する構成の電流センサでは、電流路を大きく湾曲させなくてはならなかったが、本実施の形態の構成では、感度軸が基板と平行な方向の磁気センサを用い、第1の腕部の表側と、第1の腕部と第2の腕部の間と、第2の腕部の裏側とを通過するように電流路を配置することで、電流測定に必要な電流路の長さが短くなり、電流センサの小型化、省スペース化を図ることができる。
 また、複数の基板のそれぞれに磁気センサを配置する場合には、磁気センサ同士の位置精度や角度精度が、複数の基板の実装精度に依存することになるが、上述のように、基板10に二つの磁気センサを実装する場合には、磁気センサどうしの位置精度や角度精度が、磁気センサの実装精度のみによって決まることになる。このため、複数の基板を用いる場合と比較して、磁気センサの位置精度、角度精度などを向上させることができる。さらに、複数の基板を用いる場合と比較して、部品コストや実装コストを低減することもできる。なお、磁気センサの位置精度、角度精度などを向上するという観点からは、基板10と電流路12とは、例えば、基板10の連結部13C(第1の腕部13A及び第2の腕部13Bを連結する部分)などにおいて固定されていることが望ましい。
 実施の形態1に係る電流センサにおいては、第1の磁気センサ11Aと第2の磁気センサ11Bは、感度軸方向がそれぞれ同じになるように実装されている。このため、電流によって生じる磁束による第1の磁気センサ11Aの出力と第2の磁気センサ11Bの出力の絶対値は等しくなり、かつ第1の磁気センサ11Aの出力と第2の磁気センサ11Bの出力の極性は逆になる。
 これにより、外部磁場の影響をキャンセルし、電流の検知精度を高めることができる。ここで、外部磁場の影響のキャンセルは、次の原理によって実現する。電流路12に導かれる電流によって電流路12の周辺に磁束φが生じた場合の、磁束φのみに起因して生じる第1の磁気センサ11Aの出力をO1とする。第1の磁気センサ11Aと第2の磁気センサ11Bは、感度軸方向がそれぞれ同じになるように実装されているため、その出力の絶対値が等しく、かつその出力の極性は逆となる。よって、磁束φのみに起因して生じる第2の磁気センサ11Bの出力は-O1である。一方で、一様な外部磁場による第1の磁気センサ11Aの出力(ノイズ)をN1とすると、第2の磁気センサ11Bの出力も同様にN1である。よって、ノイズ成分を含めた第1の磁気センサ11Aの出力はO1+N1となり、ノイズ成分を含めた第2の磁気センサ11Bの出力は-O1+N1となる。二つの磁気センサの出力の差は、(O1+N1)-(-O1+N1)=2・O1であるから、二つの磁気センサの出力の差動値をとることで外部磁場によるノイズ成分が除去されることになる。
 なお、上述のように、図1に示す電流センサにおいて、第1の磁気センサ11Aと第2の磁気センサ11Bは、感度軸方向がそれぞれ同じになるように実装されているが、第1の磁気センサ11Aと第2の磁気センサ11Bの実装の仕方をこれに限定する必要はない。
 例えば、第1の磁気センサ11A及び第2の磁気センサ11Bの感度軸方向が、逆になるように実装してもよい。この場合、電流によって生じる磁束による第1の磁気センサ11Aの出力と第2の磁気センサ11Bの出力の絶対値は等しくなり、かつ第1の磁気センサ11Aの出力と第2の磁気センサ11Bの出力の極性も等しくなる。
 この場合において、電流路12に導かれる電流によって電流路12の周辺に磁束φが生じた場合の、磁束φのみに起因して生じる第1の磁気センサ11Aの出力をO1とする。第1の磁気センサ11Aと第2の磁気センサ11Bは、感度軸方向がそれぞれ逆方向になるように実装されているため、その出力の絶対値が等しく、かつその出力の極性が同じになる。よって、磁束φのみに起因して生じる第2の磁気センサ11Bの出力はO1である。一方で、一様な外部磁場による第1の磁気センサ11Aの出力(ノイズ)をN1とすると、第2の磁気センサ11Bの出力は、絶対値が等しく極性が逆となるため、-N1となる。よって、ノイズ成分を含めた第1の磁気センサ11Aの出力はO1+N1となり、ノイズ成分を含めた第2の磁気センサ11Bの出力はO1-N1となる。二つの磁気センサの出力の合計は、(O1+N1)+(O1-N1)=2・O1であるから、二つの磁気センサの出力の合計値をとることで外部磁場によるノイズ成分が除去されることになる。
 なお、図1に示す電流センサでは、基板10の一方の面(表面)に第1の磁気センサ11Aが実装され、基板10の他方の面(裏面)に第2の磁気センサ11Bが実装されているが、電流路と磁気センサとの距離が等しい態様であれば、例えば、図2に示すように、第1の磁気センサ11A及び第2の磁気センサ11Bを基板10の同じ面(表面又は裏面のいずれか)に実装しても良い。この場合、磁気センサが片面実装となるため、第1の磁気センサ11Aと第2の磁気センサ11Bとの位置精度、角度精度を高めることが可能である。
 図2に示す電流センサにおいて、第1の磁気センサ11Aと第2の磁気センサ11Bは、感度軸方向が逆になるように実装されているが、第1の磁気センサ11Aと第2の磁気センサ11Bの実装の仕方をこれに限定する必要はない。例えば、第1の磁気センサ11A及び第2の磁気センサ11Bの感度軸方向が、同じなるように実装してもよい。
 図1に示す電流センサにおいて、基板10については特に限定されない。例えば、基板10として、ガラス布基材エポキシ樹脂積層板や、紙フェノール基板等の様々な基板を使用可能である。特に、フレキシブル基板を用いる場合には、電流路12の形状に合わせて基板10を変形できるので、電流路12の加工精度を高める必要がなく、安価に高精度の電流センサを実現することができる。
 図3は、実施の形態1に係る電流センサのブロック図の例である。第1の磁気センサ11A、第2の磁気センサ11Bは、磁気平衡式センサであり、被測定電流によって発生する磁界を打ち消す方向の磁界を発生可能に配置されたフィードバックコイル211と、磁気検出素子である2つの磁気抵抗効果素子及び2つの固定抵抗素子からなるブリッジ回路212とから構成されている。制御部210は、第1の磁気センサ11Aのブリッジ回路212の差動出力を増幅し、フィードバックコイル211のフィードバック電流を制御する差動・電流アンプ221と、第1の磁気センサ11Aのフィードバック電流を電圧に変換するI/Vアンプ222とを含む。また、制御部210は、第2の磁気センサ11Bのブリッジ回路212の差動出力を増幅し、フィードバックコイル211のフィードバック電流を制御する差動・電流アンプ223と、第2の磁気センサ11Bのフィードバック電流を電圧に変換するI/Vアンプ224とを含む。差動部23は、I/Vアンプ222、224の差動出力を増幅する差動アンプ231を含む。
 フィードバックコイル211は、ブリッジ回路212の磁気抵抗効果素子の近傍に配置されており、被測定電流により発生する誘導磁界を相殺するキャンセル磁界を発生する。ブリッジ回路212の磁気抵抗効果素子としては、GMR(Giant Magneto Resistance)素子やTMR(Tunnel Magneto Resistance)素子などを挙げることができる。磁気抵抗効果素子は、被測定電流からの誘導磁界の印加により抵抗値が変化する。2つの磁気抵抗効果素子と2つの固定抵抗素子によりブリッジ回路212を構成することにより、高感度の電流センサを実現することができる。また、磁気抵抗効果素子を用いることにより、電流センサを設置する基板面と平行な方向に感度軸を配置し易く、平面コイルを使用することが可能となる。
 ブリッジ回路212は、被測定電流により生じた誘導磁界に応じた電圧差を生じる2つの出力を備える。ブリッジ回路212の2つの出力は差動・電流アンプ221、223で増幅され、増幅された出力がフィードバックコイル211に電流(フィードバック電流)として与えられる。このフィードバック電流は、誘導磁界に応じた電圧差に対応する。このとき、フィードバックコイル211には、誘導磁界を相殺するキャンセル磁界が発生する。そして、誘導磁界とキャンセル磁界とが相殺される平衡状態となったときのフィードバックコイル211に流れる電流がI/Vアンプ222、224で電圧に変換され、この電圧がセンサ出力となる。
 なお、差動・電流アンプ221においては、電源電圧を、I/V変換の基準電圧+(フィードバックコイル抵抗の定格内最大値×フルスケール時フィードバックコイル電流)に近い値に設定することで、フィードバック電流が制限され、磁気抵抗効果素子やフィードバックコイルを保護する効果が得られる。また、ここではブリッジ回路212の二つの出力の差動を増幅してフィードバック電流に用いたが、ブリッジ回路からは中点電位のみを出力とし、所定の基準電位との電位差をもとにフィードバック電流としてもよい。
 差動アンプ231は、I/Vアンプ222、I/Vアンプ224の出力信号の差動値をセンサ出力として処理する。このような処理を行うことにより、第1の磁気センサ11A、第2の磁気センサ11Bの出力信号における地磁気などの外部磁場の影響はキャンセルされ、高精度に電流を測定できる。
 なお、図3のブロック図に係る電流センサは一例にすぎず、他の構成の電流センサを採用することは当然に可能である。例えば、第1の電流センサ11Aと第2の電流センサ11Bの感度軸方向が逆方向である場合、差動アンプ231の代わりに、出力値を合算するアンプを設ければよい。
 上述のように、本実施の形態における電流センサは、被測定電流が、基板の面に沿う方向に通流しており、これによって、一方の磁気センサの一方の面側を通流すると共に、他方の磁気センサの他方の面側を通流するように電流路を配設することが可能になっている。このため、電流センサの十分な省スペース化を図ることができる。
(実施の形態2)
 本実施の形態においては、本発明の別の一例として、電流路が、凹部を有するように折り曲げられた板状体で構成されている電流センサについて説明する。
 図4は、実施の形態2に係る電流センサの一例を示す模式図である。図4(A)は電流センサの側面図であり、図4(B)は電流センサの平面図であり、図4(C)は電流センサの斜視図である。また、図4(A)及び図4(B)において、実線の矢印は電流の向きを示し、図4(B)において、破線の矢印は磁気センサの感度軸方向を示す。
 図4に示される電流センサは、略U字型に加工された基板10と、基板10の表面に実装された第1の磁気センサ11Aと、基板10の裏面に実装された第2の磁気センサ11Bと、基板10の磁気センサ非実装面側を通過するように折り曲げられた電流路12と、を有する。ここで、第1の磁気センサ11Aと、第2の磁気センサ11Bとは、その感度軸方向が基板10の磁気センサが実装される面に平行な方向になるように基板10に実装されている。また、基板10と電流路12とは、基板10が電流路12の折り曲げによって形成された空間に差し込まれるような態様で組み合わせられている。そして、第1の磁気センサ11Aが実装される領域において、電流路12は基板10の裏面側に存在し、第2の磁気センサ11Bが実装される領域において、電流路12は基板10の表面側に存在し、その他の領域において、電流路12は基板に沿う態様で存在している。
 このような構成により、被測定電流は、第1の磁気センサ11Aが実装される領域において、基板10の裏面側に導かれ、基板10の裏面に沿う方向に流れる。また、被測定電流は、第2の磁気センサ11Bが実装される領域において、基板10の表面側に導かれ、基板10の表面に沿う方向に流れる。言い換えれば、本実施の形態の電流センサも、被測定電流が、基板10の面に沿う方向に通流し、第1の磁気センサ11Aの一方の面側を通流すると共に、第2の磁気センサ11Bの他方の面側を通流するように配設されている。
 上述のように、図4に示す電流センサは、電流路が、凹部を有するように折り曲げられた板状体で構成されている点が特徴的である。このような構成を採用することにより、電流路12の加工が容易となるため、製造が容易となる。ここで、電流路12の形状は図4に示すものに限定する必要はない。電流路12の配置や形状などは、磁気センサの機能や形状などに合わせて適宜変更することができる。
 図4に示す電流センサにおいても、第1の磁気センサ11Aと第2の磁気センサ11Bの感度軸方向がそれぞれ同じになるように実装することができる点は、実施の形態1などに示す電流センサと同様である。
 また、図4に示す電流センサにおいても、例えば、図5に示すように、第1の磁気センサ11A及び第2の磁気センサ11Bを基板10の同じ面(つまり表面)に実装しても良い。この場合、片面実装となるため、第1の磁気センサ11Aと第2の磁気センサ11Bとの位置精度、角度精度を高めることが可能である。
 また、図4に示す電流センサにおいても、基板10は、第1の腕部13Aと第2の腕部13Bとを備え、第1の腕部13Aの表面と、第2の腕部13Bの裏面には、それぞれ磁気センサが実装され、第1の腕部13Aと第2の腕部13Bとが凹部に挿入されているが、基板10などの構成態様をこれに限定する必要はない。この点についても、実施の形態1などに示す電流センサと同様である。
 また、同様に、基板10として、ガラス布基材エポキシ樹脂積層板や、紙フェノール基板等の様々な基板を使用可能である。例えば、フレキシブル基板を用いる場合には、電流路12の形状に合わせて基板10を変形できるので、電流路12の加工精度を高める必要がなく、安価に高精度の電流センサを実現することができる。
 図4に示す電流センサの電気的な接続関係は、実施の形態1に係る電流センサと同様である。つまり、実施の形態1において示したブロック図などの例に従って電気的接続関係を構成することができる。もちろん、他の構成を採用してもよいことは言うまでもない。
 上述のように、本実施の形態における電流センサは、被測定電流が、基板の面に沿う方向に通流しており、これによって、一方の磁気センサの一方の面側を通流すると共に、他方の磁気センサの他方の面側を通流するように電流路を配設することが可能になっている。また、電流路が、凹部を有するように折り曲げられた板状体で構成されている。このため、電流センサのさらなる省スペース化を図ることができる。
(実施の形態3)
 本実施の形態においては、本発明の別の一例として、電流路が、凹部を有するように折り曲げられた板状体で構成されている電流センサについて説明する。
 図6は、実施の形態3に係る電流センサの一例を示す模式図である。図6(A)は電流センサの側面図であり、図6(B)は電流センサの平面図である。また、図6(A)及び図6(B)において、実線の矢印は電流の向きを示し、図6(B)において、破線の矢印は磁気センサの感度軸方向を示す。
 図6に示される電流センサは、平板形状の基板10と、基板10の表面に実装された第1の磁気センサ11A及び第2の磁気センサ11Bと、基板10の表面に設けられた導体板12A及び導体板12Bと、基板10に設けられた開口を通じて導体板12Aと電気的に接続された導体板12Cと、基板10に設けられた開口を通じて導体板12Bと電気的に接続された導体板12Dと、を有する。ここで、導体板12Cと導体板12Dとは、基板10に設けられた開口を通じて電気的に接続されており、導体板12A及び導体板12Bとあわせて電流路を構成している。また、導体板12Cと基板10とは、導体板12Cが基板10の裏面側から基板10に差し込まれるような態様で組み合わせられており、導体板12Dと基板10とは、導体板12Dが基板10表面側から基板10に差し込まれるような態様で組み合わせられている。
 図6に示される電流センサにおいて、第1の磁気センサ11Aと第2の磁気センサ11Bとは、その感度軸方向が基板10の磁気センサが実装される面に平行な方向になるように基板10に実装されている。また、第1の磁気センサ11Aが実装される領域において、導体板12Cは基板10の裏面側に存在し、第2の磁気センサ11Bが実装される領域において、導体板12Dは基板10の表面側に存在している。
 このような構成により、被測定電流は、第1の磁気センサ11Aが実装される領域において、基板10の裏面側に導かれ、基板10の裏面に沿う方向に流れる。また、被測定電流は、第2の磁気センサ11Bが実装される領域において、基板10の表面側に導かれ、基板10の表面に沿う方向に流れる。言い換えれば、本実施の形態の電流センサも、被測定電流が、基板10の面に沿う方向に通流し、第1の磁気センサ11Aの一方の面側を通流すると共に、第2の磁気センサ11Bの他方の面側を通流するように配設されている。
 上述のように、図6に示す電流センサは、電流路が、凹部を有するように折り曲げられた板状体で構成されている点において、図4に示す電流センサと共通している。このような構成を採用することにより、電流センサのさらなる省スペース化を図ることができる。ここで、図4に示す電流センサと図6に示す電流センサの相違は、電流路が一体に構成されているか否かである。つまり、図4に示す電流センサは、電流路が一体に構成されているのに対して、図6に示す電流センサでは、電流路が、基板10上に設けられた導体板12A及び導体板12Bと、折り曲げられた板状の導体板12C及び導体板12Dとの複合体になっている。このような構成を採用する場合、基板10を大きく加工する必要がないため、製造コスト増を抑えつつ、基板への電流路の実装(又は、電流路への基板の実装)を容易にすることができる。
 図6に示す電流センサにおいても、第1の磁気センサ11Aと第2の磁気センサ11Bの感度軸方向がそれぞれ同じになるように実装することができる点は、実施の形態1などに示す電流センサと同様である。
 また、同様に、基板10として、ガラス布基材エポキシ樹脂積層板や、紙フェノール基板等の様々な基板を使用可能である。例えば、フレキシブル基板を用いる場合には、電流路12の形状に合わせて基板10を変形できるので、電流路12の加工精度を高める必要がなく、安価に高精度の電流センサを実現することができる。
 図6に示す電流センサの電気的な接続関係は、実施の形態1に係る電流センサと同様である。つまり、実施の形態1において示したブロック図などの例に従って電気的接続関係を構成することができる。もちろん、他の構成を採用してもよいことは言うまでもない。
 上述のように、本実施の形態における電流センサは、被測定電流が、基板の面に沿う方向に通流しており、これによって、一方の磁気センサの一方の面側を通流すると共に、他方の磁気センサの他方の面側を通流するように電流路を配設することが可能になっている。また、電流路が、凹部を有するように折り曲げられた板状体で構成されている。このため、電流センサのさらなる省スペース化を図ることができる。
 本発明は上記実施の形態1乃至3に限定されず、種々変更して実施することができる。例えば、上記実施の形態1乃至3における各素子の接続関係、大きさなどは適宜変更して実施することが可能である。また、上記実施の形態においては、磁気平衡式電流センサに磁気抵抗効果素子を用いた場合について説明しているが、電流センサや磁気検出素子の種類はこれに限られない。例えば、磁気平衡式電流センサにホール素子やその他の磁気検出素子を用いて構成してもよい。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。
 本発明の電流センサは、例えば、電気自動車やハイブリッドカーのモータ駆動用の電流の大きさを検知するために用いることが可能である。
 本出願は、2010年10月15日出願の特願2010-232934に基づく。この内容は、全てここに含めておく。

Claims (9)

  1.  表面と裏面とを有する基板と、
     前記基板に実装された第1の磁気センサと、
     前記基板に実装された第2の磁気センサと、
     被測定電流が通流する電流路と、を備え、
     前記基板は、第1の腕部と、第2の腕部と、前記第1の腕部と前記第2の腕部とを繋ぐ連結部とを有し、
     前記第1の磁気センサは、感度軸方向が前記基板の面に平行な方向になるように前記基板上の第1の腕部に実装され、
     前記第2の磁気センサは、感度軸方向が前記基板の面に平行な方向になるように前記基板上の第2の腕部に実装され、
     前記電流路は、前記第1の腕部の表側と、前記第1の腕部と前記第2の腕部の間と、前記第2の腕部の裏側とを通過するように配置されたたことを特徴とする電流センサ。
  2.  前記第1の磁気センサと、前記第2の磁気センサとは、感度軸方向が同じになるように実装されたことを特徴とする請求項1に記載の電流センサ。
  3.  前記第1の磁気センサと、前記第2の磁気センサとは、感度軸方向が逆方向になるように実装されたことを特徴とする請求項1に記載の電流センサ。
  4.  前記第1の磁気センサは、前記基板の表面に実装され、
     前記第2の磁気センサは、前記基板の表面に実装されたことを特徴とする請求項1記載の電流センサ。
  5.  前記第1の磁気センサは、前記基板の表面に実装され、
     前記第2の磁気センサは、前記基板の裏面に実装されたことを特徴とする請求項1記載の電流センサ。
  6.  前記電流路が厚み方向に折り曲げた板状体で構成されていることを特徴とする請求項1記載の電流センサ。
  7. 前記電流路が、一対の面を有し、両面に凹部がそれぞれ形成されており、前記凹部に前記磁気センサがそれぞれ収容されていることを特徴とする請求項1記載の電流センサ。
  8.  前記基板はフレキシブル基板であることを特徴とする請求項1に記載の電流センサ。
  9.  前記磁気センサは磁気抵抗効果素子を有することを特徴とする請求項1に記載の電流センサ。
PCT/JP2011/073144 2010-10-15 2011-10-06 電流センサ WO2012050048A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012538659A JP5659389B2 (ja) 2010-10-15 2011-10-06 電流センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-232934 2010-10-15
JP2010232934 2010-10-15

Publications (1)

Publication Number Publication Date
WO2012050048A1 true WO2012050048A1 (ja) 2012-04-19

Family

ID=45938277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073144 WO2012050048A1 (ja) 2010-10-15 2011-10-06 電流センサ

Country Status (2)

Country Link
JP (1) JP5659389B2 (ja)
WO (1) WO2012050048A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014150075A1 (en) * 2013-03-15 2014-09-25 Itron, Inc. Electricity meter having multiple hall devices
WO2016006410A1 (ja) * 2014-07-07 2016-01-14 アルプス・グリーンデバイス株式会社 電流センサ
EP3029470A4 (en) * 2013-07-30 2016-08-17 Asahi Kasei Microdevices Corp CURRENT SENSOR
WO2016194633A1 (ja) * 2015-06-04 2016-12-08 株式会社村田製作所 電流センサ
JPWO2015133621A1 (ja) * 2014-03-07 2017-04-06 日立金属株式会社 電流量検出器
JPWO2017014040A1 (ja) * 2015-07-22 2017-11-02 株式会社村田製作所 電流センサ
CN108023014A (zh) * 2016-11-04 2018-05-11 爱信精机株式会社 电子元件
JP2018141634A (ja) * 2017-02-24 2018-09-13 旭化成エレクトロニクス株式会社 電流センサ
WO2019069499A1 (ja) * 2017-10-04 2019-04-11 株式会社村田製作所 電流センサの製造方法および電流センサ
WO2022138303A1 (ja) * 2020-12-24 2022-06-30 株式会社オートネットワーク技術研究所 電流検知装置
WO2023276673A1 (ja) * 2021-07-02 2023-01-05 株式会社村田製作所 電流センサ
WO2023280924A1 (de) * 2021-07-07 2023-01-12 Zf Friedrichshafen Ag Elektrische einrichtung für ein kraftfahrzeug
WO2023006138A1 (de) * 2021-07-30 2023-02-02 Schaeffler Technologies AG & Co. KG Stromsensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5816958B2 (ja) * 2011-09-13 2015-11-18 アルプス・グリーンデバイス株式会社 電流センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258464A (ja) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp 電流センサ
JP2001066327A (ja) * 1999-08-25 2001-03-16 Yazaki Corp 電流センサ
JP2003510612A (ja) * 1999-09-30 2003-03-18 ダイムラークライスラー アクチエンゲゼルシャフト 少なくとも2つのホールセンサから成る磁界感知可能な差分センサを備えた電流を測定するための装置
JP2007183221A (ja) * 2006-01-10 2007-07-19 Denso Corp 電流センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258464A (ja) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp 電流センサ
JP2001066327A (ja) * 1999-08-25 2001-03-16 Yazaki Corp 電流センサ
JP2003510612A (ja) * 1999-09-30 2003-03-18 ダイムラークライスラー アクチエンゲゼルシャフト 少なくとも2つのホールセンサから成る磁界感知可能な差分センサを備えた電流を測定するための装置
JP2007183221A (ja) * 2006-01-10 2007-07-19 Denso Corp 電流センサ

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9910071B2 (en) 2013-03-15 2018-03-06 Itron, Inc. Electricity meter having multiple hall devices
WO2014150075A1 (en) * 2013-03-15 2014-09-25 Itron, Inc. Electricity meter having multiple hall devices
US9250270B2 (en) 2013-03-15 2016-02-02 Itron, Inc. Electricity meter having multiple hall devices
EP3029470A4 (en) * 2013-07-30 2016-08-17 Asahi Kasei Microdevices Corp CURRENT SENSOR
US10215781B2 (en) 2013-07-30 2019-02-26 Asahi Kasei Microdevices Corporation Current sensor
JPWO2015133621A1 (ja) * 2014-03-07 2017-04-06 日立金属株式会社 電流量検出器
JPWO2016006410A1 (ja) * 2014-07-07 2017-04-27 アルプス電気株式会社 電流センサ
WO2016006410A1 (ja) * 2014-07-07 2016-01-14 アルプス・グリーンデバイス株式会社 電流センサ
US10241137B2 (en) 2014-07-07 2019-03-26 Alps Alpine Co., Ltd. Current sensor having electromagnetic shield
WO2016194633A1 (ja) * 2015-06-04 2016-12-08 株式会社村田製作所 電流センサ
WO2016194240A1 (ja) * 2015-06-04 2016-12-08 株式会社村田製作所 電流センサ
US10215780B2 (en) 2015-06-04 2019-02-26 Murata Manufacturing Co., Ltd. Current sensor
JPWO2017014040A1 (ja) * 2015-07-22 2017-11-02 株式会社村田製作所 電流センサ
CN108023014A (zh) * 2016-11-04 2018-05-11 爱信精机株式会社 电子元件
CN108023014B (zh) * 2016-11-04 2023-04-07 株式会社爱信 电子元件
JP2018141634A (ja) * 2017-02-24 2018-09-13 旭化成エレクトロニクス株式会社 電流センサ
WO2019069499A1 (ja) * 2017-10-04 2019-04-11 株式会社村田製作所 電流センサの製造方法および電流センサ
WO2022138303A1 (ja) * 2020-12-24 2022-06-30 株式会社オートネットワーク技術研究所 電流検知装置
WO2023276673A1 (ja) * 2021-07-02 2023-01-05 株式会社村田製作所 電流センサ
WO2023280924A1 (de) * 2021-07-07 2023-01-12 Zf Friedrichshafen Ag Elektrische einrichtung für ein kraftfahrzeug
WO2023006138A1 (de) * 2021-07-30 2023-02-02 Schaeffler Technologies AG & Co. KG Stromsensor

Also Published As

Publication number Publication date
JPWO2012050048A1 (ja) 2014-02-24
JP5659389B2 (ja) 2015-01-28

Similar Documents

Publication Publication Date Title
WO2012050048A1 (ja) 電流センサ
JP5531215B2 (ja) 電流センサ
WO2013005459A1 (ja) 電流センサ
JP5489145B1 (ja) 電流センサ
JP5906488B2 (ja) 電流センサ
WO2013099504A1 (ja) 電流センサ
US9335349B2 (en) Current sensor
JP6384677B2 (ja) 電流センサ
JP2012018024A (ja) 電流センサ
JP5688572B2 (ja) 電流センサ
WO2012046547A1 (ja) 電流センサ
JP2013088370A (ja) 電流センサ
JP5487403B2 (ja) 電流センサ
JP2012063285A (ja) 電流センサ
JP2012052980A (ja) 電流センサ
JP5522962B2 (ja) 電流検出装置
JP5504483B2 (ja) 電流センサ
JP5504488B2 (ja) 電流センサ
JP2010204026A (ja) 電流検出装置
JP2012220469A (ja) 電流センサ
JP2015090316A (ja) 電流センサ
JP2012225818A (ja) 電流センサ
JP2022029109A (ja) 電流センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538659

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832483

Country of ref document: EP

Kind code of ref document: A1