JP2012052980A - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
JP2012052980A
JP2012052980A JP2010197409A JP2010197409A JP2012052980A JP 2012052980 A JP2012052980 A JP 2012052980A JP 2010197409 A JP2010197409 A JP 2010197409A JP 2010197409 A JP2010197409 A JP 2010197409A JP 2012052980 A JP2012052980 A JP 2012052980A
Authority
JP
Japan
Prior art keywords
magnetic sensor
sensor
magnetic
current
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010197409A
Other languages
English (en)
Inventor
Takeshi Suenaga
健 末永
Manabu Tamura
学 田村
Masatoshi Nomura
雅俊 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Green Devices Co Ltd
Original Assignee
Alps Green Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Green Devices Co Ltd filed Critical Alps Green Devices Co Ltd
Priority to JP2010197409A priority Critical patent/JP2012052980A/ja
Publication of JP2012052980A publication Critical patent/JP2012052980A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

【課題】広範囲の被測定電流を測定でき、小型化・薄型化可能な電流センサを提供すること。
【解決手段】本発明の電流センサ1は、被測定電流からの誘導磁界Hにより出力信号を出力する第一の磁気センサ14a及び第二の磁気センサ14bと、第一の磁気センサ14aの出力信号と第二の磁気センサ14bの出力信号とを制御する制御部21と、を具備し、第一の磁気センサ14a及び第二の磁気センサ14bは、感度軸方向D1、D2からの誘導磁界Hに対して略同一の検出感度を有すると共に、感度軸方向D1、D2が、被測定電流からの誘導磁界Hの印加方向に対して互いに異なる角度θ1、θ2をなすように固定されることを特徴とする。
【選択図】図1

Description

本発明は、電流の大きさを測定する電流センサに関し、特に、導体を流れる電流を、磁電変換素子を介して検出する電流センサに関する。
近年、電気自動車やソーラー電池などの分野では、電気自動車やソーラー電池装置の大出力化・高性能化に伴って、取り扱う電流値が大きくなってきており、直流大電流を非接触で測定する電流センサが広く用いられている。このような電流センサとしては、検出対象となる導体に流れる電流を、導体周囲の磁界の変化を介して検出する磁電変換素子を備えたものが提案されている。また、電流センサとして、広い測定レンジを持つ電流センサが開発されている。
広い測定レンジを持つ電流センサとしては、導体からの距離を変えた位置に2つの磁気センサを配置した電流センサが提案されている(例えば、特許文献1参照)。かかる電流センサにおいては、導体を通流する被測定電流からの誘導磁界の磁界強度の異なる場所に2つの磁気センサを配置し、この2つの磁気センサの出力信号により被測定電流を測定する。
特開2004−132790号公報
ところで、電流センサにおいては、製造コスト等の面から広範囲な測定レンジを有すると共に、小型の電流センサが望まれている。しかしながら、特許文献1記載の電流センサにおいては、広範囲な測定レンジにするために、導体と磁気センサとの間の距離を広げる必要があるため、必要スペースが大きくなる。このため、従来の電流センサでは、電流センサの小型化及び被測定電流の測定レンジの拡大を共に実現することは困難であった。
本発明は、かかる点に鑑みてなされたものであり、広範囲の被測定電流を測定でき、小型化可能な電流センサを提供することを目的とする。
本発明の電流センサは、被測定電流からの誘導磁界により出力信号を出力する第一の磁気センサ及び第二の磁気センサと、前記第一の磁気センサの出力信号と前記第二の磁気センサの出力信号とを制御する制御手段と、を具備し、前記第一の磁気センサ及び第二の磁気センサは、感度軸方向からの誘導磁界に対して略同一の検出感度を有すると共に、感度軸方向が、前記被測定電流からの誘導磁界の印加方向に対して互いに異なる角度をなすように固定されることを特徴とする。
この構成によれば、第一の磁気センサの感度軸方向と被測定電流からの誘導磁界の印加方向とがなす角度、及び第二の磁気センサの感度軸方向と被測定電流からの誘導磁界の印加方向とがなす角度が異なる角度となる。このため、第一の磁気センサに作用する誘導磁界の磁気ベクトルと、第二の磁気センサに作用する誘導磁界の磁気ベクトルとが異なる大きさとなるので、第一の磁気センサに対して第一の磁気センサから出力される出力信号と、第二の磁気センサから出力される出力信号とが異なる強度となる。したがって、第一の磁気センサ又は第二の磁気センサのいずれか一方が検出下限以下となる条件、及び第一の磁気センサ又は第二の磁気センサのいずれか一方が磁気飽和する条件においても、第二の磁気センサ又は第一の磁気センサにより被測定電流を検出することが可能となる。また、被測定電流を通流する導電部材と第一の磁気センサ及び第二の磁気センサとの間の距離を変えることなく第一の磁気センサ及び第二の磁気センサから出力される出力信号が異なる強度となるので、電流センサの小型化・薄型化が可能となる。したがって、広範囲の被測定電流を測定でき、小型化・薄型化可能な電流センサを実現できる。
本発明の電流センサにおいては、前記第一の磁気センサ又は前記第二の磁気センサの感度軸方向が、前記被測定電流からの誘導磁界の印加方向に対して略同一方向となるように固定されることが好ましい。
この構成によれば、感度軸方向が誘導磁界の印加方向に対して略同一方向に固定された第一の磁気センサ又は第二の磁気センサの検出感度が増大するので、電流センサの検出下限を拡大することが可能となる。
本発明の電流センサは、被測定電流からの誘導磁界により出力信号を出力する一対の第一の磁気センサ及び第二の磁気センサと、前記第一の磁気センサ及び第二の磁気センサとの間で前記被測定電流を通流する導電部材を挟んで配置され、前記被測定電流からの誘導磁界により前記第一の磁気センサ及び前記第二の磁気センサと略逆相の出力信号を出力する一対の第三の磁気センサ及び第四の磁気センサと、前記第一の磁気センサ及び第二の磁気センサの出力信号と前記第三の磁気センサ及び第四の磁気センサの出力信号とを差動演算する制御手段と、を具備し、前記第一の磁気センサから前記第四の磁気センサは、感度軸方向からの誘導磁界に対して略同一の検出感度を有し、前記第一の磁気センサ及び第二の磁気センサの感度軸方向が、前記被測定電流からの誘導磁界の印加方向に対して互いに異なる角度をなすように固定されると共に、前記第三の磁気センサ及び第四の磁気センサの感度軸方向が、前記被測定電流からの誘導磁界の印加方向に対して互いに異なる角度をなすように固定されることを特徴とする。
この構成によれば、被測定電流からの誘導磁界に対して第一の磁気センサから出力される出力信号と第二の磁気センサから出力される出力信号とが異なる強度となると共に、第三の磁気センサから出力される出力信号と第四の磁気センサから出力される出力信号とが異なる強度となる。したがって、第一の磁気センサから第四の磁気センサのいずれかが検出下限以下となる条件、及び第一の磁気センサから第四の磁気センサのいずれかが磁気飽和する条件においても、検出下限以下又は磁気飽和しない第一の磁気センサから第四の磁気センサにより被測定電流を検出することが可能となる。また、被測定電流を通流する導電部材と第一の磁気センサから第四の磁気センサとの間の距離を変えることなく第一の磁気センサから第四の磁気センサから出力される出力信号が異なる強度となるので、電流センサの小型化・薄型化が可能となる。したがって、広範囲の被測定電流を測定でき、小型化・薄型化可能な電流センサを実現できる。さらに、第一の磁気センサ及び第二の磁気センサの出力信号と、第三の磁気センサ及び第四の磁気センサの出力信号とを差動演算するので、第一の磁気センサ及び第二の磁気センサの出力信号に含まれる外乱磁気からのノイズ成分と、第三の磁気センサ及び第四の磁気センサの出力信号に含まれる外乱磁気からのノイズ成分とが相殺され、被測定電流の測定精度を向上することができる。
本発明の電流センサにおいては、前記第一の磁気センサ又は前記第二の磁気センサの感度軸方向が、前記被測定電流からの誘導磁界の印加方向に対して略同一方向となるように固定されると共に、前記第三の磁気センサ又は前記第四の磁気センサの感度軸方向が、前記被測定電流からの誘導磁界の印加方向に対して略同一方向となるように固定されることが好ましい。
この構成によれば、感度軸方向が誘導磁界の印加方向に対して略同一方向に固定された第一の磁気センサ又は第二の磁気センサ及び第三の磁気センサ又は第四の磁気センサの検出感度が増大するので、電流センサの検出下限を拡大することが可能となる
本発明の電流センサにおいては、前記第一の磁気センサ及び第二の磁気センサが、GMR素子であることが好ましい。
本発明によれば、広範囲の被測定電流を測定でき、小型化・薄型化可能な電流センサを提供することができる。
本発明の第1の実施の形態に係る電流センサの平面模式図である。 本発明の第1の実施の形態に係る電流センサの断面模式図である。 本発明の第1の実施の形態に係る電流センサの被測定電流測定時における誘導磁界の説明図である。 本発明の第1の実施の形態に係る電流センサの被測定電流測定時における誘導磁界の印加方向の説明図である。 本発明の第1の実施の形態に係る電流センサを示す機能ブロック図である。 本発明の第1の実施の形態に係る電流センサの磁気センサの検出感度と角度θとの相関を示す図である。 本発明の第2の実施の形態に係る電流センサの断面模式図である。 本発明の第2の実施の形態に係る電流センサの被測定電流測定時における誘導磁界の説明図である。 本発明の第2の実施の形態に係る電流センサを示す機能ブロック図である。
以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る電流センサの平面模式図であり、図2は、本発明の第1の実施の形態に係る電流センサ1の断面模式図である。図2においては、図1のA−A線矢視断面図を示している。図1及び図2に示すように、本実施の形態に係る電流センサ1は、内部に空間を有するケース11と、このケース11内に一部が配置され、一方向に延在する導電部材12とを備える。ケース11内の導電部材12上には、基板13を介して被測定電流Iからの誘導磁界H(図3及び図4参照)により出力信号を出力する第一及び第二の磁気センサ14a、14bが配置される。本実施の形態に係る電流センサ1においては、第一及び第二の磁気センサ14a、14bの感度軸方向D1、D2が互いに異なる方向に固定されており、この第一及び第二の磁気センサ14a、14bの出力信号により、導電部材12を通流する被測定電流Iを測定する。
ケース11は、例えば、珪素鋼、パーマロイなどの透磁率が高い材料で構成され、ケース11内への外乱磁気を遮蔽するように構成されている。ケース11は、断面視にて矩形枠状をなしており、このケース11内を貫通するように導電部材12が配置される。導電部材12は、断面視にて矩形形状をなしており、短軸方向A1の両端の一対の主面12a、12bと、長軸方向A2の両端の一対の端面12c、12dとを有する。導電部材12は、被測定電流Iを一方向に向けて通流する。
基板13は、平面視にて略矩形形状を有しており、導電部材12の短軸方向A1における一方の主面12aとケース11の天板11aとの間に図示されない支持部材によって支持される。また、基板13は、基板13の平面方向と長軸方向A2とが略平行になるように、導電部材12の一方の主面12a側に並設される。なお、基板13は、幅方向における中央の位置(点P1)が、導電部材12の長軸方向A2(幅方向)における中央の位置(点P2)と略同一の位置になるように配置され、基板面に対する垂直方向において、点P1と点P2とが揃うように配置される(F1参照)。
基板13上には、第一及び第二の磁気センサ14a、14bと、第一及び第二の磁気センサ14a、14bの出力信号を制御する制御部21と(図5参照)が設けられる。第一及び第二の磁気センサ14a、14bは、断面視において、共に基板13の中央部(点P1の近傍)に配置され、平面視において第一の磁気センサ14aが基板13上部に配置され、第二の磁気センサ14bが基板13下部に配置される。本実施の形態に係る電流センサ1においては、第一及び第二の磁気センサ14a、14bは、感度軸方向D1、D2からの誘導磁界Hに対して略同一の出力信号を出力するように構成されると共に、第一の磁気センサ14aの感度軸方向D1、D2が互いに異なる方向に固定される。第一の磁気センサ14aの感度軸方向D1は、導電部材12の長軸方向A2と略同一方向に固定され、第二の磁気センサ14bの感度軸方向D2は、導電部材12の長軸方向A2に対して所定の角度θ2(図4参照)をなすように固定される。
次に、図3を参照して本実施の形態に係る電流センサ1の被測定電流I測定時における誘導磁界Hについて説明する。図3は、本実施の形態に係る電流センサ1における被測定電流測定時における誘導磁界の説明図である。なお、図3においては、電流センサ1の断面模式図を示し、説明の便宜上、ケース11を省略して示している。
図3に示すように、被測定電流Iが導電部材12を通流すると、導電部材12を中心として導電部材12の外周縁から一定の範囲に誘導磁界Hが生じる。この誘導磁界Hは、被測定電流Iの通流方向(図3においては、紙面手前−奥側方向)に対して、断面視において右回りの方向となる。このため、導電部材12の一方の主面12aの中央部近傍においては、誘導磁界Hの方向は右方向となり、導電部材12の他方の主面12bの中央部近傍においては、誘導磁界Hの方向は左方向となる。また、導電部材12の端面12c、12dの近傍においては、端面12c、12dの一端側から他端側に向けて誘導磁界Hの方向が、断面視にて曲線状に変化する。このため、導電部材12の主面12aの中央部近傍に配置される第一及び第二の磁気センサ14aに対しては、導電部材の長軸方向A2に対して略平行に誘導磁界Hが印加される。
次に、図4を参照して第一及び第二の磁気センサ14a、14bに対する誘導磁界Hの印加方向について詳細に説明する。図4は、本実施の形態に係る電流センサ1の被測定電流測定時における誘導磁界の印加方向の説明図である。図4に示すように、誘導磁界Hは、導電部材12の中央部では、第一の及び第二の磁気センサ14a、14bに対して導電部材12の長軸方向A2に対して略平行に印加される。このため、長軸方向A2に対して略平行に感度軸方向D1が固定された第一の磁気センサ14aに対しては、感度軸方向D1と略同一方向から誘導磁界Hが印加される。したがって、第一の磁気センサ14aの感度軸方向D1と誘導磁界Hの印加方向とがなす角度θ1は微小値となる(θ1は0を含む)。一方、導電部材12の長軸方向A2に対して所定の角度θ2をなすように感度軸方向D2が固定された第二の磁気センサ14bに対しては、感度軸方向D2に対して所定の角度θ2をなす方向から誘導磁界Hが印加される。したがって、第二の磁気センサ14bの感度軸方向D2と誘導磁界Hの印加方向とがなす角度θ2は、第一の磁気センサ14aの感度軸方向D1と誘導磁界Hの印加方向とがなす角度θ1より相対的に大きくなる。
誘導磁界Hは、第一の磁気センサ14aの中心点P3に対して感度軸方向D1の磁気ベクトルM1として作用する。ここで、第一の磁気センサ14aに対しては、感度軸方向D1と略同一方向から誘導磁界Hが印加されるので、誘導磁界Hと感度軸方向D1とがなす角度θ1は微小値となり、誘導磁界Hの大きさと第一の磁気センサ14aに作用する磁気ベクトルM1の大きさが略同一となる。したがって、第一の磁気センサ14aからは、誘導磁界Hの大きさに応じた出力信号が出力される。一方、第二の磁気センサ14bの中心点P4に対して作用する誘導磁界Hは、平面視において、感度軸方向D2の磁気ベクトルM2と、基板13面内において磁気ベクトルM2と直交する磁気ベクトルM3とにベクトル分解される。このため、第二の磁気センサ14bからは、誘導磁界Hの磁気ベクトルM1がベクトル分解された磁気ベクトルM2の大きさに応じた出力信号が出力される。
このように、本実施の形態に係る電流センサ1においては、第一及び第二の磁気センサ14a、14bの感度軸方向D1、D2が、互いに誘導磁界Hの印加方向に対して異なる角度θ1、θ2をなすように配置される。この構成により、被測定電流Iからの誘導磁界Hが、第一及び第二の磁気センサ14a、14bに対して、互いに異なる大きさの磁気ベクトルM1、M2として作用する。このため、第一の磁気センサ14aに対しては、誘導磁界Hに応じた磁気ベクトルM1が作用し、第二の磁気センサ14bに対しては、誘導磁界Hがベクトル分解された磁気ベクトルM2が作用するので、被測定電流Iが大電流の場合においても、第二の磁気センサ14bの磁気飽和を抑制することが可能となる。これにより、被測定電流Iの測定範囲を拡大することが可能となる。
図5は、本発明の実施の形態に係る電流センサ1を示す機能ブロック図である。図5に示すように、第一及び第二の磁気センサ14a、14bは、第一及び第二の磁気センサ14a、14bの出力信号を制御する制御部21とそれぞれ電気的に接続される。
第一及び第二の磁気センサ14a、14bは、例えば、被測定電流Iからの誘導磁界Hを打ち消す方向の磁界(以下、「キャンセル磁界」という)を発生するフィードバックコイルと(不図示)、磁気検出素子である2つの磁気抵抗効果素子及び2つの固定抵抗素子からなるブリッジ回路(不図示)を備えた磁気平衡式センサにより構成される。なお、ブリッジ回路の磁気抵抗効果素子としては、GMR(Giant Magneto Resistance)素子やTMR(Tunnel Magneto Resistance)素子などを挙げることができる。
制御部21は、第一及び第二の磁気センサ14a、14bのブリッジ回路からの出力信号に応じたフィードバック電流を、第一及び第二の磁気センサ14a、14bのフィードバックコイルにそれぞれ供給する。そして、フィードバックコイルから生じたキャンセル磁界と誘導磁界Hとが相殺され、平衡状態となったときのフィードバック電流を電圧に変換してセンサ出力として出力する。このように、本実施の形態に係る電流センサ1においては、第一及び第二の磁気センサ14a、14bの出力信号がそれぞれ制御部21に入力され、それぞれの第一及び第二の磁気センサ14a、14bの出力信号によりセンサ出力が出力されるので、電流センサの測定レンジを拡大することが可能となる。
次に、図6を参照して、上記電流センサ1に用いられる磁気センサの検出感度と、感度軸方向と誘導磁界Hの印加方向とのなす角度θ(以下、単に「角度θ」ともいう)との相関について説明する。図6は、磁気センサの検出感度と角度θとの相関を示す図である。図6においては、縦軸に磁気センサの検出感度を示し、横軸に角度θを示している。
図6に示すように、角度θが0度の場合を感度100%とした場合、角度θが15度の場合においては、磁気センサの検出感度は約97%となり、角度θが30度の場合には、磁気センサの検出感度は約92%となる。このように、角度θが増大するにつれて検出感度が低下することが分かる。したがって、電流センサ1においては、第一及び第二の磁気センサ14a、14bの感度軸方向D1、D2を互いに異ならせて配置することにより、第一の磁気センサ14aの検出感度に対して第二の磁気センサ14bの検出感度が低下するので、第二の磁気センサ14bの磁気飽和を抑制することができ、電流センサ1の測定レンジを拡大することができる。
このように、本実施の形態に係る電流センサ1においては、第一及び第二の磁気センサ14a、14bは、感度軸方向D1、D2からの誘導磁界Hにより略同一の出力信号が出力されるように構成されると共に、感度軸方向D1、D2が互いに誘導磁界Hの印加方向に対して異なる角度θ1、θ2をなすように配置される。この構成により、被測定電流Iからの誘導磁界Hが、第一及び第二の磁気センサ14a、14bに対して、互いに異なる大きさの磁気ベクトルM1、M2として作用するので、誘導磁界Hにより第一の磁気センサ14aから出力される出力信号が、第二の磁気センサ14bから出力される出力信号に対して相対的に大きくなる。これにより、被測定電流Iが小電流の場合には、相対的に検出感度が高い第一の磁気センサ14aによって被測定電流Iを測定することが可能となる。また、被測定電流Iが大電流の場合においても、第二の磁気センサ14bの磁気飽和を抑制することが可能となる。したがって、被測定電流Iの測定範囲を拡大することが可能となる。特に、第一の磁気センサ14aの感度軸方向D1と誘導磁界Hの印加方向が略同一方向に固定され、感度軸方向D1と誘導磁界Hの印加方向とのなす角度θ1が零となる場合においては、誘導磁界Hに対する第一の磁気センサ14aの検出感度が最大となるので、被測定電流が微小電流の場合においても第一の磁気センサ14aによって被測定電流を測定することが可能となる。このため、第一の磁気センサ14aの感度軸方向D1と誘導磁界Hの印加方向とのなす角度θ1を零とし、第二の磁気センサ14bの感度軸方向D1と誘導磁界Hの印加方向とのなす角度θ2を大きくすることにより、電流センサ1の測定レンジを拡大することが可能となる。
また、第一及び第二の磁気センサ14a、14bと導電部材12との間の距離を同一にした場合においても、第一の磁気センサ14aに対して第二の磁気センサ14bの磁気飽和を効果的に抑制できるので、電流センサ1の小型化が実現できる。
さらに、本実施の形態に係る電流センサ1においては、導電部材12上に基板13を介して一対の第一及び第二の磁気センサ14a、14bを配置し、基板13の平面方向と導電部材12の長軸方向A2とを略一致して配置するので、電流センサ1の小型化が可能となる。また、一枚の基板13上に第一及び第二の磁気センサ14a、14bを配置するので、電流センサ1を簡易に製造することができ、製造コストを低減することが可能となる。
(第2の実施の形態)
次に、図7、図8を参照して本発明の第2の実施の形態に係る電流センサ2について説明する。本実施の形態に係る電流センサ2は、第1の実施の形態に係る電流センサ1の構成に加え、第三及び第四の磁気センサ14c、14dを有する。以下の説明においては、電流センサ1との相違点を中心に説明し、電流センサ1と同一の構成要素には、同一の符号を付して説明の重複を避ける。
図7は、本発明の第2の実施の形態に係る電流センサ2の断面模式図である。図7に示すように、電流センサ2は、導電部材12の一方の主面12aとケース11の天板11aとの間に配置される第一の基板15aと、第一の基板15aとの間で導電部材12を挟んで導電部材12の他方の主面12bとケース11の底板11bとの間に配置される第二の基板15bとを備える。第一の基板15aの上面には、第一及び第二の磁気センサ14a、14bが配置され、第二の基板15bの下面には、第三及び第四の磁気センサ14c、14dが配置される。第一の磁気センサから第四の磁気センサ14a〜14dは、感度軸方向からの誘導磁界に対して、略同一の検出感度を有するように構成されている。電流センサ2においては、導電部材12を挟んで対向配置された第一及び第二の磁気センサ14a、14bの出力信号と、第三及び第四の磁気センサ14c、14dの出力信号とを差動演算することにより被測定電流を測定する。
電流センサ2においては、平面視において、第一の磁気センサ14aと第三の磁気センサ14cとが重畳して配置されると共に、第二の磁気センサ14bと第四の磁気センサ14dとが重畳して配置される。また、第一の磁気センサ14aの感度軸方向D1と第三の磁気センサ14cの感度軸方向D3とが平面視において略同一方向に固定され、第二の磁気センサ14bの感度軸方向D2と第四の磁気センサ14dの感度軸方向D4とが平面視において略同一方向に固定される。
次に、図8を参照して、電流センサ2における被測定電流の検出原理について説明する。図8に示すように、導電部材12に被測定電流が通流されると、断面視において、誘導磁界Hの向きは、導電部材12の一方の主面12aの中央部では右方向となり、他方の主面12bの中央部では左方向となる。また、上述したように、第一の磁気センサ14aの感度軸方向D1と第三の磁気センサ14cの感度軸方向D3とは略同一方向に固定され、第二の磁気センサ14bの感度軸方向D2と第四の磁気センサ14dの感度軸方向D4とは、略同一方向に固定されているので、第一及び第二の磁気センサ14a、14bから出力される出力信号と、第三及び第四の磁気センサ14c、14dから出力される出力信号とは、互いに略逆相となる。また、外乱磁気Hcは、第一の磁気センサ14a〜第四の磁気センサ14dに対して略同一方向から作用するので、外乱磁気Hcからのノイズ成分は、第一の磁気センサ14a〜第四の磁気センサ14dで順相となる。したがって、第一及び第二の磁気センサ14a、14bの出力信号と、第三及び第四の磁気センサ14c、14dの出力信号とを差動演算することにより、被測定電流からの誘導磁界Hによる出力信号は加算され、外乱磁気Hcからのノイズ成分は相殺される。これにより、電流センサ2の検出感度を増大できると共に、測定精度を向上させることができる。
次に、図9は、本発明の実施の形態に係る電流センサ2を示す機能ブロック図である。図9に示すように、電流センサ2においては、第一及び第二の磁気センサ14a、14が制御部21と電気的に接続されると共に、第三及び第四の磁気センサ14c、14dが制御部21と電気的に接続される。制御部21は、第一及び第二の磁気センサ14a、14bの出力信号と、第三及び第四の磁気センサ14c、14dの出力信号と、とを差動で増幅する差動アンプ22を備える。第一の磁気センサ14a〜第四の磁気センサ14dの構成に関しては、電流センサ1の第一及び第二の磁気センサ14a、14bと同一であるため、説明を省略する。
差動アンプ22は、第一及び第二の磁気センサ14a、14bの出力信号と、第三及び第四の磁気センサ14c、14dの出力信号と、の差動値をセンサ出力として処理する。このような処理を行うことにより、第一の磁気センサ14a〜第四の磁気センサ14dに作用する誘導磁界Hによる出力信号が加算されると共に、地磁気などの外部磁場の影響はキャンセルされるので、より高精度に電流を測定できる。
このように、本実施の形態に係る電流センサ2においては、導電部材12を介して第一及び第二の磁気センサ14a、14bと第三及び第四の磁気センサ14c、14dとを対向配置する。そして、第一の磁気センサ14a及び第三の磁気センサ14cの感度軸方向D1、D3を略同一方向に固定すると共に、第二の磁気センサ14b及び第四の磁気センサ14dの感度軸方向D2、D4を略同一方向に固定する。さらに、第一及び第二の磁気センサ14a、14bの出力信号と、第三及び第四の磁気センサ14c、14dの出力信号とを差動演算する。これらの構成により、被測定電流からの誘導磁界Hにより第一の磁気センサ14a〜第四の磁気センサ14dから出力される出力信号が加算され、外乱磁気Hcによるノイズ成分が相殺されるので、被検出電流の測定精度を増大させることが可能となる。また、導電部材12と第一の磁気センサ14a〜第四の磁気センサ14dとの間の距離を変えずに測定レンジを拡大できるので、電流センサの小型化を実現することができる。さらに、複数の第一の磁気センサ14a〜第四の磁気センサ14dを用いることにより、電流センサ2の分解能と測定レンジの拡大が可能となる。
本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、上記実施の形態における各素子の接続関係、大きさなどは適宜変更して実施することが可能である。その他、本発明は、本発明の効果が得られる範囲を逸脱しないで適宜変更して実施することができる。
例えば、上記実施の形態に係る電流センサ1においては、第一及び第二の磁気センサ14a、14bは、感度軸方向D1、D2が互いに誘導磁界Hの印加方向に対して異なる角度θ1、θ2をなすように配置する構成であれば適時変更可能である。例えば、図1に示したように、同一のセンサ形状、及び感度軸方向が同一方向に固定されたセンサ素子を用いて第一及び第二の磁気センサ14a、14bを構成し、第一の磁気センサ14aに対して第二の磁気センサ14bのセンサ素子を互いに向きを変えて配置してもよい。また、同一のセンサ形状を有し、感度軸方向が異なる方向に固定された2つのセンサ素子により第一及び第二の磁気センサ14a、14bを構成し、第一及び第二の磁気センサ14a、14bのセンサ素子を互いに同一方向に向けて配置してもよい。
また、上記実施の形態に係る電流センサ1においては、断面視にて矩形形状を有する導電部材12を用いる構成について説明したが、導電部材12の形状は、この構成に限定されず適時変更可能である。導電部材12の形状としては、例えば、断面視にて略矩形形状、略楕円形状、扁平形状等、本発明の効果が得られる範囲であれば適時変更可能である。
さらに、基板13は、上記配置構成に限定されず、適時変更可能である。例えば、基板13が、導電部材12の長軸方向A2に対して所定の角度、傾斜して配置されていてもよい。
また、上記本実施の形態では、第一の磁気センサ、第二の磁気センサとして、磁気平衡式センサを使用する構成としたが、この構成に限定されるものではない。磁気センサとしては、電流線を通る被測定電流Iからの誘導磁界により互いに出力信号を出力するものであればよく、例えば、磁気比例式センサ、ホール素子やその他の磁気検出素子を使用してもよい。磁気比例式センサを使用することで、磁気平衡式センサを使用する構成と比較して消費電力を低減することが可能である。
本発明は、広範囲の被測定電流を測定でき、小型化・薄型化可能であるという効果を有し、特に、電気自動車やハイブリッドカーのモータ駆動用の電流の大きさを検出する電流センサに好適に用いることが可能である。
1、2 電流センサ
11 ケース
12 導電部材
12a、12b 主面
12c、12d 端面
13 基板
14a 第一の磁気センサ
14b 第二の磁気センサ
14c 第三の磁気センサ
14d 第四の磁気センサ
15a 第一の基板
15b 第二の基板
21 制御部
22 差動アンプ

Claims (5)

  1. 被測定電流からの誘導磁界により出力信号を出力する第一の磁気センサ及び第二の磁気センサと、前記第一の磁気センサの出力信号と前記第二の磁気センサの出力信号とを制御する制御手段と、を具備し、前記第一の磁気センサ及び第二の磁気センサは、感度軸方向からの誘導磁界に対して略同一の検出感度を有すると共に、感度軸方向が、前記被測定電流からの誘導磁界の印加方向に対して互いに異なる角度をなすように固定されることを特徴とする電流センサ。
  2. 前記第一の磁気センサ又は前記第二の磁気センサの感度軸方向が、前記被測定電流からの誘導磁界の印加方向に対して略同一方向となるように固定されることを特徴とする請求項1記載の電流センサ。
  3. 被測定電流からの誘導磁界により出力信号を出力する一対の第一の磁気センサ及び第二の磁気センサと、前記第一の磁気センサ及び第二の磁気センサとの間で前記被測定電流を通流する導電部材を挟んで配置され、前記被測定電流からの誘導磁界により前記第一の磁気センサ及び前記第二の磁気センサと略逆相の出力信号を出力する一対の第三の磁気センサ及び第四の磁気センサと、前記第一の磁気センサ及び第二の磁気センサの出力信号と前記第三の磁気センサ及び第四の磁気センサの出力信号とを差動演算する制御手段と、を具備し、前記第一の磁気センサから前記第四の磁気センサは、感度軸方向からの誘導磁界に対して略同一の検出感度を有し、前記第一の磁気センサ及び第二の磁気センサの感度軸方向が、前記被測定電流からの誘導磁界の印加方向に対して互いに異なる角度をなすように固定されると共に、前記第三の磁気センサ及び第四の磁気センサの感度軸方向が、前記被測定電流からの誘導磁界の印加方向に対して互いに異なる角度をなすように固定されることを特徴とする電流センサ。
  4. 前記第一の磁気センサ又は前記第二の磁気センサの感度軸方向が、前記被測定電流からの誘導磁界の印加方向に対して略同一方向となるように固定されると共に、前記第三の磁気センサ又は前記第四の磁気センサの感度軸方向が、前記被測定電流からの誘導磁界の印加方向に対して略同一方向となるように固定されることを特徴とする請求項3記載の電流センサ。
  5. 前記磁気センサが、GMR素子であることを特徴とする請求項1から請求項4のいずれかに記載の電流センサ。
JP2010197409A 2010-09-03 2010-09-03 電流センサ Pending JP2012052980A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197409A JP2012052980A (ja) 2010-09-03 2010-09-03 電流センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197409A JP2012052980A (ja) 2010-09-03 2010-09-03 電流センサ

Publications (1)

Publication Number Publication Date
JP2012052980A true JP2012052980A (ja) 2012-03-15

Family

ID=45906443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197409A Pending JP2012052980A (ja) 2010-09-03 2010-09-03 電流センサ

Country Status (1)

Country Link
JP (1) JP2012052980A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502979A (ja) * 2008-09-23 2012-02-02 ゲンキョ テックス エスアー Nadphオキシダーゼインヒビターとしてのピラゾロピリジン誘導体
JP2013246005A (ja) * 2012-05-24 2013-12-09 Fujikura Ltd 電流センサ
JP2015125020A (ja) * 2013-12-25 2015-07-06 株式会社東芝 電流センサ、電流測定モジュール及びスマートメータ
JP2016001118A (ja) * 2014-06-11 2016-01-07 三菱電機株式会社 電流検出装置、磁界検出装置及びこれらの方法
WO2016035606A1 (ja) * 2014-09-05 2016-03-10 株式会社村田製作所 電流センサ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502979A (ja) * 2008-09-23 2012-02-02 ゲンキョ テックス エスアー Nadphオキシダーゼインヒビターとしてのピラゾロピリジン誘導体
JP2013246005A (ja) * 2012-05-24 2013-12-09 Fujikura Ltd 電流センサ
JP2015125020A (ja) * 2013-12-25 2015-07-06 株式会社東芝 電流センサ、電流測定モジュール及びスマートメータ
US10254315B2 (en) 2013-12-25 2019-04-09 Kabushiki Kaisha Toshiba Current sensor, current measuring module, and smart meter
JP2016001118A (ja) * 2014-06-11 2016-01-07 三菱電機株式会社 電流検出装置、磁界検出装置及びこれらの方法
WO2016035606A1 (ja) * 2014-09-05 2016-03-10 株式会社村田製作所 電流センサ

Similar Documents

Publication Publication Date Title
JP5531215B2 (ja) 電流センサ
JP5648246B2 (ja) 電流センサ
JP5531217B2 (ja) 電流センサ
JP5489145B1 (ja) 電流センサ
US9453890B2 (en) Magnetic sensor and magnetic detecting method of the same
US9063185B2 (en) Current sensor
JP5906488B2 (ja) 電流センサ
JPWO2012053296A1 (ja) 電流センサ
JP2012052980A (ja) 電流センサ
WO2012046547A1 (ja) 電流センサ
WO2013038867A1 (ja) 電流センサ
JP2013088370A (ja) 電流センサ
JP2015036636A (ja) 電流センサ
JP5487403B2 (ja) 電流センサ
JP2013108787A (ja) 電流センサ
JP2012063285A (ja) 電流センサ
JP5504483B2 (ja) 電流センサ
JP2012242082A (ja) 電流センサ
JP2013142604A (ja) 電流センサ
JP5678285B2 (ja) 電流センサ
JP2013142569A (ja) 電流センサ
JP5504488B2 (ja) 電流センサ
WO2012035906A1 (ja) 電流センサ
JP2014002070A (ja) 電流センサ
JP2015090316A (ja) 電流センサ