WO2014103910A1 - 有機電界発光素子用材料及びこれを用いた有機電界発光素子 - Google Patents

有機電界発光素子用材料及びこれを用いた有機電界発光素子 Download PDF

Info

Publication number
WO2014103910A1
WO2014103910A1 PCT/JP2013/084208 JP2013084208W WO2014103910A1 WO 2014103910 A1 WO2014103910 A1 WO 2014103910A1 JP 2013084208 W JP2013084208 W JP 2013084208W WO 2014103910 A1 WO2014103910 A1 WO 2014103910A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aromatic
organic
carbon atoms
derivatives
Prior art date
Application number
PCT/JP2013/084208
Other languages
English (en)
French (fr)
Inventor
淳也 小川
徹 浅利
孝弘 甲斐
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2014554399A priority Critical patent/JP6360797B2/ja
Priority to CN201380068206.1A priority patent/CN104871335B/zh
Priority to KR1020157019993A priority patent/KR102111535B1/ko
Publication of WO2014103910A1 publication Critical patent/WO2014103910A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic electroluminescent element containing a carborane compound, and more particularly to a thin film device that emits light by applying an electric field to a light emitting layer made of an organic compound.
  • an organic electroluminescent element (hereinafter referred to as an organic EL element) is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer as the simplest structure. That is, in an organic EL element, when an electric field is applied between both electrodes, electrons are injected from the cathode, holes are injected from the anode, and these are recombined in the light emitting layer to emit light. .
  • an organic EL element using an organic thin film has been developed.
  • the type of electrode was optimized for the purpose of improving the efficiency of carrier injection from the electrode, and a hole transport layer composed of aromatic diamine and 8-hydroxyquinoline aluminum complex (hereinafter referred to as Alq 3 )
  • Alq 3 a hole transport layer composed of aromatic diamine and 8-hydroxyquinoline aluminum complex
  • CBP 4,4′-bis (9-carbazolyl) biphenyl
  • Ir (ppy) 3 a green phosphorescent material typified by tris (2-phenylpyridine) iridium complex
  • CBP has a characteristic that it is easy to flow holes and electrons. The charge injection balance is lost, and excess holes flow out to the electron transport layer side. As a result, the light emission efficiency from Ir (ppy) 3 decreases.
  • a host material having high triplet excitation energy and balanced in both charge (hole / electron) injection and transport characteristics is required. Further, a compound that is electrochemically stable and has high heat resistance and excellent amorphous stability is desired, and further improvement is required.
  • Patent Documents 3 and 4 and Non-Patent Document 1 disclose carborane compounds as shown below.
  • the above compound is a compound in which a phenyl group and a fluorenyl group or a carbazolylphenyl group are bonded to a carborane skeleton, or a ring in which a carborane skeleton and a phenylene group are bonded, and an aromatic group and a carborane skeleton are linearly formed. It does not disclose a compound that binds and has three or more carborane skeletons in the molecule.
  • An object of this invention is to provide the practically useful organic EL element which has high efficiency and high drive stability in view of the said present condition, and a compound suitable for it.
  • the present inventors have obtained excellent characteristics by using, as an organic EL element, a carborane compound in which an aromatic group and a carborane skeleton are bonded in a straight chain and the molecule has three or more carborane skeletons. As a result, the present invention has been completed.
  • the present invention relates to a material for an organic electroluminescent element comprising a carborane compound represented by the general formula (1).
  • ring A independently represents a C 2 B 10 H 8 tetravalent carborane group represented by either formula (1a) or formula (1b).
  • L 1 is independently a direct bond, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 carbon atoms, or the aromatic hydrocarbon group And a linked aromatic group constituted by connecting 2 to 6 aromatic rings of an aromatic group selected from the aromatic heterocyclic group.
  • L 1 is independently a direct bond, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 carbon atoms, or the aromatic hydrocarbon group
  • a linked aromatic group constituted by connecting 2 to 6 aromatic rings of an aromatic group selected from the aromatic heterocyclic group.
  • L 1 are direct bonds.
  • L 2 is independently hydrogen, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 carbon atoms, or the aromatic hydrocarbon group and Represents a linked aromatic group formed by linking two to six aromatic rings of an aromatic group selected from the aromatic heterocyclic group
  • L 3 is independently hydrogen, an aliphatic group having 1 to 12 carbon atoms
  • the linked aromatic rings may be the same or different.
  • carborane compounds represented by the general formula (1) carborane compounds represented by the following general formula (2) are preferable, and carborane compounds represented by the general formulas (3) and (4) are more preferable compounds.
  • Ring A represents a tetravalent carborane group of C 2 B 10 H 8 represented by either formula (2a) or formula (2b), and when a plurality of rings A are present in the molecule, they may be the same May be different.
  • L 1 , L 2 , L 3 , p and q are the same as those in the general formula (1).
  • L 1 each independently represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, a substituted or unsubstituted carbon number.
  • a linked aromatic group composed of 3 to 17 aromatic heterocyclic groups or 2 to 5 aromatic rings of an aromatic group selected from the aromatic hydrocarbon group and the aromatic heterocyclic group; Preferably there is.
  • L 2 is each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, a substituted or unsubstituted carbon number.
  • a linked aromatic group composed of 3 to 17 aromatic heterocyclic groups or 2 to 5 aromatic rings of an aromatic group selected from the aromatic hydrocarbon group and the aromatic heterocyclic group; Preferably there is.
  • the present invention is an organic electroluminescence device having an organic layer containing the material for an organic electroluminescence device described above, in which an anode, an organic layer and a cathode are laminated on a substrate.
  • the organic layer containing the organic electroluminescent element material contains a phosphorescent dopant. It is desirable that the emission wavelength of the phosphorescent dopant has an emission maximum wavelength at 550 nm or less.
  • the material for an organic electroluminescent element of the present invention has a structure in which three or more carborane skeletons are bonded and linearly bonded via at least one aromatic ring.
  • the carborane compound having such a structural feature can control the electron injection / transport property of the device at a high level because the lowest vacant orbit (LUMO) that affects the electron injection / transport property is widely distributed throughout the molecule.
  • LUMO lowest vacant orbit
  • T1 energy is sufficiently high to confine the lowest triplet excitation energy (T1 energy) of the dopant, efficient light emission from the dopant is enabled. From the above characteristics, by using this for an organic EL element, reduction in driving voltage of the element and high luminous efficiency were achieved.
  • the organic electroluminescent element material of the present invention exhibits excellent amorphous characteristics and high thermal stability and is extremely stable in an excited state, an organic EL element using the organic EL element has a long driving life and is practical. Has a level of durability.
  • FIG. 1 is an NMR chart of carborane compound 1.
  • 3 is an NMR chart of carborane compound 36.
  • the organic electroluminescent element material of the present invention is a carborane compound represented by the general formula (1).
  • This carborane compound is considered to have the excellent effects as described above by having a structure in which three or more carborane skeletons are linked in a straight chain via a direct bond or an aromatic ring.
  • L 1 is independently a direct bond or a divalent aromatic group.
  • the divalent aromatic group is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 carbon atoms, or the aromatic hydrocarbon group.
  • an aromatic group selected from the aromatic heterocyclic group is a connected aromatic group formed by connecting 2 to 6 aromatic rings, and in the case of a connected aromatic group, the connected aromatic rings are the same. Or different.
  • L 1 are direct bonds.
  • L 1 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, or the aromatic hydrocarbon A linked aromatic group constituted by connecting 2 to 5 aromatic rings of an aromatic group selected from the group and the aromatic heterocyclic group.
  • L 2 is independently hydrogen or a monovalent aromatic group.
  • the monovalent aromatic group includes a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 carbon atoms, or the aromatic hydrocarbon Represents a linked aromatic group formed by linking 2 to 6 aromatic rings of an aromatic group selected from the group and the aromatic heterocyclic group, preferably a substituted or unsubstituted aromatic group having 6 to 18 carbon atoms. 2 to 5 aromatic hydrocarbon groups, substituted or unsubstituted aromatic heterocyclic groups having 3 to 17 carbon atoms, or an aromatic group selected from the aromatic hydrocarbon group and the aromatic heterocyclic group. It is a linked aromatic group composed of two linked groups.
  • L 3 is independently hydrogen, a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms, or a monovalent aromatic group.
  • the monovalent aromatic group is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 carbon atoms, or the aromatic hydrocarbon group.
  • a linked aromatic group constituted by connecting 2 to 6 aromatic rings of an aromatic group selected from the aromatic heterocyclic group.
  • L 3 is preferably hydrogen, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, or the aromatic hydrocarbon group
  • an aromatic group selected from the aromatic heterocyclic group is a linked aromatic group constituted by connecting 2 to 5 aromatic rings, more preferably hydrogen.
  • unsubstituted aromatic hydrocarbon group examples include groups generated by removing hydrogen from aromatic hydrocarbon compounds such as benzene, naphthalene, fluorene, anthracene, phenanthrene, fluoranthene, pyrene, chrysene, and triphenylene, preferably This is a group formed by removing hydrogen from benzene, naphthalene, anthracene, phenanthrene, and triphenylene.
  • unsubstituted aromatic heterocyclic group examples include pyridine, pyrimidine, triazine, quinoline, isoquinoline, quinoxaline, naphthyridine, carbazole, dibenzofuran, dibenzothiophene, acridine, azepine, tribenzoazepine, phenazine, phenoxazine, phenothiazine, dibenzo.
  • groups formed by removing hydrogen from aromatic heterocyclic compounds such as phosphole and dibenzoborol, and preferably groups formed by removing hydrogen from pyridine, pyrimidine, triazine, carbazole, dibenzofuran, and dibenzothiophene.
  • a group generated by removing hydrogen from an aromatic compound having a structure in which a plurality of aromatic hydrocarbon compounds or aromatic heterocyclic compounds are connected is referred to as a connected aromatic group.
  • the linked aromatic group is a group formed by connecting 2 to 6 aromatic rings, and the aromatic rings to be connected may be the same or different, and an aromatic hydrocarbon group and an aromatic heterocyclic group Both may be included.
  • the number of aromatic rings to be connected is preferably 2 to 5, more preferably 2 or 3.
  • the aromatic ring to be connected may be a condensed ring, and the calculation of the number of connections of the condensed ring is 1 regardless of the number of rings in the condensed ring.
  • the linked aromatic group include biphenyl, terphenyl, phenylnaphthalene, diphenylnaphthalene, phenylanthracene, diphenylanthracene, diphenylfluorene, bipyridine, bipyrimidine, vitriazine, biscarbazole, bisdibenzofuran, bisdibenzothiophene, bisfluorene, Hydrogen is removed from phenylpyridine, phenylpyrimidine, phenyltriazine, phenylcarbazole, phenyldibenzofuran, phenyldibenzothiophene, diphenylpyridine, diphenyltriazine, biscarbazolylbenzene, bisdibenzofuranylbenzene, bisdibenzothiophenylbenzene, pyridylcarbazole, etc. And the resulting group.
  • the aromatic hydrocarbon group, aromatic heterocyclic group, and linked aromatic group may have a substituent, and when having a substituent, preferred substituents include an alkyl group having 1 to 12 carbon atoms, carbon And an alkoxy group, a cyano group, or an acetyl group. More preferably, it is an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, an acetyl group, or a cyano group, and the substituent does not include a silicon-containing group such as a silyl group. . Specific examples include methyl group, ethyl group, isopropyl group, butyl group, methoxy group, ethoxy group, acetyl group, and cyano group.
  • the linked aromatic group when the linked aromatic group is a divalent group, for example, it may be represented by the following formula and may be linked in a straight chain or branched form.
  • Ar 1 to Ar 6 are unsubstituted aromatic hydrocarbon rings or aromatic heterocyclic rings
  • L 2 is the same as L 1 except that it is monovalent and contains hydrogen.
  • L 3 is the same as L 1 except that it is monovalent and contains hydrogen and an aliphatic hydrocarbon group having 1 to 12 carbon atoms.
  • L 1 is a direct bond or a divalent aromatic group, but the L 2 and L 3 groups are not a direct bond. Therefore, the description of the monovalent aromatic group in L 2 and L 3 is understood by replacing divalent with monovalent in the description of the divalent aromatic group in L 1 .
  • the aliphatic hydrocarbon group in L 3 may be saturated or unsaturated, and may be linear, branched, or cyclic.
  • Specific examples include a methyl group, an ethyl group, Examples thereof include alkyl groups such as propyl group, isopropyl group, butyl group, pentyl group, hexyl group and octyl group, and cycloalkyl groups such as cyclopentyl group and cyclohexyl group.
  • p represents an integer of 1 to 5, preferably 1 to 2.
  • q is an integer of 1 to 5, preferably 1 to 2.
  • p + q is preferably an integer of 2 to 8, more preferably 2, 3 or 4.
  • the hydrogen in general formula (1) may be replaced with deuterium.
  • the carborane compounds represented by the above general formula (2) are mentioned as preferred compounds, and more preferably represented by the above general formula (3) or (4). It is a carborane compound.
  • the carborane compounds represented by the general formulas (1) to (4) can be synthesized by selecting a raw material according to the structure of the target compound and using a known method.
  • (A-1) can be synthesized by the following reaction formula with reference to the synthesis example shown in Journal of Organometallic Chemistry, 1993, 462, p19-29.
  • (A-2) can be synthesized by the following reaction formula.
  • (A-4) can be synthesized by the following reaction formula with reference to the synthesis example shown in Inorganica Chimica Acta, 1995, 240, p371-378.
  • carborane compounds represented by the general formulas (1) to (4) are shown below, but the material for an organic electroluminescent element of the present invention is not limited thereto.
  • the organic electroluminescent element material (also referred to as carborane compound) of the present invention is contained in at least one organic layer of an organic EL element in which an anode, a plurality of organic layers and a cathode are laminated on a substrate, An excellent organic electroluminescent device is provided.
  • a light emitting layer, an electron transport layer or a hole blocking layer is suitable.
  • the carborane compound of the present invention can be used for fluorescence and delayed fluorescence. It can be used as a radiating organic light emitting material.
  • the carborane compound of the present invention is particularly preferably contained as a host material for a light emitting layer containing a phosphorescent dopant.
  • the organic EL device of the present invention has an organic layer having at least one light emitting layer between an anode and a cathode laminated on a substrate, and the at least one organic layer is for the organic electroluminescent device of the present invention.
  • the organic electroluminescent device material of the present invention is included in the light emitting layer together with a phosphorescent dopant.
  • the structure of the organic EL element of the present invention will be described with reference to the drawings.
  • the structure of the organic EL element of the present invention is not limited to the illustrated one.
  • FIG. 1 is a cross-sectional view showing a structural example of a general organic EL device used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represents an electron transport layer, and 7 represents a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, and may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side of the light emitting layer, or both can be inserted simultaneously.
  • the organic EL device of the present invention has a substrate, an anode, a light emitting layer and a cathode as essential layers, but it is preferable to have a hole injecting and transporting layer and an electron injecting and transporting layer in layers other than the essential layers, and further emitting It is preferable to have a hole blocking layer between the layer and the electron injecting and transporting layer.
  • the hole injection / transport layer means either or both of a hole injection layer and a hole transport layer
  • the electron injection / transport layer means either or both of an electron injection layer and an electron transport layer.
  • the organic EL element of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited as long as it is conventionally used for an organic EL element.
  • a substrate made of glass, transparent plastic, quartz, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • an electrode substance include conductive transparent materials such as metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a thickness of 1 to 20 nm on the cathode.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from the anode and the cathode, respectively.
  • the light emitting layer includes an organic light emitting material and a host material.
  • the fluorescent light emitting material may be at least one kind of fluorescent light emitting material, but it is preferable to use the fluorescent light emitting material as a fluorescent light emitting dopant and include a host material. .
  • a carborane compound represented by the general formula (1) can be used as the fluorescent light-emitting material in the light-emitting layer.
  • benzoxazole derivatives benzothiazole derivatives, benzimidazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives, condensed aromatic compounds, perinone derivatives, oxadiazole derivatives , Oxazine derivatives, aldazine derivatives, pyralidine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, styrylamine derivatives, diketopyrrolopyrrole derivatives, aromatic dimethylolidine compounds, 8-quinolinol Polythiophen
  • Polyphenylene, polyphenylene vinylene polymer compounds such as, organic silane derivatives, and the like.
  • Preferred examples include condensed aromatic compounds, styryl compounds, diketopyrrolopyrrole compounds, oxazine compounds, pyromethene metal complexes, transition metal complexes, and lanthanoid complexes, more preferably naphthacene, pyrene, chrysene, triphenylene, benzo [c] phenanthrene, Benzo [a] anthracene, pentacene, perylene, fluoranthene, acenaphthofluoranthene, dibenzo [a, j] anthracene, dibenzo [a, h] anthracene, benzo [a] naphthacene, hexacene, anthanthrene, naphtho [2,1 -f] isoquinoline, ⁇ -naphtha
  • a carborane compound represented by the general formula (1) can be used, but since it is known from many patent documents, it can be selected from them.
  • a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene or a derivative thereof, N, N′-dinaphthyl-N, N′-diphenyl-4
  • Aromatic amine derivatives such as 4,4'-diphenyl-1,1'-diamine
  • metal chelated oxinoid compounds such as tris (8-quinolinato) aluminum (III)
  • bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenyl Butadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivative
  • the amount of the fluorescent light emitting dopant contained in the light emitting layer is 0.01 to 20% by weight, preferably 0.1 to 10% by weight. It should be in range.
  • an organic EL element injects electric charges into a luminescent material from both an anode and a cathode, generates an excited luminescent material, and emits light.
  • a charge injection type organic EL device it is said that 25% of the generated excitons are excited to a singlet excited state and the remaining 75% are excited to a triplet excited state.
  • certain fluorescent materials emit triplet-triplet annihilation or heat after energy transition to triplet excited state due to intersystem crossing etc. It is known that, due to the absorption of energy, the singlet excited state is crossed back to back and emits fluorescence, thereby expressing thermally activated delayed fluorescence.
  • the organic EL device of the present invention can also exhibit delayed fluorescence. In this case, both fluorescence emission and delayed fluorescence emission can be included. However, light emission from the host material may be partly or partly emitted.
  • the delayed light emitting material may use at least one delayed light emitting material alone, but the delayed fluorescent material is used as a delayed fluorescent light emitting dopant and includes a host material. Is preferred.
  • a carborane compound represented by the general formula (1) can be used, but it can also be selected from known delayed fluorescent light emitting materials.
  • a tin complex, an indolocarbazole derivative, a copper complex, a carbazole derivative, and the like can be given. Specific examples include compounds described in the following non-patent documents and patent documents, but are not limited to these compounds.
  • delayed luminescent materials are shown, but are not limited to the following compounds.
  • the amount of the delayed fluorescent material contained in the light emitting layer is 0.01 to 50% by weight, preferably 0.1 to 20%. It may be in the range of% by weight, more preferably in the range of 0.01 to 10%.
  • a carborane compound represented by the general formula (1) can be used, but it can also be selected from compounds other than carborane.
  • a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene or a derivative thereof, N, N′-dinaphthyl-N, N′-diphenyl-4
  • Aromatic amine derivatives such as 4,4'-diphenyl-1,1'-diamine
  • metal chelated oxinoid compounds such as tris (8-quinolinato) aluminum (III)
  • bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenyl Butadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives
  • the light emitting layer When the light emitting layer is a phosphorescent light emitting layer, the light emitting layer contains a phosphorescent light emitting dopant and a host material.
  • the phosphorescent dopant material preferably contains an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold. Specific examples include compounds described in the following patent publications, but are not limited to these compounds.
  • Preferable phosphorescent dopants include complexes such as Ir (ppy) 3 having a noble metal element of Ir such as the central metal, Ir (bt) complexes such as 2 ⁇ acac 3, complexes such as PtOEt 3 and the like. Specific examples of these complexes are shown below, but are not limited to the following compounds.
  • the amount of the phosphorescent dopant contained in the light emitting layer is preferably 2 to 40% by weight, and preferably 5 to 30% by weight.
  • the light emitting layer is a phosphorescent light emitting layer
  • a carborane compound represented by the general formula (1) according to the present invention as a host material in the light emitting layer.
  • the material used for the light-emitting layer may be a host material other than the carborane compound.
  • a plurality of known host materials may be used in combination.
  • the known host compound that can be used is preferably a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
  • host materials are known from a large number of patent documents, and can be selected from them.
  • Specific examples of the host material are not particularly limited, but include indole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine.
  • arylamine derivatives amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquino Heterocyclic tetracarboxylic acid anhydrides such as dimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene,
  • the light emitting layer may be any one of a fluorescent light emitting layer, a delayed fluorescent light emitting layer and a phosphorescent light emitting layer, but is preferably a phosphorescent light emitting layer.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the carborane compound represented by the general formula (1) according to the present invention for the hole blocking layer.
  • a known hole blocking layer is used. Materials may be used.
  • a hole-blocking layer material the material of the electron carrying layer mentioned later can be used as needed.
  • the electron blocking layer is made of a material that has a function of transporting holes and has a very small ability to transport electrons.
  • the electron blocking layer blocks the electrons while transporting holes, and the probability of recombination of electrons and holes. Can be improved.
  • the material for the electron blocking layer As the material for the electron blocking layer, the material for the hole transport layer described later can be used as necessary.
  • the thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • a carborane compound represented by the general formula (1) can be used as the material for the exciton blocking layer.
  • mCP 1,3-dicarbazolylbenzene
  • BAlq bis ( 2-methyl-8-quinolinolato) -4-phenylphenolatoaluminum (III) (BAlq).
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • a carborane compound represented by the general formula (1) is preferably used, but any one of conventionally known compounds can be selected and used.
  • Known hole transporting materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives.
  • Styrylanthracene derivatives Styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers, etc., but porphyrin compounds, aromatic tertiary amine compounds and It is preferable to use a styrylamine compound, and it is more preferable to use an aromatic tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material which may also serve as a hole blocking material
  • the carborane derivative represented by the general formula (1) according to the present invention any one of conventionally known compounds can be selected and used. Fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like can be mentioned.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • a carborane compound as a material for an organic electroluminescence device was synthesized by the route shown below.
  • the compound number corresponds to the number given to the above chemical formula.
  • Example 1 Compound 1 was synthesized according to the following reaction formula.
  • Example 2 Compound 36 was synthesized according to the following reaction formula.
  • Example 3 Each thin film was laminated at a vacuum degree of 2.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 70 nm was formed.
  • ITO indium tin oxide
  • CuPC copper phthalocyanine
  • NPD diphenylnaphthyldiamine
  • Compound 1 as a host material of the light emitting layer and an iridium complex [iridium (III) bis (4,6-di-fluorophenyl) -pyridinate-N as a blue phosphorescent material as a dopant , C2 ′] picolinate] (FIrpic) were co-deposited from different deposition sources to form a light emitting layer with a thickness of 30 nm. The concentration of FIrpic was 10%.
  • Alq3 was formed to a thickness of 25 nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 1.0 nm as an electron injection layer.
  • the obtained organic EL device has a layer structure in which an electron injection layer is added between the cathode and the electron transport layer in the organic EL device shown in FIG.
  • the organic EL element had the light emission characteristics as shown in Table 1.
  • Table 1 the luminance, voltage, and luminous efficiency show values (initial characteristics) at 2.5 mA / cm 2 .
  • the maximum wavelength of the device emission spectrum was 475 nm, indicating that light emission from FIrpic was obtained.
  • Examples 4 to 9 An organic EL device was produced in the same manner as in Example 2 except that Compound 4, 6, 11, 23, 27, or 36 was used in place of Compound 1 as the host material for the light emitting layer in Example 3.
  • Comparative Example 1 An organic EL device was produced in the same manner as in Example 3 except that mCP was used as the host material of the light emitting layer in Example 3.
  • Comparative Examples 2-4 An organic EL device was produced in the same manner as in Example 3 except that the compound H-1, H-2, or H-3 was used as the host material for the light emitting layer in Example 3.
  • the organic EL devices obtained in Examples 4 to 9 and Comparative Examples 1 to 4 were evaluated in the same manner as in Example 3. As a result, it was confirmed that they had the light emission characteristics shown in Table 1.
  • the maximum wavelength of the emission spectra of the organic EL devices obtained in Examples 4 to 9 and Comparative Examples 1 to 4 was 475 nm, and it was identified that the emission from FIrpic was obtained.
  • Table 1 shows that the luminous efficiencies of Examples 3 to 9 using the carborane compound of the present invention in the light emitting layer are better than those of Comparative Examples 1 to 4.
  • Example 10 Each thin film was laminated at a vacuum degree of 2.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 70 nm was formed.
  • ITO indium tin oxide
  • CuPC copper phthalocyanine
  • NPD diphenylnaphthyldiamine
  • Compound 1 as the host material of the light emitting layer and Ir (ppy) 3 as the dopant were co-deposited from different vapor deposition sources to form a light emitting layer with a thickness of 30 nm. .
  • the concentration of Ir (ppy) 3 was 10%.
  • Alq3 was formed to a thickness of 25 nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 1 nm as an electron injection layer on the electron transport layer.
  • aluminum (Al) was formed as an electrode to a thickness of 70 nm to produce an organic EL element.
  • the organic EL element had light emission characteristics as shown in Table 2.
  • Table 2 the brightness, voltage, and luminous efficiency show values (initial characteristics) when driven at 20 mA / cm 2 .
  • the maximum wavelength of the device emission spectrum was 530 nm, and it was found that light emission from Ir (ppy) 3 was obtained.
  • Examples 11 to 17 An organic EL device was produced in the same manner as in Example 10 except that Compound 4, 6, 11, 17, 23, 27, or 36 was used in place of Compound 1 as the host material of the light emitting layer in Example 10.
  • Comparative Example 5 An organic EL device was produced in the same manner as in Example 10 except that CBP was used as the host material of the light emitting layer in Example 10.
  • Comparative Examples 6-8 An organic EL device was produced in the same manner as in Example 10 except that the compound H-1, H-2, or H-3 was used as the host material of the light emitting layer in Example 10.
  • the organic EL elements obtained in Examples 11 to 17 and Comparative Examples 5 to 8 were evaluated in the same manner as in Example 10. As a result, it was confirmed that the organic EL elements had the light emission characteristics as shown in Table 2.
  • the maximum wavelength of the emission spectra of the organic EL devices obtained in Examples 11 to 17 and Comparative Examples 5 to 8 was 530 nm, and it was identified that light emission from Ir (ppy) 3 was obtained.
  • Table 2 shows that Examples 10 to 17 in which the carborane compound of the present invention was used in the light emitting layer showed better light emission efficiency than Comparative Examples 5 to 8.
  • Example 18 Each thin film was laminated at a vacuum degree of 2.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 70 nm was formed.
  • ITO indium tin oxide
  • CuPC copper phthalocyanine
  • NPD diphenylnaphthyldiamine
  • CBP as a host material of the light emitting layer and Ir (ppy) 3 as a dopant were co-deposited on the hole transport layer from different vapor deposition sources to form a light emitting layer with a thickness of 30 nm.
  • the concentration of Ir (ppy) 3 was 10%.
  • Compound 1 having a thickness of 5 nm was formed as a hole blocking layer on the light emitting layer.
  • Alq3 was formed to a thickness of 20 nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 1.0 nm as an electron injection layer.
  • aluminum (Al) was formed as an electrode to a thickness of 70 nm on the electron injection layer.
  • the obtained organic EL device has a layer structure in which an electron injection layer is added between the cathode and the electron transport layer and a hole blocking layer is added between the light emitting layer and the electron transport layer in the organic EL device shown in FIG. Have
  • the organic EL element had light emission characteristics as shown in Table 3.
  • Table 3 the brightness, voltage, and luminous efficiency show values (initial characteristics) when driven at 20 mA / cm 2 .
  • the maximum wavelength of the device emission spectrum was 530 nm, and it was found that light emission from Ir (ppy) 3 was obtained.
  • Examples 19-25 An organic EL device was produced in the same manner as in Example 18 except that Compound 4, 6, 11, 17, 23, 27, or 36 was used in place of Compound 1 as the hole blocking material in Example 18.
  • Comparative Example 9 An organic EL device was produced in the same manner as in Example 18 except that the film thickness of Alq3 as the electron transport layer in Example 18 was 25 nm and no hole blocking layer was provided.
  • Comparative Examples 10-12 An organic EL device was produced in the same manner as in Example 18 except that Compound H-1, H-2, or H-3 was used as the hole blocking material in Example 18.
  • the organic EL devices obtained in Examples 19 to 25 and Comparative Examples 9 to 12 were evaluated in the same manner as in Example 18. As a result, it was confirmed that they had the light emission characteristics as shown in Table 3.
  • the maximum wavelength of the emission spectra of the organic EL devices obtained in Examples 19 to 25 and Comparative Examples 9 to 12 was 530 nm, and it was identified that light emission from Ir (ppy) 3 was obtained.
  • the host material of the light emitting layer used in Examples 19 to 25 and Comparative Examples 9 to 12 is CBP.
  • the organic EL device according to the present invention has practically satisfactory levels in terms of light emission characteristics, driving life and durability, flat panel display (mobile phone display device, in-vehicle display device, OA computer display device, television, etc.), surface light emission, etc. Its technical value is great in applications to light sources (lighting, light sources for copying machines, backlight light sources for liquid crystal displays and instruments), display boards, and sign lamps that make use of the characteristics of the body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 発光効率を改善し、駆動安定性を充分に確保し、かつ簡略な構成をもつ有機電界発光素子(有機EL素子)とそれに使用される有機EL素子用材料を提供する。この有機電界発光素子は、基板上に積層された陽極と陰極の間に、発光層を有し、この発光層が、燐光発光性ドーパントとカルボラン化合物からなる有機EL素子用材料をホスト材料として含有する。有機EL素子用材料であるカルボラン化合物は、3つ以上のカルボラン骨格を有する化合物であり、L2-(A)p-L1-A-L1-(A)q-L2で表わされる。Aはカルボラン環であり、Lは直接結合又は芳香族基、Lは水素又は芳香族基であり、p、qは1~5の整数である。

Description

有機電界発光素子用材料及びこれを用いた有機電界発光素子
 本発明はカルボラン化合物を含有する有機電界発光素子に関するものであり、詳しくは、有機化合物からなる発光層に電界をかけて光を放出する薄膜型デバイスに関するものである。
 一般に、有機電界発光素子(以下、有機EL素子という)は、その最も簡単な構造としては発光層及び該層を挟んだ一対の対向電極から構成されている。すなわち、有機EL素子では、両電極間に電界が印加されると、陰極から電子が注入され、陽極から正孔が注入され、これらが発光層において再結合し、光を放出する現象を利用する。
 近年、有機薄膜を用いた有機EL素子の開発が行われるようになった。特に、発光効率を高めるため、電極からキャリアー注入の効率向上を目的として電極の種類の最適化を行い、芳香族ジアミンからなる正孔輸送層と8-ヒドロキシキノリンアルミニウム錯体(以下、Alq3という)からなる発光層とを電極間に薄膜として設けた素子の開発により、従来のアントラセン等の単結晶を用いた素子と比較して大幅な発光効率の改善がなされたことから、自発光・高速応答性といった特徴を持つ高性能フラットパネルへの実用化を目指して進められてきた。
 また、素子の発光効率を上げる試みとして、蛍光ではなく燐光を用いることも検討されている。上記の芳香族ジアミンからなる正孔輸送層とAlq3からなる発光層とを設けた素子をはじめとした多くの素子が蛍光発光を利用したものであったが、燐光発光を用いる、すなわち、三重項励起状態からの発光を利用することにより、従来の蛍光(一重項)を用いた素子と比べて、3~4倍程度の効率向上が期待される。この目的のためにクマリン誘導体やベンゾフェノン誘導体を発光層とすることが検討されてきたが、極めて低い輝度しか得られなかった。また、三重項状態を利用する試みとして、ユーロピウム錯体を用いることが検討されてきたが、これも高効率の発光には至らなかった。近年では、特許文献1に挙げられるように発光の高効率化や長寿命化を目的にイリジウム錯体等の有機金属錯体を中心に研究が多数行われている。
特表2003-515897号公報 特開2001-313178号公報 特開2005-162709号公報 特開2005-166574号公報
J. Am. Chem. Soc. 2012, 134, 17982-17990
 高い発光効率を得るには、前記ドーパント材料と同時に、使用するホスト材料が重要になる。ホスト材料として提案されている代表的なものとして、特許文献2で紹介されているカルバゾール化合物の4,4'-ビス(9-カルバゾリル)ビフェニル(以下、CBPという)が挙げられる。CBPはトリス(2-フェニルピリジン)イリジウム錯体(以下、Ir(ppy)3という)に代表される緑色燐光発光材料のホスト材料として使用した場合、CBPは正孔を流し易く電子を流しにくい特性上、電荷注入バランスが崩れ、過剰の正孔は電子輸送層側に流出し、結果としてIr(ppy)3からの発光効率が低下する。
 前述のように、有機EL素子で高い発光効率を得るには、高い三重項励起エネルギーを有し、かつ両電荷(正孔・電子)注入輸送特性においてバランスがとれたホスト材料が必要である。更に、電気化学的に安定であり、高い耐熱性と共に優れたアモルファス安定性を備える化合物が望まれており、更なる改良が求められている。
 特許文献3、4及び非特許文献1においては、以下に示すようなカルボラン化合物が開示されている。
Figure JPOXMLDOC01-appb-I000004
 しかしながら、上記化合物はカルボラン骨格にフェニル基とフルオレニル基又はカルバゾリルフェニル基が結合したもの、又はカルボラン骨格とフェニレン基が環状に結合したものであり、直鎖状に芳香族基とカルボラン骨格が結合し、かつ分子中にカルボラン骨格を三つ以上有する化合物を開示するものではない。
 有機EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本発明は、上記現状に鑑み、高効率かつ高い駆動安定性を有した実用上有用な有機EL素子及びそれに適する化合物を提供することを目的とする。
 本発明者らは、鋭意検討した結果、直鎖状に芳香族基とカルボラン骨格が結合し、かつ分子中にカルボラン骨格を三つ以上有するカルボラン化合物を有機EL素子として用いることで優れた特性を示すことを見出し、本発明を完成するに至った。
 本発明は、一般式(1)で表されるカルボラン化合物からなる有機電界発光素子用材料に関する。
Figure JPOXMLDOC01-appb-I000005
 一般式(1)中、環Aは独立に、式(1a)又は式(1b)の何れかで表されるC10の4価のカルボラン基を示す。Lは独立に、直接結合、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~30の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~6つ連結して構成される連結芳香族基を表す。但し、Lの全てが直接結合であることはない。Lは独立に、水素、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~30の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~6つ連結して構成される連結芳香族基を表し、Lは独立に、水素、炭素数1~12の脂肪族炭化水素基、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~30の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~6つ連結して構成される連結芳香族基を表す。L、L、Lが連結芳香族基の場合、連結する芳香環は同一であっても異なっていてもよい。p、qは独立に、1~5の整数を表し、一般式(1)中の水素の一部又は全部は重水素に置き換えてもよい。
 一般式(1)で表されるカルボラン化合物の中でも、下記一般式(2)のカルボラン化合物が好ましく、さらに一般式(3)、(4)で表されるカルボラン化合物がより好ましい化合物として挙げられる。
Figure JPOXMLDOC01-appb-I000006
 一般式(2)中、L、L、L、p及びqは一般式(1)と同意である。環Aは式(2a)または式(2b)の何れかで表されるC10の4価のカルボラン基を示し、分子内に環Aが複数存在する場合は同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-I000007
 一般式(3)、(4)中、L、L、L、p、qは一般式(1)のそれらと同意である。
 一般式(1)、(2)、(3)、(4)中、Lが各々独立に、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~5つ連結して構成される連結芳香族基であることが好ましい。
 一般式(1)、(2)、(3)、(4)中、Lが各々独立に、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~5つ連結して構成される連結芳香族基であることが好ましい。
 また、本発明は、基板上に、陽極、有機層及び陰極が積層されてなる有機電界発光素子において、上記の有機電界発光素子用材料を含む有機層を有する有機電界発光素子である。
 更に、本発明は上記有機電界発光素子用材料を含む有機層が、燐光発光ドーパントを含有することが好ましい。そして、燐光発光ドーパントの発光波長が550nm以下に発光極大波長を有することが望ましい。
 本発明の有機電界発光素子用材料は、カルボラン骨格を三つ以上有し、かつカルボラン骨格が少なくとも一つの芳香環を介して直鎖状に結合した構造を有する。このような構造的特徴を有するカルボラン化合物は、電子注入輸送性に影響を与える最低空軌道(LUMO)が分子全体に広く分布することから素子の電子注入輸送性が高いレベルで制御できる。さらにドーパントの最低三重項励起エネルギー(T1エネルギー)を閉じ込めるのに十分高いT1エネルギーを有することから、ドーパントからの効率的な発光を可能とする。以上の特徴から、これを有機EL素子に使用することで素子の駆動電圧の低減ならびに高い発光効率を達成した。
 また、本発明の有機電界発光素子用材料は、良好なアモルファス特性と高い熱安定性を示すと同時に励起状態で極めて安定であることから、これを用いた有機EL素子は駆動寿命が長く、実用レベルの耐久性を有する。
有機EL素子の一構造例を示す断面図である。 カルボラン化合物1のNMRチャートである。 カルボラン化合物36のNMRチャートである。
 本発明の有機電界発光素子用材料は、前記一般式(1)で表されるカルボラン化合物である。このカルボラン化合物は、3つ以上のカルボラン骨格が直接結合又は芳香環を介して直鎖状に連結された構造を有することにより、上記のような優れた効果をもたらすと考えられる。
 一般式(1)において、Lは独立に、直接結合又は2価の芳香族基である。該2価の芳香族基は、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~30の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~6つ連結して構成される連結芳香族基であり、連結芳香族基の場合、連結する芳香環は同一であっても異なっていてもよい。但し、Lの全てが直接結合であることはない。ここで、Lの好ましい範囲は、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~5つ連結して構成される連結芳香族基である。
 一般式(1)において、Lは独立に、水素又は1価の芳香族基である。該1価の芳香族基は、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~30の芳香族複素環基、又は該該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~6つ連結して構成される連結芳香族基を表し、好ましくは置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~5つ連結して構成される連結芳香族基である。
 一般式(1)において、Lは独立に、水素、又は1価の炭素数1~12の脂肪族炭化水素基又は1価の芳香族基である。該1価の芳香族基は、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~30の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~6つ連結して構成される連結芳香族基を表す。Lは、好ましくは水素、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又は該該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~5つ連結して構成される連結芳香族基であり、より好ましくは水素である。
 未置換の芳香族炭化水素基の具体例としてはベンゼン、ナフタレン、フルオレン、アントラセン、フェナントレン、フルオランテン、ピレン、クリセン、トリフェニレン等の芳香族炭化水素化合物から水素を除いて生じる基が挙げられ、好ましくはベンゼン、ナフタレン、アントラセン、フェナントレン、トリフェニレンから水素を除いて生じる基である。
 未置換の芳香族複素環基の具体例としてはピリジン、ピリミジン、トリアジン、キノリン、イソキノリン、キノキサリン、ナフチリジン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、アクリジン、アゼピン、トリベンゾアゼピン、フェナジン、フェノキサジン、フェノチアジン、ジベンゾホスホール、ジベンゾボロール等の芳香族複素環化合物から水素を除いて生じる基が挙げられ、好ましくはピリジン、ピリミジン、トリアジン、カルバゾール、ジベンゾフラン、ジベンゾチオフェンから水素を除いて生じる基である。
 前記芳香族炭化水素化合物又は芳香族複素環化合物が複数連結した構造の芳香族化合物から水素を除いて生じる基を連結芳香族基という。連結芳香族基は、芳香族環が2~6つ連結されて構成される基であり、連結される芳香族環は同一でも異なっていてもよく、芳香族炭化水素基と芳香族複素環基の両者が含まれてもよい。連結される芳香族環の数は2~5が好ましく、より好ましくは2又は3である。連結される芳香族環が縮合環であることもでき、縮合環は連結数の計算においては、縮合環中の環数に係りなく1として計算する。
 上記連結芳香族基の具体例としては、ビフェニル、ターフェニル、フェニルナフタレン、ジフェニルナフタレン、フェニルアントラセン、ジフェニルアントラセン、ジフェニルフルオレン、ビピリジン、ビピリミジン、ビトリアジン、ビスカルバゾール、ビスジベンゾフラン、ビスジベンゾチオフェン、ビスフルオレン、フェニルピリジン、フェニルピリミジン、フェニルトリアジン、フェニルカルバゾール、フェニルジベンゾフラン、フェニルジベンゾチオフェン、ジフェニルピリジン、ジフェニルトリアジン、ビスカルバゾリルベンゼン、ビスジベンゾフラニルベンゼン、ビスジベンゾチオフェニルベンゼン、ピリジルカルバゾール等から水素を除いて生じる基が挙げられる。
 芳香族炭化水素基、芳香族複素環基、及び連結芳香族基は、置換基を有してもよく、置換基を有する場合、好ましい置換基としては、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、シアノ基又はアセチル基である。より好ましくは、炭素数1~4のアルキル基、炭素数1~2のアルコキシ基、アセチル基、又はシアノ基であり、また、置換基はシリル基のようなケイ素含有基を含まないことが望ましい。具体例としては、メチル基、エチル基、イソプロピル基、ブチル基、メトキシ基、エトキシ基、アセチル基、シアノ基が挙げられる。
 ここで、上記連結芳香族基が2価の基の場合、例えば、下式で表わされ、直鎖状、又は分岐状で連結されてもよい。
Figure JPOXMLDOC01-appb-I000008
(Ar1~Arは未置換の芳香族炭化水素環又は芳香族複素環)
 一般式(1)において、Lは1価であること、水素を含むこと以外はLと同様である。Lは1価であること、水素、炭素数1~12の脂肪族炭化水素基を含む以外はLと同様である。なお、Lは直接結合又は2価の芳香族基であるが、L、L基が直接結合であることはない。
 したがって、L及びLにおける1価の芳香族基の説明は、Lにおける2価の芳香族基の説明において、2価を1価と読み替えることによって理解される。
 なお、Lにおける脂肪族炭化水素基は、飽和であっても不飽和であってもよく、直鎖状、分岐状、環状であってもよく、具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基等が挙げられる。
 一般式(1)において、pは1~5、好ましくは1~2の整数を表す。qは1~5、好ましくは1~2の整数である。p+qは、好ましくは2~8の整数であり、より好ましくは2、3又は4である。
 一般式(1)中の水素は、重水素に置換しても良い。
 一般式(1)で表されるカルボラン化合物の中でも、上記一般式(2)で表されるカルボラン化合物が好ましい化合物として挙げられ、より好ましくは上記一般式(3)又は(4)で表されるカルボラン化合物である。
 一般式(1)~(4)において、環Aを除き、それぞれ同一の記号及び式は特に断らない限り同一の意味を有すると解される。したがって、一般式(1)においてした記号の説明は、一般式(2)~(4)の記号の説明でもあると理解される。環Aについては、一般式(2)の環Aは、一般式(1)より限定されている。
 一般式(1)~(4)で表されるカルボラン化合物は、目的とする化合物の構造に応じて原料を選択し、公知の手法を用いて合成することができる。
 例えば、カルボラン母骨格は、Journal of Organometallic Chemistry,1993,462,p19-29に示される合成例を参考にして以下の反応式により(A-1)を合成することができる。
Figure JPOXMLDOC01-appb-I000009
 (A-1)の合成例を参考にして以下の反応式により(A-2)を合成することができる。
Figure JPOXMLDOC01-appb-I000010
 European Journal of Inorganic Chemistry,2010,p2012-2024、及びInorganic Chemistry,1995,34,p2095-2100に示される合成例を参考にして以下の反応式により(A-3)を合成することができる。
Figure JPOXMLDOC01-appb-I000011
 Inorganica Chimica Acta,1995,240,p371-378に示される合成例を参考にして以下の反応式により(A-4)を合成することができる。 
Figure JPOXMLDOC01-appb-I000012
 一般式(1)~(4)で表されるカルボラン化合物の具体例を以下に示すが、本発明の有機電界発光素子用材料はこれらに限定されない。
Figure JPOXMLDOC01-appb-I000013
 
Figure JPOXMLDOC01-appb-I000014
 
Figure JPOXMLDOC01-appb-I000015
 本発明の有機電界発光素子用材料(カルボラン化合物ともいう。)は、基板上に、陽極、複数の有機層及び陰極が積層されてなる有機EL素子の少なくとも1つの有機層に含有させることにより、優れた有機電界発光素子を与える。含有させる有機層としては、発光層、電子輸送層又は正孔阻止層が適する。ここで、発光層に使用する場合は、蛍光発光、遅延蛍光発光又は燐光発光性のドーパントを含有する発光層のホスト材料として使用することができるほか、本発明のカルボラン化合物を蛍光及び遅延蛍光を放射する有機発光材料として使用することができる。蛍光及び遅延蛍光を放射する有機発光材料として使用する場合、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が本発明の化合物よりも高い値を有する他の有機化合物をホスト材料として使用することが好ましい。本発明のカルボラン化合物は、燐光発光ドーパントを含有する発光層のホスト材料として含有させることが特に好ましい。
 次に、本発明の有機電界発光素子用材料を用いた有機EL素子について説明する。
 本発明の有機EL素子は、基板上に積層された陽極と陰極の間に、少なくとも一つの発光層を有する有機層を有し、且つ少なくとも一つの有機層は、本発明の有機電界発光素子用材料を含む。有利には、燐光発光ドーパントと共に本発明の有機電界発光素子用材料を発光層中に含む。
 次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造は何ら図示のものに限定されるものではない。
 図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を各々表わす。本発明の有機EL素子では発光層と隣接して励起子阻止層を有してもよく、また、発光層と正孔注入層との間に電子阻止層を有してもよい。励起子阻止層は発光層の陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、基板、陽極、発光層及び陰極を必須の層として有するが、必須の層以外の層に、正孔注入輸送層、電子注入輸送層を有することがよく、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか又は両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれか又は両者を意味する。
 なお、図1とは逆の構造、すなわち、基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も、必要により層を追加したり、省略したりすることが可能である。
-基板-
 本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英などからなるものを用いることができる。
-陽極-
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
-陰極-
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明であれば発光輝度が向上し好都合である。
  また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
-発光層-
 発光層は、陽極及び陰極のそれぞれから注入された正孔及び電子が再結合することにより励起子が生成した後、発光する層であり、発光層には有機発光材料とホスト材料を含む。
 発光層が蛍光発光層である場合、蛍光発光材料は少なくとも1種の蛍光発光材料を単独で使用しても構わないが、蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を含むことが好ましい。
 発光層における蛍光発光材料としては、一般式(1)で表されるカルボラン化合物を用いることができるが、多数の特許文献等により知られているので、それらから選択することもできる。例えば、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリジン化合物、8-キノリノール誘導体の金属錯体やピロメテン誘導体の金属錯体、希土類錯体、遷移金属錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体等が挙げられる。好ましくは縮合芳香族化合物、スチリル化合物、ジケトピロロピロール化合物、オキサジン化合物、ピロメテン金属錯体、遷移金属錯体、ランタノイド錯体が挙げられ、より好ましくはナフタセン、ピレン、クリセン、トリフェニレン、ベンゾ[c]フェナントレン、ベンゾ[a]アントラセン、ペンタセン、ペリレン、フルオランテン、アセナフソフルオランテン、ジベンゾ[a,j]アントラセン、ジベンゾ[a,h]アントラセン、ベンゾ[a]ナフタセン、ヘキサセン、アンタントレン、ナフト[2,1-f]イソキノリン、α-ナフタフェナントリジン、フェナントロオキサゾール、キノリノ[6,5-f]キノリン、ベンゾチオファントレン等が挙げられる。これらは置換基としてアルキル基、アリール基、芳香族複素環基、ジアリールアミノ基を有していてもよい。
 発光層における蛍光ホスト材料としては、一般式(1)で表されるカルボラン化合物を用いることができるが、多数の特許文献等により知られているので、それらから選択することもできる。例えば、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体、トリス(8-キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体等が使用できるが特に限定されるものではない。
 前記蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を含む場合、蛍光発光ドーパントが発光層中に含有される量は、0.01~20重量%、好ましくは0.1~10重量%の範囲にあることがよい。
 通常、有機EL素子は、陽極、陰極の両電極より発光物質に電荷を注入し、励起状態の発光物質を生成し、発光させる。電荷注入型の有機EL素子の場合、生成した励起子のうち、一重項励起状態に励起されるのは25%であり、残り75%は三重項励起状態に励起されると言われている。Advanced Materials 2009, 21, 4802-4806.に示されているように、特定の蛍光発光物質は、項間交差等により三重項励起状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、一重項励起状態に逆項間交差され蛍光を放射し、熱活性化遅延蛍光を発現することが知られている。本発明の有機EL素子でも遅延蛍光を発現することができる。この場合、蛍光発光及び遅延蛍光発光の両方を含むこともできる。但し、発光の一部或いは部分的にホスト材料からの発光があってもよい。
 発光層が遅延蛍光発光層である場合、遅延発光材料は少なくとも1種の遅延発光材料を単独で使用しても構わないが、遅延蛍光材料を遅延蛍光発光ドーパントとして使用し、ホスト材料を含むことが好ましい。
 発光層における遅延蛍光発光材料としては、一般式(1)で表されるカルボラン化合物を用いることができるが、公知の遅延蛍光発光材料から選択することもできる。例えば、スズ錯体、インドロカルバゾール誘導体、銅錯体、カルバゾール誘導体等が挙げられる。具体的には、以下の非特許文献、特許文献に記載されている化合物が挙げられるが、これらの化合物に限定されるものではない。
 1)Adv. Mater. 2009, 21, 4802-4806、2)Appl. Phys. Lett. 98, 083302 (2011)、3)特開2011-213643号公報、4)J. Am. Chem. Soc. 2012, 134, 14706-14709。
 遅延発光材料の具体的な例を示すが、下記の化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-I000016
 前記遅延蛍光発光材料を遅延蛍光発光ドーパントとして使用し、ホスト材料を含む場合、遅延蛍光発光ドーパントが発光層中に含有される量は、0.01~50重量%、好ましくは0.1~20重量%、より好ましくは0.01~10%の範囲にあることがよい。
 発光層における遅延蛍光ホスト材料としては、一般式(1)で表されるカルボラン化合物を用いることができるが、カルボラン以外の化合物から選択することもできる。例えば、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体、トリス(8-キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体、アリールシラン誘導体等が使用できるが特に限定されるものではない。
 発光層が燐光発光層である場合、発光層は燐光発光ドーパントとホスト材料を含む。燐光発光ドーパント材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体を含有するものがよい。具体的には以下の特許公報に記載されている化合物が挙げられるが、これらの化合物に限定されない。
 WO2009/073245号公報、WO2009/046266号公報、WO2007/095118号公報、WO2008/156879号公報、WO2008/140657号公報、US2008/261076号公報、特表2008-542203号公報、WO2008/054584号公報、特表2008-505925号公報、特表2007-522126号公報、特表2004-506305号公報、特表2006-513278号公報、特表2006-50596号公報、WO2006/046980号公報、WO2005113704号公報、US2005/260449号公報、US2005/2260448号公報、US2005/214576号公報等。
 好ましい燐光発光ドーパントとしては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、Ir(bt)2・acac3等の錯体類、PtOEt3等の錯体類が挙げられる。これらの錯体類の具体例を以下に示すが、下記の化合物に限定されない。
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
 前記燐光発光ドーパントが発光層中に含有される量は、2~40重量%、好ましくは5~30重量%の範囲にあることが好ましい。
 発光層が燐光発光層である場合、発光層におけるホスト材料としては、本発明に係る前記一般式(1)で表されるカルボラン化合物を用いることが好ましい。しかし、該カルボラン化合物を発光層以外の他の何れかの有機層に使用する場合は、発光層に使用する材料はカルボラン化合物以外の他のホスト材料であってもよい。また、カルボラン化合物と他のホスト材料を併用してもよい。更に、公知のホスト材料を複数種類併用して用いてもよい。
 使用できる公知のホスト化合物としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。
 このような他のホスト材料は、多数の特許文献等により知られているので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、インドール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8―キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。
 発光層は蛍光発光層、遅延蛍光発光層あるいは燐光発光層のいずれでもよいが、燐光発光層であることが好ましい。
-注入層-
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-正孔阻止層-
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 正孔阻止層には本発明に係る一般式(1)で表されるカルボラン化合物を用いることが好ましいが、カルボラン化合物を他の何れかの有機層に使用する場合は、公知の正孔阻止層材料を用いてもよい。また、正孔阻止層材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
-電子阻止層-
 電子阻止層とは、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料から成り、正孔を輸送しつつ電子を阻止することで電子と正孔が再結合する確率を向上させることができる。
 電子阻止層の材料としては、後述する正孔輸送層の材料を必要に応じて用いることができる。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
-励起子阻止層-
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
 励起子阻止層の材料としては、一般式(1)で表されるカルボラン化合物を用いることができるが、他の材料として、例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-正孔輸送層-
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
  正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては一般式(1)で表されるカルボラン化合物を用いることが好ましいが、従来公知の化合物の中から任意のものを選択して用いることができる。使用できる公知の正孔輸送材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
-電子輸送層-
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
  電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には本発明に係る一般式(1)で表されるカルボラン誘導体を用いることが好ましいが、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 以下、本発明を実施例によって更に詳しく説明するが、本発明は勿論、これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。
 以下に示すルートにより有機電界発光素子用材料となるカルボラン化合物を合成した。なお、化合物番号は、上記化学式に付した番号に対応する。
実施例1
 次の反応式に従い化合物1を合成した。
Figure JPOXMLDOC01-appb-I000019
  窒素雰囲気下、m-カルボラン35.0 g (0.243 mol)、1,2-ジメトキシエタン(DME)を926 mL加え、DME溶液を0℃まで冷却した。1.65 Mのn-ブチルリチウムヘキサン溶液を154.6 mL滴下し、室温で1時間撹拌した。塩化銅(I)を24.1 g(0.243 mol)加え、室温で15分撹拌した後、ピリジン 136 mLを加えた。室温で5分撹拌後、ヨードベンゼン 64.2 g(0.243 mol)を加え、95℃で一晩撹拌した。得られた反応液の溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、中間体Aを18.6 g(91.7 mmol、収率38%)得た。
  窒素雰囲気下、中間体A を18.2 g (0.09 mol)、DMEを343 mL加え、DME溶液を0℃まで冷却した。1.65 Mのn-ブチルリチウムヘキサン溶液を57.2 mL滴下し、室温で1時間撹拌した。塩化銅(I)を8.9 g(0.09 mol)加え、室温で15分撹拌した後、ピリジン 50.6 mLを加えた。室温で5分撹拌後、1-ブロモ-3-ヨードベンゼンを 25.5 g(0.09 mol)を加え、95℃で一晩撹拌した。得られた反応液の溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、中間体Bを18.0 g(48.0 mmol、収率53%)得た。
  窒素雰囲気下、m-カルボラン3.11 g (0.0216 mol)、DMEを82.4 mL加え、DME溶液を0℃まで冷却した。1.65 Mのn-ブチルリチウムヘキサン溶液を27.5 mL滴下し、室温で1時間撹拌した。塩化銅(I)を4.28 g(0.0432 mol)加え、室温で15分撹拌した後、ピリジン 12.1 mLを加えた。室温で5分撹拌後、中間体B 17.0 g(0.453 mol)を加え、95℃で一週間撹拌した。得られた反応液の溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー、再結晶で精製を行い、化合物1を1.8 g(2.45 mmol、収率11%)得た。
FD-MS, m/z 735 [M]+ 、1H-NMR測定結果(測定溶媒:CDCl3)を図2に示す。
実施例2
 次の反応式に従い化合物36を合成した。
Figure JPOXMLDOC01-appb-I000020
  窒素雰囲気下、m-カルボラン35.0 g (0.243 mol)、DMEを350 mL加え、得られたDME溶液を0℃まで冷却した。2.69 Mのn-ブチルリチウムヘキサン溶液を96.8 mL滴下し、氷冷下で30分撹拌した。ピリジン 67 mLを加え、室温で10分撹拌後、塩化銅(I)を75.6 g(0.763 mol)加え、65℃で30分撹拌した。その後、2-ヨードジベンゾフラン 76.4 g(0.260 mol)を加え、95℃で一晩撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、中間体Cを25.0g(3.22 mmol、収率33%)得た。
  窒素雰囲気下、m-カルボラン20.0 g (0.240 mol)、DMEを200 mL加え、得られたDME溶液を0℃まで冷却した。2.69 Mのn-ブチルリチウムヘキサン溶液を113 mL滴下し、氷冷下で30分撹拌した。ピリジン 76.9 g(0.96 mol)を加え、室温で10分撹拌後、塩化銅(I)を87.8 g(0.880 mol)加え、65℃で30分撹拌した。その後、p-ジヨードベンゼン 98.9 g(0.300 mol)を加え、95℃で一晩撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、中間体Cを18.6g(33.9 mmol、収率24%)得た。
  窒素雰囲気下、中間体C 5.0 g (16.1 mmol)、DMEを36.0 mL加え、得られたDME溶液を0℃まで冷却した。2.69 Mのn-ブチルリチウムヘキサン溶液を6.3 mL滴下し、氷冷下で30分撹拌した。ピリジン 4.4 mLを加え、室温で10分撹拌後、塩化銅(I)を4.9 g(49.5 mmol)加え、65℃で30分撹拌した。その後、中間体D 3.5 g(6.38 mmol)を加え、95℃で2日間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、化合物36を0.63g(0.69 mmol、収率11%)得た。APCI-TOFMS, m/z 913 [M]+ 、1H-NMR測定結果(測定溶媒:CDCl3)を図3に示す。
 上記合成法に準じて化合物4、6、11、17、23、及び27と、比較のための化合物H-1~H-3を合成した。化合物H-1~H-3の化学式を次に示す。
Figure JPOXMLDOC01-appb-I000021
 
 化合物1、4、6、11、17、23、27、36並びに化合物H-1、H-2、H-3を使用して、有機EL素子を作製した。
実施例3
  膜厚 70nm の 酸化インジウムスズ(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度2.0×10-5 Pa で積層させた。まず、ITO 上に正孔注入層として、銅フタロシアニン(CuPC)を 30 nm の厚さに形成した。次に、正孔輸送層としてジフェニルナフチルジアミン(NPD)を 15 nm の厚さに形成した。次に、正孔輸送層上に、発光層のホスト材料としての化合物1とドーパントとしての青色燐光材料であるイリジウム錯体[イリジウム(III)ビス(4,6-ジ-フルオロフェニル)-ピリジネート-N,C2']ピコリネート](FIrpic)とを異なる蒸着源から、共蒸着し、30 nm の厚さに発光層を形成した。FIrpicの濃度は 10 %であった。次に、電子輸送層として Alq3 を 25 nm厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を 1.0 nm厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を70 nm厚さに形成した。得られた有機EL素子は、図1に示す有機EL素子において、陰極と電子輸送層の間に、電子注入層が追加された層構成を有する。
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表1に示すような発光特性を有することが確認された。表1において、輝度、電圧、及び発光効率は、2.5 mA/cm2での値(初期特性)を示す。なお、素子発光スペクトルの極大波長は475 nmであり、FIrpicからの発光が得られていることがわかった。
実施例4~9
  実施例3における発光層のホスト材料として、化合物1に代えて、化合物4、6、11、23、27又は36を用いた以外は実施例2と同様にして有機EL素子を作成した。
比較例1
  実施例3における発光層のホスト材料としてmCPを用いた以外は実施例3と同様にして有機EL素子を作成した。
比較例2~4
  実施例3における発光層のホスト材料として化合物H-1、H-2又はH-3を用いた以外は実施例3と同様にして有機EL素子を作成した。
 実施例4~9及び比較例1~4で得られた有機EL素子について、実施例3と同様にして評価したところ、表1に示すような発光特性を有することが確認された。なお、実施例4~9及び比較例1~4で得られた有機EL素子の発光スペクトルの極大波長は475 nmであり、FIrpicからの発光が得られていると同定された。
Figure JPOXMLDOC01-appb-T000022
  表1より、本発明のカルボラン化合物を発光層に用いた実施例3~9の発光効率は比較例1~4に比べ、良好な特性を示している。
実施例10
  膜厚 70nm の 酸化インジウムスズ(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度2.0×10-5 Pa で積層させた。まず、ITO 上に正孔注入層として、銅フタロシアニン(CuPC)を 30 nm の厚さに形成した。次に、正孔輸送層としてジフェニルナフチルジアミン(NPD)を 15 nm の厚さに形成した。次に、正孔輸送層上に、発光層のホスト材料としての化合物1とドーパントとしてのIr(ppy)3とを異なる蒸着源から、共蒸着し、30 nm の厚さに発光層を形成した。Ir(ppy)3の濃度は 10 %であった。次に、電子輸送層としてAlq3を25 nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を1 nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を70 nmの厚さに形成し、有機EL素子を作製した。
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表2に示すような発光特性を有することが確認された。表2において、輝度、電圧及び発光効率は、20 mA/cm2での駆動時の値(初期特性)を示す。素子発光スペクトルの極大波長は530 nmであり、Ir(ppy)3からの発光が得られていることがわかった。
実施例11~17
  実施例10における発光層のホスト材料として、化合物1に代えて、化合物4、6、11、17、23、27又は36を用いた以外は実施例10と同様にして有機EL素子を作成した。
比較例5
  実施例10における発光層のホスト材料としてCBPを用いた以外は実施例10と同様にして有機EL素子を作成した。
比較例6~8
  実施例10における発光層のホスト材料として化合物H-1、H-2又はH-3を用いた以外は実施例10と同様にして有機EL素子を作成した。
 実施例11~17及び比較例5~8で得られた有機EL素子について、実施例10と同様にして評価したところ、表2に示すような発光特性を有することが確認された。なお、実施例11~17及び比較例5~8で得られた有機EL素子の発光スペクトルの極大波長は530 nmであり、Ir(ppy)3からの発光が得られていると同定された。
Figure JPOXMLDOC01-appb-T000023
  表2より、本発明のカルボラン化合物を発光層に用いた実施例10~17は、比較例5~8に比べ、良好な発光効率を示していることが分かる。
実施例18
  膜厚 70nm の 酸化インジウムスズ(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度2.0×10-5 Pa で積層させた。まず、ITO 上に正孔注入層として、銅フタロシアニン(CuPC)を 30 nm の厚さに形成した。次に、正孔輸送層としてジフェニルナフチルジアミン(NPD)を 15 nm の厚さに形成した。次に、正孔輸送層上に、発光層のホスト材料としてのCBPとドーパントとしてのIr(ppy)3とを異なる蒸着源から、共蒸着し、30 nm の厚さに発光層を形成した。Ir(ppy)3の濃度は 10 %であった。次に、発光層上に正孔阻止層として化合物1を5 nmの厚さに形成した。次に電子輸送層として Alq3 を 20 nm厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を 1.0 nm厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を70 nm厚さに形成した。得られた有機EL素子は、図1に示す有機EL素子において、陰極と電子輸送層の間に電子注入層、及び発光層と電子輸送層の間に、正孔阻止層が追加された層構成を有する。
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表3に示すような発光特性を有することが確認された。表3において、輝度、電圧及び発光効率は、20 mA/cm2での駆動時の値(初期特性)を示す。素子発光スペクトルの極大波長は530 nmであり、Ir(ppy)3からの発光が得られていることがわかった。
実施例19~25
  実施例18における正孔阻止材料として、化合物1に代えて、化合物4、6、11、17、23、27、又は36を用いた以外は実施例18と同様にして有機EL素子を作成した。
比較例9
  実施例18における電子輸送層としてのAlq3の膜厚を25 nmとし、正孔阻止層を設けないこと以外は、実施例18と同様にして有機EL素子を作成した。
比較例10~12
  実施例18における正孔阻止材料として化合物H-1、H-2、又はH-3を用いた以外は実施例18と同様にして有機EL素子を作成した。
 実施例19~25及び比較例9~12で得られた有機EL素子について、実施例18と同様にして評価したところ、表3に示すような発光特性を有することが確認された。なお、実施例19~25及び比較例9~12で得られた有機EL素子の発光スペクトルの極大波長は530 nmであり、Ir(ppy)3からの発光が得られていると同定された。実施例19~25及び比較例9~12で使用した発光層のホスト材料はいずれもCBPである。
Figure JPOXMLDOC01-appb-T000024
  表3より、比較例9以外の場合(正孔阻止材料を用いない場合)に比べ、全ての系で初期特性の改善が見られた。中でも本発明のカルボラン化合物を正孔阻止層に用いた場合は、それ以外の場合(比較例10~12)に比べ、良好な特性を示している。
産業上の利用の可能性
 本発明による有機EL素子は、発光特性、駆動寿命ならびに耐久性において、実用上満足できるレベルにあり、フラットパネルディスプレイ(携帯電話表示素子、車載表示素子、OAコンピュータ表示素子やテレビ等)、面発光体としての特徴を生かした光源(照明、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板や標識灯等への応用において、その技術的価値は大きいものである。

Claims (9)

  1.  一般式(1)で表されるカルボラン化合物からなる有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-I000001
     
     ここで、環Aは独立に、式(1a)又は式(1b)の何れかで表されるC10の4価のカルボラン基を示す。Lは独立に、直接結合、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~30の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~6つ連結して構成される連結芳香族基を表す。但し、Lの全てが直接結合であることはない。Lは独立に、水素、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~30の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~6つ連結して構成される連結芳香族基を表し、Lは独立に、水素、炭素数1~12の脂肪族炭化水素基、置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~30の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~6つ連結して構成される連結芳香族基を表す。L、L、Lが連結芳香族基の場合、連結する芳香環は同一であっても異なっていてもよい。p、qは独立に、1~5の整数を表す。
  2.  一般式(2)で表されるカルボラン化合物である請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-I000002
     
     ここで、L、L、L、p及びqは一般式(1)と同意である。環Aは式(2a)または式(2b)の何れかで表されるC10の4価のカルボラン基を示し、分子内に複数存在する環Aは同一であっても異なっていてもよい。
  3.  一般式(3)又は(4)で表されるカルボラン化合物である請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-I000003
      
     ここで、L、L、L、p及びqは一般式(1)と同意である。
  4.  一般式(3)及び(4)中、Lが各々独立に、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~5つ連結して構成される連結芳香族基である請求項3に記載の有機電界発光素子用材料。
  5.  一般式(3)及び(4)中、Lが各々独立に、置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、又は該芳香族炭化水素基及び該芳香族複素環基から選ばれる芳香族基の芳香族環が2~5つ連結して構成される連結芳香族基である請求項3記載の有機電界発光素子用材料。
  6.  基板上に、陽極、有機層及び陰極が積層されてなる有機電界発光素子において、請求項1~5のいずれかに記載の有機電界発光素子用材料を含む有機層を有することを特徴とする有機電界発光素子。
  7.  有機電界発光素子用材料を含む有機層が、発光層、電子輸送層、及び正孔阻止層からなる群れから選ばれる少なくとも一つの層である請求項6に記載の有機電界発光素子。
  8.  有機電界発光素子用材料を含む有機層が、燐光発光ドーパントを含有する発光層であることを特徴とする請求項7に記載の有機電界発光素子。
  9.  燐光発光ドーパントの発光波長が550nm以下に発光極大波長を有する請求項8に記載の有機電界発光素子。
PCT/JP2013/084208 2012-12-26 2013-12-20 有機電界発光素子用材料及びこれを用いた有機電界発光素子 WO2014103910A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014554399A JP6360797B2 (ja) 2012-12-26 2013-12-20 有機電界発光素子用材料及びこれを用いた有機電界発光素子
CN201380068206.1A CN104871335B (zh) 2012-12-26 2013-12-20 有机电致发光元件用材料及使用其的有机电致发光元件
KR1020157019993A KR102111535B1 (ko) 2012-12-26 2013-12-20 유기전계발광 소자용 재료 및 이것을 사용한 유기전계발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-283390 2012-12-26
JP2012283390 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014103910A1 true WO2014103910A1 (ja) 2014-07-03

Family

ID=51020994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084208 WO2014103910A1 (ja) 2012-12-26 2013-12-20 有機電界発光素子用材料及びこれを用いた有機電界発光素子

Country Status (5)

Country Link
JP (1) JP6360797B2 (ja)
KR (1) KR102111535B1 (ja)
CN (1) CN104871335B (ja)
TW (1) TWI596104B (ja)
WO (1) WO2014103910A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045705A1 (ja) * 2013-09-30 2015-04-02 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2015098297A1 (ja) * 2013-12-26 2015-07-02 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP2015207657A (ja) * 2014-04-21 2015-11-19 新日鉄住金化学株式会社 有機電界発光素子
JP2016072377A (ja) * 2014-09-29 2016-05-09 新日鉄住金化学株式会社 有機電界発光素子
JP2016072378A (ja) * 2014-09-29 2016-05-09 新日鉄住金化学株式会社 有機電界発光素子
WO2016158246A1 (ja) * 2015-03-30 2016-10-06 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2016158454A1 (ja) * 2015-03-30 2016-10-06 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
US10978647B2 (en) 2017-02-15 2021-04-13 Universal Display Corporation Organic electroluminescent materials and devices

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8994013B2 (en) * 2012-05-18 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
JP6585273B1 (ja) * 2018-12-28 2019-10-02 住友化学株式会社 発光素子用組成物及び発光素子の製造方法
CN110407860B (zh) * 2019-07-24 2022-07-26 东莞伏安光电科技有限公司 一类含硼碳烷的稠环化合物及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162709A (ja) * 2003-12-05 2005-06-23 Canon Inc カルボラン化合物
JP2005166574A (ja) * 2003-12-05 2005-06-23 Canon Inc 有機発光素子
US20120319088A1 (en) * 2011-06-20 2012-12-20 Korea Advanced Institute Of Science And Technology Carborane compound, organic light-emitting diode including the same and flat display device including organic light-emitting diode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1840607B (zh) 1999-12-01 2010-06-09 普林斯顿大学理事会 作为有机发光器件的磷光掺杂剂的l2mx形式的络合物
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
CA2554245A1 (en) * 2004-01-29 2005-08-11 Vysoka Skola Chemicko-Technologicka V Praze Novel hiv protease inhibitors
DE102007031261A1 (de) * 2007-07-05 2009-01-08 Universtität Regensburg Lumineszierende Metallkomplexe mit sperrigen Hilfsliganden
US20110147722A1 (en) 2009-10-16 2011-06-23 Hawker Craig J Semiconductor light emitting device comprising high performance resins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162709A (ja) * 2003-12-05 2005-06-23 Canon Inc カルボラン化合物
JP2005166574A (ja) * 2003-12-05 2005-06-23 Canon Inc 有機発光素子
US20120319088A1 (en) * 2011-06-20 2012-12-20 Korea Advanced Institute Of Science And Technology Carborane compound, organic light-emitting diode including the same and flat display device including organic light-emitting diode

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANDREW R. DAVIS ET AL.: "Effect of o-Carborane on the Optoelectronic and Device-Level Properties of Poly(fluorene)s", ACS MACRO LETTERS, vol. 1, 20 March 2012 (2012-03-20), pages 469 - 472 *
JOSEPH J. PETERSON ET AL.: "INVESTIGATING CARBORANES IN CONJUGATED POLYMERS", POLYMER PREPRINTS, vol. 51, no. 2, 21 August 2010 (2010-08-21), pages 545 - 546 *
KYUNG-RYANG WEE ET AL.: "Carborane-Based Optoelectronically Active Organic Molecules: Wide Band Gap Host Materials for Blue Phosphorescence", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, pages 17982 - 17990 *
MARK A. FOX ET AL.: "Big macrocyclic assemblies of carboranes (big MACs): synthesis and crystal structure of a macrocyclic assembly of four carboranes containing alternate ortho- and meta -carborane icosahedra linked by para-phenylene units", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 680, 29 August 2003 (2003-08-29), pages 155 - 164 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045705A1 (ja) * 2013-09-30 2015-04-02 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
US10636981B2 (en) 2013-09-30 2020-04-28 Nippon Steel Chemical & Material Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element using the same
WO2015098297A1 (ja) * 2013-12-26 2015-07-02 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
US10283721B2 (en) 2013-12-26 2019-05-07 Nippon Steel Chemical & Material Co., Ltd. Material for organic electroluminescent elements, and organic electroluminescent element using same
JPWO2015098297A1 (ja) * 2013-12-26 2017-03-23 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP2015207657A (ja) * 2014-04-21 2015-11-19 新日鉄住金化学株式会社 有機電界発光素子
JP2016072377A (ja) * 2014-09-29 2016-05-09 新日鉄住金化学株式会社 有機電界発光素子
JP2016072378A (ja) * 2014-09-29 2016-05-09 新日鉄住金化学株式会社 有機電界発光素子
CN107408639A (zh) * 2015-03-30 2017-11-28 新日铁住金化学株式会社 有机电致发光元件用材料和使用了其的有机电致发光元件
EP3279962A4 (en) * 2015-03-30 2018-08-08 Nippon Steel & Sumikin Chemical Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element in which same is used
EP3279964A4 (en) * 2015-03-30 2018-12-12 Nippon Steel & Sumikin Chemical Co., Ltd. Organic-electroluminescent-element material, and organic electroluminescent element using same
WO2016158454A1 (ja) * 2015-03-30 2016-10-06 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
US10468608B2 (en) 2015-03-30 2019-11-05 Nippon Steel Chemical & Material Co., Ltd. Organic-electroluminescent-element material, and organic electroluminescent element using same
WO2016158246A1 (ja) * 2015-03-30 2016-10-06 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
US10807996B2 (en) 2015-03-30 2020-10-20 Nippon Steel Chemical & Material Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element in which same is used
US10978647B2 (en) 2017-02-15 2021-04-13 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
JPWO2014103910A1 (ja) 2017-01-12
TWI596104B (zh) 2017-08-21
CN104871335A (zh) 2015-08-26
CN104871335B (zh) 2017-03-15
TW201439100A (zh) 2014-10-16
KR102111535B1 (ko) 2020-05-15
KR20150100860A (ko) 2015-09-02
JP6360797B2 (ja) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6006732B2 (ja) 有機電界発光素子用材料及びそれを用いた有機電界発光素子
JP6360797B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6334404B2 (ja) 有機電界発光素子用化合物及び有機電界発光素子
WO2014168138A1 (ja) 有機電界発光素子用アダマンタン化合物及び有機電界発光素子
JP6375302B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6360796B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6402176B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6509130B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6310928B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6436901B2 (ja) 有機電界発光素子用ホウ素化合物及び有機電界発光素子
JP6647283B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6402178B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2014050588A1 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6402114B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP6402177B2 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2016158246A1 (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP2018170369A (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JP2018170383A (ja) 有機電界発光素子用材料及びこれを用いた有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554399

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157019993

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13866643

Country of ref document: EP

Kind code of ref document: A1