WO2013005459A1 - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
WO2013005459A1
WO2013005459A1 PCT/JP2012/056644 JP2012056644W WO2013005459A1 WO 2013005459 A1 WO2013005459 A1 WO 2013005459A1 JP 2012056644 W JP2012056644 W JP 2012056644W WO 2013005459 A1 WO2013005459 A1 WO 2013005459A1
Authority
WO
WIPO (PCT)
Prior art keywords
current path
conductor portion
current
conductor
magnetoelectric conversion
Prior art date
Application number
PCT/JP2012/056644
Other languages
English (en)
French (fr)
Inventor
蛇口 広行
真司 三ツ谷
田村 学
竜司 向山
Original Assignee
アルプス・グリーンデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス・グリーンデバイス株式会社 filed Critical アルプス・グリーンデバイス株式会社
Priority to JP2013522487A priority Critical patent/JP5531217B2/ja
Publication of WO2013005459A1 publication Critical patent/WO2013005459A1/ja
Priority to US14/098,367 priority patent/US9435829B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/08Arrangements for measuring electric power or power factor by using galvanomagnetic-effect devices, e.g. Hall-effect devices

Definitions

  • the present invention relates to a current sensor that measures a current flowing through a current path based on a magnetic field in the vicinity of the current path.
  • a current sensor for detecting is known.
  • Such a current sensor is mounted on, for example, a three-phase motor having three current paths arranged in parallel so that the extending directions thereof are parallel to each other.
  • it is necessary to suppress the influence of the magnetic field generated by the current flowing in the adjacent current path (neighboring current path) to prevent the measurement accuracy of the measured current from being lowered. is there.
  • a magnetic field generated by the current to be measured is measured with a pair of magnetoelectric transducers, and the magnetic field generated by the current flowing through the neighboring current path is used.
  • Has been proposed that is arranged so as to be applied to a pair of magnetoelectric transducers similarly.
  • the magnetic field generated by the current to be measured is applied in the opposite direction to the pair of magnetoelectric conversion elements, and the magnetic field generated by the neighboring current is applied to the pair of magnetoelectric conversion elements in the same direction.
  • produces can be canceled by using the difference of the output of a pair of magnetoelectric conversion element.
  • An external magnetic field such as geomagnetism can also be canceled because it is applied to the pair of magnetoelectric transducers in the same direction (see, for example, Patent Document 1).
  • the present invention has been made in view of such points, and an object of the present invention is to provide a current sensor that can reduce the influence of both an external magnetic field such as geomagnetism and a magnetic field of a neighboring current path, and can prevent a decrease in dynamic range.
  • the current sensor of the present invention includes a first current path that is a current path to be measured, a second current path that is adjacent to the current path to be measured, and a first current path that is disposed across the first current path.
  • a second magnetoelectric conversion element wherein the first current path and the second current path are a first conductor part, a second conductor part extending in the X direction from both ends of the first conductor part, and a second The first current path and the second current path are adjacent to each other in the Y direction perpendicular to the X direction, and the X direction and the Y direction are adjacent to each other.
  • the second conductor portion and the third conductor portion of the first current path are separated from each other in the Z direction which is an orthogonal direction, and the second conductor portion and the third conductor portion of the first current path are
  • the Y direction position is the same, the second conductor part and the third conductor part of the second current path are separated in the Z direction, and the Y direction position is the same.
  • the first magnetoelectric conversion element and the second magnetoelectric conversion element are disposed across the first conductor portion of the first current path, and the first and second magnetoelectric conversion elements
  • the direction of the sensitivity axis is the Y direction
  • the second conductor portion of the second current path is disposed in the Y direction of the first and second magnetoelectric transducers, and the second current path A perpendicular line from the center line of the second conductor part to the first magnetoelectric conversion element, and a perpendicular line from the center line of the second conductor part of the second current path to the second magnetoelectric conversion element. It is characterized by equal direction and length.
  • the direction of the magnetic field generated by the current flowing through the second conductor portion of the second current path is set to an angle substantially orthogonal to the sensitivity axes of the first and second magnetoelectric transducers. Can do. Therefore, the magnetic field generated by the current flowing through the second conductor portion of the second current path is hardly measured by the first and second magnetoelectric transducers, and the dynamic range can be prevented from decreasing.
  • the first and second magnetoelectric transducers are slightly Measured. However, since the amount is small, the decrease in dynamic range can be reduced.
  • the magnetic field generated by the current flowing through the second conductor portion of the second current path has the same influence on the first and second magnetoelectric transducers. Therefore, by using the output difference between the first and second magnetoelectric transducers, it is possible to eliminate the influence of the magnetic field generated by the current flowing through the second conductor portion of the second current path.
  • the positions in the Y direction of the first to third conductor portions of the current paths are the same. That is, they are arranged on a straight line when viewed from the Z direction. For this reason, the enlargement of the Y direction (lateral direction) can be prevented.
  • the 1st or 2nd magnetoelectric conversion element exists in the position orthogonal to the electric current which flows through the 1st conductor part of a 2nd electric current path, the electric current which flows through the 1st conductor part of a 2nd electric current path
  • the generated magnetic field affects the first and second magnetoelectric transducers differently.
  • the measurement is performed by sufficiently separating the position of the first conductor portion of the second current path from the first or second magnetoelectric transducer. The deterioration of accuracy can be prevented.
  • the X direction (depth direction) is a direction through which an electric current flows through a 2nd conductor part and a 3rd conductor part.
  • the Y direction (horizontal) is a direction in which a plurality of current paths are arranged.
  • the Z (height direction) direction is a direction orthogonal to the X direction and the Y direction. In the use state, the X direction (depth direction) and the Y direction (lateral direction) may not be the horizontal direction. Similarly, the Z direction (height direction) may not be the vertical direction.
  • an angle formed between the first conductor portion and the second conductor portion is a right angle
  • an angle formed between the first conductor portion and the third conductor portion is a right angle.
  • the first and second magnetoelectric transducers are disposed outside a normal region of a surface obtained by extending the first conductor portion of the second current path in the Y direction. It can be configured.
  • the third conductor portion of the second current path is parallel to each other, and the angle formed by the first conductor portion and the second conductor portion of each current path is other than a right angle,
  • An angle formed by the first conductor portion and the third conductor portion may be other than a right angle.
  • the second conductor portion of the first current path is provided with a fourth conductor portion and a fifth conductor portion, and the third conductor portion of the first current path is provided.
  • the conductor portion may be configured such that the sixth conductor portion and the seventh conductor portion are provided continuously, and the seventh conductor portion is provided on an extension line of the fifth conductor portion.
  • the first conductor portion of the first current path is longer in the Y direction than the X direction, and the second conductor portion and the third conductor of the first current path.
  • the part may be configured such that the Y direction is longer than the Z direction.
  • the direction of the magnetic field generated by the current flowing through the first current path is linear at the first and second magnetoelectric transducer elements, and the measurement accuracy can be improved.
  • the first magnetoelectric conversion element and the second magnetoelectric conversion element are mounted on a single substrate, and the substrate includes the first magnetoelectric conversion element and the second magnetoelectric conversion element.
  • a first slit may be provided between the magnetoelectric conversion element and the first conductor portion of the first current path may be disposed in the first slit. In this current sensor, it becomes easy to attach the first magnetoelectric conversion element and the second magnetoelectric conversion element to the first current path.
  • third and fourth magnetoelectric conversion elements are provided across the first conductor portion of the second current path, and the third and fourth magnetoelectric conversions are provided on the substrate.
  • An element is mounted, and has a second slit between the third magnetoelectric conversion element and the fourth magnetoelectric conversion element, and the first conductor portion of the second current path is formed in the second slit.
  • the present invention it is possible to reduce the influence of both the external magnetic field such as geomagnetism and the magnetic field of the neighboring current path, and to prevent the dynamic range from being lowered.
  • FIG. 1 is a diagram showing the measurement principle of a current sensor.
  • FIG. 1 is a plan view of a printed circuit board 4 to be described later, and a cross-sectional view of a current path 5a.
  • the current sensor 1 includes a printed circuit board 4 that is formed from one side end side toward the center (X direction in FIG. 1) and has a slit 41 through which the current path 5a to be measured is inserted.
  • Magnetoelectric conversion elements 2 a and 2 b and a signal processing circuit 3 are mounted on the surface of the printed circuit board 4.
  • the magnetoelectric conversion elements 2a and 2b are arranged so that the distances from the measured current path 5a are substantially equal so as to sandwich the slit 41 in the vertical direction (Y direction in FIG. 1) of the drawing.
  • the measured current path 5a is composed of a flat-plate conductor in which a conductive member such as copper is formed in a strip shape having a substantially constant width and a substantially constant thickness.
  • the measured current path 5 a is inserted through the slit 41 of the printed circuit board 4 so that the extending direction thereof is orthogonal to the in-plane direction of the printed circuit board 4. That is, the current path 5a to be measured is arranged so that the surface faces upward (Y direction in FIG. 1), and extends in front of the paper to the back of the paper (Z direction in FIG. 1). An electric current flows from the back side of the paper toward the front side of the paper.
  • the magnetoelectric transducers 2a and 2b have a substantially rectangular shape, and are formed so as to have a sensitivity axis in a direction (X direction in FIG. 1) perpendicular to the direction (current direction) in which the current of the current path 5a flows. Has been. Further, the magnetoelectric conversion elements 2a and 2b are arranged so that the sensitivity axes are directed in opposite directions.
  • the magnetoelectric conversion elements 2a and 2b are not particularly limited as long as they are elements capable of magnetic detection.
  • magnetoelectric conversion elements 2a and 2b for example, a magnetic sensor using a magnetoresistance effect element such as a GMR (Giant Magneto Resistance) element or a TMR (Tunnel Magneto Resistance) element, a magnetic sensor using a Hall element, or the like can be applied.
  • a magnetoresistance effect element such as a GMR (Giant Magneto Resistance) element or a TMR (Tunnel Magneto Resistance) element, a magnetic sensor using a Hall element, or the like can be applied.
  • FIG. 2 is a diagram illustrating a magnetic field applied to the magnetoelectric conversion elements 2a and 2b.
  • the arrows on the magnetoelectric conversion elements 2a and 2b indicate the sensitivity axis directions of the respective magnetoelectric conversion elements
  • the white arrows indicate the magnetic fields generated by the current flowing through the measured current path 5a (measured current).
  • a thin line arrow indicates an external magnetic field.
  • the external magnetic field Bb ' is applied to the magnetoelectric conversion elements 2a and 2b with the same magnitude and the same direction. That is, the external magnetic field Bb 'is applied to the magnetoelectric conversion elements 2a and 2b with the same vector.
  • the induced magnetic field Ba generated by the current flowing through the measured current path 5a is applied to the magnetoelectric conversion elements 2a and 2b in the same magnitude and in the opposite direction. Therefore, when the differential calculation process is performed by the signal processing circuit 3, the influence of the external magnetic field Bb 'can be canceled and a differential output of the induced magnetic field Ba can be obtained. Based on the differential output of the induced magnetic field Ba, the amount of current in the measured current path 5a can be calculated.
  • FIG. 3 is a block diagram showing a configuration example of the current sensor 1 in which the magnetoelectric conversion elements 2a and 2b include the magnetoelectric conversion elements 2a and 2b.
  • the current sensor 1 in addition to the magnetoelectric conversion elements 2a and 2b, the current sensor 1 includes control circuit elements 31a and 31b that control the magnetoelectric conversion elements 2a and 2b, and a difference between outputs from the control circuit elements 31a and 31b. And a signal processing circuit 3 for obtaining sensor output.
  • the magnetoelectric conversion elements 2 a and 2 b include feedback coils 111 a and 111 b arranged so as to be able to generate a magnetic field in a direction that cancels the induced magnetic field Ba generated by the current I to be measured, and the magnetoelectric conversion elements 112 a and 112 b. And comprising.
  • control circuit elements 31a and 31b amplify the differential outputs of the magnetoelectric conversion elements 112a and 112b, and operational amplifiers 131a and 131b that control the feedback current of the feedback coils 111a and 111b, and an I / O that converts the feedback current into a voltage.
  • V amplifiers 132a and 132b are included.
  • the feedback coils 111a and 111b are arranged in the vicinity of the magnetoelectric conversion elements 112a and 112b, and generate a canceling magnetic field that cancels the induced magnetic field Ba generated by the current I to be measured.
  • a highly sensitive current sensor 1 can be realized by configuring the magnetoelectric conversion elements 112a and 112b using magnetoresistive elements having a characteristic that the resistance value is changed by an induced magnetic field from the current to be measured.
  • the signal processing circuit 3 takes the difference between the output voltages from the control circuit elements 31a and 31b (that is, the output voltages of the I / V amplifiers 132a and 132b) and outputs the difference.
  • the signal processing circuit 3 is composed of, for example, a differential amplifier. By this differential calculation processing, the influence of an external magnetic field such as geomagnetism is canceled, and the current can be measured with high accuracy.
  • the current sensor 1 is not limited to the configuration described above.
  • a magnetic proportional sensor that does not use a feedback coil or the like may be used as the magnetoelectric conversion elements 2a and 2b.
  • a magnetosensitive element such as a Hall element may be used.
  • the external magnetic field Bb ′ is applied to the magnetoelectric conversion elements 2a and 2b with the same vector, and the induced magnetic field Ba generated by the current flowing through the measured current path 5a is applied to the magnetoelectric conversion elements 2a and 2b with different vectors.
  • a configuration example of the current sensor according to the present invention having the configuration will be described in detail.
  • FIG. 4A is a diagram illustrating a configuration example of a current sensor according to the present invention.
  • the measured current path 5a and the neighboring current path 5b are provided extending in parallel to each other in the X direction in FIG. 4A, and the measured current path 5a , And the neighboring current flows in the neighboring current path 5b. Therefore, the direction in which the current paths 5a and 5b extend is the current flow direction. That is, the current path 5a extends in the direction of current flow (first direction), and the current path 5b is arranged adjacent to each other with the direction in which the current path 5a extends approximately parallel.
  • a part of the current path 5a to be measured is bent to form a bent first conductor portion 58a.
  • the first conductor portion 58a has the width of the current path (the length of the current path in the direction orthogonal to the current flow direction on the magnetoelectric conversion elements 2a and 2b mounting surface) in the direction (Y direction) as an axis. For example, it is formed by bending in an orthogonal direction.
  • the surface of the first conductor portion 58a faces, for example, a direction orthogonal to the flow direction.
  • the current path 5a is configured by connecting the second conductor portion 58b and the third conductor portion 58c extending in the X direction from both ends of the first conductor portion 58a. Further, the second conductor portion 58b and the third conductor portion 58c are separated from each other in the Z direction orthogonal to the X direction and the Y direction, and the positions of the second conductor portion 58b and the third conductor portion 58c coincide with each other in the Y direction. ing. That is, in the measured current path 5a, the measured current flows in the X direction of FIG. 4A through the second conductor portion 58b and the third conductor portion 58c, and the measured current flows through the first conductor portion 58a in the Z direction of FIG. 4A. It is supposed to flow through.
  • the neighboring current paths 5b are adjacent to each other in the Y direction orthogonal to the X direction. Like the current path 5a to be measured, a part of the neighboring current path 5b is subjected to bending and bent first. A conductor portion 60a is formed. The surface of the first conductor portion 60a faces, for example, a direction orthogonal to the flow direction. Therefore, the current path 5b is configured by connecting the second conductor portion 60b and the third conductor portion 60c extending in the X direction from both ends of the first conductor portion 60a.
  • the second conductor portion 60b and the third conductor portion 60c are separated from each other in the Z direction orthogonal to the X direction and the Y direction, and the second conductor portion 60b and the third conductor portion 60c are aligned in the Y direction. ing. That is, also in the neighboring current path 5b, the neighboring current flows in the X direction in FIG. 4A through the second conductor portion 60b and the third conductor portion 60c, and the neighboring current flows in the Z direction in FIG. 4A through the first conductor portion 60a. It is supposed to be.
  • magnetoelectric conversion elements 2a and 2b and a signal processing circuit 3 are mounted on the surface of the printed circuit board 4.
  • the magnetoelectric conversion elements 2a and 2b are arranged with the first conductor portion 58a of the measured current path 5a interposed therebetween, and the direction of the sensitivity axis of the magnetoelectric conversion elements 2a and 2b is the Y direction.
  • the second conductor part 60b of the neighboring current path 5b is arranged in the Y direction of the magnetoelectric conversion elements 2a and 2b, and a perpendicular line from the center line of the second conductor part 60b of the neighboring current path 5b to the magnetoelectric conversion element 2a; It arrange
  • the printed circuit board 4 is formed with two slits 41 penetrating in the front-to-back direction (Z direction in FIG. 4A), and the first conductor of the current path 5a to be measured passes through one of the slits 41. It arrange
  • the magnetoelectric conversion elements 2a and 2b are arranged such that the sensitivity axes are perpendicular to the flow direction and the sensitivity axes are in the same direction.
  • arrows on the magnetoelectric conversion elements 2a and 2b indicate the sensitivity axis directions of the respective magnetoelectric conversion elements.
  • the sensitivity axis direction refers to a direction in which the magnetoelectric conversion elements 2a and 2b obtain the maximum sensitivity.
  • FIG. 4 shows the case where the sensitivity axes of the magnetoelectric conversion elements 2a and 2b are directed to the right side of the drawing, they may be arranged to face the opposite direction (left direction of the drawing).
  • the magnetoelectric conversion elements 2a and 2b may be arranged in the reverse direction, for example, the magnetoelectric conversion element 2a is directed to the right and the magnetoelectric conversion element 2b is directed to the left.
  • the sensitivity axis is a direction orthogonal to the magnetosensitive surface (for example, the Z direction in FIG. 4).
  • the first conductor portions 58a and 60a are formed at positions that do not overlap each other.
  • the first conductor portion 58a of the measured current path 5a is formed so that the Y direction is longer than the X direction, and the second conductor portion 58b and the third conductor portion 58 of the measured current path 5a are formed from the Z direction. It can be set as the structure formed so that a Y direction might become long.
  • a magnetic field Bb is generated in the vicinity of the measured current path 5a by the current flowing in the neighboring current path 5b.
  • a portion of the neighboring current path 5b adjacent to the magnetoelectric conversion elements 2a and 2b is a straight region where the first conductor portion 60a is not formed.
  • the direction and length of the perpendicular line from the center line of the neighboring current path 5b to the magnetoelectric conversion element 2a and the perpendicular line to the magnetoelectric conversion element 2b are substantially equal, and the line segment connecting the magnetoelectric conversion element 2a and the magnetoelectric conversion element 2b.
  • the linear portion of the neighboring current path 5b adjacent to the line segment are substantially parallel, and the cross-sectional area of the neighboring current path 5b adjacent to the magnetoelectric conversion element 2a and the disconnection of the neighboring current path 5b adjacent to the magnetoelectric conversion element 2b are cut off.
  • the area is roughly the same. Therefore, the magnetic field Bb 'detected by the magnetoelectric conversion element 2a and the magnetic field Bb' detected by the magnetoelectric conversion element 2b have the same direction and the same magnitude. That is, the magnetic field generated by the current flowing through the neighboring current path 5b is applied to the magnetoelectric conversion element 2a and the magnetoelectric conversion element 2b with the same vector. Further, geomagnetism is applied to the magnetoelectric conversion element 2a and the magnetoelectric conversion element 2b by the same vector.
  • the magnetic field detected by the magnetoelectric transducers 2a and 2b is differentially processed by the signal processing circuit 3, thereby canceling the influence of the disturbance magnetic field (the magnetic field Bb and the geomagnetism by the neighboring current path 5b) having the same vector amount. Only the induced magnetic field Ba by the measured current path 5a having a different vector amount is differentially output. Based on the induced magnetic field Ba output in this way, the current flowing through the measured current path 5a can be accurately detected.
  • the induced magnetic field Ba generated by the current flowing through the measured current path 5a is The magnetoelectric conversion elements 2a and 2b are applied with different vectors, and a disturbance magnetic field is applied to the magnetoelectric conversion elements 2a and 2b with the same vector.
  • the induction magnetic field generated in the measured current path 5a can be applied to the magnetoelectric conversion elements 2a and 2b as a diametrically opposite vector, the differential output value is increased, and the detection accuracy of the measured current is increased. It becomes possible.
  • the magnetic field generated by the current flowing through the second conductor portion 60b of the second current path can be configured to be hardly measured by the magnetoelectric conversion elements 2a and 2b, the dynamic range can be prevented from being lowered. Further, as shown in FIG. 4, by providing a bent first conductor in the current path 5a to be measured and disposing the neighboring current path 5b, it is possible to reduce the size in the width direction of the current path.
  • the first conductor portions 58a and 60a may be provided perpendicular to the flow direction, or may be provided at an angle (obliquely) with respect to the flow direction.
  • FIG. 5 is a schematic view of the measured current path 5a in the current sensor 108 as viewed from the side.
  • the first conductor portion 58a is provided perpendicular to the flow direction.
  • the first conductor portion 58a is provided obliquely with respect to the flow direction.
  • FIG. 6 is a schematic diagram showing an induced magnetic field Ba generated by a current flowing through the first conductor portion 58a in the measured current path 5a shown in FIG.
  • the measured current path 5a shown in FIGS. 6A and 6B corresponds to the measured current path 5a shown in FIGS. 5A and 5B, respectively.
  • a hatched portion is an area affected by the induced magnetic field Ba generated by the current flowing through the first conductor portion 58a.
  • the first conductor 58a shown in FIG. 5A is provided at an angle (obliquely) with respect to the direction perpendicular to the flow direction (forms a non-orthogonal region) (see FIG. 6B), the induced magnetic field Ba of the neighboring current path 5b.
  • the range affected by is limited. Therefore, if the first conductor portion 58a is provided obliquely to form a non-orthogonal region, the magnetoelectric conversion elements 21a and 21b can be hardly affected by the induced magnetic field Ba of the neighboring current path 5b. Thus, the current sensor 108 is enlarged by arranging the magnetoelectric conversion elements 21a and 21b outside the region in the normal direction of the surface obtained by extending the first conductor portion 58a of the first current path 5a in the Y direction. There is an advantage that the measurement accuracy can be improved.
  • FIG. 7 is a diagram illustrating a configuration example of a current sensor according to the present invention.
  • the measured current path 5a and the neighboring current path 5b extend in parallel with each other in the X direction in FIG. 7, and the measured current path 5a receives the measured current path 5a.
  • the neighboring current flows through the neighboring current path 5b. Therefore, the direction in which the current paths 5a and 5b extend is the current flow direction. That is, the current path 5a extends in the current flow direction (first direction), and the current path 5b is arranged so as to be adjacent to each other with the direction extending in the current path 5a being substantially parallel.
  • a part of the current path 5a to be measured is bent and a plurality of bent conductor portions are formed.
  • the current path 5a is configured in a substantially S shape.
  • the surfaces of the bent first conductor portion 59a, fourth conductor portion 59d, and sixth conductor portion 59f face, for example, a direction orthogonal to the flow direction. Therefore, the current path 5a is configured by connecting the second conductor portion 59b and the third conductor portion 59c extending in the X direction from both ends of the first conductor portion 59a.
  • a fourth conductor portion 59d and a fifth conductor portion 59e are connected to the second conductor portion 59b.
  • the sixth conductor portion 59f and the seventh conductor portion 59g are connected to the third conductor portion 59c.
  • the seventh conductor portion 59g is provided on the extended line of the fifth conductor portion 59e.
  • the current path 5b is configured in a substantially S shape (crank shape).
  • the surfaces of the bent first conductor portion 61a, fourth conductor portion 61d, and sixth conductor portion 61f are directed, for example, in a direction orthogonal to the flow direction. Therefore, the current path 5b is configured by connecting the second conductor portion 61b and the third conductor portion 61c extending in the X direction from both ends of the first conductor portion 61a.
  • a fourth conductor portion 61d and a fifth conductor portion 61e are connected to the second conductor portion 61b.
  • a sixth conductor portion 61f and a seventh conductor portion 61g are connected to the third conductor portion 61c.
  • a seventh conductor 61g is provided on the extended line of the fifth conductor 61e.
  • magnetoelectric conversion elements 2a and 2b and a signal processing circuit 3 are mounted on the surface of the printed circuit board 4.
  • the magnetoelectric conversion elements 2a and 2b are arranged with the first conductor portion 59a of the current path to be measured 5a interposed therebetween.
  • the magnetic field conversion element 2a is disposed between the first conductor portion 59a and the fourth conductor portion 59d, and the magnetic field conversion element 2a is disposed between the first conductor portion 59a and the sixth conductor portion 59f.
  • the direction of the sensitivity axis of the magnetoelectric conversion elements 2a and 2b is the Y direction.
  • the seventh conductor portion 61g of the neighboring current path 5b is arranged in the Y direction of the magnetoelectric conversion elements 2a and 2b, and a perpendicular line from the center line of the seventh conductor portion 61g of the neighboring current path 5b to the magnetoelectric conversion element 2a; It arrange
  • the printed circuit board 4 is formed with a slit 41 penetrating in the front-back direction of the paper (Z direction in FIG. 7), and the first conductor portion of the current path 5a to be measured passes through the slit 41. 59a is arranged to pass. Therefore, the magnetoelectric conversion elements 2 a and 2 b are arranged so as to sandwich the slit 41. Similarly, it arrange
  • the magnetoelectric conversion elements 2a and 2b are arranged such that the sensitivity axes are perpendicular to the flow direction and the sensitivity axes are in the same direction.
  • the arrows on the magnetoelectric conversion elements 2a and 2b indicate the sensitivity axis directions of the respective magnetoelectric conversion elements.
  • the first conductor portions 59a and 61a are formed at positions that do not overlap each other (the first conductor portions are at different positions in the X direction in FIG. 7).
  • the induced magnetic field Ba (induced magnetic field generated by the current flowing through the fourth conductor portion 59d and the sixth conductor portion 59f) generated by the current flowing through the portion inserted into the slit 41 in the first conductor portion 59a of the measured current path 5a is:
  • the directions are opposite between the vicinity of the magnetoelectric conversion element 2a and the vicinity of the magnetoelectric conversion element 2b.
  • the induced magnetic field Ba1 detected by the magnetoelectric conversion element 2a and the induced magnetic field Ba2 detected by the magnetoelectric conversion element 2b have the same magnitude and different directions. That is, the magnetic field generated by the current flowing through the measured current path 5a is applied to the magnetoelectric conversion element 2a and the magnetoelectric conversion element 2b with different vectors.
  • a magnetic field Bb is generated in the vicinity of the measured current path 5a by the current flowing in the neighboring current path 5b.
  • a portion of the neighboring current path 5b adjacent to the magnetoelectric conversion elements 2a and 2b is a straight region where the first conductor portion 59b is not formed. Therefore, the magnetic field Bb 'detected by the magnetoelectric conversion element 2a and the magnetic field Bb' detected by the magnetoelectric conversion element 2b have the same direction and the same magnitude. That is, the magnetic field generated by the current flowing through the neighboring current path 5b is applied to the magnetoelectric conversion element 2a and the magnetoelectric conversion element 2b with the same vector. Further, geomagnetism is applied to the magnetoelectric conversion element 2a and the magnetoelectric conversion element 2b by the same vector.
  • the magnetic field detected by the magnetoelectric transducers 2a and 2b is differentially processed by the signal processing circuit 3, thereby canceling the influence of the disturbance magnetic field (the magnetic field Bb and the geomagnetism by the neighboring current path 5b) having the same vector amount. Only the induced magnetic field Ba by the measured current path 5a having a different vector amount is differentially output. Based on the induced magnetic field Ba output in this way, the current flowing through the measured current path 5a can be accurately detected.
  • the magnetoelectric transducers 2a and 2b are arranged on both sides of the measured current path 5a, so that the induced magnetic field Ba generated by the current flowing in the measured current path 5a is
  • the magnetoelectric conversion elements 2a and 2b are applied with different vectors, and a disturbance magnetic field is applied to the magnetoelectric conversion elements 2a and 2b with the same vector.
  • the magnetic field generated in the measured current path 5a can be applied to the magnetoelectric conversion elements 2a and 2b as a diametrically opposite vector, the differential output value is increased and the detection accuracy of the measured current is increased. Is possible.
  • the magnetic field generated by the current flowing through the seventh conductor 61g of the second current path 5b can be configured to be hardly measured by the magnetoelectric conversion elements 2a and 2b, the dynamic range can be prevented from being lowered.
  • the first conductor portions 59a and 61a may be provided perpendicular to the flow direction, or may be provided at an angle (obliquely) with respect to the flow direction. As in the first configuration example, when the first conductor portion 59a is provided obliquely with respect to the flow direction, the range in which the neighboring current path 5b is affected by the induced magnetic field Ba can be reduced as compared with the case where the first conductor portion 59a is provided vertically. .
  • the current sensor according to the present embodiment is not limited to the configuration shown in the first and second configuration examples.
  • the configuration shown in FIGS. 8 and 9 may be used.
  • FIG. 8 shows a case in which the positions of the measured current path 5a and the neighboring current path 5b are shifted in the height direction (Z direction) in the configuration shown in FIG. 4b.
  • the induced magnetic field of the current path to be measured 5a and the induced magnetic field of the neighboring current path 5b can be orthogonalized, the influence of the induced magnetic field of the neighboring current path 5b is eliminated in the magnetoelectric transducers 2a and 2b. can do.
  • FIG. 9 shows a configuration in which the measured current path 5a and the neighboring current path 5b are folded (U-shaped).
  • the current sensor according to the present embodiment can change the shape of the current path as appropriate.
  • the current sensor when the current path 5a to be measured and the neighboring current path 5b are provided in parallel to the flow direction, the current flows to the neighboring current path 5b.
  • the magnetic field Bb generated by the current is applied to the magnetoelectric conversion elements 2a and 2b provided in the measured current path 5a with the same vector, and the magnetic field Ba generated by the current flowing in the measured current path 5a is different from the magnetoelectric conversion elements 2a and 2b. Since it is configured to be a vector, a decrease in measurement accuracy of the current to be measured due to the influence of the magnetic field Bb of the neighboring current path 5b can be prevented without requiring the positional accuracy and mounting accuracy of the magnetoelectric conversion elements 2a and 2b.
  • the current sensor of the present invention can be used, for example, to detect the magnitude of a current for driving a motor of an electric vehicle or a hybrid car.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

 地磁気等の外来磁界と、近隣電流路の磁界の双方の影響を減らすと共に、ダイナミックレンジの低下を防止できる電流センサを提供すること。第1の電流路と、第2の電流路と、第1の電流路を挟んで配置される第1および第2の磁電変換素子とを備え、第1および第2の電流路は、第1導体部と、第1導体部の両端からX方向に延びる第2および第3導体部とを有し、第1および第2の電流路はY方向に離れて隣り合っており、第1の電流路の第2導体部と第3導体部とはZ方向に離れており、第2の電流路の第2導体部と第3導体部とはZ方向に離れ、第1および第2の磁電変換素子は第1の電流路の第1導体部を挟んで配置され、第1および第2の磁電変換素子の感度軸の方向がY方向であって、第1および第2の磁電変換素子のY方向に第2の電流路の第2導体部が配置され、第2の電流路の第2導体部の中心線から第1の磁電変換素子までの垂線と、第2の磁電変換素子までの垂線との方向および長さを等しくする。

Description

電流センサ
 本発明は、電流路近傍の磁界に基づいて当該電流路に流れる電流を測定する電流センサに関する。
 従来、被測定電流を通流する被測定電流路に設置され、被測定電流路を通流する被測定電流により発生する磁界を検出し、検出された磁界に基づいて当該電流路に流れる電流を検出する電流センサが知られている。このような電流センサは、例えば、それぞれの延びる方向が平行となるように並設された3本の電流路を有する三相モータ等に搭載される。このような三相モータに搭載される電流センサにおいては、隣り合う電流路(近隣電流路)を流れる電流により生じる磁界の影響を抑制して、被測定電流の測定精度の低下を防止する必要がある。近隣電流路に起因する磁界の影響を抑制する方法としては、例えば、図10のように被測定電流により発生する磁界を一対の磁電変換素子で測定し、近隣電流路を流れる電流により発生する磁界が一対の磁電変換素子に同様に加わるように配置してなる電流センサが提案されている。この電流センサでは、被測定電流が発生する磁場は、一対の磁電変換素子に逆方向に加わり、近隣電流が発生する磁場は、一対の磁電変換素子に同一方向に加わる。この為、一対の磁電変換素子の出力の差分を用いることで、近隣電流が発生する磁場を相殺することができる。尚、地磁気等の外来磁界も、一対の磁電変換素子に同一方向に加わるため、相殺できる(例えば、特許文献1参照)。
特開2010-266290号公報
 しかしながら、特許文献1に開示された電流センサの場合、近隣電流路を流れる電流により発生する磁界が、被測定電流路を流れる電流により発生する磁界と同一方向に重なる。この為、各磁電変換素子は、前記双方の磁界を足し合わせた強さの磁界を測定できるようにする必要がある。よって、近隣電流路を流れる電流により発生する磁界の強さの分だけダイナミックレンジが低下する。
 本発明は、かかる点に鑑みてなされたものであり、地磁気等の外来磁界と、近隣電流路の磁界の双方の影響を減らすと共に、ダイナミックレンジの低下を防止できる電流センサを提供することを目的とする。
 本発明の電流センサは、被測定電流路となる第1の電流路と、前記被測定電流路に近隣する第2の電流路と、前記第1の電流路を挟んで配置される第1および第2の磁電変換素子と、を備え、前記第1の電流路および前記第2の電流路は、第1導体部と、前記第1導体部の両端からX方向に延びる第2導体部および第3導体部とを有しており、前記第1の電流路と前記第2の電流路とは前記X方向と直交するY方向に離れて隣り合っており、前記X方向と前記Y方向とに直交する方向であるZ方向に、前記第1の電流路の第2導体部と第3導体部とは離れており、記第1の電流路の第2導体部と第3導体部とは前記Y方向の位置が一致しており、前記第2の電流路の第2導体部と第3導体部とは前記Z方向に離れ、前記Y方向の位置が一致しており、前記第1の磁電変換素子と前記第2の磁電変換素子とは前記第1の電流路の前記第1導体部を挟んで配置され、前記第1および前記第2の磁電変換素子の感度軸の方向が前記Y方向であって、前記第1および前記第2の磁電変換素子の前記Y方向に前記第2の電流路の前記第2導体部が配置され、前記第2の電流路の前記第2導体部の中心線から前記第1の磁電変換素子までの垂線と、前記第2の電流路の前記第2導体部の中心線から前記第2の磁電変換素子までの垂線との方向および長さが等しいことを特徴とする。
 この電流センサによれば、第2の電流路の第2導体部を流れる電流が発生する磁界の向きは、第1および第2の磁電変換素子の感度軸に対してほぼ直交する角度とすることができる。そのため、第2の電流路の第2導体部を流れる電流が発生する磁界は、第1および第2の磁電変換素子でほとんど測定されず、ダイナミックレンジの低下を防止できる。なお、第1の電流路および第2の電流路の双方の第2導体部のZ方向(高さ方向)の位置が一致しており、しかもZY座標上で斜めにできない場合には、第2の電流路の第2導体部を流れる電流が発生する磁界の向きが、第1および第2の磁電変換素子の感度軸に直交しないため、僅かながらも、第1および第2の磁電変換素子で測定される。しかし、僅かな量であるため、ダイナミックレンジの低下も小さくすることができる。
 また、第2の電流路の第2導体部を流れる電流が発生する磁界が、第1および第2の磁電変換素子に与える影響は同一となる。よって、第1および第2の磁電変換素子の出力差を用いることで、第2の電流路の第2導体部を流れる電流が発生する磁界の影響を取り除くことができる。しかも、各電流路の第1乃至第3導体部のY方向の位置は一致した構成となっている。つまり、Z方向から見ると一直線上に配置される。この為、Y方向(横方向)の大型化を防止できる。
 なお、第2の電流路の第1導体部を流れる電流と直交する位置に第1又は第2の磁電変換素子が存在する場合には、第2の電流路の第1導体部を流れる電流が発生する磁界が、第1および第2の磁電変換素子に異なる影響を与える。しかし、X方向(奥行き方向)に電流路が長く延びている場合には、第2の電流路の第1導体部の位置を第1又は第2の磁電変換素子から充分に離すことで、測定精度の悪化を防止できる。つまり、特許文献1に比較すると、X方向(奥行き方向)に長くなるものの、Y方向(横方向)の小型化を実現でき、しかもダイナミックレンジの低下を防止できる。尚、ここで言うX方向(奥行き方向)とは第2導体部および第3導体部を電流が流れる方向である。同様に、Y方向(横)とは、複数の電流路の並んでいる方向である。Z(高さ方向)方向とは、X方向とY方向に直交する方向である。使用状態において、X方向(奥行き方向)やY方向(横方向)が水平方向でなくとも構わない。同様に、Z方向(高さ方向)が鉛直方向でなくとも構わない。
 また、本発明の電流センサにおいて、前記第1導体部と、前記第2導体部とのなす角が直角であり、前記第1導体部と、前記第3導体部とのなす角が直角とすることができる。
 また、本発明の電流センサにおいて、前記第1および第2の磁電変換素子は、前記第2の電流路の第1導体部を前記Y方向に拡張した面の法線方向領域外に配置される構成とすることができる。
 また、本発明の電流センサにおいて、前記第1の電流路の前記第2導体部と、前記第1の電流路の前記第3導体部と、前記第2の電流路の前記第2導体部と、前記第2の電流路の前記第3導体部とが平行であって、前記各電流路の前記第1導体部と前記第2導体部のなす角が直角以外であり、前記各電流路の前記第1導体部と前記第3導体部のなす角が直角以外である構成とすることができる。
 また、本発明の電流センサにおいて、前記第1の電流路の前記第2導体部には、第4導体部と第5導体部とが連なって設けられ、前記第1の電流路の前記第3導体部には、第6導体部と第7導体部とが連なって設けられ、前記第5導体部の延長線上に前記第7導体部が設けられた構成とすることができる。この電流センサでは、電流路の始点と終点が一直線上に配置されるので、前後の機器に組み付けやすくなる。
 また、本発明の電流センサにおいて、前記第1の電流路の前記第1導体部は、前記X方向より前記Y方向が長く、前記第1の電流路の前記第2導体部と前記第3導体部は、前記Z方向より前記Y方向が長い構成とすることができる。この電流センサでは、第1の電流路を流れる電流によって発生する磁界の向きは、第1および第2の磁電変換素子部分で直線状となり、測定精度を高めることができる。
 また、本発明の電流センサにおいて、前記第1の磁電変換素子と前記第2の磁電変換素子は、一枚の基板に搭載され、前記基板は、前記第1の磁電変換素子と前記第2の磁電変換素子との間に第1のスリットを有し、前記第1のスリットに前記第1電流路の前記第1導体部が配置される構成とすることができる。この電流センサでは、第1の電流路に第1の磁電変換素子と第2の磁電変換素子を取り付けやすくなる。
 また、本発明の電流センサにおいて、前記第2の電流路の前記第1導体部を挟んで第3および第4の磁電変換素子が設けられ、前記基板上に前記第3および第4の磁電変換素子が搭載され、前記第3の磁電変換素子と前記第4の磁電変換素子との間に第2のスリットを有し、前記第2のスリットに前記第2の電流路の前記第1導体部が配置される構成とすることができる。この電流センサでは、複数の電流路に磁電変換素子を取り付けやすくなる。
 本発明によれば、地磁気等の外来磁界と、近隣電流路の磁界の双方の影響を減らすと共に、ダイナミックレンジの低下を防止できる。
電流センサの測定原理を示す図である。 電流センサの構成例を示す図である。 磁気センサの構成例を示すブロック図である。 電流センサの第1の構成例を示す図である。 上記電流センサにおける屈曲部の構成例を示す模式図である。 上記屈曲部に生じる磁場を示す模式図である。 電流センサの第2の構成例を示す図である。 電流センサの他の構成例を示す図である。 電流センサの他の構成例を示す図である。 従来の電流センサの平面図である。
 図1は、電流センサの測定原理を示す図である。図1は、後述するプリント基板4に対して平面視であり、電流路5aに対して断面視となっている。図1に示すように、電流センサ1は、一つの側端側から中央に向かって(図1におけるX方向)形成され、被測定電流路5aを挿通させるスリット41を有するプリント基板4を備える。プリント基板4の表面には、磁電変換素子2a,2bおよび信号処理回路3が実装されている。磁電変換素子2a,2bは、紙面上下方向(図1におけるY方向)においてスリット41を挟むようにして、被測定電流路5aからの距離が略等しくなるように配置されている。
 被測定電流路5aは、銅などの導電性部材を略一定幅および略一定厚みの帯状に形成した平板型導体で構成される。被測定電流路5aは、その延在方向をプリント基板4の面内方向に対して直交するように、プリント基板4のスリット41に挿通されている。すなわち、被測定電流路5aは、表面が上方(図1におけるY方向)に向くように配置されると共に、紙面手前-紙面奥方向(図1におけるZ方向)に延在しており、被測定電流が紙面奥側から紙面手前側に向かって通流するようになっている。
 磁電変換素子2a,2bは、略長方形状を有し、被測定電流路5aの電流が流れる方向(通流方向)に対して垂直方向(図1におけるX方向)に感度軸を有するように形成されている。また、磁電変換素子2a,2bは、感度軸が互いに反対方向を向くように配置される。磁電変換素子2a,2bは、磁気検出が可能な素子であれば特に限定されない。磁電変換素子2a,2bとしては、例えば、GMR(Giant Magneto Resistance)素子やTMR(Tunnel Magneto Resistance)素子などの磁気抵抗効果素子を用いた磁気センサ、ホール素子を用いた磁気センサなどを適用できる。
 図2は、磁電変換素子2a,2bに加わる磁場を説明する図である。図2において、磁電変換素子2a,2b上の矢印は、それぞれの磁電変換素子における感度軸方向を示し、白抜きの矢印は被測定電流路5aを流れる電流(被測定電流)によって生じる磁場を示し、細線の矢印は外来磁場を示す。
 外来磁場Bb’は、同じ大きさ、同じ方向で磁電変換素子2a,2bに加わっている。すなわち、外来磁場Bb’は、磁電変換素子2a,2bに対して同一ベクトルで加わっている。一方、被測定電流路5aに流れる電流によって生じる誘導磁界Baは、同じ大きさ、逆方向で磁電変換素子2a,2bに加わっている。したがって、信号処理回路3で差動演算処理すると、外来磁場Bb’の影響はキャンセルでき、誘導磁界Baの差分出力が得られる。この誘導磁界Baの差分出力に基づいて、被測定電流路5aの電流量を算出できる。
 図3は、磁電変換素子2a,2bは、磁電変換素子2a,2bを含む電流センサ1の構成例を示すブロック図である。図3に示すように、電流センサ1は、磁電変換素子2a,2bに加え、磁電変換素子2a,2bの制御を行う制御回路素子31a,31bと、制御回路素子31a,31bからの出力の差分をとってセンサ出力とする信号処理回路3とを有する。
 図3に示すように、磁電変換素子2a,2bは、被測定電流Iによって発生する誘導磁界Baを打ち消す方向の磁界を発生可能に配置されたフィードバックコイル111a,111bと、磁電変換素子112a,112bと、を含んで構成される。
 また、制御回路素子31a,31bは、磁電変換素子112a,112bの差動出力を増幅し、フィードバックコイル111a,111bのフィードバック電流を制御するオペアンプ131a,131bと、フィードバック電流を電圧に変換するI/Vアンプ132a,132bとを含んで構成される。
 フィードバックコイル111a,111bは、磁電変換素子112a,112bの近傍に配置されており、被測定電流Iにより発生する誘導磁界Baを相殺するキャンセル磁界を発生する。例えば、被測定電流からの誘導磁界により抵抗値が変化するという特性を有する磁気抵抗効果素子を用いて磁電変換素子112a,112bを構成することで、高感度の電流センサ1を実現できる。
 信号処理回路3は、制御回路素子31a,31bからの出力電圧(すなわち、I/Vアンプ132a,132bの出力電圧)の差をとって出力する。信号処理回路3は、例えば、差動アンプで構成される。この差動演算処理によって、地磁気などの外部磁場の影響はキャンセルされ、高精度に電流を測定できる。
 なお、電流センサ1は上述した構成に限定されない。例えば、磁電変換素子2a,2bとしてフィードバックコイル等を用いない磁気比例式のセンサを用いてもよい。また、上述したように磁気抵抗素子以外に、ホール素子などの感磁素子を用いてもよい。
 以下、外来磁場Bb’が、磁電変換素子2a,2bに対して同一ベクトルで加わり、被測定電流路5aに流れる電流によって生じる誘導磁界Baが、磁電変換素子2a,2bに対して異なるベクトルで加わる構成を有する本発明に係る電流センサの構成例について、詳細に説明する。
<第1の構成例>
 図4Aは、本発明における電流センサの構成例を示す図である。図4Aに示すように、電流センサ108においては、被測定電流路5aと近隣電流路5bとが図4AにおけるX方向に互いに平行に延びて設けられており、被測定電流路5aに被測定電流が通流し、近隣電流路5bに近隣電流が通流している。したがって、電流路5a,5bが延びている方向が電流の通流方向となっている。すなわち、電流路5aは、電流の通流方向(第1方向)に延びており、電流路5bは、電流路5aが延びる方向を略平行にして隣り合うように配置されている。
 被測定電流路5aの一部には曲げ加工が施されて、屈曲した第1導体部58aが形成されている。具体的に、第1導体部58aは、電流路の幅(磁電変換素子2a,2b搭載面において、電流の流れる向きと直交する方向における電流路の長さ)方向(Y方向)を軸として、例えば、直交する方向に屈曲して形成される。この第1導体部58aの表面は、例えば、通流方向に直交する方向を向いている。
 したがって、電流路5aは、第1導体部58aの両端からX方向にそれぞれ延びる第2導体部58bおよび第3導体部58cが連接して構成されている。また、X方向とY方向とに直交するZ方向に、第2導体部58bと第3導体部58cは離れており、第2導体部58bと第3導体部58cはY方向の位置が一致している。すなわち、被測定電流路5aにおいては、第2導体部58bおよび第3導体部58cで被測定電流が図4AのX方向に通流し、第1導体部58aで被測定電流が図4AのZ方向に通流するようになっている。
 近隣電流路5bは、X方向と直交するY方向に離れて隣り合っており、被測定電流路5aと同様に、近隣電流路5bの一部には曲げ加工が施されて、屈曲した第1導体部60aが形成されている。この第1導体部60aの表面は、例えば、通流方向に直交する方向を向いている。したがって、電流路5bは、第1導体部60aの両端からX方向にそれぞれ延びる第2導体部60bおよび第3導体部60cが連接して構成されている。また、X方向とY方向とに直交するZ方向に、第2導体部60bと第3導体部60cは離れており、第2導体部60bと第3導体部60cはY方向の位置が一致している。すなわち、近隣電流路5bにおいても、第2導体部60bおよび第3導体部60cで近隣電流が図4AのX方向に通流し、第1導体部60aで近隣電流が図4AのZ方向に通流するようになっている。
 プリント基板4の表面には、磁電変換素子2a,2bおよび信号処理回路3が実装されている。磁電変換素子2a,2bは被測定電流路5aの第1導体部58aを挟んで配置され、磁電変換素子2a,2bの感度軸の方向がY方向となっている。また、磁電変換素子2a,2bのY方向に近隣電流路5bの第2導体部60bが配置され、近隣電流路5bの第2導体部60bの中心線から、磁電変換素子2aまでの垂線と、磁電変換素子2bまでの垂線との方向および長さが等しくなるように配置されている。
 具体的に、プリント基板4には、紙面手前-奥方向(図4AにおけるZ方向)に貫通する2つのスリット41が形成されており、一方のスリット41内を被測定電流路5aの第1導体部58aが通るように配置されている。したがって、磁電変換素子2a,2bは、スリット41を挟むようにして、被測定電流路5aからの距離が略等しくなるように配置されている。同様に、他方のプリント基板4のスリット41内を近隣電流路5bの第1導体部60aが通るように配置されている。したがって、磁電変換素子21a,21bは、スリット41を挟むようにして、近隣電流路5bからの距離が略等しくなるように配置されている。
 磁電変換素子2a,2bは、感度軸が通流方向に対して垂直となり、かつ、感度軸が互いに同じ方向を向くように配置される。なお、図4Aにおいて、磁電変換素子2a,2b上の矢印は、それぞれの磁電変換素子における感度軸方向を示す。ここで、感度軸方向とは、磁電変換素子2a,2bが最大の感度を得る方向をいう。図4においては、磁電変換素子2a,2bの感度軸が紙面右方向を向く場合を示しているが、反対方向(紙面左方向)を向くように配置してもよい。また、磁電変換素子2a、2bが逆方向、例えば磁電変換素子2aが右方向で、磁電変換素子2bが左方向を向くように配置してもよい。また、磁電変換素子としてホール素子を適用する場合には、感度軸は感磁面と直交する方向(例えば、図4におけるZ方向)となる。なお、第1導体部58a,60aは、互いに重ならない位置に形成されている。
 また、被測定電流路5aの第1導体部58aは、X方向よりY方向が長くなるように形成され、被測定電流路5aの第2導体部58bおよび第3導体部58は、Z方向よりY方向が長くなるように形成された構造とすることができる。
 このような構成の電流センサ108において、被測定電流路5aおよび近隣電流路5bに電流が流れる場合を考える。図4Bにおいては、紙面上方向(図4AにおけるX方向)に向って電流Iが流れるとする。被測定電流路5aの第1導体部58aを流れる電流によって生じる誘導磁界Baは、磁電変換素子2a近傍と、磁電変換素子2b近傍とでは、向きが反対となる。そのため、磁電変換素子2aによって検出される誘導磁界Ba1と、磁電変換素子2bによって検出される誘導磁界Ba2とは、大きさが同じで、方向が異なる。すなわち、被測定電流路5aを流れる電流によって生じる磁界は、磁電変換素子2aおよび磁電変換素子2bに対して異なるベクトルで加わる。
 一方、被測定電流路5a近傍には、近隣電流路5bを流れる電流によって磁界Bbが生じている。近隣電流路5bのうち磁電変換素子2a,2bに隣り合う部分は、第1導体部60aが形成されていない直線領域である。また、近隣電流路5bの中心線から磁電変換素子2aまでの垂線と、磁電変換素子2bまでの垂線との方向および長さが概略等しく、磁電変換素子2aと磁電変換素子2bとを結ぶ線分と、線分に近隣する近隣電流路5bの直線部とが概略平行であり、磁電変換素子2aに近隣する近隣電流路5bの断面積と磁電変換素子2bとに近隣する近隣電流路5bの断面積が概略同一となっている。そのため、磁電変換素子2aによって検出される磁界Bb’と、磁電変換素子2bによって検出される磁界Bb’とは、方向が同じで、大きさも同じとなる。すなわち、近隣電流路5bを流れる電流によって生じる磁界は、磁電変換素子2aおよび磁電変換素子2bに対して同一ベクトルで加わる。また、地磁気も磁電変換素子2aおよび磁電変換素子2bに対して同一ベクトルで加わる。
 そのため、磁電変換素子2a,2bによって検出された磁界を信号処理回路3によって差動演算処理することにより、同一ベクトル量である外乱磁場(近隣電流路5bによる磁場Bbおよび地磁気)の影響はキャンセルされ、異なるベクトル量である被測定電流路5aによる誘導磁界Baのみが差分出力される。このように出力された誘導磁界Baに基づいて、被測定電流路5aに流れる電流を精度よく検出できる。
 以上のように、電流センサ108においては、被測定電流路5aを挟んで両側に磁電変換素子2aと2bとが配置されることにより、被測定電流路5aに流れる電流によって生じる誘導磁界Baが、磁電変換素子2a,2bに対して異なるベクトルで加わり、外乱磁場が、磁電変換素子2a,2bに対して同一ベクトルで加わる構成としている。この場合には、被測定電流路5aに生じる誘導磁界が正反対のベクトルとして磁電変換素子2a,2bに加わる構成とすることができるため、差分出力値が大きくなり、被測定電流の検出精度を高めることが可能となる。また、第2の電流路の第2導体部60bを流れる電流が発生する磁界は、磁電変換素子2a,2bでほとんど測定されない構成とすることができるため、ダイナミックレンジの低下を防止できる。また、図4に示すように、被測定電流路5aに屈曲した第1導体を設け、近隣電流路5bを配置することにより、電流路の幅方向に小型化することが可能となる。
 なお、第1導体部58a,60aは、通流方向に対して垂直に設けられていてもよいし、通流方向に対して角度をもって(斜めに)設けられていてもよい。図5は、電流センサ108における被測定電流路5aを側面側からみた模式図である。図5Aに示す被測定電流路5aは、第1導体部58aが通流方向に対して垂直に設けられている。図5Bに示す被測定電流路5bは、第1導体部58aが通流方向に対して斜めに設けられている。
 図6は、図5に示した被測定電流路5aにおける第1導体部58aを流れる電流によって生じる誘導磁界Baを示す模式図である。図6A,Bに示す被測定電流路5aは、それぞれ図5A,Bに示した被測定電流路5aに対応する。図6において、ハッチングで示す部分は、第1導体部58aを流れる電流によって生じる誘導磁界Baの影響を受けるエリアである。図5Aに示す第1導体部58aを通流方向に垂直な方向に対して角度をもって(斜めに)設ける(非直交領域を形成する)と(図6B参照)、近隣電流路5bの誘導磁界Baによって影響を受ける範囲が限定される。したがって、第1導体部58aを斜めに設け非直交領域を形成すると、磁電変換素子21a,21bが、ほとんど近隣電流路5bの誘導磁界Baの影響を受けないようにすることができる。このように、磁電変換素子21a、21bを、第1の電流路5aの第1導体部58aをY方向に拡張した面の法線方向の領域外に配置することにより、電流センサ108を大型化させずに、測定精度を向上できるという利点がある。
<第2の構成例>
 図7は、本発明における電流センサの構成例を示す図である。図7に示すように、電流センサ109においては、被測定電流路5aと近隣電流路5bとが図7におけるX方向に互いに平行に延在しており、被測定電流路5aに被測定電流が通流し、近隣電流路5bに近隣電流が通流している。したがって、電流路5a,5bが延びる方向が電流の通流方向となっている。すなわち、電流路5aは、電流の通流方向(第1方向)に延在しており、電流路5bは、電流路5aに延びる方向を略平行にして隣り合うように配置されている。
 被測定電流路5aの一部には曲げ加工が施され、屈曲した複数の導体部が形成されている。具体的に、図7に示す構成においては、電流路5aが略S字状に構成されている。屈曲した第1導体部59a、第4導体部59d、第6導体部59fの表面は、例えば、通流方向に直交する方向を向いている。したがって、電流路5aは、第1導体部59aの両端からX方向にそれぞれ延びる第2導体部59bと第3導体部59cが連接して構成されている。さらに、第2導体部59bには、第4導体部59dと第5導体部59eが連接して設けられている。また、第3導体部59cには、第6導体部59fと第7導体部59gが連接して設けられている。第5導体部59eの延長線上に第7導体部59gが配置するように設けられている。
 同様に、近隣電流路5bの一部には曲げ加工が施され、屈曲した複数の導体部が形成されている。具体的に、図7に示す構成においては、電流路5bが略S字状(クランク形状)に構成されている。屈曲した第1導体部61a、第4導体部61d、第6導体部61fの表面は、例えば、通流方向に直交する方向を向いている。したがって、電流路5bは、第1導体部61aの両端からX方向にそれぞれ延びる第2導体部61bと第3導体部61cが連接して構成されている。さらに第2導体部61bには、第4導体部61dと第5導体部61eが連接して設けられている。また、第3導体部61cには、第6導体部61fと第7導体部61gが連接して設けられている。第5導体部61eの延長線上には第7導体部61gが配置するように設けられている。
 プリント基板4の表面には、磁電変換素子2a,2bおよび信号処理回路3が実装されている。磁電変換素子2a,2bは被測定電流路5aの第1導体部59aを挟んで配置される。また、磁場変換素子2aは第1導体部59aと第4導体部59dに挟まれて配置され、磁場変換素子2aは第1導体部59aと第6導体部59fに挟まれて配置される。なお、磁電変換素子2a,2bの感度軸の方向がY方向となっている。
 また、磁電変換素子2a,2bのY方向に近隣電流路5bの第7導体部61gが配置され、近隣電流路5bの第7導体部61gの中心線から、磁電変換素子2aまでの垂線と、磁電変換素子2bまでの垂線との方向および長さが等しくなるように配置されている。
 具体的には、プリント基板4には、紙面手前-奥方向方向(図7におけるZ方向)に貫通するスリット41が形成されており、そのスリット41内を被測定電流路5aの第1導体部59aが通るように配置されている。したがって、磁電変換素子2a,2bは、スリット41を挟むようにして配置されている。同様に、プリント基板4のスリット41内を近隣電流路5bの第1導体部61aが通るように配置されている。したがって、磁電変換素子21a,21bは、スリット41を挟むようにして、近隣電流路5bからの距離が略等しくなるように配置されている。
 磁電変換素子2a,2bは、感度軸が通流方向に対して垂直となり、かつ、感度軸が互いに同じ方向を向くように配置される。なお、図7において、磁電変換素子2a,2b上の矢印は、それぞれの磁電変換素子における感度軸方向を示す。なお、第1導体部59a,61aは、互いに重ならない位置に形成されている(図7におけるX方向において第1導体部が互いに異なる位置にある)。
 このような構成の電流センサ109において、被測定電流路5aおよび近隣電流路5bに電流が流れる場合を考える。図7においては、紙面上方向(図7におけるX方向)に向って電流Iが流れるとする。被測定電流路5aの第1導体部59aのうちスリット41に挿入された部分を流れる電流によって生じる誘導磁界Ba(第4導体部59d、第6導体部59fを流れる電流によって生じる誘導磁界)は、磁電変換素子2a近傍と、磁電変換素子2b近傍とでは、向きが反対となる。そのため、磁電変換素子2aによって検出される誘導磁界Ba1と、磁電変換素子2bによって検出される誘導磁界Ba2とは、大きさが同じで、方向が異なる。すなわち、被測定電流路5aを流れる電流によって生じる磁場は、磁電変換素子2aおよび磁電変換素子2bに対して異なるベクトルで加わる。
 一方、被測定電流路5a近傍には、近隣電流路5bを流れる電流によって磁界Bbが生じている。近隣電流路5bのうち磁電変換素子2a,2bに隣り合う部分は、第1導体部59bが形成されていない直線領域である。そのため、磁電変換素子2aによって検出される磁界Bb’と、磁電変換素子2bによって検出される磁界Bb’とは、方向が同じで、大きさも同じとなる。すなわち、近隣電流路5bを流れる電流によって生じる磁界は、磁電変換素子2aおよび磁電変換素子2bに対して同一ベクトルで加わる。また、地磁気も磁電変換素子2aおよび磁電変換素子2bに対して同一ベクトルで加わる。
 そのため、磁電変換素子2a,2bによって検出された磁界を信号処理回路3によって差動演算処理することにより、同一ベクトル量である外乱磁場(近隣電流路5bによる磁場Bbおよび地磁気)の影響はキャンセルされ、異なるベクトル量である被測定電流路5aによる誘導磁界Baのみが差分出力される。このように出力された誘導磁界Baに基づいて、被測定電流路5aに流れる電流を精度よく検出できる。
 以上のように、電流センサ109においては、被測定電流路5aを挟んで両側に磁電変換素子2aと2bとが配置されることにより、被測定電流路5aに流れる電流によって生じる誘導磁界Baが、磁電変換素子2a,2bに対して異なるベクトルで加わり、外乱磁場が、磁電変換素子2a,2bに対して同一ベクトルで加わる構成としている。この場合には、被測定電流路5aに生じる磁界が正反対のベクトルとして磁電変換素子2a,2bに加わる構成とすることができるため、差分出力値が大きくなり、被測定電流の検出精度を高めることが可能となる。また、第2の電流路5bの第7導体部61gを流れる電流が発生する磁界は、磁電変換素子2a,2bでほとんど測定されない構成とすることができるため、ダイナミックレンジの低下を防止できる。
 なお、第1導体部59a,61aは、通流方向に対して垂直に設けられていてもよいし、通流方向に対して角度をもって(斜めに)設けられていてもよい。上記第1の構成例と同様に、第1導体部59aを通流方向に対して斜めに設けると、垂直に設けた場合より、近隣電流路5bが誘導磁界Baによって影響を受ける範囲を縮小できる。
<他の構成例>
 なお、本実施の形態に係る電流センサは、上記第1、2の構成例で示した構成に限定されない。例えば、図8、図9に示す構成とすることもできる。
 図8は、上記図4bに示した構成において、被測定電流路5aと近隣電流路5bの高さ方向(Z方向)の位置をずらして配置した場合を示している。図8の構成では、被測定電流路5aの誘導磁界と、近隣電流路5bの誘導磁界を直交させることができるため、磁電変換素子2a、2bにおいて、近隣電流路5bの誘導磁界の影響を排除することができる。
 図9は、被測定電流路5aおよび近隣電流路5bを折り返し形状(U字型)とした構成を示している。このように、本実施の形態の電流センサは、電流路の形状を適宜変更することができる。
 以上説明したように、電流センサの各構成例によれば、被測定電流路5aと近隣電流路5bとが通流方向に対して平行に並んで設けられた場合に、近隣電流路5bに流れる電流によって生じる磁場Bbは被測定電流路5aに設けられた磁電変換素子2a,2bに対して同一ベクトルで加わり、被測定電流路5aに流れる電流によって生じる磁場Baは磁電変換素子2a,2bに異なるベクトルで加わる構成となるため、磁電変換素子2a,2bの位置精度や取り付け精度を要求することなく、近隣電流路5bの磁場Bbの影響による被測定電流の測定精度の低下を防止できる。
 なお、本発明は上記実施の形態に限定されず、さまざまに変更して実施可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更が可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施可能である。
 本発明の電流センサは、例えば、電気自動車やハイブリッドカーのモータ駆動用の電流の大きさを検知するために用いることが可能である。
 本出願は、2011年7月4日出願の特願2011-148152に基づく。この内容は、全てここに含めておく。

Claims (8)

  1.  被測定電流路となる第1の電流路と、前記被測定電流路の近隣に設けられた第2の電流路と、前記第1の電流路を挟んで配置される第1および第2の磁電変換素子と、を備え、
     前記第1の電流路および前記第2の電流路は、第1導体部と、前記第1導体部の両端からX方向に延びる第2導体部および第3導体部とを有しており、
     前記第1の電流路と前記第2の電流路とは前記X方向と直交するY方向に離れて隣り合っており、
     前記X方向と前記Y方向とに直交する方向であるZ方向に、前記第1の電流路の第2導体部と第3導体部とは離れており、記第1の電流路の第2導体部と第3導体部とは前記Y方向の位置が一致しており、
     前記第2の電流路の第2導体部と第3導体部とは前記Z方向に離れ、前記Y方向の位置が一致しており、
     前記第1の磁電変換素子と前記第2の磁電変換素子とは前記第1の電流路の前記第1導体部を挟んで配置され、
     前記第1および前記第2の磁電変換素子の感度軸の方向が前記Y方向であって、
     前記第1および前記第2の磁電変換素子の前記Y方向に前記第2の電流路の前記第2導体部が配置され、
     前記第2の電流路の前記第2導体部の中心線から前記第1の磁電変換素子までの垂線と、前記第2の電流路の前記第2導体部の中心線から前記第2の磁電変換素子までの垂線との方向および長さが等しいことを特徴とする電流センサ。
  2.  前記第1導体部と、前記第2導体部とのなす角が直角であり、
     前記第1導体部と、前記第3導体部とのなす角が直角であることを特徴とする請求項1記載の電流センサ。
  3.  前記第1および第2の磁電変換素子は、前記第2の電流路の第1導体部を前記Y方向に拡張した面の法線方向領域外に配置されることを特徴とする請求項1記載の電流センサ。
  4.  前記第1の電流路の前記第2導体部と、前記第1の電流路の前記第3導体部と、前記第2の電流路の前記第2導体部と、前記第2の電流路の前記第3導体部とが平行であって、
     前記各電流路の前記第1導体部と前記第2導体部のなす角が直角以外であり、
     前記各電流路の前記第1導体部と前記第3導体部のなす角が直角以外であることを特徴とする請求項3記載の電流センサ。
  5.  前記第1の電流路の前記第2導体部には、第4導体部と第5導体部とが連なって設けられ、前記第1の電流路の前記第3導体部には、第6導体部と第7導体部とが連なって設けられ、
     前記第5導体部の延長線上に前記第7導体部が設けられたことを特徴とする請求項1から請求項4のいずれかに記載の電流センサ。
  6.  前記第1の電流路の前記第1導体部は、前記X方向より前記Y方向が長く、
     前記第1の電流路の前記第2導体部と前記第3導体部は、前記Z方向より前記Y方向が長いことを特徴とする請求項1から請求項4のいずれかに記載の電流センサ。
  7.  前記第1の磁電変換素子と前記第2の磁電変換素子は、一枚の基板に搭載され、前記基板は、前記第1の磁電変換素子と前記第2の磁電変換素子との間に第1のスリットを有し、前記第1のスリットに前記第1電流路の前記第1導体部が配置されることを特徴とする請求項6に記載の電流センサ。
  8.  前記第2の電流路の前記第1導体部を挟んで第3および第4の磁電変換素子が設けられ、
     前記基板上に前記第3および第4の磁電変換素子が搭載され、
     前記第3の磁電変換素子と前記第4の磁電変換素子との間に第2のスリットを有し、前記第2のスリットに前記第2の電流路の前記第1導体部が配置されることを特徴とする請求項7に記載の電流センサ。
     
PCT/JP2012/056644 2011-07-04 2012-03-15 電流センサ WO2013005459A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013522487A JP5531217B2 (ja) 2011-07-04 2012-03-15 電流センサ
US14/098,367 US9435829B2 (en) 2011-07-04 2013-12-05 Current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-148152 2011-07-04
JP2011148152 2011-07-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/098,367 Continuation US9435829B2 (en) 2011-07-04 2013-12-05 Current sensor

Publications (1)

Publication Number Publication Date
WO2013005459A1 true WO2013005459A1 (ja) 2013-01-10

Family

ID=47436819

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/056644 WO2013005459A1 (ja) 2011-07-04 2012-03-15 電流センサ
PCT/JP2012/056643 WO2013005458A1 (ja) 2011-07-04 2012-03-15 電流センサ

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056643 WO2013005458A1 (ja) 2011-07-04 2012-03-15 電流センサ

Country Status (3)

Country Link
US (1) US9435829B2 (ja)
JP (2) JP5531217B2 (ja)
WO (2) WO2013005459A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192625A1 (ja) * 2013-05-30 2014-12-04 株式会社村田製作所 電流センサ
WO2015033541A1 (ja) * 2013-09-05 2015-03-12 旭化成エレクトロニクス株式会社 電流センサ
WO2015082980A1 (en) 2013-12-06 2015-06-11 Toyota Jidosha Kabushiki Kaisha Bus bar module
JP2015152363A (ja) * 2014-02-12 2015-08-24 旭化成エレクトロニクス株式会社 電流センサ
CN105934678A (zh) * 2013-12-06 2016-09-07 丰田自动车株式会社 汇流条模块
WO2016194633A1 (ja) * 2015-06-04 2016-12-08 株式会社村田製作所 電流センサ
CN108254609A (zh) * 2016-12-28 2018-07-06 意法半导体股份有限公司 集成电流传感器器件和对应的电子器件
TWI645197B (zh) * 2017-12-26 2018-12-21 財團法人工業技術研究院 電流感測裝置及方法
JP2019144222A (ja) * 2018-02-21 2019-08-29 Tdk株式会社 磁気センサ
JP2019219294A (ja) * 2018-06-20 2019-12-26 Tdk株式会社 磁気センサ
US10684312B2 (en) 2017-12-26 2020-06-16 Industrial Technology Research Institute Current detection device and method
JP2020148752A (ja) * 2019-03-13 2020-09-17 甲神電機株式会社 電流検出装置
JP2020160036A (ja) * 2019-03-27 2020-10-01 甲神電機株式会社 多相電流検出装置
CN113223789A (zh) * 2020-02-05 2021-08-06 马勒国际有限公司 用于温度控制装置的ptc热敏电阻模块

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156260A1 (ja) * 2014-04-07 2015-10-15 アルプス・グリーンデバイス株式会社 電流検知装置
JP6585292B2 (ja) * 2016-05-16 2019-10-02 日立オートモティブシステムズ株式会社 電流検出装置及びそれを備える電力変換装置
JP6721722B2 (ja) 2017-02-10 2020-07-15 アルプスアルパイン株式会社 電流センサ
EP3594698B1 (en) * 2017-03-06 2021-09-29 Alps Alpine Co., Ltd. Current sensor
JP6826015B2 (ja) * 2017-09-25 2021-02-03 矢崎総業株式会社 電流センサ
WO2019092912A1 (ja) * 2017-11-08 2019-05-16 株式会社村田製作所 電流センサおよびその製造方法
AT523610B1 (de) * 2020-03-05 2021-12-15 Avl List Gmbh Umrichterbaugruppe
DE102020113301A1 (de) * 2020-05-15 2021-11-18 Technische Universität Braunschweig Verfahren zum Bestimmen zumindest einer Stromstärke und Strommessgerät
DE102021208725A1 (de) * 2021-08-10 2023-02-16 Robert Bosch Gesellschaft mit beschränkter Haftung Stromerfassungsanordnung und elektrische Maschine
WO2023074083A1 (ja) * 2021-10-29 2023-05-04 アルプスアルパイン株式会社 電流センサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074783A (ja) * 1999-09-02 2001-03-23 Yazaki Corp 電流検出器
JP2007183221A (ja) * 2006-01-10 2007-07-19 Denso Corp 電流センサ
JP2010175474A (ja) * 2009-01-30 2010-08-12 Aisin Aw Co Ltd 電流検出装置
JP2010223722A (ja) * 2009-03-23 2010-10-07 Honda Motor Co Ltd 電流検出装置
JP2010266290A (ja) * 2009-05-13 2010-11-25 Honda Motor Co Ltd 電流検出装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180074A (ja) * 1984-09-28 1986-04-23 Toshiba Corp 電流検出用端子付き磁気センサ
JP2005283451A (ja) * 2004-03-30 2005-10-13 Asahi Kasei Electronics Co Ltd 電流測定装置および電流測定方法
JP2005321206A (ja) * 2004-05-06 2005-11-17 Mitsubishi Electric Corp 電流検出装置
WO2006090769A1 (ja) * 2005-02-23 2006-08-31 Asahi Kasei Emd Corporation 電流測定装置
JP4506641B2 (ja) * 2005-10-21 2010-07-21 株式会社デンソー 電流センサ装置
JP2010112767A (ja) * 2008-11-04 2010-05-20 Tdk Corp 電流センサ
JP5489145B1 (ja) * 2012-05-16 2014-05-14 アルプス・グリーンデバイス株式会社 電流センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074783A (ja) * 1999-09-02 2001-03-23 Yazaki Corp 電流検出器
JP2007183221A (ja) * 2006-01-10 2007-07-19 Denso Corp 電流センサ
JP2010175474A (ja) * 2009-01-30 2010-08-12 Aisin Aw Co Ltd 電流検出装置
JP2010223722A (ja) * 2009-03-23 2010-10-07 Honda Motor Co Ltd 電流検出装置
JP2010266290A (ja) * 2009-05-13 2010-11-25 Honda Motor Co Ltd 電流検出装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014192625A1 (ja) * 2013-05-30 2017-02-23 株式会社村田製作所 電流センサ
WO2014192625A1 (ja) * 2013-05-30 2014-12-04 株式会社村田製作所 電流センサ
WO2015033541A1 (ja) * 2013-09-05 2015-03-12 旭化成エレクトロニクス株式会社 電流センサ
US10247759B2 (en) 2013-09-05 2019-04-02 Asahi Kasei Microdevices Corporation Current sensor
TWI574017B (zh) * 2013-09-05 2017-03-11 Asahi Kasei Microdevices Corp Current sensor
JPWO2015033541A1 (ja) * 2013-09-05 2017-03-02 旭化成エレクトロニクス株式会社 電流センサ
CN105518472A (zh) * 2013-09-05 2016-04-20 旭化成微电子株式会社 电流传感器
CN105934678A (zh) * 2013-12-06 2016-09-07 丰田自动车株式会社 汇流条模块
WO2015082980A1 (en) 2013-12-06 2015-06-11 Toyota Jidosha Kabushiki Kaisha Bus bar module
US10393774B2 (en) 2013-12-06 2019-08-27 Toyota Jidosha Kabushiki Kaisha Bus bar module
CN105934677A (zh) * 2013-12-06 2016-09-07 丰田自动车株式会社 汇流条模块
JP2015111080A (ja) * 2013-12-06 2015-06-18 トヨタ自動車株式会社 バスバモジュール
JP2015152363A (ja) * 2014-02-12 2015-08-24 旭化成エレクトロニクス株式会社 電流センサ
US10215780B2 (en) 2015-06-04 2019-02-26 Murata Manufacturing Co., Ltd. Current sensor
WO2016194633A1 (ja) * 2015-06-04 2016-12-08 株式会社村田製作所 電流センサ
WO2016194240A1 (ja) * 2015-06-04 2016-12-08 株式会社村田製作所 電流センサ
CN108254609A (zh) * 2016-12-28 2018-07-06 意法半导体股份有限公司 集成电流传感器器件和对应的电子器件
US10684312B2 (en) 2017-12-26 2020-06-16 Industrial Technology Research Institute Current detection device and method
TWI645197B (zh) * 2017-12-26 2018-12-21 財團法人工業技術研究院 電流感測裝置及方法
JP2019144222A (ja) * 2018-02-21 2019-08-29 Tdk株式会社 磁気センサ
JP7119695B2 (ja) 2018-02-21 2022-08-17 Tdk株式会社 磁気センサ
JP2019219294A (ja) * 2018-06-20 2019-12-26 Tdk株式会社 磁気センサ
JP7119633B2 (ja) 2018-06-20 2022-08-17 Tdk株式会社 磁気センサ
JP2020148752A (ja) * 2019-03-13 2020-09-17 甲神電機株式会社 電流検出装置
JP2020160036A (ja) * 2019-03-27 2020-10-01 甲神電機株式会社 多相電流検出装置
CN113223789A (zh) * 2020-02-05 2021-08-06 马勒国际有限公司 用于温度控制装置的ptc热敏电阻模块

Also Published As

Publication number Publication date
US9435829B2 (en) 2016-09-06
JPWO2013005459A1 (ja) 2015-02-23
JP5732679B2 (ja) 2015-06-10
JPWO2013005458A1 (ja) 2015-02-23
WO2013005458A1 (ja) 2013-01-10
JP5531217B2 (ja) 2014-06-25
US20140097826A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP5531217B2 (ja) 電流センサ
JP5648246B2 (ja) 電流センサ
JP5531215B2 (ja) 電流センサ
JP5659389B2 (ja) 電流センサ
JP5906488B2 (ja) 電流センサ
JP5728719B2 (ja) 電流センサ
WO2013005545A1 (ja) 電流センサ
WO2016056135A1 (ja) 電流検出装置、及び電流検出方法
WO2013038867A1 (ja) 電流センサ
JP5816958B2 (ja) 電流センサ
WO2012046547A1 (ja) 電流センサ
WO2013011859A1 (ja) 電流センサ
JP2013088370A (ja) 電流センサ
JP5487403B2 (ja) 電流センサ
JP2012052980A (ja) 電流センサ
JP3191252U (ja) 電流センサ
JP2012063285A (ja) 電流センサ
JP5504483B2 (ja) 電流センサ
JP2014066623A (ja) 電流センサ
JP6144597B2 (ja) 電流センサ
JP6031639B6 (ja) 電流センサ
JP2012225872A (ja) 電流センサ
JP2012225818A (ja) 電流センサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013522487

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807962

Country of ref document: EP

Kind code of ref document: A1