WO2012050003A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2012050003A1
WO2012050003A1 PCT/JP2011/072784 JP2011072784W WO2012050003A1 WO 2012050003 A1 WO2012050003 A1 WO 2012050003A1 JP 2011072784 W JP2011072784 W JP 2011072784W WO 2012050003 A1 WO2012050003 A1 WO 2012050003A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
organic
aromatic
layer
Prior art date
Application number
PCT/JP2011/072784
Other languages
English (en)
French (fr)
Inventor
雄一 澤田
正則 堀田
松本 めぐみ
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to US13/878,608 priority Critical patent/US9312496B2/en
Priority to KR1020137012050A priority patent/KR101873378B1/ko
Priority to CN201180049588.4A priority patent/CN103155200B/zh
Priority to EP11832439.1A priority patent/EP2629345B1/en
Priority to JP2012538639A priority patent/JP5834015B2/ja
Publication of WO2012050003A1 publication Critical patent/WO2012050003A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to an organic electroluminescent device containing a nitrogen-containing aromatic compound, and more particularly to a thin film device that emits light by applying an electric field to a light emitting layer made of an organic compound.
  • an organic electroluminescence element (hereinafter referred to as an organic EL element) has a light emitting layer and a pair of counter electrodes sandwiching the layer as its simplest structure. That is, in an organic EL element, when an electric field is applied between both electrodes, electrons are injected from the cathode, holes are injected from the anode, and these are recombined in the light emitting layer to emit light. .
  • CBP 4,4′-bis (9-carbazolyl) biphenyl
  • Ir (ppy) 3 2,4′-bis (9-carbazolyl) biphenyl
  • CBP's holes can flow easily and electrons do not flow easily. The charge balance is lost, and excess holes flow out to the electron transport layer side. As a result, the light emission efficiency from Ir (ppy) 3 decreases.
  • a host material having high triplet excitation energy and balanced in both charge (hole / electron) injection and transport characteristics is required. Further, a compound that is electrochemically stable and has high heat resistance and excellent amorphous stability is desired, and further improvement is required.
  • Patent Document 3 discloses an indoloindole compound as shown below, but this compound is limited to use as an organic transistor material, and has usefulness as an organic EL material, particularly as a phosphorescent host material. It is not disclosed.
  • Patent Documents 4 and 5 disclose organic EL elements using the following compounds.
  • An object of this invention is to provide the practically useful organic EL element which has high efficiency and high drive stability in view of the said present condition, and a compound suitable for it.
  • the present invention provides an organic electroluminescent device in which an anode, a plurality of organic layers and a cathode are laminated on a substrate, and at least one organic layer contains a nitrogen-containing aromatic compound represented by the general formula (1).
  • the present invention relates to an organic electroluminescent element characterized by the above.
  • L is a group derived from an n + m-valent alkyl group having 1 to 30 carbon atoms, a group derived from a cycloalkyl group having 3 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 50 carbon atoms, or a condensed ring having 4 or more rings.
  • a nitrogen-containing aromatic compound represented by the formula (2) is preferable.
  • L, A and R are the same as the formula (1).
  • p represents an integer of 2 to 4.
  • the organic layer containing the nitrogen-containing aromatic compound represented by the general formula (1) is preferably at least one layer selected from the group consisting of a light emitting layer, a hole transport layer and an electron blocking layer.
  • the organic layer containing the nitrogen-containing aromatic compound represented by the general formula (1) is a light emitting layer containing a phosphorescent dopant.
  • the organic electroluminescent element of the present invention contains a nitrogen-containing aromatic compound represented by the general formula (1) (hereinafter also referred to as a compound represented by the general formula (1) or a nitrogen-containing aromatic compound).
  • L is an n + m-valent linking group.
  • This linking group includes an alkane having 1 to 30 carbon atoms, a cycloalkane having 3 to 30 carbon atoms, an aromatic hydrocarbon having 6 to 50 carbon atoms, an aromatic heterocyclic compound having 3 to 50 carbon atoms, and 9 to 30 carbon atoms.
  • the aromatic heterocyclic group does not include four or more condensed heterocyclic rings.
  • L is an alkane having 1 to 10 carbon atoms, a cycloalkane having 3 to 11 carbon atoms, an aromatic hydrocarbon having 6 to 30 carbon atoms, an aromatic heterocyclic compound having 3 to 30 carbon atoms, or 9 to 22 carbon atoms.
  • L is n + m from an alkane having 1 to 10 carbon atoms, a cycloalkane having 3 to 11 carbon atoms, an aromatic hydrocarbon having 6 to 30 carbon atoms, or an aromatic heterocyclic compound having 3 to 30 carbon atoms. This is a group formed by removing hydrogen.
  • L is a group derived from an alkane having 1 to 30 carbon atoms
  • the carbon number is preferably 1 to 10, more preferably 1 to 8.
  • alkane include methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane and decane, preferably methane, ethane, propane, butane, pentane, hexane, heptane and octane.
  • the group derived from the alkane may be linear or branched.
  • the group derived from the alkane may have a substituent, and when these have a substituent, the substituent includes a cycloalkyl group having 3 to 11 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or An aromatic heterocyclic group having 3 to 18 carbon atoms.
  • the total number of substituents is 1 to 10. Preferably it is 1-6, more preferably 1-4. Moreover, when it has two or more substituents, they may be the same or different.
  • L is a group derived from a cycloalkane having 3 to 30 carbon atoms
  • the carbon number is preferably 3 to 11, more preferably 5 to 6.
  • Specific examples of the cycloalkane include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, and decahydronaphthane, and preferably cyclopentane or cyclohexane.
  • the group derived from the cycloalkane may have a substituent.
  • the substituent includes an alkyl group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or An aromatic heterocyclic group having 3 to 18 carbon atoms.
  • the total number of substituents is 1 to 10. Preferably it is 1-6, more preferably 1-4. Moreover, when it has two or more substituents, they may be the same or different.
  • the carbon number of the aromatic hydrocarbon is preferably 6 to 30, more preferably 6
  • the number of carbon atoms in the aromatic heterocyclic ring is preferably 3 to 30, and more preferably 3 to 18.
  • the aromatic heterocyclic compound or the aromatic heterocyclic group produced therefrom does not include four or more condensed heterocyclic rings.
  • aromatic hydrocarbon or aromatic heterocyclic compound examples include benzene, pentalene, indene, naphthalene, azulene, heptalene, octalene, indacene, acenaphthylene, phenalene, phenanthrene, anthracene, tridene, fluoranthene, acephenanthrylene, and ASEAN.
  • Tolylene Triphenylene, Pyrene, Chrysene, Tetraphen, Tetracene, Preaden, Picene, Perylene, Pentaphene, Pentacene, Tetraphenylene, Collanthrylene, Helicene, Hexaphene, Rubicene, Coronene, Trinaphthylene, Heptaphene, Pyrantrene, Furan, Benzofuran, Isobenzofuran , Xanthene, oxatolene, dibenzofuran, perixanthenoxanthene, thiophene, thioxanthene, thianthrene, phen Noxatiin, thionaphthene, isothianaphthene, thiobutene, thiophanthrene, dibenzothiophene, pyrrole, pyrazole, tellurazole, selenazole, thiazole, isothiazole, ox
  • the number to be linked is preferably 2 to 10, more preferably 2 to 7, and the linked aromatic rings may be the same. It may be different.
  • the bonding position of L bonded to nitrogen is not limited, and it may be a ring at the end of a linked aromatic ring or a ring at the center.
  • the aromatic ring is a generic term for an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the linked aromatic ring contains at least one heterocyclic ring, it is included in the aromatic heterocyclic group.
  • the monovalent group generated by connecting a plurality of aromatic rings is represented by the following formula, for example.
  • L is an n + m-valent linking group
  • n + m ⁇ 1 hydrogen is removed from any of Ar 1 to Ar 6 in the following formula.
  • Ar 1 to Ar 6 represent a substituted or unsubstituted aromatic ring.
  • Specific examples of the group formed by connecting a plurality of the aromatic rings include, for example, biphenyl, terphenyl, bipyridine, bipyrimidine, vitriazine, terpyridine, bistriazylbenzene, dicarbazolylbenzene, carbazolylbiphenyl, dicarbazolylbiphenyl.
  • an aromatic heterocyclic compound not containing four or more condensed heterocyclic rings or an aromatic heterocyclic group produced therefrom is a monocyclic aromatic heterocyclic compound or group, or a condensed aromatic heterocycle having 2 to 3 rings. It means a ring compound or group, and this aromatic heterocyclic compound or group may have a substituent.
  • the aromatic heterocyclic group is a group formed by linking a plurality of aromatic rings as represented by the formula (11), for example, a monovalent or divalent aromatic heterocyclic ring contained in the aromatic group The group is not a condensed ring group having 4 or more rings.
  • the aromatic hydrocarbon group or aromatic heterocyclic group may have a substituent, and when these have a substituent, the substituent may be an alkyl group having 1 to 4 carbon atoms, or a group having 3 to 6 carbon atoms.
  • An alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or a secondary amino group having 6 to 15 carbon atoms is preferable.
  • L is an aromatic hydrocarbon group or an aromatic heterocyclic group and has a substituent
  • the total number of substituents is 1 to 10.
  • it is 1-6, more preferably 1-4.
  • it may be the same or different.
  • L is a group derived from a triarylamine having 9 to 30 carbon atoms, these carbon number is preferably 9 to 24, more preferably 9 to 18.
  • the group derived from triarylamine is an n + m-valent group generated by removing n + m hydrogen atoms from any Ar of the triarylamine represented by the following formula (5).
  • Ars are 1 to (m + n + 1) valent aromatic groups, but the three Ars may be the same or different and may have different valences.
  • Ar represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or an aromatic heterocyclic group having 3 to 18 carbon atoms. Preferred is a phenyl group, a naphthyl group, a pyridyl group, a quinolyl group, or a carbazolyl group, and more preferred is a phenyl group.
  • the aromatic heterocyclic group does not include four or more condensed heterocyclic rings.
  • Ar may have a substituent, and when it has a substituent, examples of the substituent include an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, An acetyl group.
  • L is a group derived from a diaryl sulfone having 6 to 24 carbon atoms, these carbon number is preferably 6 to 20, more preferably 6 to 18.
  • the group derived from diarylsulfone is an n + m-valent group generated by removing n + m hydrogen from any Ar of the diarylsulfone represented by the following formula (3).
  • Ar has the same meaning as Ar in formula (3).
  • each X independently represents C (R) 2 , oxygen, sulfur or selenium. Preferably it is oxygen or sulfur.
  • each A independently represents an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, It represents a silyl group having 3 to 18 carbon atoms, an acyl group having 2 to 19 carbon atoms, an aromatic hydrocarbon group having 6 to 50 carbon atoms, or an aromatic heterocyclic group having 3 to 50 carbon atoms.
  • the aromatic heterocyclic group does not include four or more condensed heterocyclic rings.
  • A is an alkyl group or a cycloalkyl group are the same as the alkyl or cycloalkyl constituting L described above except that these are monovalent groups.
  • the case where these alkyl or cycloalkyl has a substituent is the same as in L.
  • alkenyl group having 2 to 30 carbon atoms or an alkynyl group having 2 to 30 carbon atoms these carbon numbers are preferably 2 to 20, more preferably 2 to 10.
  • specific examples of the alkenyl group or alkynyl group include ethylenyl group, propylenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, acetylenyl group, propynyl group, butynyl group, or pentynyl group, preferably Examples include an ethylenyl group, a propylenyl group, a butenyl group, an acetylenyl group, and a propynyl group.
  • the alkenyl group and alkynyl group may be linear or branched.
  • the alkenyl group or alkynyl group may have a substituent.
  • substituents include a cycloalkyl group having 3 to 11 carbon atoms and an aromatic hydrocarbon group having 6 to 18 carbon atoms. Or an aromatic heterocyclic group having 3 to 18 carbon atoms.
  • A is a silyl group having 3 to 18 carbon atoms, these carbon numbers are preferably 3 to 12, more preferably 3 to 9.
  • the silyl group is represented by —SiZ 3 , where Z is hydrogen or a hydrocarbon group, preferably all Z are hydrocarbon groups.
  • Preferred examples of the hydrocarbon group include an alkyl group and a phenyl group. The three Zs may be the same or different, and the carbon number is calculated as the sum of these. An alkylsilyl group is preferred.
  • alkylsilyl group examples include, for example, a trimethylsilyl group, a triethylsilyl group, a tri (n-propyl) silyl group, a tri (n-butyl) silyl group, a trivinylsilyl group, a trimethoxysilyl group, a triethoxysilyl group, Tri (isopropoxy) silyl group, tri (n-butoxy) silyl group, tri (s-butoxy) silyl group, tri (t-butoxy) silyl group, triisopropylsilyl group, tricyclohexylsilyl group, tri (s-butyl) ) Silyl group, triethynylsilyl group, triallylsilyl group, tripropargylsilyl group, triphenylsilyl group, t-butyldimethylsilyl group, t-butyldiethylsilyl group, is
  • A is an acyl group having 2 to 19 carbon atoms, these carbon numbers are preferably 6 to 19, more preferably 7 to 13.
  • the acyl group is preferably a monovalent group represented by the following formula (5).
  • Ar represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or an aromatic heterocyclic group having 3 to 18 carbon atoms that does not include four or more condensed heterocyclic rings.
  • Preferred is a phenyl group, a naphthyl group, a pyridyl group, a quinolyl group, or a carbazolyl group, and more preferred is a phenyl group.
  • Ar may have a substituent, and when it has a substituent, examples of the substituent include an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, An acetyl group.
  • A is an aromatic hydrocarbon group having 6 to 50 carbon atoms or an aromatic heterocyclic group having 3 to 50 carbon atoms
  • the aromatic hydrocarbon group preferably has 6 to 30 carbon atoms, more preferably 6 to 18 carbon atoms.
  • the aromatic heterocyclic group preferably has 3 to 30 carbon atoms, more preferably 3 to 18 carbon atoms.
  • the aromatic heterocyclic group does not include four or more condensed heterocyclic rings.
  • A is a group selected from an aromatic hydrocarbon group or an aromatic heterocyclic group
  • aromatic hydrocarbon group or aromatic heterocyclic group constituting the above L except that these are monovalent It is the same.
  • each R is independently hydrogen, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, or a carbon number.
  • it represents hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 11 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms or an aromatic heterocyclic group having 3 to 18 carbon atoms.
  • the aromatic heterocyclic group does not include four or more condensed heterocyclic rings.
  • R in the case where X is C (R) 2 has the same meaning as described above.
  • alkyl group or cycloalkyl group are the same as the alkyl or cycloalkyl constituting L described above except that they are monovalent.
  • the case where these alkyl or cycloalkyl has a substituent is the same as in L.
  • alkenyl group or alkynyl group are the same as the alkenyl group or alkynyl group described in A above.
  • the case where these alkenyl groups or alkynyl groups have a substituent is the same as in A.
  • aromatic hydrocarbon group or aromatic heterocyclic group are the same as those of the aromatic hydrocarbon group or aromatic heterocyclic group constituting the above L except that the total carbon number is different.
  • aromatic hydrocarbon groups or aromatic heterocyclic groups have a substituent is the same as in L.
  • n represents an integer of 1 to 4.
  • m is 2 or 3, more preferably m is 2.
  • n represents an integer of 0 to 3.
  • n is 0 or 1, more preferably n is 0.
  • m + n is 2 to 4.
  • m + n is preferably 2 or 3, more preferably 2.
  • p represents an integer of 2 to 4.
  • p is 2 or 3, more preferably 2.
  • the nitrogen-containing aromatic compound of the present invention can be synthesized using a known method by selecting an indole derivative as a starting material, selecting the starting material according to the structure of the target compound.
  • indolo [3,2-b] indole skeletons are described in J. Org. Chem., 2009, 4242-4245, Journal of Medicinal Chemistry, 2003,2436-2445 and J.Am.Chem.Soc., 1994,8152. Reference can be made by the following reaction formula with reference to the synthesis example shown in -8161.
  • benzofuro [3,2-b] indole skeletons in which X is represented by oxygen are Heterocycles, 1990, vol. 31, 1951-1958 and Journal. It can be synthesized by the following reaction formula with reference to synthesis examples shown in of Chemical Research, 1988, 272-273.
  • the nitrogen-containing nitrogen represented by the general formula (1) is obtained by substituting the hydrogen on the nitrogen of various compounds obtained by the above reaction formula with a corresponding linking group or substituent by a coupling reaction such as an Ullmann reaction.
  • Aromatic compounds can be synthesized.
  • nitrogen-containing aromatic compound represented by general formula (1) Specific examples of the nitrogen-containing aromatic compound represented by general formula (1) are shown below, but the materials used for the organic electroluminescence device of the present invention are not limited thereto.
  • the nitrogen-containing aromatic compound represented by the general formula (1) is excellent by being contained in at least one organic layer of an organic EL device in which an anode, a plurality of organic layers and a cathode are laminated on a substrate.
  • An organic electroluminescent device is provided.
  • a light emitting layer, a hole transport layer and an electron blocking layer are preferable. More preferably, it may be contained as a host material of a light emitting layer containing a phosphorescent dopant.
  • the organic EL device of the present invention has an organic layer having at least one light emitting layer between an anode and a cathode laminated on a substrate, and the at least one organic layer has the general formula (1) of the present invention.
  • the compound represented by these is included.
  • the light emitting layer, the hole transport layer and the electron blocking layer contain the compound represented by the general formula (1), and more preferably the compound represented by the general formula (1) emits light together with the phosphorescent dopant. Include in the layer.
  • the structure of the organic EL element of the present invention will be described with reference to the drawings.
  • the structure of the organic EL element of the present invention is not limited to the illustrated one.
  • FIG. 1 is a cross-sectional view showing a structural example of a general organic EL device used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represents an electron transport layer, and 7 represents a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, and may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side of the light emitting layer, or both can be inserted simultaneously.
  • the organic EL device of the present invention has a substrate, an anode, a light emitting layer and a cathode as essential layers, but it is preferable to have a hole injecting and transporting layer and an electron injecting and transporting layer in layers other than the essential layers, and further emit light. It is preferable to have a hole blocking layer between the layer and the electron injecting and transporting layer.
  • the hole injection / transport layer means either or both of a hole injection layer and a hole transport layer
  • the electron injection / transport layer means either or both of an electron injection layer and an electron transport layer.
  • the organic EL element of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited as long as it is conventionally used for an organic EL element.
  • a substrate made of glass, transparent plastic, quartz, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture
  • Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a thickness of 1 to 20 nm on the cathode.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • the light emitting layer may be either a fluorescent light emitting layer or a phosphorescent light emitting layer, but is preferably a phosphorescent light emitting layer.
  • the fluorescent light emitting material may be at least one kind of fluorescent light emitting material, but it is preferable to use the fluorescent light emitting material as a fluorescent light emitting dopant and include a host material. .
  • the compound represented by the general formula (1) can be used, but since it is known from many patent documents, it can be selected from them.
  • Preferred examples include condensed aromatic compounds, styryl compounds, diketopyrrolopyrrole compounds, oxazine compounds, pyromethene metal complexes, transition metal complexes, and lanthanoid complexes. More preferred are naphthacene, pyrene, chrysene, triphenylene, benzo [c] phenanthrene.
  • the amount of the fluorescent light emitting dopant contained in the light emitting layer is 0.01 to 20% by weight, preferably 0.1 to 10% by weight. It should be in range.
  • the light emitting layer is a phosphorescent light emitting layer
  • a phosphorescent light emitting dopant and a host material are included.
  • the phosphorescent dopant material preferably contains an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold.
  • organometallic complexes are known in the prior art documents and the like, and these can be selected and used.
  • Preferred phosphorescent dopants include complexes such as Ir (ppy) 3 having a noble metal element such as Ir as a central metal, complexes such as (Bt) 2 Iracac, and complexes such as (Btp) Ptacac. Specific examples of these complexes are shown below, but are not limited to the following compounds.
  • the amount of phosphorescent dopant contained in the light emitting layer is preferably in the range of 1 to 50% by weight. More preferably, it is 5 to 30% by weight.
  • the host material in the emissive layer it is preferable to use the compound represented by the general formula (1).
  • the material used for the light emitting layer is a host material other than the compound represented by the general formula (1). There may be.
  • a plurality of known host materials may be used in combination.
  • a known host compound that can be used is preferably a compound that has a hole transporting ability or an electron transporting ability, prevents the emission of light from becoming longer, and has a high glass transition temperature.
  • host materials are known from a large number of patent documents and can be selected from them.
  • Specific examples of the host material are not particularly limited, but include indole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine.
  • arylamine derivatives amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquino Heterocyclic tetracarboxylic acid anhydrides such as dimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene,
  • metal complexes typified by metal complexes of metal phthalocyanine, metal phthalocyanine, benzoxazole and benzothiazole derivatives, polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline copolymers, Examples thereof include polymer compounds such as thiophene oligomers, polythiophene oli
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • a compound represented by the general formula (1) can be used for the hole blocking layer, but when the compound is used for any other organic layer, a known hole blocking layer material may be used. Good. Moreover, as a hole-blocking layer material, the material of the electron carrying layer mentioned later can be used as needed.
  • the electron blocking layer is made of a material that has a function of transporting holes and has a very small ability to transport electrons.
  • the electron blocking layer blocks the electrons while transporting holes, and the probability of recombination of electrons and holes. Can be improved.
  • the compound represented by the general formula (1) is preferably used. However, when the compound is used for any other organic layer, the material for the hole transport layer described later is used. Can be used as needed.
  • the thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • the compound represented by the general formula (1) can be used as the material for the exciton blocking layer.
  • 1,3-di- Examples thereof include carbazolylbenzene (mCP) and bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum (III) (BAlq).
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • As the hole transport material it is preferable to use the compound represented by the general formula (1). However, when the compound is used in any other organic layer, any one of conventionally known compounds can be used. A thing can be selected and used. Examples of known hole transporting materials that can be used include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, aromatic amine derivatives, amino-substituted chalcone derivatives, oxazole derivatives.
  • Styrylanthracene derivatives fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, porphyrin compounds, styrylamine compounds, and conductive polymer oligomers, particularly thiophene oligomers. It is preferable to use an aromatic tertiary amine compound and a styrylamine compound, and it is more preferable to use an aromatic tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • a compound represented by the general formula (1) can be used for the electron transport layer, but when the compound is used for any other organic layer, any one of conventionally known compounds is selected. Examples thereof include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • a compound represented by the general formula (1) was synthesized by the route shown below.
  • the compound number corresponds to the number assigned to the above chemical formula.
  • intermediate A-1 13.0 g (46 mmol), 1-bromo-3-iodobenzene 13 ⁇ g (46 mmol), copper iodide 0.87 g (4.6 mmol), tripotassium phosphate 29g (137 mmol) ), Trans-1,2-cyclohexanediamine (5.2 g, 46 mmol) and 1,4-dioxane (400 ml) were added, and the mixture was stirred for 4 hours while heating at 120 ° C. After cooling the reaction solution to room temperature, the precipitated crystals were collected by filtration, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 11 g (25 mmol, yield 54 ⁇ mol%) of intermediate A-2.
  • intermediate A-2 4.0 g (9.1 mmol), benzofuro [3,2-b] indole 1.9 g (9.2 mmol), copper iodide 0.18 g0.9 (0.95 mmol), tripotassium phosphate 5.9 g ( 28 mmol), trans-1,2-cyclohexanediamine 1.0 g (8.8 mmol), 1,4-dioxane 90 ml was added and stirred at 120 ° C for 18 hours. After cooling the reaction solution to room temperature, the precipitated crystals were collected by filtration, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 4.1 g (7.3 mmol, yield 80 mol%) of compound 2-1 as a white solid.
  • intermediate A-2 4.0 g (9.1 mmol), benzothieno [3,2-b] indole of 2.0 g (9.1 mmol), copper iodide 0.18 g (0.95 mmol), tripotassium phosphate 5.9 g ( 28 mmol), trans-1,2-cyclohexanediamine 1.0 g (8.8 mmol), 1,4-dioxane 90 ml was added and stirred for 24 hours while heating at 120 ° C. After cooling the reaction solution to room temperature, the precipitated crystals were collected by filtration, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 3.8 g3 (6.6 mmol, yield 73 mol%) of compound 3-1 as a white solid.
  • Example 1 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 110 nm was formed.
  • copper phthalocyanine (CuPC) was formed to a thickness of 25 nm on ITO.
  • NPB 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • compound 1-1 obtained in Synthesis Example 1 as a host material and bis (2- (2′-benzo [4,5-a] thienyl) pyridinato as a phosphorescent dopant are used.
  • -N, C3 Iridium (acetylacetonate) [(Btp) 2Iracac] was co-evaporated from different deposition sources to form a light emitting layer with a thickness of 47.5 nm. The concentration of (Btp) 2Iracac in the light emitting layer was 8.0 wt%.
  • tris (8-hydroxyquinolinato) aluminum (III) (Alq3) was formed to a thickness of 30 nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 1.0 nm as an electron injection layer.
  • Al aluminum
  • the organic EL element had the light emission characteristics as shown in Table 1.
  • Table 1 the luminance, voltage, and luminous efficiency show values at 10 mA / cm 2 .
  • the maximum wavelength of the device emission spectrum was 620 nm, and it was found that light emission from (Btp) 2Iracac was obtained.
  • Example 2 An organic EL device was produced in the same manner as in Example 1 except that Compound 2-1 was used as the host material for the light emitting layer.
  • Example 3 An organic EL device was produced in the same manner as in Example 1 except that Compound 3-1 was used as the host material for the light emitting layer.
  • Example 4 An organic EL device was produced in the same manner as in Example 1 except that Compound 1-5 was used as the host material for the light emitting layer.
  • Example 5 An organic EL device was produced in the same manner as in Example 1 except that Compound 1-7 was used as the host material for the light emitting layer.
  • Example 6 An organic EL device was produced in the same manner as in Example 1 except that Compound 1-9 was used as the host material for the light emitting layer.
  • Example 7 An organic EL device was produced in the same manner as in Example 1 except that Compound 1-12 was used as the host material for the light emitting layer.
  • Comparative Example 1 An organic EL device was produced in the same manner as in Example 22 except that bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum (III) (BAlq) was used as the host material for the light emitting layer.
  • bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum (III) (BAlq) was used as the host material for the light emitting layer.
  • Comparative Example 2 An organic EL device was produced in the same manner as in Example 1 except that the following compound H-1 was used as the host material for the light emitting layer.
  • the maximum wavelengths of the device emission spectra of the organic EL devices prepared in Examples 2 to 7 and Comparative Examples 1 and 2 were all 620 nm, indicating that light emission from (Btp) 2Iracac was obtained.
  • the light emission characteristics and life characteristics are shown in Table 1.
  • the nitrogen-containing aromatic compound represented by the general formula (1) used in the organic EL device of the present invention exhibits good emission characteristics with respect to BAlq generally known as a phosphorescent host. I understand.
  • H-1 which is a compound that does not have an indolo [3,2-b] indole skeleton in the molecule, it exhibits good light emission characteristics, and the superiority of the nitrogen-containing aromatic compound is clear.
  • the skeleton of the nitrogen-containing aromatic compound of the present invention has at least one indolo [3,2-b] indole skeleton, so that it is possible to control various energy values of ionization potential, electron affinity, and triplet excitation energy. It is done. In addition, it is considered that charge stability is enhanced by having a plurality of indolo [3,2-b] indole skeletons.
  • the nitrogen-containing aromatic compound of the present invention is considered to have high charge transfer characteristics. Therefore, it is considered that the organic electroluminescent device using the nitrogen-containing aromatic compound of the present invention can exhibit high characteristics.
  • the nitrogen-containing aromatic compound of the present invention is not limited to organic EL elements, but also displays such as electronic paper, liquid crystal displays, organic field effect transistors, organic thin film solar cells, information tags, electronic artificial skin sheets, and sheet-type scanners.
  • displays such as electronic paper, liquid crystal displays, organic field effect transistors, organic thin film solar cells, information tags, electronic artificial skin sheets, and sheet-type scanners.
  • the application to a large area sensor etc. can be considered, and the technical value is great.

Abstract

 新規な含窒素芳香族複素環化合物及び該化合物を用いた有機電子デバイスを提供する。 基板上に積層された陽極と陰極の間に、複数の有機層を有する有機電界発光素子であって、該有機層のうち少なくとも1層が、下記式(1)で表される含窒素芳香族化合物を含有する有機電界発光素子である。式中、Lはアルカン、シクロアルカン、芳香族炭化水素、芳香族複素環化合物、トリアリールアミン、又はジアリールスルホンから生じるn+m価の基を表し、Aはアルキル基、シクロアルキル基、アルケニル基、アルキニル基、シリル基、アシル基、芳香族炭化水素基又は芳香族複素環基を表し、XはC(R)、酸素、S又はSeを表し、RはH、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、芳香族炭化水素基又は芳香族複素環基を表し、mは1~4の整数を表し、nは0~3の整数を表す。mとnの総数は2~4である。

Description

有機電界発光素子
  本発明は含窒素芳香族化合物を含有する有機電界発光素子に関するものであり、詳しくは、有機化合物からなる発光層に電界をかけて光を放出する薄膜型デバイスに関するものである。
  一般に、有機電界発光素子(以下、有機EL素子という)は、その最も簡単な構造としては発光層及び該層を挟んだ一対の対向電極から構成されている。すなわち、有機EL素子では、両電極間に電界が印加されると、陰極から電子が注入され、陽極から正孔が注入され、これらが発光層において再結合し、光を放出する現象を利用する。
  近年、有機薄膜を用いた有機EL素子の開発が行われるようになった。特に、発光効率を高めるため、電極からキャリアー注入の効率向上を目的として電極の種類の最適化を行い、芳香族ジアミンからなる正孔輸送層と8-ヒドロキシキノリンアルミニウム錯体(以下、Alq3という)からなる発光層とを電極間に薄膜として設けた素子の開発により、従来のアントラセン等の単結晶を用いた素子と比較して大幅な発光効率の改善がなされたことから、自発光・高速応答性といった特徴を持つ高性能フラットパネルへの実用化を目指して進められてきた。
  また、素子の発光効率を上げる試みとして、蛍光ではなく燐光を用いることも検討されている。上記の芳香族ジアミンからなる正孔輸送層とAlq3からなる発光層とを設けた素子をはじめとした多くの素子が蛍光発光を利用したものであったが、燐光発光を用いる、すなわち、三重項励起状態からの発光を利用することにより、従来の蛍光(一重項)を用いた素子と比べて、3~4倍程度の効率向上が期待される。この目的のためにクマリン誘導体やベンゾフェノン誘導体を発光層とすることが検討されてきたが、極めて低い輝度しか得られなかった。また、三重項状態を利用する試みとして、ユーロピウム錯体を用いることが検討されてきたが、これも高効率の発光には至らなかった。近年では、特許文献1に挙げられるように発光の高効率化や長寿命化を目的にイリジウム錯体等の有機金属錯体を中心に燐光発光ドーパント材料の研究が多数行われている。
特表1003-515897号公報 特開2001-313178号公報 特開2009-054809号公報 特開2010-040829号公報 特開2010-205815号公報
  高い発光効率を得るには、前記ドーパント材料と同時に、使用するホスト材料が重要になる。ホスト材料として提案されている代表的なものとして、特許文献2で紹介されているカルバゾール化合物の4,4'-ビス(9-カルバゾリル)ビフェニル(以下、CBPという)が挙げられる。CBPはトリス(2-フェニルピリジン)イリジウム錯体(以下、Ir(ppy)3という)に代表される緑色燐光発光材料のホスト材料として使用した場合、CBPの正孔を流し易く電子を流しにくい特性上、電荷バランスが崩れ、過剰の正孔は電子輸送層側に流出し、結果としてIr(ppy)3からの発光効率が低下する。
  有機EL素子で高い発光効率を得るには、高い三重項励起エネルギーを有し、かつ両電荷(正孔・電子)注入輸送特性においてバランスがとれたホスト材料が必要である。更に、電気化学的に安定であり、高い耐熱性と共に優れたアモルファス安定性を備える化合物が望まれており、更なる改良が求められている。
  特許文献3においては、以下に示すようなインドロインドール化合物が開示されているが、この化合物は有機トランジスタ材料としての用途に限定されており、有機EL材料、特に燐光ホスト材料としての有用性を開示するのもではない。
Figure JPOXMLDOC01-appb-I000003
 
 また、特許文献4及び5においては、以下に示すような化合物を用いた有機EL素子が開示されている。
 
Figure JPOXMLDOC01-appb-I000004
 
 しかしながら、カルコゲン原子を環構成原子として含む芳香族複素5員環の縮合した部分構造を同一分子内に有する材料の開示のみであり、インドロ[3,2-b]インドール骨格と、インドールを部分構造に有する4環縮合複素環とを同一分子内に有する材料は具体的に示されていない。
  有機EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本発明は、上記現状に鑑み、高効率かつ高い駆動安定性を有した実用上有用な有機EL素子及びそれに適する化合物を提供することを目的とする。
  本発明者らは、鋭意検討した結果、特定の構造を有する含窒素芳香族化合物を有機電子デバイスに用いられた場合に、電荷移動度が高くなることを見出し、本発明を完成するに至った。
  本発明は、基板上に、陽極、複数の有機層及び陰極が積層されてなる有機電界発光素子において、少なくとも一つの有機層に一般式(1)で表される含窒素芳香族化合物を含有させたことを特徴とする有機電界発光素子に関する。
 
Figure JPOXMLDOC01-appb-I000005
 
 式中、Lはn+m価の炭素数1~30のアルキルから生じる基、炭素数3~30のシクロアルキルから生じる基、炭素数6~50の芳香族炭化水素基、4環以上の縮合複素環を含まない炭素数3~50の芳香族複素環基、炭素数9~30のトリアリールアミン、又は炭素数6~24のジアリールスルホンから生じるn+m価の基を表し、Aはそれぞれ独立して炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数3~18のシリル基、炭素数2~19のアシル基、炭素数6~50の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3~50の芳香族複素環基を表し、Xはそれぞれ独立してC(R)、酸素、硫黄又はセレンを表し、Rはそれぞれ独立して水素、炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数6~30の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3~30の芳香族複素環基を表し、mは1~4を表し、nは0~3を表す。mとnの総数は2~4である。
 一般式(1)で表される化合物の中でも、式(2)で表される含窒素芳香族化合物が好ましい化合物として挙げられる。
 
Figure JPOXMLDOC01-appb-I000006
 
 式(2)中、L、A及びRは式(1)と同意である。pは2~4の整数を表す。
 また、一般式(2)において、pが2又は3である含窒素芳香族化合物が好ましい化合物として挙げられる。
 一般式(1)で表される含窒素芳香族化合物を含む有機層が、発光層、正孔輸送層及び電子阻止層からなる群れから選ばれる少なくとも一つの層であることが好ましい。
 上記一般式(1)で表される含窒素芳香族化合物を含む有機層が、燐光発光ドーパントを含有する発光層であることがより好ましい。
有機EL素子の一構造例を示した断面図である。
 本発明の有機電界発光素子は、前記一般式(1)で表される含窒素芳香族化合物(以下、一般式(1)で表される化合物又は含窒素芳香族化合物ともいう)を含有する。
 一般式(1)及び式(2)において、Lはn+m価の結合基である。この結合基は、炭素数1~30のアルカン、炭素数3~30のシクロアルカン、炭素数6~50の芳香族炭化水素、炭素数3~50の芳香族複素環化合物、炭素数9~30のトリアリールアミン、又は炭素数6~24のジアリールスルホンからn+m個の水素をとって生じる基である。ここで、芳香族複素環基は4環以上の縮合複素環を含まない。
 好ましくは、Lは炭素数1~10のアルカン、炭素数3~11のシクロアルカン、炭素数6~30の芳香族炭化水素、炭素数3~30の芳香族複素環化合物、炭素数9~22のトリアリールアミン、又は炭素数6~20のジアリールスルホンからn+m個の水素をとって生じる基である。より好ましくは、Lは炭素数1~10のアルカン、炭素数3~11のシクロアルカン、炭素数6~30の芳香族炭化水素、炭素数3~30の芳香族複素環化合物からn+m個の水素をとって生じる基である。
  Lが炭素数1~30のアルカンから生じる基である場合、その炭素数は好ましくは1~10、より好ましくは1~8である。アルカンの具体例としては、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカンが挙げられ、好ましくはメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタンが挙げられる。上記アルカンから生じる基は直鎖であっても、分岐していても構わない。
 上記アルカンから生じる基は置換基を有しても良く、これらが置換基を有する場合、置換基としては、炭素数3~11のシクロアルキル基、炭素数6~18の芳香族炭化水素基又は炭素数3~18の芳香族複素環基である。
  上記アルカンから生じる基が置換基を有する場合、置換基の総数は1~10である。好ましくは1~6であり、より好ましくは1~4である。また、2つ以上の置換基を有する場合、それらは同一でも異なっていてもよい。
  Lが炭素数3~30のシクロアルカンから生じる基である場合、その炭素数は好ましくは3~11、より好ましくは5~6である。シクロアルカンの具体例としては、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン又はデカヒドロナフタンが挙げられ、好ましくはシクロペンタン、又はシクロヘキサンが挙げられる。
 上記シクロアルカンから生じる基は置換基を有しても良く、これらが置換基を有する場合、置換基としては、炭素数1~10のアルキル基、炭素数6~18の芳香族炭化水素基又は炭素数3~18の芳香族複素環基である。
  上記シクロアルカンから生じる基が置換基を有する場合、置換基の総数は1~10である。好ましくは1~6であり、より好ましくは1~4である。また、2つ以上の置換基を有する場合、それらは同一でも異なっていてもよい。
  Lが、炭素数6~50の芳香族炭化水素又は炭素数3~50の芳香族複素環化合物から生じる基である場合、芳香族炭化水素の炭素数は好ましくは6~30、より好ましくは6~18であり、芳香族複素環の炭素数は好ましくは3~30、より好ましくは3~18である。ここで、芳香族複素環化合物又はこれから生じる芳香族複素環基は4環以上の縮合複素環を含まない。
  芳香族炭化水素又は芳香族複素環化合物の具体例としては、ベンゼン、ペンタレン、インデン、ナフタレン、アズレン、ヘプタレン、オクタレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、ヘリセン、ヘキサフェン、ルビセン、コロネン、トリナフチレン、ヘプタフェン、ピラントレン、フラン、ベンゾフラン、イソベンゾフラン、キサンテン、オキサトレン、ジベンゾフラン、ペリキサンテノキサンテン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、イソキノリン、カルバゾール、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、フェノテルラジン、フェノセレナジン、フェノチアジン、フェノキサジン、アンチリジン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、ベンゾイソチアゾール又はこれら芳香環が複数連結された芳香族化合物が挙げられる。好ましくはベンゼン、ナフタレン、アントラセン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、イソインドール、インダゾール、プリン、イソキノリン、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、インドール、カルバゾール又はこれら芳香環が複数連結された芳香族化合物が挙げられる。
  なお、芳香環が複数連結された芳香族化合物から生じる基である場合、連結される数は2~10が好ましく、より好ましくは2~7であり、連結される芳香環は同一であっても異なっていても良い。その場合、窒素と結合するLの結合位置は限定されず、連結された芳香環の末端部の環であっても中央部の環であってもよい。ここで、芳香環は芳香族炭化水素環及び芳香族複素環を総称する意味である。また、連結された芳香環に少なくとも1つの複素環が含まれる場合は芳香族複素環基に含める。
  ここで、芳香環が複数連結されて生じる1価の基は、例えば、下記式で表わされる。Lがn+m価の結合基である場合は、下記式のAr1~Ar6のいずれかからn+m-1個の水素がとれて生じる基であると理解される。
 
Figure JPOXMLDOC01-appb-I000007
 
(式(11)~(13)中、Ar1~Ar6は、置換又は無置換の芳香環を示す。)
  上記芳香環が複数連結されて生じる基の具体例としては、例えばビフェニル、ターフェニル、ビピリジン、ビピリミジン、ビトリアジン、ターピリジン、ビストリアジルベンゼン、ジカルバゾリルベンゼン、カルバゾリルビフェニル、ジカルバゾリルビフェニル、フェニルターフェニル、カルバゾリルターフェニル、ビナフタレン、フェニルピリジン、フェニルカルバゾール、ジフェニルカルバゾール、ジフェニルピリジン、フェニルピリミジン、ジフェニルピリミジン、フェニルトリアジン、ジフェニルトリアジン、フェニルナフタレン、ジフェニルナフタレン等から水素を除いて生じる基が挙げられる。
 ここで、4環以上の縮合複素環を含まない芳香族複素環化合物又はこれから生じる芳香族複素環基とは、単環の芳香族複素環化合物又は基、又は2~3環の縮合芳香族複素環化合物又は基を意味し、この芳香族複素環化合物又は基は置換基を有してもよい。なお、この芳香族複素環基が、例えば式(11)で表わされるような芳香環が複数連結されて生じる基である場合、この芳香族基に含まれる1価又は2価の芳香族複素環基は4環以上の縮合環基であることはない。
  上記芳香族炭化水素基又は芳香族複素環基は置換基を有しても良く、これらが置換基を有する場合、置換基としては、炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~2のアルコキシ基、アセチル基、炭素数6~18の2級アミノ基、炭素数6~18の2級ホスファニル基、炭素数3~18のシリル基である。好ましくは炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基又は炭素数6~15の2級アミノ基である。
  Lが芳香族炭化水素基又は芳香族複素環基であって、置換基を有する場合、置換基の総数は1~10である。好ましくは1~6であり、より好ましくは1~4である。また、2つ以上の置換基を有する場合、それらは同一でも異なっていてもよい。
 本明細書中、炭素数の計算において、置換基を有する場合はその置換基の炭素数も含む。
 Lが炭素数9~30のトリアリールアミンから生じる基である場合、これらの炭素数は好ましくは9~24、より好ましくは9~18である。トリアリールアミンから生じる基は以下の式(5)で表わされるトリアリールアミンの任意のArからn+m個の水素を除いて生じるn+m価の基である。
 
Figure JPOXMLDOC01-appb-I000008
 
 式(3)において、3つのArは1~(m+n+1)価の芳香族基であるが、3つのArは同一でも異なってもよく、価数も異なってもよい。Arは炭素数6~18の芳香族炭化水素基又は炭素数3~18の芳香族複素環基を表す。好ましくはフェニル基、ナフチル基、ピリジル基、キノリル基、又はカルバゾリル基であり、より好ましくはフェニル基である。ここで、芳香族複素環基は4環以上の縮合複素環を含まない。
 Arは置換基を有しても良く、置換基を有する場合、置換基としては、炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~2のアルコキシ基、アセチル基である。
 Lが炭素数6~24のジアリールスルホンから生じる基である場合、これらの炭素数は好ましくは6~20、より好ましくは6~18である。ジアリールスルホンから生じる基は以下の式(3)で表わされるジアリールスルホンの任意のArからn+m個の水素を除いて生じるn+m価の基である。
 
Figure JPOXMLDOC01-appb-I000009
 
 式(4)において、Arは式(3)のArと同じ意味を有する。
 一般式(1)において、Xはそれぞれ独立してC(R)、酸素、硫黄又はセレンを表す。好ましくは酸素又は硫黄である。
 一般式(1)において、Aはそれぞれ独立して炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数3~18のシリル基、炭素数2~19のアシル基、炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基を表す。好ましくは炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~30の芳香族炭化水素基又は炭素数3~30の芳香族複素環基である。ここで、芳香族複素環基は4環以上の縮合複素環を含まない。
 Aがアルキル基又はシクロアルキル基である場合の具体例は、これらが1価の基であることを除き上記Lを構成するアルキル又はシクロアルキルと同様である。また、これらアルキル又はシクロアルキルが置換基を有する場合もLにおける場合と同様である。
 炭素数2~30のアルケニル基、又は炭素数2~30のアルキニル基である場合、これらの炭素数は好ましくは2~20、より好ましくは2~10である。アルケニル基又はアルキニル基の具体例としては、エチレニル基、プロピレニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、アセチレニル基、プロピニル基、ブチニル基、又はペンチニル基が挙げられ、好ましくはエチレニル基、プロピレニル基、ブテニル基、アセチレニル基、又はプロピニル基が挙げられる。上記アルケニル基及びアルキニル基は直鎖であっても、分岐していても構わない。
 上記アルケニル基又はアルキニル基は置換基を有しても良く、これらが置換基を有する場合、置換基としては、炭素数3~11のシクロアルキル基、炭素数6~18の芳香族炭化水素基又は炭素数3~18の芳香族複素環基である。
 Aが炭素数3~18のシリル基である場合、これらの炭素数は好ましくは3~12、より好ましくは3~9である。シリル基は-SiZで表わされ、Zは水素又は炭化水素基であり、好ましくは全てのZは炭化水素基である。炭化水素基としてはアルキル基又はフェニル基が好ましく挙げられる。3個のZは同一であっても異なってもよく、炭素数はこれらの合計として計算される。好ましくはアルキルシリル基である。
 アルキルシリル基の具体例としては、例えばトリメチルシリル基、トリエチルシリル基、トリ(n-プロピル)シリル基、トリ(n-ブチル)シリル基、トリビニルシリル基、トリメトキシシリル基、トリエトキシシリル基、トリ(イソプロポキシ)シリル基、トリ(n-ブトキシ)シリル基、トリ(s-ブトキシ)シリル基、トリ(t-ブトキシ)シリル基、トリイソプロピルシリル基、トリシクロヘキシルシリル基、トリ(s-ブチル)シリル基、トリエチニルシリル基、トリアリルシリル基、トリプロパルギルシリル基、トリフェニルシリル基、t-ブチルジメチルシリル基、t-ブチルジエチルシリル基、イソプロピルジメチルシリル基、シクロヘキシルジメチルシリル基、ジメチルフェニルシリル基、ジエチルフェニルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、メチルジイソプロピルシリル基、エチルジイソプロピルシリル基、シクロペンチルジメチルシリル基、又はシクロヘキシルメチルシリル基が挙げられる。好ましくは、トリメチルシリル基、トリイソプロピルシリル基、t-ブチルジメチルシリル基、又はトリフェニルシリル基である。
 Aが炭素数2~19のアシル基である場合、これらの炭素数は好ましくは6~19、より好ましくは7~13である。アシル基は以下の式(5)で表される1価の基であることが好ましい。
 
Figure JPOXMLDOC01-appb-I000010
 
 式(5)において、Arは炭素数6~18の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3~18の芳香族複素環基を表す。好ましくはフェニル基、ナフチル基、ピリジル基、キノリル基、又はカルバゾリル基であり、より好ましくはフェニル基である。
 Arは置換基を有しても良く、置換基を有する場合、置換基としては、炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~2のアルコキシ基、アセチル基である。
  Aが炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基である場合、芳香族炭化水素基の炭素数は好ましくは6~30、より好ましくは6~18であり、芳香族複素環基の炭素数は好ましくは3~30、より好ましくは3~18である。ここで、芳香族複素環基は4環以上の縮合複素環を含まない。
 Aが芳香族炭化水素基又は芳香族複素環基から選ばれる基である場合の具体例は、これらが1価であることを除き上記Lを構成する芳香族炭化水素基又は芳香族複素環基と同様である。
 一般式(1)及び式(2)において、Rはそれぞれ独立して水素、炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数6~30の芳香族炭化水素基又は炭素数3~30の芳香族複素環基を表す。好ましくは水素、炭素数1~10のアルキル基、炭素数3~11のシクロアルキル基、炭素数6~18の芳香族炭化水素基又は炭素数3~18の芳香族複素環基を表す。ここで、芳香族複素環基は4環以上の縮合複素環を含まない。また、XがC(R)である場合のRも上記と同じ意味を有する。
 アルキル基又はシクロアルキル基の具体例は、これらが1価であることを除き上記Lを構成するアルキル又はシクロアルキルと同様である。また、これらアルキル又はシクロアルキルが置換基を有する場合もLにおける場合と同様である。
 アルケニル基又はアルキニル基の具体例は、上記Aで説明したアルケニル基又はアルキニル基と同様である。また、これらアルケニル基又はアルキニル基が置換基を有する場合もAにおける場合と同様である。
 芳香族炭化水素基又は芳香族複素環基の具体例は総炭素数が異なることを除いて上記Lを構成する芳香族炭化水素基又は芳香族複素環基と同様である。また、これら芳香族炭化水素基又は芳香族複素環基が置換基を有する場合もLにおける場合と同様である。
 一般式(1)において、mは1~4の整数を表す。好ましくはmは2又は3であり、より好ましくはmは2である。nは0~3の整数を表す。好ましくはnは0又は1であり、より好ましくはnは0である。
 一般式(1)において、m+nは2~4である。m+nは、好ましくは2又は3であり、より好ましくは2である。
 一般式(1)及び式(2)において、共通する記号は同じ意味を有する。
 式(2)において、pは2~4の整数を表す。好ましくはpは2又は3であり、より好ましくは2である。
  本発明の含窒素芳香族化合物は、インドール誘導体を出発原料とし、目的とする化合物の構造に応じて原料を選択し、公知の手法を用いて合成することができる。
 例えば、インドロ[3,2-b]インドール骨格は、J.Org.Chem.,2009,4242-4245、Journal of Medicinal Chemistry,2003,2436-2445及びJ.Am.Chem.Soc.,1994,8152-8161に示される合成例を参考にして以下の反応式により合成することができる。
 
Figure JPOXMLDOC01-appb-I000011
 
 また、[3,2-b]の縮合様式を有する骨格のうち、Xが酸素で表されるベンゾフロ[3,2-b]インドール骨格は、Heterocycles,1990,vol.31,1951-1958及びJournal of Chemical Research,1988,272-273に示される合成例を参考にして以下の反応式により合成することができる。
 
Figure JPOXMLDOC01-appb-I000012
 
 また、[3,2-b]の縮合様式を有する骨格のうち、Xが硫黄で表されるベンゾチエノ[3,2-b]インドール骨格は、Tetrahedoron,2003,vol.59,3737-3744に示される合成例を参考にして以下の反応式により合成することができる。
 
Figure JPOXMLDOC01-appb-I000013
 
  前述の反応式で得られる各種化合物の窒素上の水素を、例えばウルマン反応などのカップリング反応により、対応する連結基や置換基に置換させることで、一般式(1)で表される含窒素芳香族化合物を合成することができる。
  一般式(1)で表される含窒素芳香族化合物の具体例を以下に示すが、本発明の有機電界発光素子に用いられる材料はこれらに限定されない。
 
Figure JPOXMLDOC01-appb-I000014
 
 
Figure JPOXMLDOC01-appb-I000015
 
 
Figure JPOXMLDOC01-appb-I000016
 
 
Figure JPOXMLDOC01-appb-I000017
 
 
Figure JPOXMLDOC01-appb-I000018
 
 
Figure JPOXMLDOC01-appb-I000019
 
  一般式(1)で表される含窒素芳香族化合物は、基板上に、陽極、複数の有機層及び陰極が積層されてなる有機EL素子の少なくとも1つの有機層に含有させることにより、優れた有機電界発光素子を与える。含有させる有機層としては発光層、正孔輸送層及び電子阻止層が好ましい。より好ましくは、燐光発光ドーパントを含有する発光層のホスト材料として含有させることがよい。
  次に、本発明の有機EL素子について説明する。
  本発明の有機EL素子は、基板上に積層された陽極と陰極の間に、少なくとも一つの発光層を有する有機層を有し、且つ少なくとも一つの有機層は、本発明の一般式(1)で表される化合物を含む。有利には、発光層、正孔輸送層及び電子阻止層中に一般式(1)で表される化合物を含み、更に有利には燐光発光ドーパントと共に一般式(1)で表される化合物を発光層中に含む。
  次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造は何ら図示のものに限定されるものではない。
  図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を各々表わす。本発明の有機EL素子では発光層と隣接して励起子阻止層を有してもよく、また、発光層と正孔注入層との間に電子阻止層を有しても良い。励起子阻止層は発光層の陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、基板、陽極、発光層及び陰極を必須の層として有するが、必須の層以外の層に、正孔注入輸送層、電子注入輸送層を有することがよく、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか又は両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれか又は両者を意味する。
  なお、図1とは逆の構造、すなわち、基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も、必要により層を追加したり、省略したりすることが可能である。
-基板-
  本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英などからなるものを用いることができる。
-陽極-
  有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
-陰極-
  一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明であれば発光輝度が向上し好都合である。
  また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
-発光層-
 発光層は蛍光発光層、燐光発光層のいずれでも良いが、燐光発光層であることが好ましい。
 発光層が蛍光発光層である場合、蛍光発光材料は少なくとも1種の蛍光発光材料を単独で使用しても構わないが、蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を含むことが好ましい。
  発光層における蛍光発光材料としては、一般式(1)で表される化合物を用いることができるが、多数の特許文献等により知られているので、それらから選択することもできる。例えばベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、シクロペンタジエン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリジン化合物、8-キノリノール誘導体の金属錯体やピロメテン誘導体の金属錯体、希土類錯体、遷移金属錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体等が挙げられる。好ましくは縮合芳香族化合物、スチリル化合物、ジケトピロロピロール化合物、オキサジン化合物、ピロメテン金属錯体、遷移金属錯体、ランタノイド錯体が挙げられ、より好ましくは、ナフタセン、ピレン、クリセン、トリフェニレン、ベンゾ[c]フェナントレン、ベンゾ[a]アントラセン、ベンタセン、ペリレン、フルオランテン、アセナフソフルオランテン、ジベンゾ[a,j]アントラセン、ジベンゾ[a,h]アントラセン、ベンゾ[a]ナフタセン、ヘキサセン、アンタントレン、ナフト[2,1‐f]イソキノリン、α-ナフタフェナントリジン、フェナントロオキサゾール、キノリノ[6,5‐f]キノリン、ベンゾチオファントレンなどが挙げられる。これらは置換基としてアリール基、複素芳香環基、ジアリールアミノ基、アルキル基を有していてもよい。
  前記蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を含む場合、蛍光発光ドーパントが発光層中に含有される量は、0.01~20重量%、好ましくは0.1~10重量%の範囲にあることがよい。
 発光層が燐光発光層である場合、燐光発光ドーパントとホスト材料を含む。燐光発光ドーパント材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体を含有するものがよい。かかる有機金属錯体は、前記先行技術文献等で公知であり、これらが選択されて使用可能である。
  好ましい燐光発光ドーパントとしては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、(Bt)2Iracac等の錯体類、(Btp)Ptacac等の錯体類が挙げられる。これらの錯体類の具体例を以下に示すが、下記の化合物に限定されない。
 
Figure JPOXMLDOC01-appb-I000020
 
 
Figure JPOXMLDOC01-appb-I000021
 
  前記燐光発光ドーパントが発光層中に含有される量は、1~50重量%の範囲にあることが好ましい。より好ましくは5~30重量%である。
  発光層におけるホスト材料としては、前記一般式(1)で表される化合物を用いることが好ましい。しかし、該含窒素芳香族化合物を発光層以外の他の何れかの有機層に使用する場合は、発光層に使用する材料は一般式(1)で表される化合物以外の他のホスト材料であってもよい。また、一般式(1)で表される化合物と他のホスト材料を併用してもよい。更に、公知のホスト材料を複数種類併用して用いてもよい。
  使用できる公知のホスト化合物としては、正孔輸送能又は電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。
  このような他のホスト材料は、多数の特許文献等により知られているので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、インドール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8‐キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。
-注入層-
  注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-正孔阻止層-
  正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
  正孔阻止層には一般式(1)で表される化合物を用いることができるが、該化合物を他の何れかの有機層に使用する場合は、公知の正孔阻止層材料を用いてもよい。また、正孔阻止層材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
-電子阻止層-
  電子阻止層とは、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料から成り、正孔を輸送しつつ電子を阻止することで電子と正孔が再結合する確率を向上させることができる。
  電子阻止層の材料としては、前記一般式(1)で表される化合物を用いることが好ましいが、該化合物を他の何れかの有機層に使用する場合は、後述する正孔輸送層の材料を必要に応じて用いることができる。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
-励起子阻止層-
  励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
  励起子阻止層の材料としては、前記一般式(1)で表される化合物を用いることができるが、該化合物を他の何れかの有機層に使用する場合は、例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-正孔輸送層-
  正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
  正孔輸送材料は、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。正孔輸送材料としては、前記一般式(1)で表される化合物を用いることが好ましいが、該化合物を他の何れかの有機層に使用する場合は、従来公知の化合物の中から任意のものを選択して用いることができる。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、芳香族アミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、ポルフィリン化合物、スチリルアミン化合物、及び導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
-電子輸送層-
  電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
  電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には一般式(1)で表される化合物を用いることができるが、該化合物を他の何れかの有機層に使用する場合は、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
  以下、本発明を実施例によって更に詳しく説明するが、本発明は勿論、これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。
  以下に示すルートにより一般式(1)で表される化合物を合成した。尚、化合物番号は、上記化学式に付した番号に対応する。
合成例1
化合物1-1の合成
 
Figure JPOXMLDOC01-appb-I000022
 
 窒素雰囲気下、インドロ[3,2-b]インドール 20 g (97 mmol)、ヨードベンゼンを19 g (93 mmol)、ヨウ化銅1.7 g (8.9 mmol)、リン酸三カリウム59 g (278 mmol)、trans-1,2-シクロヘキサンジアミン11 g (96 mmol)、1,4-ジオキサンを500 ml加え、120℃で加熱しながら4時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、中間体A-1を 14 g (49 mmol、収率53 mol%)得た。
 窒素雰囲気下、中間体A-1 4.0 g (14 mmol)、1,3-ジヨードベンゼンを2.4 g (7.3 mmol)、ヨウ化銅0.68 g (3.6 mmol)、リン酸三カリウム23 g (106 mmol)、trans-1,2-シクロヘキサンジアミン4.0 g (39 mmol)、1,4-ジオキサンを100 ml加え、120℃で加熱しながら16時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として化合物1-1を 3.5 g (5.5 mmol、収率75 mol%)得た。
合成例2
化合物2-1の合成
 
Figure JPOXMLDOC01-appb-I000023
 
 窒素雰囲気下、中間体A-1 13.0 g (46 mmol)、1-ブロモ-3-ヨードベンゼンを13 g (46 mmol)、ヨウ化銅0.87 g (4.6 mmol)、リン酸三カリウム29g (137 mmol)、trans-1,2-シクロヘキサンジアミン5.2 g (46 mmol)、1,4-ジオキサンを400 ml加え、120℃で加熱しながら4時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、中間体A-2を 11 g (25 mmol、収率54 mol%)得た。
 窒素雰囲気下、中間体A-2 4.0 g (9.1 mmol)、ベンゾフロ[3,2-b]インドールを1.9 g (9.2 mmol)、ヨウ化銅0.18 g (0.95 mmol)、リン酸三カリウム5.9 g (28 mmol)、trans-1,2-シクロヘキサンジアミン1.0 g (8.8 mmol)、1,4-ジオキサンを90 ml加え、120℃で加熱しながら18時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として化合物2-1を 4.1 g (7.3 mmol、収率80 mol%)得た。
合成例3
化合物3-1の合成
 
Figure JPOXMLDOC01-appb-I000024
 
 窒素雰囲気下、中間体A-2 4.0 g (9.1 mmol)、ベンゾチエノ[3,2-b]インドールを2.0 g (9.1 mmol)、ヨウ化銅0.18 g (0.95 mmol)、リン酸三カリウム5.9 g (28 mmol)、trans-1,2-シクロヘキサンジアミン1.0 g (8.8 mmol)、1,4-ジオキサンを90 ml加え、120℃で加熱しながら24時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として化合物3-1を 3.8 g (6.6 mmol、収率73 mol%)得た。
  また、上記合成例及び明細書中に記載の合成方法に準じて、化合物1-5、1-7、1-9及び1-12を合成し、有機EL素子の作成に供した。
実施例1
  膜厚110 nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5 Paで積層した。まず、ITO上に銅フタロシアニン(CuPC)を25 nmの厚さに形成した。次に、正孔輸送層として4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(NPB)を55 nmの厚さに形成した。次に、正孔輸送層上に、ホスト材料としての合成例1で得た化合物1-1と、燐光発光ドーパントとしてのビス(2-(2'-ベンゾ[4,5-a]チエニル)ピリジナト-N,C3)イリジウム(アセチルアセトネート)〔(Btp)2Iracac〕とを異なる蒸着源から、共蒸着し、47.5 nmの厚さに発光層を形成した。発光層中の(Btp)2Iracacの濃度は8.0 wt%であった。次に、電子輸送層としてトリス(8-ヒドロキシキノリナト)アルミニウム(III)(Alq3)を30 nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を1.0 nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を200 nmの厚さに形成し、有機EL素子を作成した。
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表1のような発光特性を有することが確認された。表1において、輝度、電圧及び発光効率は、10mA/cm2での値を示す。なお、素子発光スペクトルの極大波長は620 nmであり、(Btp)2Iracacからの発光が得られていることがわかった。
実施例2
  発光層のホスト材料として、化合物2-1を用いた以外は実施例1と同様にして有機EL素子を作成した。
実施例3
  発光層のホスト材料として、化合物3-1を用いた以外は実施例1と同様にして有機EL素子を作成した。
実施例4
  発光層のホスト材料として、化合物1-5を用いた以外は実施例1と同様にして有機EL素子を作成した。
実施例5
  発光層のホスト材料として、化合物1-7を用いた以外は実施例1と同様にして有機EL素子を作成した。
実施例6
  発光層のホスト材料として、化合物1-9を用いた以外は実施例1と同様にして有機EL素子を作成した。
実施例7
  発光層のホスト材料として、化合物1-12を用いた以外は実施例1と同様にして有機EL素子を作成した。
比較例1
  発光層のホスト材料として、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)を用いた以外は実施例22と同様にして有機EL素子を作成した。
比較例2
  発光層のホスト材料として、下記化合物H-1を用いた以外は実施例1と同様にして有機EL素子を作成した。
 
Figure JPOXMLDOC01-appb-I000025
 
 実施例2~7、及び比較例1~2で作製した有機EL素子の素子発光スペクトルの極大波長はいずれも620 nmであり、(Btp)2Iracacからの発光が得られていることがわかった。発光特性ならびに寿命特性を表1に示す。
Figure JPOXMLDOC01-appb-T000026
 
  表1より、本発明の有機EL素子で使用する一般式(1)で表される含窒素芳香族化合物は、燐光ホストとして一般的に知られているBAlqに対して良好な発光特性を示すことが判る。また、分子中にインドロ[3,2-b]インドール骨格を有しない化合物であるH-1と比較して、良好な発光特性を示し、上記含窒素芳香族化合物の優位性が明らかである。
産業上の利用の可能性
 本発明の含窒素芳香族化合物の骨格はインドロ[3,2-b]インドール骨格を1つ以上有することにより、イオン化ポテンシャル、電子親和力、三重項励起エネルギーの各種エネルギー値の制御が可能となると考えられる。また、インドロ[3,2-b]インドール骨格を複数有することで、耐電荷安定性が高くなると考えられる。また、本発明の含窒素芳香族化合物は高い電荷移動特性を有すると考えられる。従って本発明の含窒素芳香族化合物を使用した有機電界発光素子は高い特性を発現することが可能となると考えられる。また、本発明の含窒素芳香族化合物は有機EL素子のみでなく、電子ペーパー等のディスプレイ、液晶ディスプレイ、有機電界効果トランジスタ、有機薄膜太陽電池、情報タグ、電子人工皮膚シートやシート型スキャナー等の大面積センサー等への応用が考えられ、その技術的価値は大きいものである。

Claims (5)

  1.  基板上に、陽極、複数の有機層及び陰極が積層されてなる有機電界発光素子において、少なくとも一つの有機層に、一般式(1)で表される化合物を含有させたことを特徴とする有機電界発光素子。
    Figure JPOXMLDOC01-appb-I000001
     
     式中、Lは炭素数1~30のアルカン、炭素数3~30のシクロアルカン、炭素数6~50の芳香族炭化水素、4環以上の縮合複素環を含まない炭素数3~50の芳香族複素環化合物、炭素数9~30のトリアリールアミン、又は炭素数6~24のジアリールスルホンから生じるn+m価の基を表し、Aはそれぞれ独立して炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数3~18のシリル基、炭素数2~19のアシル基、炭素数6~50の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3~50の芳香族複素環基を表し、Xはそれぞれ独立してC(R)、酸素、硫黄又はセレンを表し、Rはそれぞれ独立して水素、炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数6~30の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3~30の芳香族複素環基を表し、mは1~4の整数を表し、nは0~3の整数を表す。mとnの総数は2~4である。
  2.  一般式(1)で表される化合物が、式(2)で表されることを特徴とする請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-I000002
     
     式(2)中、L、A及びRは一般式(1)と同意である。pは2~4の整数を表す。
  3.  一般式(2)において、pが2又は3であることを特徴とする請求項2に記載の有機電界発光素子。
  4.  一般式(1)で表される化合物を含有させた層が、発光層、正孔輸送層及び電子阻止層からなる群れから選ばれる少なくとも一つの層であることを特徴とする請求項1~3のいずれかに記載の有機電界発光素子。
  5.   一般式(1)で表される化合物を含有させた層が、燐光発光ドーパントを含有する発光層であることを特徴とする請求項4に記載の有機電界発光素子。
PCT/JP2011/072784 2010-10-13 2011-10-03 有機電界発光素子 WO2012050003A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/878,608 US9312496B2 (en) 2010-10-13 2011-10-03 Organic electroluminescent element
KR1020137012050A KR101873378B1 (ko) 2010-10-13 2011-10-03 유기 전계 발광 소자
CN201180049588.4A CN103155200B (zh) 2010-10-13 2011-10-03 有机电致发光元件
EP11832439.1A EP2629345B1 (en) 2010-10-13 2011-10-03 Organic electroluminescent element
JP2012538639A JP5834015B2 (ja) 2010-10-13 2011-10-03 有機電界発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-230313 2010-10-13
JP2010230313 2010-10-13

Publications (1)

Publication Number Publication Date
WO2012050003A1 true WO2012050003A1 (ja) 2012-04-19

Family

ID=45938232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072784 WO2012050003A1 (ja) 2010-10-13 2011-10-03 有機電界発光素子

Country Status (7)

Country Link
US (1) US9312496B2 (ja)
EP (1) EP2629345B1 (ja)
JP (1) JP5834015B2 (ja)
KR (1) KR101873378B1 (ja)
CN (1) CN103155200B (ja)
TW (1) TWI488942B (ja)
WO (1) WO2012050003A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150058084A (ko) * 2013-11-20 2015-05-28 주식회사 동진쎄미켐 신규한 발광 화합물 및 이를 포함하는 유기발광소자
JP2015111624A (ja) * 2013-12-06 2015-06-18 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
WO2016024450A1 (ja) * 2014-08-12 2016-02-18 富士フイルム株式会社 組成物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、非発光性有機半導体デバイス用塗布溶液、非発光性有機半導体デバイス用有機半導体、有機トランジスタ、多環縮合芳香族化合物
US10886475B2 (en) 2016-04-15 2021-01-05 Boe Technology Group Co., Ltd. Organic electroluminescent materials and organic electroluminescent devices
US11957043B2 (en) 2020-05-06 2024-04-09 Samsung Display Co., Ltd. Light-emitting device and electronic apparatus comprising same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125679A1 (ja) * 2014-02-18 2015-08-27 保土谷化学工業株式会社 ベンゾフロインドール誘導体および有機エレクトロルミネッセンス素子
KR102283559B1 (ko) * 2014-10-31 2021-07-28 주식회사 엘지화학 전기활성 재료
CA3010895A1 (en) 2016-01-21 2017-07-27 SeLux Diagnostics, Inc. Methods for rapid antimicrobial susceptibility testing
US9834808B2 (en) 2016-01-21 2017-12-05 SeLux Diagnostics, Inc. Methods for rapid antibiotic susceptibility testing
CA3048213A1 (en) 2016-12-23 2018-06-28 Eric Stern Methods for improved rapid antimicrobial susceptibility testing
US10807984B2 (en) 2017-02-10 2020-10-20 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
KR102603871B1 (ko) * 2017-02-10 2023-11-22 삼성디스플레이 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2003515897A (ja) 1999-12-01 2003-05-07 ザ、トラスティーズ オブ プリンストン ユニバーシティ 有機led用燐光性ドーパントとしての式l2mxの錯体
JP2009054809A (ja) 2007-08-28 2009-03-12 Mitsui Chemicals Inc 有機トランジスタ
JP2009182034A (ja) * 2008-01-29 2009-08-13 Mitsui Chemicals Inc 有機トランジスタ
JP2010040829A (ja) 2008-08-06 2010-02-18 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置、照明装置
WO2010041687A1 (ja) * 2008-10-09 2010-04-15 コニカミノルタホールディングス株式会社 有機光電変換素子、太陽電池及び光センサアレイ
JP2010177644A (ja) * 2009-02-02 2010-08-12 Mitsui Chemicals Inc 有機トランジスタ
JP2010205815A (ja) 2009-03-02 2010-09-16 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2011055933A2 (ko) * 2009-11-03 2011-05-12 제일모직 주식회사 유기광전소자용 조성물, 이를 이용한 유기광전소자 및 이를 포함하는 표시장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0321781D0 (en) * 2003-09-17 2003-10-15 Toppan Printing Company Ltd Electroluminescent device
JP5116347B2 (ja) 2007-04-09 2013-01-09 キヤノン株式会社 ビフェニル誘導体及びそれを使用した有機発光素子
JP5564942B2 (ja) * 2007-05-16 2014-08-06 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN102017218B (zh) * 2008-05-08 2013-05-01 新日铁化学株式会社 有机场致发光元件
KR20110116635A (ko) * 2010-04-20 2011-10-26 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 전자재료용 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
US8766249B2 (en) * 2010-10-13 2014-07-01 Nippon Steel & Sumikin Chemical Co., Ltd. Nitrogenated aromatic compound, organic semiconductor material, and organic electronic device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515897A (ja) 1999-12-01 2003-05-07 ザ、トラスティーズ オブ プリンストン ユニバーシティ 有機led用燐光性ドーパントとしての式l2mxの錯体
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2009054809A (ja) 2007-08-28 2009-03-12 Mitsui Chemicals Inc 有機トランジスタ
JP2009182034A (ja) * 2008-01-29 2009-08-13 Mitsui Chemicals Inc 有機トランジスタ
JP2010040829A (ja) 2008-08-06 2010-02-18 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置、照明装置
WO2010041687A1 (ja) * 2008-10-09 2010-04-15 コニカミノルタホールディングス株式会社 有機光電変換素子、太陽電池及び光センサアレイ
JP2010177644A (ja) * 2009-02-02 2010-08-12 Mitsui Chemicals Inc 有機トランジスタ
JP2010205815A (ja) 2009-03-02 2010-09-16 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2011055933A2 (ko) * 2009-11-03 2011-05-12 제일모직 주식회사 유기광전소자용 조성물, 이를 이용한 유기광전소자 및 이를 포함하는 표시장치

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
DORIN, S. ET AL.: "Photophysics of trans- stilbene analogues: indolo[3,2-b]indole and its heterosubstituted sulfur and selenium derivatives", CHEMICAL PHYSICS, vol. 216, no. 1-2, 15 March 1997 (1997-03-15), pages 179 - 192, XP002537531 *
HETEROCYCLES, vol. 31, 1990, pages 1951 - 1958
J. AM. CHEM. SOC., 1994, pages 8152 - 8161
J.ORG.CHEM., 2009, pages 4242 - 4245
JIN, Y. ET AL.: "New Conjugated Polymer Based on Dihydroindoloindole for LEDs", BULL. KOREAN CHEM. SOC., vol. 27, no. 7, 2006, pages 1043 - 1047, XP008163221 *
JOURNAL OF CHEMICAL RESEARCH, 1988, pages 272 - 273
JOURNAL OF MEDICINAL CHEMISTRY, 2003, pages 2436 - 2445
See also references of EP2629345A4
TETRAHEDRON, vol. 59, 2003, pages 3737 - 3744

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150058084A (ko) * 2013-11-20 2015-05-28 주식회사 동진쎄미켐 신규한 발광 화합물 및 이를 포함하는 유기발광소자
KR102388406B1 (ko) 2013-11-20 2022-04-20 주식회사 동진쎄미켐 신규한 발광 화합물 및 이를 포함하는 유기발광소자
JP2015111624A (ja) * 2013-12-06 2015-06-18 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
WO2016024450A1 (ja) * 2014-08-12 2016-02-18 富士フイルム株式会社 組成物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、非発光性有機半導体デバイス用塗布溶液、非発光性有機半導体デバイス用有機半導体、有機トランジスタ、多環縮合芳香族化合物
JPWO2016024450A1 (ja) * 2014-08-12 2017-06-01 富士フイルム株式会社 組成物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、非発光性有機半導体デバイス用塗布溶液、非発光性有機半導体デバイス用有機半導体、有機トランジスタ、多環縮合芳香族化合物
US10886475B2 (en) 2016-04-15 2021-01-05 Boe Technology Group Co., Ltd. Organic electroluminescent materials and organic electroluminescent devices
US11957043B2 (en) 2020-05-06 2024-04-09 Samsung Display Co., Ltd. Light-emitting device and electronic apparatus comprising same

Also Published As

Publication number Publication date
KR20140000692A (ko) 2014-01-03
JPWO2012050003A1 (ja) 2014-02-24
KR101873378B1 (ko) 2018-07-02
TW201231615A (en) 2012-08-01
CN103155200B (zh) 2016-03-23
US9312496B2 (en) 2016-04-12
EP2629345A1 (en) 2013-08-21
EP2629345B1 (en) 2017-12-06
US20130193429A1 (en) 2013-08-01
TWI488942B (zh) 2015-06-21
CN103155200A (zh) 2013-06-12
EP2629345A4 (en) 2017-03-15
JP5834015B2 (ja) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5775520B2 (ja) 有機電界発光素子
JP5834015B2 (ja) 有機電界発光素子
JP5215481B2 (ja) 有機電界発光素子
JP5399418B2 (ja) 有機電界発光素子
WO2014168138A1 (ja) 有機電界発光素子用アダマンタン化合物及び有機電界発光素子
WO2011099451A1 (ja) 有機電界発光素子
WO2011105161A1 (ja) 有機電界発光素子
WO2013088934A1 (ja) 有機電界発光素子用材料及びそれを用いた有機電界発光素子
JP6360796B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2010098386A1 (ja) 有機電界発光素子
JP5778756B2 (ja) 含窒素芳香族化合物及び有機電界発光素子
WO2014103910A1 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2015098297A1 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
EP2876699B1 (en) Organic electroluminescent element
WO2016158454A1 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP5577122B2 (ja) 有機電界発光素子
JP6402177B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2013038929A1 (ja) 含ケイ素四員環構造を有する有機電界発光素子用材料及び有機電界発光素子
WO2016158246A1 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180049588.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538639

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13878608

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011832439

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137012050

Country of ref document: KR

Kind code of ref document: A