WO2012049988A1 - 電源回路設計システム、及び電源回路設計方法 - Google Patents

電源回路設計システム、及び電源回路設計方法 Download PDF

Info

Publication number
WO2012049988A1
WO2012049988A1 PCT/JP2011/072701 JP2011072701W WO2012049988A1 WO 2012049988 A1 WO2012049988 A1 WO 2012049988A1 JP 2011072701 W JP2011072701 W JP 2011072701W WO 2012049988 A1 WO2012049988 A1 WO 2012049988A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
lsi
change
supply voltage
Prior art date
Application number
PCT/JP2011/072701
Other languages
English (en)
French (fr)
Inventor
雅寿 小川
石田 尚志
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/879,284 priority Critical patent/US8819613B2/en
Priority to JP2012538634A priority patent/JPWO2012049988A1/ja
Publication of WO2012049988A1 publication Critical patent/WO2012049988A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Definitions

  • the present invention is a semiconductor integrated circuit (hereinafter referred to as “LSI”) mounted on a printed wiring board (hereinafter referred to as “PCB”) together with passive components such as a capacitor.
  • LSI semiconductor integrated circuit
  • PCB printed wiring board
  • the present invention relates to a power supply circuit design system and a power supply circuit design method for deriving a structure in which an LSI operates stably in consideration of noise characteristics such as voltage fluctuation.
  • Patent Document 1 describes a structure in which a circuit for detecting a voltage drop (fluctuation) and a regulation circuit for adding a voltage are incorporated in an LSI (block).
  • the voltage drop detection circuit calculates the amount of voltage drop that occurs during the operation of the LSI and feeds back the voltage drop amount to the voltage regulation circuit.
  • An LSI describes a semiconductor integrated circuit design device that incorporates the above two circuits and supplies a stable power supply voltage by using the voltage generated by the voltage drop as the operating voltage of the regulator circuit.
  • Patent Document 2 also includes means for analyzing noise, means for determining whether the noise level is within a predetermined range, and means for adding a bypass capacitor in the circuit block of the LSI when the noise is outside the predetermined range.
  • a semiconductor integrated circuit design apparatus includes noise analysis means for performing noise analysis from information in the database, and logic gate selection means for searching for a logic gate in which the amount of noise generation in the LSI exceeds a predetermined range when the noise amount exceeds a predetermined range; It is mentioned that the selected logic gate has a bypass capacitor adding means for adding a bypass capacitor for reducing power supply noise and substrate noise.
  • a bypass capacitor adding means for adding a bypass capacitor for reducing power supply noise and substrate noise.
  • Patent Documents 1 and 2 require a space for providing countermeasure parts in the LSI circuit block. That is, Patent Document 1 requires a space for incorporating a voltage drop detection circuit and a voltage regulation circuit, and Patent Document 2 requires a space for installing a bypass capacitor. For this reason, the techniques described in Patent Documents 1 and 2 have a problem in terms of downsizing the apparatus because it is necessary to increase the chip size in order to incorporate extra space in the LSI from the beginning.
  • An object of the present invention is to provide a power supply circuit design system and a power supply circuit design method that solve the above-described problems.
  • the power supply circuit design system of the present invention derives a power supply voltage fluctuation characteristic that is a voltage fluctuation characteristic in a semiconductor integrated circuit based on design information of a power supply circuit that connects a semiconductor integrated circuit mounted on a substrate and other components.
  • a power supply voltage fluctuation deriving means a power supply circuit in which a power supply voltage fluctuation characteristic is permitted, a criterion database including a change guideline for at least one of a circuit structure or an operation of the semiconductor integrated circuit, Power supply voltage fluctuation judgment means for comparing the characteristics with the power fluctuation conditions and determining whether the power supply voltage fluctuation characteristics satisfy the power fluctuation conditions, and if the power voltage fluctuation characteristics do not satisfy the power fluctuation conditions, the semiconductor follows the change guidelines.
  • a power supply circuit that is stable against voltage fluctuation can be designed without increasing the chip size.
  • FIG. 1 is a diagram showing a system configuration of the first embodiment.
  • FIG. 2 is a diagram showing a flowchart of the first embodiment.
  • FIG. 3 shows an example of the structure of a PCB on which components are mounted.
  • FIG. 4 is a diagram showing a system configuration of the second embodiment.
  • FIG. 5 is a flowchart showing the second, third, fourth, fifth, sixth, seventh and eighth embodiments.
  • FIG. 6 is an example of an equivalent circuit model of the PCB.
  • FIG. 7 is an example of the voltage fluctuation characteristic as the power supply voltage fluctuation characteristic.
  • FIG. 8 is a diagram illustrating a system configuration of the third embodiment.
  • FIG. 9 is a flowchart of the circuit operation ratio change process.
  • FIG. 1 is a diagram showing a system configuration of the first embodiment.
  • FIG. 2 is a diagram showing a flowchart of the first embodiment.
  • FIG. 3 shows an example of the structure of a PCB on which components are mounted.
  • FIG. 4 is
  • FIG. 10A is a diagram illustrating a circuit structure of the LSI before the change.
  • FIG. 10B is a diagram illustrating a circuit structure of the LSI after the change.
  • FIG. 11A is a diagram showing an equivalent circuit model of an LSI and a power supply voltage fluctuation waveform before the circuit operation is changed.
  • FIG. 11B is a diagram illustrating an equivalent circuit model of an LSI and a power supply voltage fluctuation waveform after the circuit operation is changed.
  • FIG. 11C is a diagram illustrating power supply voltage waveforms before and after the circuit operation is changed.
  • FIG. 12 is a diagram illustrating a system configuration according to the fourth embodiment.
  • FIG. 13 is a flowchart of the circuit operation timing change process.
  • FIG. 14A is a diagram showing the circuit structure of the LSI before the change and the current waveform flowing through each block.
  • FIG. 14B is a diagram showing the circuit structure of the LSI after the change and the current waveform flowing through each block.
  • FIG. 15A is a diagram illustrating an equivalent circuit model of an LSI and a power supply voltage fluctuation waveform before the circuit operation is changed.
  • FIG. 15B is a diagram illustrating an equivalent circuit model of an LSI and a power supply voltage fluctuation waveform after the circuit operation is changed.
  • FIG. 15C is a diagram illustrating power supply voltage waveforms before and after the circuit operation is changed.
  • FIG. 16 is a diagram illustrating a system configuration according to the fifth embodiment.
  • FIG. 17 is a flowchart of the power supply wiring structure change process.
  • FIG. 18A is a diagram illustrating a circuit structure of the LSI before the change.
  • FIG. 18B is a diagram showing the circuit structure of the LSI after the change.
  • FIG. 19A is a diagram showing an equivalent circuit model of an LSI and a power supply voltage fluctuation waveform before the circuit structure is changed.
  • FIG. 19B is a diagram illustrating an equivalent circuit model of an LSI and a power supply voltage fluctuation waveform after the circuit structure is changed.
  • FIG. 19C is a diagram showing power supply voltage waveforms before and after the circuit structure change.
  • FIG. 20 is a diagram illustrating a system configuration according to the sixth embodiment.
  • FIG. 21 is a flowchart of the circuit position change process.
  • FIG. 21 is a flowchart of the circuit position change process.
  • FIG. 22A is a diagram illustrating a circuit structure of the LSI before the change.
  • FIG. 22B is a diagram illustrating a circuit structure of the LSI after the change.
  • FIG. 23A is a diagram showing an equivalent circuit model of an LSI and a power supply voltage fluctuation waveform before the circuit structure is changed.
  • FIG. 23B is a diagram showing an equivalent circuit model of an LSI and a power supply voltage fluctuation waveform after the circuit structure is changed.
  • FIG. 23C is a diagram showing power supply voltage waveforms before and after the circuit structure change.
  • FIG. 24 is a diagram illustrating a system configuration according to the seventh embodiment.
  • FIG. 25 is a flowchart of the operation signal change process.
  • FIG. 25 is a flowchart of the operation signal change process.
  • FIG. 26A is a diagram showing the circuit structure of the LSI before the change and the current waveform flowing through each block.
  • FIG. 26B is a diagram showing the circuit structure of the LSI after the change and the waveform of the current flowing through each block.
  • FIG. 27A is a diagram showing an equivalent circuit model of an LSI and a power supply voltage fluctuation waveform before the circuit operation is changed.
  • FIG. 27B is a diagram showing an equivalent circuit model of an LSI and a power supply voltage fluctuation waveform after the circuit operation is changed.
  • FIG. 27C is a diagram illustrating power supply voltage waveforms before and after the circuit operation is changed.
  • FIG. 28 is a diagram showing a system configuration of the eighth embodiment.
  • FIG. 29 is a flowchart of the equivalent circuit model creation process.
  • FIG. 29 is a flowchart of the equivalent circuit model creation process.
  • FIG. 30 is a flowchart of the board equivalent circuit model creation process in the equivalent circuit model creation process.
  • FIG. 31 is a flowchart of the LSI equivalent circuit model creation process in the equivalent circuit model creation process.
  • FIG. 32A shows a cross-sectional structure of the substrate.
  • FIG. 32B is a diagram showing a cross-sectional structure of the microstrip wiring.
  • FIG. 33A is a diagram illustrating an equivalent circuit model around a unit length of the power supply circuit generated by the solver process.
  • FIG. 33B is a diagram showing an equivalent circuit model structure when the power source has a substrate structure.
  • FIG. 33C is a diagram showing an equivalent circuit model structure when the power source has a wiring structure.
  • FIG. 34A is a diagram showing an equivalent circuit model structure of an LSI.
  • FIG. 34A is a diagram showing an equivalent circuit model structure of an LSI.
  • FIG. 34B is a diagram showing an equivalent circuit model structure of an LSI.
  • FIG. 35A is a diagram expressing the entire LSI by an equivalent circuit model.
  • FIG. 35B is a diagram expressing a model obtained by combining a plurality of models obtained by dividing the LSI.
  • FIG. 36A is a diagram showing a time waveform of the power supply current flowing in the operation part model of the LSI.
  • FIG. 36B is a diagram illustrating a frequency characteristic of the power supply current.
  • FIG. 37 is a diagram showing a system configuration of the tenth embodiment.
  • FIG. 38 is a diagram showing a system configuration of the eleventh embodiment.
  • FIG. 39 is a diagram showing a system configuration of the twelfth embodiment.
  • FIG. 40 is a diagram showing a system configuration of the thirteenth embodiment.
  • FIG. 41 is a diagram showing a system configuration of the fourteenth embodiment.
  • FIG. 1 shows a system configuration of the first embodiment.
  • the power supply circuit design system includes an input device 1, a power supply voltage variation deriving unit 2, a power supply variation condition determining unit 3, a determination criterion database 4, a circuit structure / operation changing unit 5, and an output device 6.
  • the input device 1 has a function of inputting design information of circuits constituting a PCB on which an LSI is mounted and input information including a database to the power supply voltage fluctuation deriving unit 2.
  • the power supply voltage fluctuation deriving unit 2 has a function of deriving a power supply voltage fluctuation characteristic that is a characteristic of a voltage fluctuation generated on the power supply on the PCB.
  • the power fluctuation condition determining means 3 automatically determines whether the power circuit of the PCB mounted on the LSI is designed stably. Specifically, the power supply fluctuation condition determining unit 3 compares the power supply voltage fluctuation characteristic derived by the power supply voltage fluctuation deriving unit 2 with the power supply fluctuation condition provided in the determination reference database 4, and the power supply voltage fluctuation characteristic is It has a function of determining whether or not the power supply fluctuation condition is satisfied.
  • the power supply voltage fluctuation characteristic examples include a time waveform characteristic of voltage fluctuation between the power supply and GND, but are not limited thereto.
  • the power supply voltage fluctuation characteristic may be evaluated using a voltage fluctuation frequency characteristic or the like, and the power supply voltage fluctuation deriving unit 2 obtains one of these characteristics.
  • the determination reference database 4 includes power supply fluctuation conditions indicating limit values in the power supply voltage fluctuation characteristics, and may include power supply fluctuation conditions of a plurality of power supply voltage fluctuation characteristics in advance.
  • the circuit structure / operation change means 5 determines the LSI structure to satisfy the power supply fluctuation conditions.
  • the LSI circuit structure and operation change specifications performed by the circuit structure / operation change means 5 are provided in a set together with the power supply fluctuation conditions in the determination reference database 4, and when the power supply voltage characteristics do not satisfy the power supply fluctuation conditions, the specification is based on the guidelines. Changes may be made. Hereinafter, “change in circuit structure / operation” may be abbreviated as “change”.
  • the circuit structure / operation change means 5 performs a specific LSI change as the change process, but this change does not involve a size change of the LSI.
  • the power supply voltage fluctuation deriving means 2 derives the power supply voltage fluctuation characteristics of the PCB on which the LSI whose structure or operation is changed is mounted.
  • FIG. 2 is a flowchart showing the processing of the present embodiment of the present invention. This process will be described in detail below.
  • the input device 1 performs input processing of circuit design information. As shown in FIG.
  • the information input here is the layout and the mounted LSI. This is information necessary for deriving voltage fluctuation characteristics in the power supply circuit, such as other components.
  • the process proceeds to S2.
  • the power supply voltage fluctuation deriving unit 2 performs a power supply voltage fluctuation characteristic deriving process based on the circuit design information input from the input device 1. Through the above processing, the power supply voltage fluctuation characteristic in the PCB is derived. Next, the process proceeds to S3.
  • the power supply fluctuation condition determination unit 3 performs a comparison process between the derived power supply voltage fluctuation characteristic and the power supply fluctuation condition provided in the determination reference database. Next, the process proceeds to S4. In S4, the power supply fluctuation condition determination means 3 performs a comparison process between the power supply voltage fluctuation characteristics and the power supply fluctuation conditions provided in the determination reference database 4, and determines whether or not the power supply circuit of the PCB is designed stably. . If it is determined that the determination criterion is not satisfied, the process proceeds to S5.
  • the circuit structure / operation changing means 5 automatically extracts a change guideline prepared in advance in the judgment reference database 4, and automatically changes the LSI and the circuit structure of the PCB on which it is mounted as a change process according to the guideline. And change the operation.
  • the changed LSI and the data of the PCB on which the LSI is mounted are automatically input, the process proceeds to S2, and the operation of deriving the power supply voltage variation characteristic again using the changed LSI information is repeated.
  • the circuit structure / operation changing unit 5 performs the LSI changing process without changing the LSI size, and simultaneously performs the PCB changing process in accordance with the LSI changing process.
  • the change process of the LSI circuit structure / operation in S5 is a change of the circuit structure / operation not accompanied by the LSI size change, so that no extra space is required for the LSI structure / operation change. Therefore, the power supply circuit of the PCB on which the LSI is mounted can be designed stably against voltage fluctuations without increasing the chip size and mounting area of the LSI mounted at high density.
  • the power supply circuit design system of this embodiment includes a power supply voltage fluctuation analyzing means 7 as the power supply voltage fluctuation deriving means 2.
  • the power supply voltage fluctuation means 7 in the present embodiment corresponds to the power supply voltage fluctuation derivation means 2 in the first embodiment.
  • the power supply voltage fluctuation analyzing means 7 includes an equivalent circuit model generating means 8 for generating an equivalent circuit model of the power supply circuit of the PCB from the circuit design information input from the input device 1, and the generated equivalent circuit. And a calculation means 9 for deriving power supply voltage fluctuation characteristics using a circuit model.
  • the equivalent circuit model generation means 8 includes a substrate equivalent circuit model creation means and an LSI equivalent circuit model creation means.
  • the board equivalent circuit model creation means is based on the PCB layout and cross-sectional structure, the board design information such as information on the components to be mounted, and the component database (hereinafter referred to as “board equivalent circuit model”).
  • This board equivalent circuit model creation means includes a field solver that can create an equivalent circuit model such as a solid layer and wiring of a board by inputting information such as the cross-sectional structure, material, and layout of the board. May be.
  • LSI equivalent circuit model creation means is described in FIG. 34A or B from design information such as all circuit connection information and layout information of LSI, operation information of LSI, and a database of components constituting the inside of LSI. Such an equivalent circuit model of LSI is created.
  • the calculation means 9 may be provided with a circuit analysis engine represented by SPICE, an electromagnetic field analysis engine, or the like, and performs analysis of necessary power supply voltage fluctuation characteristics.
  • FIG. 5 is a flowchart showing processing in the present embodiment.
  • the flowchart in the present embodiment is a configuration in which S7 for performing equivalent circuit model generation processing and S8 for performing circuit analysis processing are provided in place of the power supply voltage fluctuation characteristic derivation processing in S2 of the flowchart in the first embodiment. .
  • the input device 1 performs input processing of circuit design information.
  • the information input is the voltage in the power circuit such as the layout and the mounted LSI and other components.
  • the process proceeds to S7.
  • the equivalent circuit model generation unit 8 performs an equivalent circuit model generation process based on the circuit design information input from the input device 1, and an equivalent circuit model (hereinafter referred to as “the power supply system of the PCB on which the LSI is mounted”). Create a power system equivalent circuit model ").
  • the process proceeds to S8.
  • the calculation means 9 performs circuit characteristic analysis using a power supply system equivalent circuit model of PCB as illustrated in FIG. 6 as circuit analysis processing. Then, the calculation means 9 derives the power supply voltage fluctuation characteristic as shown in FIG. Next, the process proceeds to S3.
  • the power supply fluctuation condition determination unit 3 automatically determines whether or not the derived voltage fluctuation characteristic satisfies a power supply fluctuation condition read from the determination reference database 4.
  • the power supply fluctuation condition determination means 3 determines whether the following two conditions are satisfied as shown in FIG.
  • the first condition is that the value falling from the DC voltage VCC in the power supply fluctuation condition is within ⁇ VDL.
  • the power supply fluctuation condition determining means 3 analyzes the characteristic 41 of the power supply voltage waveform A at an observation point (for example, 76 in FIG. 6) of the LSI shown in FIG.
  • the return time ⁇ tCA of the power supply voltage waveform A is shorter than ⁇ tRL, and the condition tCA ⁇ tRL is satisfied.
  • the voltage drop value ⁇ VDA is larger than ⁇ VDL and does not satisfy the condition of ⁇ VDA ⁇ VDL. Therefore, the power supply voltage waveform A is analyzed as not satisfying the determination criterion, and it is determined that the LSI does not operate stably.
  • the characteristic 42 of the power supply voltage waveform B at another observation point of the LSI shown in FIG. 7 is analyzed.
  • the voltage drop value ⁇ VDB of the power transmission waveform B is smaller than ⁇ VDL, and the condition of ⁇ VDB ⁇ VDL is satisfied.
  • the return time tCB is longer than ⁇ tRL and does not satisfy the condition of tCB ⁇ tRL. Even in this case, it is determined that the LSI does not operate stably. Note that although the power supply fluctuation condition here is considered by both the voltage drop value and the return time, there may be a case where only the voltage drop value is a condition.
  • the voltage drop value ⁇ VDB satisfies the condition of ⁇ VDB ⁇ VDL, and therefore it is determined that the LSI operates stably.
  • 6 is a point shown as the power supply voltage characteristic in the power supply circuit model of the PCB as illustrated in FIG. 3 (in this case, the connection point between the LSI power distribution circuit and the package, and 66 in FIG. The voltage fluctuation at 76) in FIG. 6 is monitored.
  • the power supply fluctuation condition may be set at a voltage value at another monitor point (for example, a voltage between the power supply and the ground at the end of the power supply plane).
  • the power supply fluctuation condition determination means 3 performs the power supply voltage fluctuation characteristic comparison process (S3) by performing the circuit analysis process (S8) on the power supply system equivalent circuit model of the PCB as illustrated in FIG. Next, the process proceeds to S4.
  • the power supply fluctuation condition determination unit 3 performs a determination process as to whether or not the determination criterion is satisfied. If the power supply voltage variation characteristic does not satisfy the determination criterion in the determination process, the power supply fluctuation condition determination unit 3 advances the process to S9.
  • the circuit structure / operation changing unit 5 changes the specific LSI. Note that this LSI change is not accompanied by LSI size change.
  • Specific LSI change processing includes, for example, circuit operation ratio change processing for changing the operation ratio of circuit blocks in the LSI, circuit operation timing processing for changing operation timings of a plurality of circuit blocks in the LSI, and power supply in the LSI There is a power supply wiring structure change process for changing the structure of the wiring and package.
  • the above processing will be described in detail in the third and subsequent embodiments.
  • the LSI change processing is not limited to this, and any other specific circuit structure change processing may be performed. (Described in the sixth and seventh embodiments) Further, depending on the above-described change method selection processing in S9, variations of the specific circuit structure and operation change processing to be selected increase.
  • the flowchart is not limited to FIG.
  • the circuit structure / operation change process in S9 is basically automatically performed according to the circuit structure and operation change guidelines prepared in the determination reference database 4, and the circuit structure and operation change process is performed according to the result of the process. Is done.
  • the changed circuit structure is input again to the equivalent circuit model generation process (S7), and a series of processes of a circuit analysis process (S8), a power supply voltage fluctuation characteristic comparison process (S3), and a determination process (S4) are performed again. Executed.
  • the series of processes described above is repeated until the power supply voltage variation characteristic satisfies the determination criterion in the determination process of S4.
  • this embodiment can easily determine whether the power supply circuit of the PCB is stably designed against voltage fluctuations by preparing power supply fluctuation conditions and LSI structure change guidelines.
  • the design of the power supply circuit of the PCB on which the LSI is mounted can be performed stably and easily against voltage fluctuations.
  • the power supply voltage fluctuation characteristic can be derived as an absolute amount, and quantitative evaluation and countermeasures can be performed.
  • the LSI change processing in S9 is a change in the operation state of the circuit block in the LSI, a change in the power supply structure, or the like, and no extra space is required in the LSI for the change. Therefore, even in a high-density mounting LSI, it is possible to stably design a power supply circuit for a PCB on which the LSI is mounted against voltage fluctuations without causing an increase in chip size or mounting area.
  • a third embodiment will be described.
  • this embodiment is different from the second embodiment in that a circuit operation ratio changing means 51 is provided as the circuit structure / operation changing means 5. Other structures and connection relationships are the same as those in the second embodiment.
  • FIG. 9 is a flowchart of the circuit operation ratio change process (S10) showing an example of a specific LSI change process of the circuit structure / operation change process (described in FIG. 5) in S9.
  • the power supply fluctuation condition determination means 3 performs a comparison process with the power supply voltage fluctuation characteristic and the power supply fluctuation condition provided in the determination reference database 4, and when it is determined that the determination criterion is not satisfied, the process proceeds to S27. .
  • the circuit operation ratio changing unit 51 changes the operation ratio of the circuit block in the LSI in accordance with the change guideline prepared in the determination reference database 4 as the LSI operation ratio changing process.
  • the process proceeds to S28.
  • the circuit operation ratio changing means 51 changes the operation ratio in the LSI as the LSI circuit operation change processing, the change of the circuit block that operates and the circuit block that does not operate, and the power distribution circuit and package information related to them. Automatically select and change circuit operation.
  • FIG. 10 shows an example of specific processing when changing the operation ratio of the circuit block in the LSI.
  • the LSI 81 there are a plurality of circuit blocks 82 connected to the power supply terminal 83 and the ground terminal 84.
  • “Operating circuit block” refers to a circuit block that always performs a switching operation (in accordance with a circuit clock).
  • the “non-operating circuit block” indicates a circuit block that performs a switching operation or a random operation at a cycle longer than the clock. In the LSI, there is a circuit block that is connected between the power source and the GND but does not perform a switching operation because a signal is not input.
  • the “non-operating circuit block” includes a circuit block that does not perform the above switching operation. If it is determined in S4 that the determination criterion is not satisfied, the circuit structure / operation changing means 5 follows the change guideline prepared in the determination criterion database 4 and increases the operation ratio of the circuit block by 40% as shown in FIG. Change to 20%. Although an example in which the operation ratio of the circuit block is changed from 40% to 20% is shown here as an example, the invention is not limited to this, and any operation can be used as long as the operation ratio can be reduced. In the LSI, there may be a circuit block that performs an extra operation compared to the required operation.
  • FIG. 11 shows an equivalent circuit model of an LSI and a power supply voltage fluctuation waveform.
  • FIG. 11A shows an equivalent circuit model and power supply voltage fluctuation waveform of the LSI before the circuit operation is changed.
  • FIG. 11B shows the equivalent circuit model of the LSI and the power supply voltage fluctuation waveform after the circuit operation is changed.
  • the power supply current waveform I becomes I ′
  • the respective peak values become IP> IP ′
  • the current flowing through the power supply terminal of the LSI becomes small.
  • the equivalent capacitance C inside the LSI is C ′ and C ⁇ C ′
  • the impedance of the power circuit of the LSI is reduced.
  • the circuit block is basically connected between the power supply and the ground, and the transistors constituting the circuit block have a capacitance component.
  • the non-operating circuit block can be regarded as a substantially stable capacitance (capacitor) that does not vary over time because the circuit block hardly operates (the ON-OFF state does not change). Therefore, it can be considered that if the ratio of the non-operating circuit block increases, the ratio of the capacitance between the power source and the ground increases.
  • the power supply voltage waveform 91 before the circuit operation change is changed to the power supply voltage waveform 92 after the circuit operation change, and ⁇ VD1 decreases to ⁇ VD2.
  • ⁇ VD1> ⁇ VD2 the characteristics are changed in a direction that satisfies the determination criterion.
  • ⁇ tC2 that is the return time of the voltage fluctuation may be larger than ⁇ tC1, so care must be taken so that the return time does not exceed the determination criterion.
  • the LSI requires a minimum number of circuit block operations for performing basic operations. If the operation ratio is made smaller than that, the LSI may not operate. Therefore, as a change guideline prepared in the judgment standard database 4, a change guideline having a changeable limit (in this example, “reducing the operation rate so that the operation rate is 20% or more”).
  • the circuit operation ratio changing process (S10) is performed after removing the risk of the LSI not operating. Can do.
  • the change process of the circuit structure of the LSI in the present embodiment is a change in the operation ratio of the circuit blocks in the LSI, and no extra space is required in the LSI for the change. Therefore, even in a high-density mounted LSI, it is possible to stably design a power supply circuit of a PCB on which the LSI is mounted against voltage fluctuation without causing an increase in chip size and mounting area.
  • FIG. 12 is different from the second embodiment in that a circuit operation timing changing means 52 is provided as the circuit structure / operation changing means 5. Other structures and connection relationships are the same as those in the first embodiment.
  • the circuit operation timing changing means 52 has a function of changing the operation timing of the circuit block inside the LSI based on the change guideline prepared in the determination reference database 4.
  • FIG. 13 is a flowchart of the circuit operation timing change process (S11) showing an example of a specific LSI circuit operation change process of the circuit structure / operation change process (described in FIG. 5) in S9.
  • the power supply fluctuation condition determination means 3 performs a comparison process between the power supply voltage fluctuation characteristics and the power supply fluctuation conditions provided in the determination reference database 4, and if it is determined that the determination reference is not satisfied, the process proceeds to S29. Proceed with the process.
  • the circuit operation timing changing means 52 performs an LSI operation timing change process for changing the operation timing of the circuit block in the LSI according to the change guideline prepared in the determination reference database 4.
  • the process proceeds to S30.
  • the circuit operation timing changing unit 52 changes the operation timing in the LSI as the LSI circuit operation changing process. That is, the change of each circuit block and operation timing in the LSI, and the power distribution circuit and package information related to them are automatically selected and changed.
  • FIG. 14 shows an example of a specific change process when changing the operation timing of the circuit block in the LSI.
  • the circuit block 82 is provided inside the LSI 81 and is connected to the power supply terminal 83 and the ground terminal 84.
  • FIG. 14A shows a state before the change, in which 40% of the circuit blocks are operating (Active) and the remaining 60% are in a non-operating state (Static). If the power supply currents of the operating first circuit block 85 and second circuit block 86 are I1 and I2, respectively, I1 and I2 are operating at the same timing. If it is determined in S4 that the determination criterion is not satisfied, the first circuit block 85 and the second circuit block operating as illustrated in FIG.
  • FIG. 15 shows an LSI equivalent circuit model and a power supply voltage fluctuation waveform.
  • FIG. 15A shows an equivalent circuit model and power supply voltage fluctuation waveform of the LSI before the circuit operation is changed.
  • FIG. 15B shows an equivalent circuit model and power supply voltage fluctuation waveform of the LSI after the circuit operation is changed.
  • the power supply current waveform I ′′ in FIG. 15B is the sum of the current waveforms I1 and I2 of the respective circuit blocks.
  • the flowing current amount does not change between the power supply current waveform I before the circuit operation change and the current waveform I ′′ after the circuit operation change.
  • the peak value IP ′′ of the power supply current waveform I ′′ is smaller than IP (IP> IP ′′) because I1 and I2 are out of timing.
  • IP IP> IP ′′
  • the determination criterion database 4 includes a change guideline having a restriction that can be changed.
  • the guideline for change is that the deviation of the operation timing of the circuit block is less than the allowable value that is confirmed to operate normally of the LSI (for example, the maximum value of the timing deviation between the active circuit blocks is the operation
  • This is a change guideline that is 1/10 or less '' of the signal cycle and the like, and can increase the operation timing of the circuit block as much as possible.
  • the operation of the circuit block in the LSI in accordance with the change guideline in this example, “shift the timing deviation between the active circuit blocks so that it is 1/10 or less of the cycle of the operation signal”. If the process is to change the timing, the circuit operation timing change process (S11) can be performed after removing the risk of the LSI malfunctioning.
  • the LSI change processing in the present embodiment is a change in the operation state of the circuit block in the LSI, and no extra space is required in the LSI for the change. Therefore, even in a high-density mounting LSI, it is possible to stably design a power supply circuit for a PCB on which the LSI is mounted against voltage fluctuations without causing an increase in chip size or mounting area.
  • a fifth embodiment will be described.
  • the present embodiment is different from the second embodiment in that a power supply wiring structure changing means 53 is provided as the circuit structure / operation changing means 5. Other structures and connection relationships are the same as those in the first embodiment.
  • FIG. 17 is a flowchart of the power supply wiring structure change process (S12) showing an example of a specific LSI circuit structure change process of the circuit structure change process (described in FIG. 5) in S9.
  • the power supply fluctuation condition determination means 3 performs a comparison process between the power supply voltage fluctuation characteristics and the power supply fluctuation condition provided in the determination criterion database 4, and if it is determined that the determination criterion is not satisfied, the process proceeds to S31. To proceed.
  • the power supply wiring structure changing unit 53 changes the power supply wiring structure in the LSI according to the change guideline prepared in the determination reference database 4 as the power supply wiring structure change processing.
  • the process proceeds to S32.
  • the power supply wiring structure changing unit 53 changes the power supply wiring inside the LSI as the LSI circuit structure changing process. In other words, the circuit structure in the LSI and the related power distribution circuit structure change, and the power distribution circuit and package information in the entire LSI related to them are automatically selected to change the circuit structure. . Then, the input information of the circuit structure of the power supply system of the modified LSI and the package is derived. Next, the process proceeds to S33.
  • the power supply wiring structure changing unit 53 changes the structure of the substrate in response to the change of the power supply circuit structure of the LSI and derives the structure information as the substrate structure changing process.
  • FIG. 18 is an example of a specific circuit structure change process when the power supply wiring structure in the LSI is changed.
  • the LSI 81 there is a circuit block 82 connected to the power supply terminal 83 and the ground terminal 84.
  • the power terminal 83 and the ground terminal 84 have a structure of one terminal.
  • the power supply wiring structure changing means 53 follows the change guideline prepared in the determination criterion database 4 as shown in FIG.
  • FIG. 19 shows an equivalent circuit model of LSI and a power supply voltage fluctuation waveform.
  • FIG. 19A shows an equivalent circuit model and power supply voltage fluctuation waveform of the LSI before the circuit structure is changed.
  • FIG. 19B shows an equivalent circuit model and power supply voltage fluctuation waveform of the LSI after the circuit structure is changed.
  • the impedance Z of the power supply wiring including the power distribution circuit and the package in the LSI decreases and becomes Z ′. (Z> Z ′)
  • Z> Z ′ the impedance of the power supply circuit is reduced.
  • a change guideline having a changeable limit (in this example, “the power supply and the ground terminal are set so that the total number of power supply terminals and ground terminals is 4 or less”).
  • the power supply wiring structure changing means 53 performs the power supply wiring structure change process (S12) in consideration of restrictions on the terminals of the LSI if the processing is to change the power supply and ground terminals of the LSI. be able to.
  • the change process of the LSI circuit structure in the present embodiment is a change of a terminal connected to a circuit block in the LSI, and no extra space is required in the LSI for the change.
  • FIG. 20 the present embodiment is different from the second embodiment in that a circuit position changing means 54 is provided as the circuit structure / operation changing means 5. Other structures and connection relationships are the same as those in the second embodiment.
  • the circuit position changing unit 54 has a function of changing the circuit position inside the LSI based on the change guideline prepared in the determination reference database 4.
  • FIG. 21 is a flowchart of the circuit position change process (S13) showing an example of a specific LSI change process in the circuit structure change process (described in FIG. 5) in S9.
  • the power supply fluctuation condition determination means 3 compares the power supply voltage fluctuation characteristics with the power supply fluctuation conditions provided in the determination reference database 4, and when it is determined that the determination criterion is not satisfied, the process is performed in S43. Proceed.
  • the circuit position changing means 54 changes the position of the circuit block inside the LSI according to the change guideline prepared in the determination reference database 4 as the LSI circuit position changing process.
  • the process proceeds to S44.
  • the circuit position changing unit 54 changes the circuit position in the LSI as the LSI circuit structure changing process.
  • the circuit structure is changed by automatically selecting the arrangement of the circuit blocks in the LSI and the power distribution circuit and package information related to them. Then, the input information of the circuit structure of the power supply system of the modified LSI and the package is derived. Next, the process proceeds to S45.
  • the circuit position changing unit 54 changes the substrate structure corresponding to the change of the power supply circuit structure of the LSI as the changing process, and derives the structure information.
  • FIG. 22 is an example of a specific circuit structure change process when changing the position of a circuit block in an LSI.
  • the LSI 81 there is a circuit block 82 connected to the power supply terminal 83 and the ground terminal 84. In the case shown in FIG.
  • the circuit block 88 close to the power supply terminal 83 and the ground terminal 84 is in a non-operating state (Static), and the circuit block 87 far from the power supply terminal 83 and the ground terminal 84 is operated (Active). It is in a state of being. In this case, if the active circuit block is far from the power terminal 83 and the ground terminal 84, the impedance of the power distribution circuit tends to increase. Therefore, in this embodiment, when it is determined in the determination process of S4 that the determination criterion is not satisfied, the circuit position is changed according to the change guideline prepared in the determination criterion database 4.
  • FIG. 23 shows an equivalent circuit model of LSI and a power supply voltage fluctuation waveform.
  • FIG. 23A shows an equivalent circuit model and power supply voltage fluctuation waveform of the LSI before the change.
  • FIG. 23B shows an equivalent circuit model and power supply voltage fluctuation waveform of the LSI after the circuit structure is changed. As shown in FIG.
  • the relationship of Z> Z ′ is because the inductance component of the power distribution circuit is reduced, and the return time of voltage fluctuation is generally ⁇ tC1> ⁇ tC5.
  • the impedance of the power distribution circuit is reduced by bringing the position of the active circuit block closer to the power supply terminal and the ground terminal, the fluctuation of the power supply voltage is reduced, but problems other than the power supply system such as a longer signal wiring occur. there is a possibility.
  • the position of the circuit block in the LSI cannot be changed beyond a limit that causes the above problem (for example, “do not lengthen the signal wiring length by 0.5 mm or more”).
  • a change guide prepared in the judgment reference database 4 a change guide having a changeable limit (in this example, the position of the circuit block to be operated so as not to increase the signal wiring length by 0.5 mm or more) If the change process is performed based on the change guideline, the circuit position change process (S13) is performed in consideration of restrictions other than the power supply system (for example, “signal wiring length”). It can be performed. Further, the LSI change processing in the present embodiment is a change in the position of a circuit block in the LSI, and no extra space is required in the LSI for the change.
  • FIG. 24 shows a seventh embodiment in that an operation signal changing means 55 is provided as the circuit structure / operation changing means 5. Other structures and connection relationships are the same as those in the second embodiment.
  • the operation signal changing means 55 has a function of changing an operation signal inside the LSI based on a change guide prepared in the determination reference database 4.
  • S14 is a flowchart of the operation signal change process (S14) showing an example of a specific LSI change process of the circuit operation change process (described in FIG. 5) in S9.
  • the power supply fluctuation condition determination means 3 performs a comparison process between the power supply voltage fluctuation characteristics and the power supply fluctuation condition provided in the determination reference database 4, and if it is determined that the determination criterion is not satisfied, the process proceeds to S46. Proceed.
  • the operation signal changing means 55 changes the operation signal waveform of the circuit block operating in the LSI according to the change guide prepared in the determination reference database 4 as the LSI operation signal change processing.
  • the process proceeds to S47.
  • the operation signal changing means 55 changes the operation signal in the LSI as the LSI circuit operation changing process. That is, the operation signal waveform of the circuit block in the LSI is changed, and the information on the circuit block in the LSI and the power distribution circuit and package related thereto are automatically selected and changed.
  • FIG. 26 is an example of a specific circuit operation change process when the operation signal of the circuit block in the LSI is changed.
  • the LSI 81 there is a circuit block 82 connected to the power supply terminal 83 and the ground terminal 84.
  • the operating first circuit block 85 and the second circuit block 86 perform an operation of passing a current waveform 90 to the power supply terminal in accordance with the operation signal 89.
  • FIG. 27 shows an equivalent circuit model of LSI and a power supply voltage fluctuation waveform.
  • FIG. 27A shows an equivalent circuit model and power supply voltage fluctuation waveform of the LSI before the change.
  • the equivalent circuit model and power supply voltage fluctuation waveform of the LSI after the change are shown in FIG. 27B.
  • the power supply current waveform I ′ ′′ in FIG. 27B does not change the current amount (charge amount) as compared with the power supply current waveform I before the change, but the rise and fall times are longer.
  • the peak value becomes smaller and IP> IP '''.
  • the peak value of the current flowing through the power supply terminal of the LSI is reduced, and the high frequency component of the current is also suppressed.
  • the power supply voltage waveform 91 before the change is changed to the power supply voltage waveform 96 after the circuit operation change, as shown in FIG.
  • ⁇ VD1 decreases to ⁇ VD6 ( ⁇ VD1> ⁇ VD6).
  • the characteristic can be changed in the direction satisfying the above. Although this change basically does not change the impedance of the power supply circuit, the peak value of the current waveform is reduced and the high frequency component is suppressed, so that ⁇ tC1, which is the return time of the voltage fluctuation, is reduced to ⁇ tC6. .
  • the change guideline prepared in the judgment reference database 4 is a change guideline having a changeable limit (in this example, “the rise time and the fall time of the operation signal of the circuit block are represented by A circuit block is prepared so that the rise time and the fall time of the operation signal of the circuit block are increased so as to be 1/4 or less of the cycle.
  • the operation signal change processing S14 is performed after removing the risk of malfunction of the LSI.
  • the process of changing the operation signal of the LSI in S14 is a change in the rise time and the fall time of the operation signal of the circuit block in the LSI, and no extra space is required in the LSI for the change.
  • FIG. 28 shows that a storage device 10 in which each input information and database is stored is provided. Other structures and connection relationships are the same as those in the second embodiment.
  • the storage device 10 includes an LSI database 12, CAD data / part database 11, and a criterion database 4.
  • the LSI database 12 includes all circuit connection information and layout information of LSI, design information such as LSI operation information, and a database of parts constituting the LSI.
  • the CAD data and component database 11 includes a CAD data and component database which are PCB design information such as PCB layout and cross-sectional structure, and information on components to be mounted. [Description of Action / Effect]
  • circuit design information for generating a substrate equivalent circuit model in the flowchart of FIG. 5 can be automatically extracted from the storage device 10. That is, instead of the input device 1 inputting circuit design information, necessary data can be automatically extracted from the CAD data and the component database 11 or the LSI database 12 in the storage device 10 as necessary.
  • the CAD data and component database 11 includes information such as the wiring width, the route designation by the XY biaxial coordinates of the wiring route, and the total length of the wiring. Furthermore, information such as the part name and model number of the connection destination is included. Therefore, it is possible to search the equivalent circuit model of the part in the CAD data and the part database 11 from the part name of the connection destination, and select the model.
  • the above operation corresponds to S103 and S104 in FIG.
  • necessary data relating to the LSI is extracted from the design information of the plurality of LSIs in the storage device 10, the LSI database 12, and the plurality of determination reference databases 4. Is also possible.
  • the above operation corresponds to S105 in FIG.
  • the name of the LSI connected to the power supply circuit, package data, and the like are automatically extracted from the LSI database 12.
  • the LSI database 12 automatically selects and inputs an LSI database including all necessary LSI circuit design information, package and power distribution circuit information, and information on power fluctuation conditions in the power circuit.
  • the input device 1 may not be used, or may be used only for inputting an action for starting input.
  • the result obtained by the power supply fluctuation condition determination unit 3 in S4 can be output to the CAD data and the parts database 11. This process corresponds to S101 in FIG. 5, and the process of outputting the result of the substrate structure change process by the power supply wiring structure change process (S12) corresponds to S109 in FIG.
  • the power supply wiring of the substrate in the power supply circuit of the PCB displayed on the CAD and the information of the countermeasure component connected are stable or not stable as they are. Therefore, information that the circuit structure has been changed is written.
  • the power supply circuit is inherently stable against voltage fluctuation. It is possible to easily determine whether the circuit structure is changed and the structure is stable. Further, it is possible to output the result obtained by the power fluctuation condition determining means 3 of FIG. 28 into the LSI design information + LSI database 12 in the storage device 10. The above process corresponds to S102 in FIG.
  • the input device 1 performs LSI information input processing as LSI information connection information, layout information, design information such as LSI operation information, a database of components constituting the LSI, and added capacity. Enter cell information.
  • the equivalent circuit model generation means 8 performs LSI equivalent circuit model generation processing, and estimates the characteristics of the LSI power supply system such as the current flowing through the LSI power supply, the equivalent admittance, and the impedance of the LSI power supply wiring from the input information.
  • An LSI equivalent circuit model is generated.
  • the process proceeds to S17. At this time, as an LSI equivalent circuit model, a model having a simple configuration as shown in FIG.
  • the equivalent circuit model generation means 8 combines the generated board equivalent circuit model and the LSI equivalent circuit model as a power supply equivalent circuit model generation process to generate a power supply equivalent circuit model.
  • the processing order of the generation of the substrate equivalent circuit model (S13 ⁇ S14) and the generation of the LSI equivalent circuit model (S15 ⁇ S16) may be reversed.
  • FIG. 30 is a flowchart showing a specific process of the board equivalent circuit model generation process in S13 to S14 when the means for creating the board equivalent circuit model in the equivalent circuit model generation means 8 includes a field solver. It is.
  • the input device 1 inputs the structure information of the power supply system of the printed circuit board as the substrate power supply structure input process.
  • the specific information to be input is the layout information and the layer structure of the substrate power supply wiring 64, taking as an example a PCB on which an LSI and other components as shown in FIG. .
  • the process proceeds to S19.
  • the structure information includes the layer configuration 24 and dimensions of the power supply layer 21, the ground layer 22, and the insulating layer 23 of the substrate, and the respective conductivity ( ⁇ ) and ratio. This is a numerical value related to the structure and material properties such as dielectric constant ( ⁇ r) and dielectric loss tangent (tan ⁇ ).
  • ⁇ r dielectric constant
  • tan ⁇ dielectric loss tangent
  • the structure information includes the layer structure 24, the line width 26 of the line width 25, the dimensions of each part including the line length, and the material characteristics of each. Is a numerical value.
  • the layer configuration and the dimensions of each part can be extracted from information held in the design CAD system of the printed wiring board.
  • FIG. 32 shows the configuration (cross-sectional view) of a substrate having a certain wiring pattern.
  • a material name such as copper is input instead of a material constant, and processing such as replacement with conductivity from an internal database is performed. It is also possible. In this way, parameters of each part necessary for obtaining an electrical equivalent circuit of the power supply circuit of the board and a database of parts are input.
  • the equivalent circuit model generation means 8 creates an equivalent circuit model of the substrate power supply system as solver processing.
  • This process is performed by a field solver provided in the equivalent circuit model generation means 8.
  • the processing performed here refers to resistance, inductance, capacitance, and the like for use in a circuit simulator such as SPICE based on parameters such as physical dimensions of wiring patterns on a printed wiring board, material constants, and layer configurations.
  • This is a process for creating an equivalent circuit model expressed by a lumped constant or a distributed constant per unit length expressed by conductance.
  • the process proceeds to S20.
  • FIG. 33A shows an example of an equivalent circuit model per unit length of the power supply circuit obtained by performing this process.
  • This model is defined by lumped constants, and the resistance, inductance, capacitance, and conductance values per unit length of wiring are RU, LU, CU, and GU, respectively.
  • RU and LU represent the impedance ZU around the unit length of the model
  • CU and 1 / GU represent the admittance YU around the unit length of the model. If the power supply circuit has a solid plane structure as shown in FIG.
  • the unit length model is combined as shown in FIG. 33B to express the solid plane structure.
  • the model around the unit length is combined in a ladder shape as shown in FIG. 33C to express the wiring structure.
  • An equivalent circuit model of the power supply circuit of the board is generated by connecting the model around the unit length described above for the dimensions, but of course it is expressed not by the lumped constant description but by the distributed constant description. It doesn't matter.
  • the input device 1 inputs a database of components other than the mounted LSI as component data input processing.
  • FIG. 3 shows a PCB in which an LSI 61 and a DC power supply 62 are connected by a power supply wiring 64, and a chip capacitor 63 as a countermeasure component is connected to the power supply wiring 64.
  • the specific information input here is a database of the DC power supply 62 and the chip capacitor 63, and here, an equivalent circuit model of each component is input into the database.
  • the equivalent circuit model generation means 8 performs, as model combination processing, an equivalent circuit model of a single board in the substrate power source generated by the solver processing in S19 and an equivalent circuit model of each component, as an actual PCB. Merge according to layout. Thus, a board equivalent circuit model in the PCB is generated.
  • FIG. 31 is a flowchart showing specific processing for generating an LSI equivalent circuit model (S15 ⁇ S16) in FIG.
  • the input device 1 inputs design information such as all LSI circuit connection information and layout information, LSI operation information, and a database of parts constituting the LSI as LSI information input processing.
  • the process proceeds to S23.
  • the equivalent circuit model generation means 8 generates the LSI operation part model 31 described so that the current flowing from the LSI design information to the LSI power supply terminal can be equivalently flowed as the operation part model generation processing. .
  • the LSI operation part model 31 generated here can be described by a current source as described in FIG. 34, but may be described by a transistor through which an equivalent current flows.
  • FIG. 36A shows an example of the waveform of the power supply current that flows equivalently in the model 31 of the LSI operation part or the model described in the transistor. This waveform represents a current waveform that fluctuates over time, but may be converted into a waveform showing frequency characteristics as described in FIG. 36B, if necessary.
  • the equivalent circuit model generation means 8 When obtaining the frequency characteristics of the voltage of the power supply circuit, it may be replaced with an AC power supply waveform that shows a constant amplitude even if the frequency fluctuates because it is simple if necessary.
  • the equivalent circuit model generation means 8 generates an admittance model representing an equivalent admittance in the LSI as the admittance model generation processing.
  • the LSI admittance model 32 illustrated in FIG. 34 generated here can be expressed by a model composed of capacitors and resistors, but may be described by an equivalent transistor description model.
  • the equivalent circuit model generation means 8 generates an LSI power distribution circuit model as a power distribution circuit model generation process.
  • the power distribution circuit model generated here is connected between an LSI equivalent circuit model in which the LSI operation part model 31 and the LSI admittance model 32 are combined, and two types of power terminals (power supply terminal and GND terminal) of the LSI. Model.
  • the PCB illustrated in FIG. 3 may include not only a power supply wiring model in an LSI but also a package model.
  • the process proceeds to S26.
  • the structure of the power distribution circuit model may be expressed by a simple inductance model 33 as illustrated in FIG. 35A, but a plurality of circuit blocks may be combined as illustrated in FIG. 35B depending on the situation.
  • the structure may be expressed by an equivalent circuit that is configured.
  • the above power distribution circuit model may be prepared by loading an equivalent circuit model in a database.
  • a method of creating by a solver process using a field solver provided in the equivalent circuit model generation unit 8 may be selected from input information which is a parameter such as a structure or a material constant.
  • the equivalent circuit model generation means 8 combines the created LSI operation part model, admittance model, and power distribution circuit model as model combination processing, and generates an LSI equivalent circuit model as illustrated in FIG. Generate. In this way, an equivalent circuit model of the LSI mounted on the PCB is generated.
  • the order of the model creation processing (S23, S24, S25) can be appropriately changed. Through this process, an example of the power supply circuit model of the PCB in FIG. 3 is as shown in FIG.
  • the substrate power supply wiring model 74, the DC power supply model 75, and the chip capacitor model 73 in FIG. 6 are created by the process of generating the substrate equivalent circuit model (S13 ⁇ S14) shown in FIG. Further, by generating the LSI equivalent circuit model in FIG. 29 (S15 ⁇ S16), the power distribution circuit model 79 shown in FIG. 6, the LSI current source 77 which is a model of the LSI operating part, and the model of the non-operating part of the LSI are obtained.
  • An LSI power supply model 71 and a package model 72 of an equivalent circuit model of an LSI power supply system constituted by an LSI internal capacitor 78 are created.
  • the generation process of the equivalent circuit model of the power supply circuit of the PCB, the analysis process of the power supply voltage fluctuation characteristic, and the determination process of whether or not the LSI is designed to operate stably causes the input data to be subjected to a certain process. Therefore, automation is possible. Therefore, in this embodiment, even a person who does not have deep knowledge about LSI and printed circuit board wiring can easily determine whether or not the power supply circuit is designed stably against power supply fluctuation. Further, existing techniques can be used as a method and apparatus for creating an LSI equivalent circuit model. Therefore, it is possible to use a field solver or circuit analysis tool for creating an equivalent circuit model of a commercially available board, and the system in this embodiment can be easily constructed.
  • the storage device 10 includes an LSI database 12, CAD data / part database 11, and a criterion database 4.
  • the LSI database 12 includes all circuit connection information and layout information of LSI, design information such as LSI operation information, and a database of parts constituting the LSI.
  • the CAD data and component database 11 includes a CAD data and component database which are PCB design information such as PCB layout and cross-sectional structure, and information on components to be mounted. [Description of action and effect]
  • circuit design information necessary for changing the circuit structure and operation of the LSI in the flowchart of FIG. 9 can be automatically extracted from the storage device 10.
  • the circuit operation ratio changing unit 51 performs an LSI operation ratio changing process for changing the operation ratio of the circuit block in the LSI according to the change guide prepared in the determination reference database 4 in the storage device 10. At that time, necessary data is input from the design information of the plurality of LSIs in the storage device 10 and the LSI database 12, and the operation ratio of the circuit blocks in the LSI is automatically changed. Next, the process proceeds to S28.
  • the input device 1 may not be used, or may be used only for inputting an action for starting input.
  • the circuit operation ratio changing means 51 changes the operation ratio in the LSI as the LSI circuit operation change processing, the change of the circuit block that operates and the circuit block that does not operate, and the power distribution circuit and package information related to them. Automatically select and change circuit operation. Then, the circuit operation ratio changing means 51 re-inputs the changed LSI design information into the LSI database 12. The process of reading data from the LSI database 12 and writing data is equivalent to S106 in FIG. With the above configuration, the information on the LSI database 12 in the storage device 10 can be automatically rewritten, so that the designer can change the operation ratio of the circuit blocks in the LSI. You can also get general guidelines.
  • FIG. 38 this embodiment is different from the fourth embodiment in that a storage device 10 is provided in which each input information and database are stored. Other structures and connection relationships are the same as those in the fourth embodiment.
  • the storage device 10 includes an LSI database 12, CAD data / part database 11, and a criterion database 4.
  • the LSI database 12 includes all circuit connection information and layout information of LSI, design information such as LSI operation information, and a database of parts constituting the LSI.
  • the CAD data and component database 11 includes a CAD data and component database which are PCB design information such as PCB layout and cross-sectional structure, and information on components to be mounted.
  • circuit design information for changing the circuit structure and operation of the LSI in the flowchart of FIG. 13 can be automatically extracted from the storage device 10. That is, instead of the input device 1 inputting circuit design information, necessary data can be automatically extracted from the LSI database 12 in the storage device 10 as necessary.
  • the circuit operation timing changing means 52 performs LSI operation timing change processing for changing the operation timing of a plurality of circuit blocks in the LSI according to the change guideline prepared in the determination reference database 4 in the storage device 10. Do.
  • the circuit operation timing changing means 52 automatically selects individual circuit blocks and operation timing changes in the LSI as the LSI circuit operation timing change processing, and power distribution circuit and package information related to them. Change the circuit operation. Then, the circuit operation timing changing unit 52 re-inputs the changed LSI design information into the LSI database 12.
  • the storage device 10 includes an LSI database 12, CAD data / part database 11, and a criterion database 4.
  • the LSI database 12 includes all circuit connection information and layout information of LSI, design information such as LSI operation information, and a database of parts constituting the LSI.
  • the CAD data and component database 11 includes a CAD data and component database which are PCB design information such as PCB layout and cross-sectional structure, and information on components to be mounted. [Description of Action / Effect]
  • circuit design information for changing the circuit structure and operation of the LSI can be automatically extracted from the storage device 10 in the flowchart of FIG.
  • the power supply wiring structure changing unit 53 performs a power supply wiring structure changing process for changing the power supply wiring structure in the LSI according to the change guide prepared in the determination reference database 4 in the storage device 10. At that time, necessary data is input from the CAD data and the parts database 11 in the storage device 10 and the design information of a plurality of LSIs and the LSI database 12, and the power supply wiring structure of the LSI is automatically changed. Is done. Next, the process proceeds to S32.
  • the input device 1 may not be used, or may be used only for inputting an action for starting input.
  • the power supply wiring structure changing unit 53 changes the power supply wiring inside the LSI as the LSI circuit structure changing process. In other words, the circuit structure in the LSI and the related power distribution circuit structure change, and the power distribution circuit and package information in the entire LSI related to them are automatically selected to change the circuit structure. . Then, the input information of the circuit structure of the power supply system of the modified LSI and the package is derived. Next, the process proceeds to S33.
  • step S33 the power supply wiring structure changing unit 53 automatically changes the structure of the substrate in response to the change of the power supply circuit structure of the LSI and changes the circuit structure as the substrate structure changing process. Then, the power supply wiring structure changing unit 53 re-inputs the changed LSI and the design information of the PCB on which the changed LSI is input into the LSI database 12, CAD data, and the component database 11.
  • the process of reading data from the LSI database 12 and the process of writing data correspond to S108 in FIG. 17, and the process of reading data from the CAD data and the parts database 11 and the process of writing data are performed in S109 of FIG. It corresponds to.
  • the LSI database 12 includes all circuit connection information and layout information of LSI, design information such as LSI operation information, and a database of parts constituting the LSI.
  • the CAD data and component database 11 includes a CAD data and component database which are PCB design information such as PCB layout and cross-sectional structure, and information on components to be mounted. [Description of action and effect]
  • circuit design information for changing the circuit structure and operation of the LSI in the flowchart of FIG. 21 can be automatically extracted from the storage device 10. That is, instead of the input device 1 inputting circuit design information, necessary data can be automatically extracted from the CAD data and the component database 11 and the LSI database 12 in the storage device 10 as necessary.
  • the LSI circuit position changing unit 54 performs an LSI circuit position changing process for changing the position of the circuit block in the LSI according to the change guide prepared in the determination reference database 4 in the storage device 10. At that time, necessary data is input from the CAD data and the parts database 11 in the storage device 10, the design information of the plurality of LSIs, and the LSI database 12, and the circuit structure and the power supply wiring structure inside the LSI are determined. Automatically changed. Next, the process proceeds to S44. In the above case, the input device 1 may not be used, or may be used only for inputting an action for starting input. In S44, the circuit position changing unit 54 changes the circuit position in the LSI as the LSI circuit structure changing process.
  • the circuit structure is changed by automatically selecting the arrangement of the circuit blocks in the LSI and the power distribution circuit and package information related to them. Then, the input information of the circuit structure of the power supply system of the modified LSI and the package is derived. Next, the process proceeds to S45.
  • the circuit position changing means 54 changes the board structure corresponding to the change of the power supply circuit structure of the LSI as the changing process, and the design information of the changed LSI and the PCB on which the changed LSI is stored in the LSI database 12 and the CAD. Re-enter the data and parts database 11.
  • the data reading process and data writing process from the LSI database 12 correspond to S111 in FIG.
  • the storage device 10 includes an LSI database 12, CAD data / part database 11, and a criterion database 4.
  • the LSI database 12 includes all circuit connection information and layout information of LSI, design information such as LSI operation information, and a database of parts constituting the LSI.
  • the CAD data and component database 11 includes a CAD data and component database which are PCB design information such as PCB layout and cross-sectional structure, and information on components to be mounted. [Description of Action / Effect]
  • circuit design information for changing the circuit structure and operation of the LSI in the flowchart of FIG. 25 can be automatically extracted from the storage device 10.
  • the operation signal changing means 55 performs an LSI operation signal change process for changing the operation signal waveform of the circuit block operating in the LSI according to the change guide prepared in the determination reference database 4 in the storage device 10. .
  • necessary data is input from the design information of the plurality of LSIs in the storage device 10 and the LSI database 12, and the operation signal waveforms of the circuit blocks in the LSI are automatically changed.
  • the process proceeds to S47.
  • the input device 1 may not be used, or may be used only for inputting an action for starting input.
  • the operation signal changing means 55 performs the change processing of the operation signal waveform of the circuit block in the LSI, the information on the circuit block in the LSI and the power distribution circuit and the package related thereto as the LSI circuit operation change processing. Automatically select and change circuit operation. Then, the operation signal changing unit 55 re-inputs the changed LSI design information into the LSI database 12.
  • the data reading process and data writing process from the LSI database 12 correspond to S113 in FIG.
  • Power supply voltage fluctuation deriving means for deriving a power supply voltage fluctuation characteristic that is a characteristic of voltage fluctuation in the semiconductor integrated circuit based on design information of a power supply circuit that connects the semiconductor integrated circuit mounted on the substrate and other components;
  • a power supply fluctuation condition that is a condition in which the power supply voltage fluctuation characteristic is allowed, and a determination reference database including a change guideline for at least one of a circuit structure or an operation of the semiconductor integrated circuit
  • Power supply voltage fluctuation determining means for comparing the power supply voltage fluctuation characteristics with the power supply fluctuation conditions and determining whether the power supply voltage fluctuation characteristics satisfy the power supply fluctuation conditions; If the power supply voltage fluctuation characteristic does not satisfy the power supply fluctuation condition, at least one of the structure and operation of the semiconductor integrated circuit is changed according to the change guideline, and the design information of the changed semiconductor integrated circuit is displayed as the power supply voltage fluctuation.
  • the power supply voltage fluctuation deriving means includes: Equivalent circuit model generation means for generating an equivalent circuit model in the power supply circuit from the design information;
  • the circuit structure change means includes circuit operation rate change means for changing a rate at which a plurality of circuit blocks in the semiconductor integrated circuit operate based on the change guideline. Power supply circuit design system.
  • the circuit operation ratio changing means is The power supply circuit design system according to appendix 3, wherein the operating ratio of the operating circuit block is reduced.
  • the circuit structure changing means a circuit for changing the operation timing of each of a plurality of operating circuit blocks in the semiconductor integrated circuit based on the change guideline and shifting the timing of currents flowing through the plurality of circuit blocks.
  • the power supply circuit design system according to any one of appendices 1 and 2, further comprising operation timing changing means.
  • the circuit operation timing changing means is 6.
  • the circuit structure changing means includes power wiring structure changing means for changing the number of power supply terminals and ground terminals connected to a plurality of circuit blocks in the semiconductor integrated circuit based on the change guideline.
  • the power supply wiring structure changing means is Increasing the ratio of the power supply terminal and the ground terminal in all terminals of the semiconductor summing circuit connected to the plurality of circuit blocks.
  • the circuit structure changing means includes circuit position changing means for changing the position of the operating circuit block and the non-operating circuit block in the semiconductor integrated circuit based on the change guideline.
  • the circuit position changing means changes the position of the operating circuit block to a position close to a power supply terminal and a ground terminal connected to the plurality of circuit blocks,
  • the power supply circuit design system according to appendix 9, wherein the position of the non-operating circuit block is changed to a position far from the power supply terminal and the ground terminal.
  • the operation signal changing means is 12.
  • a storage device comprising design information of the power supply circuit is provided, 3.
  • [Appendix 14] Enter design information for the power supply circuit that connects the semiconductor integrated circuit and other components mounted on the board, Based on the design information, a power supply voltage fluctuation characteristic that is a characteristic of voltage fluctuation in the semiconductor integrated circuit is derived, A power supply voltage fluctuation comparison process is performed for comparing the power supply voltage fluctuation characteristics with a power fluctuation condition that is an allowable condition thereof, A power supply voltage characteristic determination process is performed to determine whether the power supply circuit satisfies a condition for the power supply voltage fluctuation characteristic, When the condition is not satisfied in the power supply voltage characteristic determination process, the semiconductor integrated circuit structure is changed according to a change guide prepared in advance, and the power supply voltage fluctuation characteristic derivation process is performed again in the changed design information of the semiconductor integrated circuit.
  • the power supply circuit design method wherein the change guideline does not involve a size change of the semiconductor integrated circuit.
  • Circuit design information input processing for inputting design information of a power supply circuit for connecting a semiconductor integrated circuit and other components mounted on a substrate;
  • a power supply voltage fluctuation characteristic deriving process for deriving a power supply voltage fluctuation characteristic that is a voltage fluctuation characteristic in the semiconductor integrated circuit based on the design information;
  • a power supply voltage fluctuation comparison process for comparing the power supply voltage fluctuation characteristics with a power fluctuation condition which is an allowable condition thereof;
  • Power supply voltage characteristic determination processing for determining whether or not the power supply circuit satisfies a condition for the power supply voltage fluctuation characteristic;
  • the semiconductor integrated circuit structure is changed according to a change guide prepared in advance, and the power supply voltage fluctuation characteristic derivation process is performed again in the changed design information of the semiconductor integrated circuit.
  • the change guide is a program that does not involve a size change of the semiconductor integrated circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

本発明の電源回路設計システムは、基板上に実装された半導体集積回路およびその他の部品とを接続する電源回路の設計情報に基づき、半導体集積回路における電圧変動の特性である電源電圧変動特性を導出する電源電圧変動導出手段と、電源回路において、電源電圧変動特性が許容される条件である電源変動条件と半導体集積回路の回路構造あるいは動作の少なくとも一方の変更指針を備える判定基準データベースと、電源電圧変動特性と電源変動条件とを比較し、電源電圧変動特性が電源変動条件を満たしているかどうか判定する電源電圧変動判定手段と、電源電圧変動特性が電源変動条件を満たさなかった場合、変更指針に従って半導体集積回路の構造及び動作の少なくとも一方の変更を行い、変更した半導体集積回路の設計情報を電源電圧変動導出手段へ出力する回路構造変更手段を備え、変更指針は、半導体集積回路のサイズ変更をともなわないものであることを特徴とする。

Description

電源回路設計システム、及び電源回路設計方法
 本発明はコンデンサ等の受動部品と共にプリント配線基板(以下、「PCB」と記述)に実装される半導体集積回路(以下、「LSI」と記述)おいて、LSIを含めたPCBの電源回路が、電圧変動などのノイズ特性を考慮した上で、LSIが安定に動作する構造を導出する電源回路設計システム、及び電源回路設計方法に関する。
 LSIが搭載されたPCBでは、LSIの動作によって生じる電流がPCBの電源を流れることによりPCBの電源電圧が変動し、その電圧変動によりLSIが正常動作しないという構造的な問題が存在している。そのため、LSIを正常動作させる為に、LSIを含めたPCBの電源回路に流れる電流(以下、「電源電流」とも記述)を低下させる、もしくは電源回路のインピーダンスを低下させるといった、電源回路電圧変動を抑制する試みが行なわれている。
 例えば、特許文献1には、電圧降下(変動)を検出する回路と、電圧を追加するレギュレート回路とをLSI(ブロック)に内蔵した構造が記載されている。電圧降下検出回路は、LSIの動作時に生じる電圧降下量を算出し、その電圧降下量を電圧レギュレート回路にフィードバックする。LSIは、上記2つの回路を内蔵し、電圧降下により生じた電圧をレギュレート回路の動作電圧とすることで、安定な電源電圧を供給する半導体集積回路設計装置が記載されている。
 また特許文献2は、ノイズを解析する手段と、ノイズレベルが所定範囲内であるかを判定する手段と、ノイズが所定範囲外のとき、LSIの回路ブロック内にバイパスコンデンサを追加する手段とを有する半導体集積回路設計装置が記載されている。
 特徴としては、データベースの情報からノイズ解析を行うノイズ解析手段と、ノイズ量が所定の範囲を超える場合、LSIの中のノイズ発生量が所定の範囲を超える論理ゲートを探す論理ゲート選択手段と、前記選択された論理ゲートに、電源ノイズ及び基板ノイズ低減用のバイパスコンデンサを追加するバイパスコンデンサ追加手段を有していることが挙げられる。
 これらの手段により、データベースからの情報を用い、ノイズ源となりうるノイズ量が大きい論理ゲート回路の近くに、ノイズを低減する為のバイパスコンデンサを追加することが出来、効率よくノイズを抑制することが出来る。
 また、ノイズの所定の範囲を設定しておくことにより、バイパスコンデンサを近くに追加するべき論理ゲートが自動的に見つかるので、一連の自動的な流れにより、ノイズに対して安定に設計されたLSIの構造が提供されるとある。
特開2003−124335号公報 特開2004−086881号公報
 しかしながら、特許文献1及び2に記載されている技術は、LSI回路ブロック内に対策部品を設けるスペースが必要となる。つまり特許文献1は、電圧降下検出回路と電圧レギュレート回路を内蔵するスペースが必要であり、また特許文献2は、バイパスコンデンサを設置する為のスペースがそれぞれ必要となる。
 そのため特許文献1及び2に記載した技術は、LSI内に最初から余分なスペースを内蔵させるためにチップサイズを拡大する必要があり、装置の小型化という点で問題があった。
 本発明の目的は、上記問題を解決する電源回路設計システム、及び電源回路設計方法を提供することを目的とする。
 本発明の電源回路設計システムは、基板上に実装された半導体集積回路およびその他の部品を接続する電源回路の設計情報に基づき、半導体集積回路における電圧変動の特性である電源電圧変動特性を導出する電源電圧変動導出手段と、電源回路において、電源電圧変動特性が許容される条件である電源変動条件と半導体集積回路の回路構造あるいは動作の少なくとも一方の変更指針を備える判定基準データベースと、電源電圧変動特性と電源変動条件とを比較し、電源電圧変動特性が電源変動条件を満たしているかどうか判定する電源電圧変動判定手段と、電源電圧変動特性が電源変動条件を満たさなかった場合、変更指針に従って半導体集積回路の構造及び動作の少なくとも一方の変更を行い、変更した半導体集積回路の設計情報を電源電圧変動導出手段へ出力する回路構造変更手段を備え、変更指針は、半導体集積回路のサイズ変更をともなわないものであることを特徴とする。
 チップサイズの拡大を行わずに、電圧変動に対して安定した電源回路を設計することができる。
 図1は、第1の実施形態のシステム構成を示した図である。
 図2は、第1の実施形態のフローチャートを示した図である。
 図3は、部品が実装されたPCBの構造の一例である。
 図4は、第2の実施形態のシステム構成を示した図である。
 図5は、第2、3、4、5、6、7及び8の実施の形態のフローチャートを示した図である。
 図6は、PCBの等価回路モデルの一例である。
 図7は、電源電圧変動特性としての電圧変動特性の一例である。
 図8は、第3の実施形態のシステム構成を示した図である。
 図9は、回路動作割合変更処理のフローチャートを示した図である。
 図10Aは、変更前のLSIの回路構造を示した図である。
 図10Bは、変更後のLSIの回路構造を示した図である。
 図11Aは、回路動作の変更前のLSIの等価回路モデルと電源電圧変動波形を示した図である。
 図11Bは、回路動作の変更後のLSIの等価回路モデルと電源電圧変動波形を示した図である。
 図11Cは、回路動作変更前と回路動作変更後の電源電圧波形を示した図である。
 図12は、第4の実施形態のシステム構成を示した図である。
 図13は、回路動作タイミング変更処理のフローチャートを示した図である。
 図14Aは、変更前のLSIの回路構造と各ブロックに流れる電流波形を示した図である。
 図14Bは、変更後のLSIの回路構造と各ブロックに流れる電流波形を示した図である。
 図15Aは、回路動作の変更前のLSIの等価回路モデルと電源電圧変動波形を示した図である。
 図15Bは、回路動作の変更後のLSIの等価回路モデルと電源電圧変動波形を示した図である。
 図15Cは、回路動作変更前と回路動作変更後の電源電圧波形を示した図である。
 図16は、第5の実施形態のシステム構成を示した図である。
 図17は、電源配線構造変更処理のフローチャートを示した図である。
 図18Aは、変更前のLSIの回路構造を示した図である。
 図18Bは、変更後のLSIの回路構造を示した図である。
 図19Aは、回路構造の変更前のLSIの等価回路モデルと電源電圧変動波形を示した図である。
 図19Bは、回路構造の変更後のLSIの等価回路モデルと電源電圧変動波形を示した図である。
 図19Cは、回路構造変更前と回路構造変更後の電源電圧波形を示した図である。
 図20は、第6の実施形態のシステム構成を示した図である。
 図21は、回路位置変更処理のフローチャートを示した図である。
 図22Aは、変更前のLSIの回路構造を示した図である。
 図22Bは、変更後のLSIの回路構造を示した図である。
 図23Aは、回路構造の変更前のLSIの等価回路モデルと電源電圧変動波形を示した図である。
 図23Bは、回路構造の変更後のLSIの等価回路モデルと電源電圧変動波形を示した図である。
 図23Cは、回路構造変更前と回路構造変更後の電源電圧波形を示した図である。
 図24は、第7の実施形態のシステム構成を示した図である。
 図25は、動作信号変更処理のフローチャートを示した図である。
 図26Aは、変更前のLSIの回路構造と各ブロックに流れる電流波形を示した図である。
 図26Bは、変更後のLSIの回路構造と各ブロックに流れる電流波形を示した図である。
 図27Aは、回路動作の変更前のLSIの等価回路モデルと電源電圧変動波形を示した図である。
 図27Bは、回路動作の変更後のLSIの等価回路モデルと電源電圧変動波形を示した図である。
 図27Cは、回路動作変更前と回路動作変更後の電源電圧波形を示した図である。
 図28は、第8の実施形態のシステム構成を示した図である。
 図29は、等価回路モデル作成処理のフローチャートを示した図である。
 図30は、等価回路モデル作成処理内の基板等価回路モデル作成処理のフローチャートを示した図である。
 図31は、等価回路モデル作成処理内のLSI等価回路モデル作成処理のフローチャートを示した図である。
 図32Aは、基板の断面構造を示した図である。
 図32Bは、マイクロストリップ配線の断面構造を示した図である。
 図33Aは、ソルバ処理によって生成された電源供給回路の単位長さ辺りの等価回路モデルを示す図である。
 図33Bは、電源が基板構造である場合の等価回路モデル構造を示した図である。
 図33Cは、電源が配線構造である場合の等価回路モデル構造を示した図である。
 図34Aは、LSIの等価回路モデル構造を示した図である。
 図34Bは、LSIの等価回路モデル構造を示した図である。
 図35Aは、LSI全体を等価回路モデルで表現した図である。
 図35Bは、LSI内を分割したモデルが複数結合したモデルで表現した図である。
 図36Aは、LSIの動作部分モデルに流れる電源電流の時間波形を示した図である。
 図36Bは、電源電流の周波数特性を示す図である。
 図37は、第10の実施形態のシステム構成を示した図である。
 図38は、第11の実施形態のシステム構成を示した図である。
 図39は、第12の実施形態のシステム構成を示した図である。
 図40は、第13の実施形態のシステム構成を示した図である。
 図41は、第14の実施形態のシステム構成を示した図である。
 〔第1の実施形態〕以下に、本発明を実施するための好ましい形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
 〔構成の説明〕図1に、第1の実施の形態のシステム構成を示す。本実施形態における電源回路設計システムは、入力装置1と電源電圧変動導出手段2と、電源変動条件判定手段3と、判定基準データベース4と、回路構造/動作変更手段5と、出力装置6とを備えている。
 入力装置1は、LSIを実装したPCBを構成する回路の設計情報とデータベースを備えた入力情報を電源電圧変動導出手段2に入力する機能を有する。
 電源電圧変動導出手段2は、PCB上の電源上において生じる電圧変動の特性である電源電圧変動特性を導出する機能を有する。
 電源変動条件判定手段3は、LSIに実装されたPCBの電源回路が安定に設計されているかを自動的に判定する。具体的には電源変動条件判定手段3は、電源電圧変動導出手段2において導出された電源電圧変動特性と、判定基準データベース4に備えられている電源変動条件とを比較し、電源電圧変動特性が電源変動条件を満たしているかどうかを判定する機能を有する。
 電源電圧変動特性として挙げられるものは、電源−GND間の電圧変動の時間波形特性があるが、これに限定されない。例えば、電源電圧変動特性として、電圧変動の周波数特性等などでも評価を行ってもよく、電源電圧変動導出手段2はそれらのうちどれか一つの特性を求める。
 判定基準データベース4は、電源電圧変動特性における限界値を示す電源変動条件を備えており、あらかじめ複数の電源電圧変動特性の電源変動条件を備えていてもよい。
 電源変動条件判定手段3が電源電圧変動特性と電源変動条件との比較を行い、条件を満たさないと判定した場合、回路構造/動作変更手段5は、電源変動条件を満たす為に、LSIの構造および動作の少なくとも一方を変更する操作を行う。
 回路構造/動作変更手段5が行うLSIの回路構造および動作の変更仕様は、判定基準データベース4内に電源変動条件とセットで設けられ、電源電圧特性が電源変動条件を満たさない場合、指針に基づいて変更が行われても良い。以下、「回路構造/動作の変更」を略して『変更』と述べることもある。なお回路構造/動作変更手段5は、変更処理として、具体的なLSIの変更を行うものであるが、この変更は、LSIのサイズ変更を伴わないものである。
 電源電圧変動導出手段2は、構造あるいは動作が変更されたLSIが実装されたPCBの電源電圧変動特性の導出を行う。そして再度、電源変動条件判定手段3は、構造あるいは動作が変更されたLSIが実装されたPCBの電源回路が安定に設計されているかを自動的に判定する、という操作を繰り返す。
 電源変動条件判定手段3は、PCBの電源回路が電源変動条件を満たすと判定された場合、電源変動条件判定手段3における結果を出力装置6に出力する機能を有する。
 〔動作の説明〕図2は本発明の本実施形態の処理を示したフローチャートである。この処理について、以下詳細に説明を行う。
 S1において、入力装置1は、回路設計情報の入力処理を行う。ここで入力される情報は、図3に示されるようにLSI61、直流電源62、チップコンデンサ63などの受動部品が実装された電源回路を構成しているPCBの場合、そのレイアウトや実装されるLSIその他の部品等、電源回路における電圧変動特性を導出するのに必要な情報である。次にS2に処理を進める。
 S2おいて、電源電圧変動導出手段2は、入力装置1から入力された回路設計情報に基づき、電源電圧変動特性の導出処理を行う。上記処理により、PCBにおける電源電圧変動特性が導出される。次にS3に処理を進める。
 S3において、電源変動条件判定手段3は、導出された電源電圧変動特性と判定基準データベースに設けられている電源変動条件との比較処理を行う。次にS4に処理を進める。
 S4において、電源変動条件判定手段3は、電源電圧変動特性と判定基準データベース4内に備えられた電源変動条件との比較処理を行い、PCBの電源回路が安定に設計されているかどうかを判定する。判定基準を満たさないと判定された場合、S5に処理を進める。
 S5において、回路構造/動作変更手段5は、予め判定基準データベース4に用意されている変更指針を自動的に抽出し、その指針に従い自動的に変更処理としてLSI及びそれを実装したPCBの回路構造及び動作の変更を行う。変更されたLSI及びそれを実装したPCBのデータは自動的に入力され、S2に処理を進め、再度変更されたLSIの情報を用いて改めて電源電圧変動特性を導出するという操作を繰り返す。
 なお、回路構造/動作変更手段5は、LSIのサイズ変更を伴わずにLSIの変更処理を行い、LSIの変更処理に合わせたPCBの変更処理も同時に行う。
 S4において、電源変動条件判定手段3が導出した電源電圧変動特性と、電源変動条件との比較を行い、判定基準を満たすと判定した場合、S6に処理を進める。
 S6において、一連の処理を行った結果を出力装置6に出力する。
 〔効果の説明〕次に本実施形態における効果について説明を行う。上記構成により、本実施形態は電源変動条件、及びLSIの構造/動作変更指針を用意することにより、PCBの電源回路が電圧変動に対し安定に設計されているかの判断が容易にできるようになる。また、LSIを実装したPCBの電源回路の設計を、電圧変動に対し安定になるように容易に行うことができる。
 またS5におけるLSIの回路構造/動作の変更処理は、LSIのサイズ変更を伴わない回路構造/動作の変更であるため、LSIの構造/動作変更の際に余計なスペースを必要としない。そのため、高密度に実装したLSIのチップサイズや実装面積の拡大を行わずに、LSIを実装したPCBの電源回路を電圧変動に対し安定に設計することができる。
 〔第2実施形態〕次に、第2の実施形態について図面を参照して詳細に説明する。
 〔構成の説明〕図4に示すように、本実施形態の電源回路設計システムは、電源電圧変動導出手段2として、電源電圧変動解析手段7を備えている。
 本実施形態における電源電圧変動手段7は、第1の実施形態における電源電圧変動導出手段2に対応している。
 図4に示すように、電源電圧変動解析手段7は、入力装置1から入力される回路の設計情報からPCBの電源回路の等価回路モデルを生成する等価回路モデル生成手段8と、生成された等価回路モデルを用いて、電源電圧変動特性を導出する演算手段9とを備える。なお、等価回路モデル生成手段8は、基板等価回路モデル作成手段とLSI等価回路モデル作成手段とを備えている。
 基板等価回路モデル作成手段は、PCBのレイアウト及び断面構造、及び実装される部品の情報等である基板の設計情報及び部品データベースに基づいてプリント基板の等価回路モデル(以下、「基板等価回路モデル」とも記述)を作成する。
 この基板等価回路モデル作成手段は、基板の断面構造や材質、レイアウト等の情報を入力することによって、基板のベタ層や配線等の等価回路モデルを作成することが可能である、フィールドソルバを備えていても良い。
 一方、LSI等価回路モデル作成手段は、LSIの全回路接続情報やレイアウト情報、LSIの動作情報等の設計情報、及びLSIの内部を構成している部品のデータベースから図34AまたはBに記述されるようなLSIの等価回路モデルを作成する。
 演算手段9は、SPICEに代表されるような回路解析エンジンや、電磁界解析エンジン等が備えられているとしてよく、必要な電源電圧変動特性の解析が実行される。
 〔動作の説明〕次に、本実施形態における動作の説明を行う。図5は本実施形態における処理を示したフローチャートである。
 本実施形態におけるフローチャートは、第1の実施形態におけるフローチャートのS2の電源電圧変動特性導出処理の変わりに、等価回路モデル生成処理を行うS7と、回路解析処理を行うS8とを設けた構成である。以下、本実施形態における動作について詳細に説明を行う。
 S1において、入力装置1は、回路設計情報の入力処理を行う。ここで入力される情報は、図3に示されるようなLSIやその他部品が実装された電源回路を構成しているPCBの場合、そのレイアウトや実装されるLSIその他の部品等、電源回路における電圧変動特性を導出するのに必要な情報である。次にS7に処理を進める。
 S7において、等価回路モデル生成手段8は、等価回路モデル生成処理として、入力装置1から入力された回路設計情報に基づき、LSIが実装されたPCBの電源系全体を示す等価回路モデル(以下、「電源系等価回路モデル」)を作成する。次に、S8に処理を進める。
 S8において、演算手段9は、回路解析処理として、図6に例示されたようなPCBの電源系等価回路モデルを用いて回路の特性解析を行う。そして演算手段9は、図7に示すような電源電圧変動特性を導出する。次に、S3に処理を進める。
 S3において、電源変動条件判定手段3は、導出した電圧変動特性が、判定基準データベース4より読み込まれる電源変動条件を満たしているか自動判定を行う。
 ここで電源変動条件判定手段3は、図7に示すように以下の2つの条件を満たしているか判定する。1つ目は、電源変動条件の直流電圧VCCより降下する値がΔVDL以内という条件である。2つ目は、LSIのスイッチング動作が生じる時間(ex.t=0)から電圧変動が収まるまでの戻り時間(例えばスイッチング動作が生じてから電圧変動の幅が1%以内になるまでの時間)がΔtRL以内という条件である。
 S3において、電源変動条件判定手段3は、例えば図7に示すLSIのある観測点(例えば図6における76)における電源電圧波形Aの特性41を解析する。電源電圧波形Aの戻り時間ΔtCAはΔtRLより短く、tCA<ΔtRLという条件は満たしている。しかし、電圧降下値ΔVDAはΔVDLより大きく、ΔVDA<ΔVDLという条件を満たしていない。そのため、電源電圧波形Aは判定基準を満たしていないと解析され、LSIは安定動作しないと判定される。
 一方、図7に示すLSIの別の観測点における電源電圧波形Bの特性42を解析する。電源伝圧波形Bの電圧降下値ΔVDBはΔVDLより小さく、ΔVDB<ΔVDLという条件は満たしている。しかし、戻り時間tCBはΔtRLより長く、tCB<ΔtRLという条件を満たしていない。この場合でもLSIは安定動作をしないと判定される。
 なお、ここでの電源変動条件として電圧降下値と戻り時間の両者で検討することにしたが、電圧降下値だけが条件になっている場合等も考えられる。その場合、LSIのある観測点における電源電圧波形Bの特性42においては、電圧降下値ΔVDBはΔVDB<ΔVDLという条件は満たしているので、LSIは安定動作をすると判断されることになる。
 また、図6は、図3で例示されたようなPCBの電源回路モデルにおいて、電源電圧特性として図示された点(この場合はLSIの電源分配回路とパッケージの接続点であり、図3の66、図6の76)での電圧変動をモニターしている。しかし、別のモニター点(例えば電源プレーンの端における電源−グランド間の電圧)での電圧値において、電源変動条件が設定されていても良い。
 こうして、電源変動条件判定手段3は、図3で例示されたようなPCBの電源系等価回路モデルを回路解析処理(S8)行うことで、電源電圧変動特性比較処理(S3)を実行する。次に、S4に処理を進める。
 S4において、電源変動条件判定手段3は、判定基準を満たすかどうかの判定処理を行う。電源変動条件判定手段3は、判定処理において電源電圧変動特性が判定基準を満たさない場合、S9に処理を進める。
 S9において、回路構造/動作変更手段5は、具体的なLSIの変更を行う。なお、このLSIの変更は、LSIのサイズ変更を伴わないものである。
 具体的なLSIの変更処理は、例えばLSI内の回路ブロックの動作割合を変更する回路動作割合変更処理や、LSI内の複数の回路ブロックの動作タイミングを変更する回路動作タイミング処理、LSI内の電源配線とパッケージの構造を変更する電源配線構造変更処理などがある。上記の処理については、第3の実施形態以降で詳細に説明を行う。しかし、LSIの変更処理は、これに限定されず、その他の具体的な回路構造どの変更処理が行われてもよい。(第6,7の実施形態に記載)
 またS9における上記の変更手法選択処理によっては、選択される具体的な回路構造および動作の変更処理のバリエーションが増える。しかしフローチャートは、図5に限定されるものではない。
 また、S9における回路構造/動作変更処理は、基本的には判定基準データベース4内に用意された回路構造や動作変更指針によって自動的に行われ、その処理の結果に従い回路構造および動作の変更処理が行われる。
 変更された回路構造は、再び等価回路モデル生成処理(S7)に入力され、再度、回路解析処理(S8)、電源電圧変動特性比較処理(S3)、及び判定処理(S4)の一連の処理が実行される。
 上記に記載の一連の処理は、S4の判定処理において、電源電圧変動特性が判定基準を満たすまで繰り返される。判定基準を満たさず、S9において回路構造/動作変更処理を1度でも行った場合にS4において判定基準を満たすまで様々な変更処理を順序だてて行い、変更指針を判定基準データベースにおいて準備する。その結果、S4の判定処理において判定基準を満たすまで、自動的に変更処理(S9)が行われ、安定な電源を持つPCBの構造を得ることができる。
 上記の本実施形態における一連の処理を行い、S4における判定処理により電源電圧変動特性が判定基準を満たすと判定されたとき、判定結果が出力装置6に出力する。また同時に、CADデータ(S101)や、LSI設計情報(S102)に出力してもよい。
 〔効果の説明〕次に本実施形態における効果について説明を行う。上記構成により、本実施形態は電源変動条件、及びLSIの構造変更指針を用意することにより、PCBの電源回路が電圧変動に対し安定に設計されているかの判断が容易にできるようになる。また、LSIを実装したPCBの電源回路の設計を、電圧変動に対し安定して容易に行うことができる。
 さらに、LSI及びPCBの特性を再現した等価回路モデルを用いて解析を行うことにより、電源回路が電圧変動に対し安定に設計されているかどうかを、現実的な時間で容易に判定することが可能となる。また、電源電圧変動特性を絶対量で導出することが可能であり、定量的な評価及び対策を行うことが可能になる。
 またS9におけるLSIの変更処理は、LSI内の回路ブロックの動作状態の変更や電源構造の変更等であり、変更の際にLSI内に余計なスペースを必要としない。そのため、高密度実装のLSIでもチップサイズや実装面積の拡大を生じさせずに、LSIが実装されたPCBの電源回路を電圧変動に対し安定に設計することが可能になる。
 〔第3の実施形態〕次に第3の実施形態について説明を行う。
 〔構成の説明〕図8に示すように、本実施形態が第2の実施形態と異なる点は、回路構造/動作変更手段5として回路動作割合変更手段51を備えている点である。それ以外の構造、接続関係は、第2の実施形態と同様である。
 回路動作割合変更手段51は、判定基準データベース4内に用意された変更指針に基づき、LSI内部の回路ブロックの動作割合を変更する機能を有する。
 〔動作の説明〕次に、本実施形態における動作について説明を行う。
 図9は、S9における回路構造/動作変更処理(図5に記載)の具体的なLSIの変更処理の一例を示す回路動作割合変更処理(S10)のフローチャートである。
 S4において、電源変動条件判定手段3が、電源電圧変動特性と判定基準データベース4内に備えられた電源変動条件と比較処理を行い、判定基準を満たさないと判定された場合、S27に処理を進める。
 S27において、回路動作割合変更手段51は、LSI動作割合変更処理として、判定基準データベース4内に用意された変更指針に従い、LSI内部の回路ブロックの動作割合を変更する。次に、S28に処理を進める。
 S28において、回路動作割合変更手段51は、LSI回路動作変更処理としてLSI内の動作割合を、動作する回路ブロックと動作しない回路ブロックの変更、及びそれらに関連する電源分配回路やパッケージの情報などを自動的に選択し、回路動作の変更を行う。
 図10は、LSI内の回路ブロックの動作割合を変更する場合の、具体的な処理の一例である。LSI81内には、電源端子83とグランド端子84に接続されている回路ブロック82が複数存在している。ここで、回路構造の変更前である図10Aでは、回路ブロックのうち4割が動作(Active)しており、残りの6割が非動作(Static)の状態である。
 上記の『動作』とは、スイッチング動作(ON−OFFを一定周期で繰り返す)のことである。『動作する回路ブロック』とは、常にスイッチング動作を(回路のクロックに合わせて)行う回路ブロックのことを示す。また『非動作の回路ブロック』は、クロックよりも長い周期でスイッチング動作、またはランダムに動作する回路ブロックのことを示す。
 なおLSI内には、電源−GND間に接続されているが、信号が入力されないなどの理由により、スイッチング動作を行わない回路ブロックも存在している。そこで『非動作の回路ブロック』は、上記のスイッチング動作を行わない回路ブロックも含んでいる。
 S4において判定基準を満たさないと判断されると、回路構造/動作変更手段5は、判定基準データベース4内に用意された変更指針に従い、図10Bに示すように回路ブロックの動作割合を4割→2割へと変更させる。
 なお、ここでは回路ブロックの動作割合を変更する例として4割から2割に変更した例を示したがこれに限定されず、動作の割合を減少できるものであればよい。なお、LSI内部は、要求される動作と比較して、余分な動作を行っている回路ブロックが存在していることがある。本実施形態では、上記の場合などには、LSIの動作への影響を抑えるために、主に余分な動作を行っている回路ブロックの動作割合を変更する。
 〔効果の説明〕次に、本実施形態における効果について説明を行う。図11は、LSIの等価回路モデル及び電源電圧変動波形を示す。回路動作の変更前のLSIの等価回路モデルと電源電圧変動波形を図11Aに示す。一方、回路動作の変更後のLSIの等価回路モデルと電源電圧変動波形を図11Bに示す。
 上記の回路構造変更により、電源電流波形IはI’となり、それぞれのピーク値がIP>IP’となり、LSIの電源端子に流れる電流は小さくなる。また、LSI内部の等価容量CはC’となり、C<C’となるため、LSIの電源回路のインピーダンスは小さくなる。
 ここに、LSI内部の等価容量がCからC′に変更した理由を説明する。回路ブロックは基本的に電源−グランド間に接続されており、回路ブロックを構成するトランジスタは容量成分を備えている。ここで非動作の回路ブロックは、回路ブロックが殆ど動作しない(ON−OFFの状態が変わらない)ため、時間が経っても変動しない、ほぼ安定した容量(キャパシタ)とみなすことが出来る。従って、非動作の回路ブロックの割合が増えれば、電源−グランド間の容量の割合が増加するとみなすことができる。
 このLSIの回路動作変更により、図11Cに示したように回路動作変更前の電源電圧波形91は回路動作変更後の電源電圧波形92に変更され、ΔVD1がΔVD2に減少する。その結果、ΔVD1>ΔVD2となり、判定基準を満たす方向へと特性を変更する。尚、C<C’の関係が成り立つため、電圧変動の戻り時間であるΔtC2がΔtC1より大きくなる可能性があるので、戻り時間が判定基準を超えないように注意する必要がある。
 ただし、回路ブロックの動作割合が小さくなれば電源電圧変動は小さくなるものの、LSIには基本的な動作を行うための、回路ブロックの最低限の動作数が必要である。それよりも動作割合を小さくした場合、LSIが動作しなくなる可能性がある。
 そこで判定基準データベース4内に用意された変更指針として、変更が可能な制限を持った変更指針(この例においては、”動作割合が2割以上であるように動作割合を小さくする”といったもの)を用意しておき、その変更指針に従いLSI内の回路ブロックの割合を変更するような処理にすれば、LSIが動作しない危険性を除去した上で、回路動作割合変更処理(S10)を行うことができる。
 また本実施形態におけるLSIの回路構造の変更処理は、LSI内の回路ブロックの動作割合の変更であり、変更の際にLSI内に余計なスペースを必要としない。そのため、高密度実装のLSIでもチップサイズや実装面積の拡大を生じさせずに、LSIの実装されたPCBの電源回路を電圧変動に対し安定に設計することが可能になる。
 〔第4の実施形態〕次に、第4の実施形態について説明を行う。
 〔構成の説明〕図12に示すように、本実施形態が第2の実施形態と異なる点は、回路構造/動作変更手段5として、回路動作タイミング変更手段52を備えている点である。それ以外の構造、接続関係は、第1の実施形態と同様である。
 回路動作タイミング変更手段52は、判定基準データベース4内に用意された変更指針に基づき、LSI内部の回路ブロックの動作タイミングを変更する機能を有する。
 〔動作の説明〕次に、本実施形態における動作について説明を行う。
 図13は、S9における回路構造/動作変更処理(図5に記載)の具体的なLSIの回路動作の変更処理の一例を示す回路動作タイミング変更処理(S11)のフローチャートである。
 S4において、電源変動条件判定手段3は、電源電圧変動特性と、判定基準データベース4内に備えられた電源変動条件との比較処理を行い、判定基準を満たしていないと判定された場合、S29に処理を進める。
 S29において、回路動作タイミング変更手段52は、判定基準データベース4内に用意された変更指針に従い、LSI内部の回路ブロックの動作タイミングを変更するLSI動作タイミング変更処理を行う。次に、S30に処理を進める。
 S30において、回路動作タイミング変更手段52は、LSI回路動作の変更処理として、LSI内の動作タイミングを変更する。つまり、LSI内の個々の回路ブロックと動作タイミングの変更、及びそれらに関連する電源分配回路やパッケージの情報などを、自動的に選択し、変更を行う。
 図14は、LSI内の回路ブロックの動作タイミングを変更する場合の、具体的な変更処理の一例である。回路ブロック82は、LSI81の内部に設けられており、電源端子83とグランド端子84と接続している。
 図14Aは変更前であり、回路ブロックのうち4割が動作(Active)しており、残りの6割が非動作(Static)の状態である。動作している第1回路ブロック85と第2回路ブロック86の電源電流を、それぞれI1、I2とすると、I1とI2は同タイミングで動作している。
 S4において、判定基準を満たさないと判断された場合、S29において判定基準データベース4内に用意された変更指針に従い、図14Bに記載のように動作している第1回路ブロック85と第2回路ブロック86との動作タイミングを変更させて、I1とI2の流れるタイミングをずらす。
 〔効果の説明〕次に、本実施形態における効果の説明を行う。図15にはLSIの等価回路モデル及び電源電圧変動波形を示す。回路動作の変更前のLSIの等価回路モデルと電源電圧変動波形を図15Aに示す。一方、回路動作の変更後のLSIの等価回路モデルと電源電圧変動波形を図15Bに示す。
 このとき、図15Bにおける電源電流波形I’’は、それぞれの回路ブロックの電流波形I1とI2とを合計したものとなる。回路動作変更前の電源電流波形Iと、回路動作変更後の電流波形I’’とは流れる電流量(電荷量)は変わらない。しかし電源電流波形I’’は、I1とI2はタイミングがずれていることにより、電源電流波形I’’のピーク値IP’’はIPより小さくなる(IP>IP’’)。その結果、LSIの電源端子に流れる電流のピーク値も小さくなり、電流の高周波成分も抑制されることになる。
 また、図15BにおけるLSI内部の等価容量C’’は、それぞれの回路ブロックの内部の等価容量C1とC2の合計となり、C=C’’である。(C=C1+C2)
 このLSIの回路動作変更により、図15Cに示したように回路動作変更前の電源電圧波形91は回路動作変更後の電源電圧波形93に変更され、ΔVD1がΔVD3に減少する。その結果、ΔVD1>ΔVD3となり、判定基準を満たす方向へと特性を変更する。尚、C=C’’の関係が成り立ち、基本的に電源回路のインピーダンスの変更は無いが、電流波形のピーク値が小さくなり高周波成分も抑制されるので、電圧変動の戻り時間は一般的にΔtC1>ΔtC3になる。
 ただし、回路ブロックの動作タイミングのずれが大きくなれば、電源電流波形のピーク値も小さくなり電源電圧変動は小さくなるが、LSI内の回路ブロック毎のタイミングのずれ(遅延)にはLSIが正常動作する為の許容値が存在するため、ずれ(遅延)はLSIの誤動作を引き起こさない許容値の範囲に設定する必要がある。
 そこで判定基準データベース4は、変更が可能な制限を持った変更指針を備えている。つまり変更指針は、回路ブロックの動作タイミングのずれがLSIの正常動作することが確認されている許容値以下(例えば‘‘動作(Active)している回路ブロック同士のタイミングのずれの最大値は動作信号の周期の1/10以下’’等)であり、かつ回路ブロックの動作タイミングをできるだけ大きくすることができる変更指針である。その変更指針(この例においては‘‘動作(Active)している回路ブロック同士のタイミングのずれを動作信号の周期の1/10以下になるようにずらす’’)に従いLSI内の回路ブロックの動作タイミングを変更するような処理にすれば、LSIが誤動作する危険性を除去した上で、回路動作タイミング変更処理(S11)を行うことができる。
 また本実施形態におけるLSIの変更処理は、LSI内の回路ブロックの動作状態の変更であり、変更の際にLSI内に余計なスペースを必要としない。そのため、高密度実装のLSIでもチップサイズや実装面積の拡大を生じさせずに、LSIが実装されたPCBの電源回路を電圧変動に対し安定に設計することが可能になる。
 〔第5の実施形態〕次に、第5の実施形態について説明を行う。
 〔構成の説明〕図16に示すように、本実施形態が第2の実施形態と異なる点は、回路構造/動作変更手段5として、電源配線構造変更手段53を備えている点である。それ以外の構造、接続関係は、第1の実施形態と同様である。
 電源配線構造変更手段53は、判定基準データベース4内に用意された変更指針に基づき、LSI内部の電源配線構造を変更する機能を有する。
 〔動作の説明〕次に、本実施形態における動作について説明を行う。
 図17は、S9における回路構造変更処理(図5に記載)の具体的なLSIの回路構造の変更処理の一例を示す電源配線構造変更処理(S12)のフローチャートである。
 S4において、電源変動条件判定手段3は、電源電圧変動特性と、判定基準データベース4内に備えられた電源変動条件とを比較処理を行い、判定基準を満たさないと判定された場合、S31に処理を進める。
 S31において、電源配線構造変更手段53は、電源配線構造変更処理として、判定基準データベース4内に用意された変更指針に従い、LSI内部の電源配線構造を変更する。次に、S32に処理を進める。
 S32において、電源配線構造変更手段53は、LSI回路構造変更処理として、LSI内部の電源配線を変更する。つまり、LSI内の回路ブロックとそれらに関連する電源分配回路の構造の変更、及びそれらに関連するLSI内全体の電源分配回路やパッケージの情報などを自動的に選択し、回路構造の変更を行う。そして変更されたLSI内部及びパッケージの電源系の回路構造の入力情報を導出する。次に、S33に処理を進める。
 S33において、電源配線構造変更手段53は、基板構造変更処理として、LSIの電源回路構造の変更に対応して基板の構造を変更し、その構造情報を導出する。
 図18は、LSI内の電源配線構造を変更する場合の、具体的な回路構造の変更処理の一例である。LSI81内には、電源端子83とグランド端子84とに接続されている回路ブロック82が存在している。図18Aでは、電源端子83とグランド端子84とが一端子ずつの構造になっている。
 S4において、電源変動条件判定手段3が判定基準を満たさないと判断した場合、電源配線構造変更手段53は、判定基準データベース4内に用意された変更指針に従い、図18Bに示すように、電源端子83とグランド端子84の配線をそれぞれ2端子ずつとする。
 LSIと基板とを接続するパッケージ部分は、LSIの種類により基本的に端子の数は決められている。また、端子は、電源、グランド、信号の3種類に振り分けられている。図18に示す、本実施形態では、LSIの全体における端子の数を増加させるのではなく、全端子における電源とグランドの端子の割合を増やす。そのため、電源・グランドの端子を増やしても、LSIのサイズは大きくなることはない。
 〔効果の説明〕次に、本実施形態における効果の説明を行う。図19にはLSIの等価回路モデル及び電源電圧変動波形を示す。回路構造の変更前のLSIの等価回路モデルと電源電圧変動波形を図19Aに示す。一方、回路構造の変更後のLSIの等価回路モデルと電源電圧変動波形を図19Bに示す。LSI内の電源分配回路とパッケージを含めた電源配線のインピーダンスZは減少しZ’となる。(Z>Z’)その結果、電源回路のインピーダンスは小さくなる。
 このLSIの回路構造変更により、図19Cに示したように回路構造変更前の電源電圧波形91は回路構造変更後の電源電圧波形94に変更され、ΔVD1は、減少しΔVD4となる。(ΔVD1>ΔVD4)その結果、判定基準を満たす方向へと特性を変更することが出来る。尚、Z>Z’の関係は、電源分配回路やインダクタンス成分が小さくなったためであり、電圧変動の戻り時間は一般的にΔtC1>ΔtC4になる。
 ただし、電源端子を増やして電源分配回路のインピーダンスを小さくすれば電源電圧変動は小さくなるが、LSIの端子数には限界がある。必要な信号端子数などから全端子の内、電源及びグランドに使用できる端子数は制限されており、その制限数を超えてLSI内の電源及びグランドの端子数を大きくすることは出来ない。
 そこで判定基準データベース4内に用意された変更指針として、変更が可能な制限を持った変更指針(この例においては、”電源端子及びグランド端子数の合計が4端子以下になるように、電源及びグランドの端子数を大きくする”といったもの)を用意する。その変更指針に従い、電源配線構造変更手段53は、LSIの電源及びグランド端子を変更するような処理にすれば、LSIの端子の制限を考慮した上で、電源配線構造変更処理(S12)を行うことができる。
 また本実施形態におけるLSIの回路構造の変更処理は、LSI内の回路ブロックに接続する端子の変更であり、変更の際にLSI内に余計なスペースを必要としない。そのため、高密度実装のLSIでもチップサイズや実装面積の拡大を生じさせずに、LSIの実装されたPCBの電源を電圧変動に対し安定に設計することが可能になる。
 〔第6の実施形態〕次に、第6の実施形態について説明を行う。
 〔構成の説明〕図20に示すように、本実施形態が第2の実施形態と異なる点は、回路構造/動作変更手段5として、回路位置変更手段54を備えている点である。それ以外の構造、接続関係は、第2の実施形態と同様である。
 回路位置変更手段54は、判定基準データベース4内に用意された変更指針に基づき、LSI内部の回路位置を変更する機能を有する。
 〔動作の説明〕次に、本実施形態における動作について説明を行う。
 図21は、S9における回路構造変更処理(図5に記載)の具体的なLSIの変更処理の一例を示す回路位置変更処理(S13)のフローチャートである。
 S4において、電源変動条件判定手段3が電源電圧変動特性と、判定基準データベース4内に備えられた電源変動条件とを比較処理を行い、判定基準を満たさないと判定された場合、S43に処理を進める。
 S43において、回路位置変更手段54は、LSI回路位置変更処理として、判定基準データベース4内に用意された変更指針に従い、LSI内部の回路ブロックの位置を変更する。次に、S44に処理を進める。
 S44において、回路位置変更手段54は、LSI回路構造変更処理として、LSI内部の回路位置を変更する。つまり、LSI内の回路ブロックの配置の変更、及びそれらに関連する電源分配回路やパッケージの情報などを自動的に選択し、回路構造の変更を行う。そして変更されたLSI内部及びパッケージの電源系の回路構造の入力情報を導出する。次に、S45に処理を進める。
 S45において、回路位置変更手段54は、変更処理として、LSIの電源回路構造の変更に対応した基板構造の変更を行い、その構造情報を導出する。
 図22は、LSI内の回路ブロックの位置を変更する場合の、具体的な回路構造の変更処理の一例である。LSI81内には、電源端子83とグランド端子84に接続されている回路ブロック82が存在している状態である。
 ここで図22Aに示した場合では、電源端子83及びグランド端子84に近い回路ブロック88が非動作(Static)の状態であり、電源端子83及びグランド端子84に遠い回路ブロック87が動作(Active)している状態である。この場合、Activeな回路ブロックが電源端子83及びグランド端子84から遠いと、電源分配回路のインピーダンスは大きくなる傾向にある。
 そこで、本実施形態では、S4の判定処理において判定基準を満たさないと判断された場合、判定基準データベース4内に用意された変更指針に従い、回路位置の変更を行う。上記の回路位置の変更は、図22Bに示すように、電源端子83とグランド端子84に近い回路ブロック88を動作(Active)している状態に、電源端子83及びグランド端子84に遠い回路ブロック87を非動作(Static)の状態にする変更である。
 〔効果の説明〕次に、本実施形態における効果について説明を行う。図23にはLSIの等価回路モデル及び電源電圧変動波形を示す。変更前のLSIの等価回路モデルと電源電圧変動波形を図23Aに示す。一方、回路構造の変更後のLSIの等価回路モデルと電源電圧変動波形を図23Bに示す。
 図23Bに示すように、動作(Active)させる回路ブロックを、電源端子83及びグランド端子84に近い位置に変更すると、LSI内の電源分配回路とパッケージを含めた電源配線のインピーダンスZは減少しZ’’となる。(Z>Z’’)その結果、電源回路のインピーダンスは小さくなる。
 このLSIの動作変更により、図23Cに示したように変更前の電源電圧波形91は回路構造変更後の電源電圧波形95に変更する。そしてΔVD1は減少しΔVD5となり(ΔVD1>ΔVD5)、判定基準を満たす方向へと特性を変更することが出来る。尚、Z>Z’の関係は、電源分配回路のインダクタンス成分が小さくなったためであり、電圧変動の戻り時間は一般的にΔtC1>ΔtC5になる。
 しかし、Activeな回路ブロックの位置を電源端子及びグランド端子に近づけることによって電源分配回路のインピーダンスを小さくすれば電源電圧変動は小さくなるが、信号配線が長くなる等の電源系以外での問題が生じる可能性がある。上記の問題を生じるような制限(例えば”信号配線長を0.5mm以上長くしない”等)を超えて、LSI内の回路ブロックの位置を変更することは出来ない。
 そこで、判定基準データベース4内に用意された変更指針として、変更が可能な制限を持った変更指針(この例においては、信号配線長を0.5mm以上長くしないように、動作させる回路ブロックの位置を変更する”といったもの)を用意する。その変更指針に基づく、変更処理を行えば、電源系以外(例えば”信号配線長”)での制限を考慮した上で、回路位置変更処理(S13)を行うことができる。
 また本実施形態におけるLSIの変更処理は、LSI内の回路ブロックの位置の変更であり、変更の際にLSI内に余計なスペースを必要としない。そのため、高密度実装のLSIでもチップサイズや実装面積の拡大を生じさせずに、LSIの実装されたPCBの電源を電圧変動に対し安定に設計することが可能になる。
 〔第7の実施形態〕次に、第7の実施形態について説明を行う。
 〔構成の説明〕図24に示すように、本実施形態が第2の実施形態と異なる点は、回路構造/動作変更手段5として、動作信号変更手段55を備えている点である。それ以外の構造、接続関係は、第2の実施形態と同様である。
 動作信号変更手段55は、判定基準データベース4内に用意された変更指針に基づき、LSI内部の動作信号を変更する機能を有する。
 〔動作の説明〕次に、本実施形態における動作について説明を行う。
 図25は、S9における回路動作変更処理(図5に記載)の具体的なLSIの変更処理の一例を示す動作信号変更処理(S14)のフローチャートである。
 S4において、電源変動条件判定手段3が電源電圧変動特性と、判定基準データベース4内に備えられた電源変動条件との比較処理を行い、判定基準を満たさないと判定された場合、S46に処理を進める。
 S46において、動作信号変更手段55は、LSI動作信号変更処理として、判定基準データベース4内に用意された変更指針に従い、LSI内の動作する回路ブロックの動作信号波形を変更する。次に、S47に処理を進める。
 S47において、動作信号変更手段55は、LSI回路動作の変更処理として、LSI内の動作信号が変更する。つまり、LSI内の回路ブロックの動作信号波形の変更、及びLSI内の回路ブロックとそれらに関連する電源分配回路やパッケージの情報などを自動的に選択し、変更を行う。
 図26は、LSI内の回路ブロックの動作信号を変更する場合の、具体的な回路動作の変更処理の一例である。LSI81内には、電源端子83とグランド端子84に接続されている回路ブロック82が存在している。回路構造の変更前の図26Aでは、動作している第1回路ブロック85と第2回路ブロック86は動作信号89に従い、電源端子に電流波形90を流すという動作を行っている。
 そこで、本実施形態では、S4の判定処理において判定基準を満たさないと判断された場合、判定基準データベース4内に用意された変更指針に従い、動作信号の変更を行う。図26Bに示すように第1回路ブロック85と第2回路ブロック86の動作信号89の立ち上がり時間および立ち下がり時間を長くすることによって、電源電流波形90の波形に変更する。
 〔効果の説明〕次に、本実施形態における効果について説明を行う。図27にはLSIの等価回路モデル及び電源電圧変動波形を示す。変更前のLSIの等価回路モデルと電源電圧変動波形を図27Aに示す。一方、変更後のLSIの等価回路モデルと電源電圧変動波形を図27Bに示す。
 このとき、図27Bにおける電源電流波形I’’’は、変更前の電源電流波形Iと比較して電流量(電荷量)は変わらないが、立ち上がりおよび立ち下がりの時間が長くなっているため、ピーク値が小さくなりIP>IP’’’となる。その結果、LSIの電源端子に流れる電流のピーク値は小さくなり、電流の高周波成分も抑制される。
 このLSIの動作信号変更により、図27Cに示したように変更前の電源電圧波形91は回路動作変更後の電源電圧波形96に変更され、ΔVD1はΔVD6に減少し(ΔVD1>ΔVD6)、判定基準を満たす方向へと特性を変更することが出来る。尚、この変更により、基本的に電源回路のインピーダンスの変更は無いが、電流波形のピーク値が小さくなり高周波成分も抑制されるので、電圧変動の戻り時間であるΔtC1は、短くなりΔtC6となる。(ΔtC1>ΔtC6)
 ただし、回路ブロックの動作信号の立ち上がり及び立ち下がり時間が大きくなれば電源電流波形のピーク値も小さくなり電源電圧変動は小さくなるが、LSI内の回路ブロック毎の信号遅延が大きくなり、信号遅延はLSIが正常動作する為の許容値が存在する。そのため、その許容値(例えば、“回路ブロックの動作信号の立ち上がり時間及び立ち下り時間は、動作信号の周期の1/4以下”等)を超えてLSI内の回路ブロックの動作信号の立ち上がり時間及び立ち下がり時間を大きくすると、LSIが誤動作する可能性がある。
 そこで、判定基準データベース4内に用意された変更指針は、変更が可能な制限を持った変更指針(この例においては、‘‘回路ブロックの動作信号の立ち上がり時間及び立ち下がり時間を、動作信号の周期の1/4以下になるようにして、回路ブロックの動作信号の立ち上がり時間及び立ち下り時間を大きくする’’いったもの)を用意する。その変更指針に従いLSI内の回路ブロックの動作信号を変更するような処理にすれば、LSIが誤動作する危険性を除去した上で、動作信号変更処理(S14)が行われることになる。
 S14におけるLSIの動作信号の変更処理は、LSI内の回路ブロックの動作信号の立ち上がり時間と、立ち下がり時間の変更であり、変更の際にLSI内に余計なスペースを必要としない。そのため、高密度実装のLSIでもチップサイズや実装面積の拡大を生じさせずに、LSIの実装されたPCBの電源を電圧変動に対し安定に設計することが可能になる。
 〔第8の実施形態〕次に、本発明の第8の形態について図面を参照して詳細に説明する。
 〔構成の説明〕図28に示すように、本実施形態が第2の実施形態と異なる点は、各入力情報及びデータベースが記憶された記憶装置10を備えた点である。それ以外の構造、接続関係は、第2の実施形態と同様である。
 記憶装置10内は、LSIデータベース12とCADデータ及び部品データベース11と判定基準データベース4とを備えている。
 LSIデータベース12は、LSIの全回路接続情報やレイアウト情報、LSIの動作情報等の設計情報、及びLSIを構成している部品のデータベースを備えている。
 CADデータ及び部品データベース11は、PCBのレイアウト及び断面構造、及び実装される部品の情報等である基板の設計情報であるCADデータ及び部品のデータベースを備えている。
 〔作用・効果の説明〕本実施形態では、図5のフローチャートにおいて基板等価回路モデルを生成する為の回路の設計情報を、記憶装置10から自動的に抽出することができる。つまり入力装置1が回路の設計情報を入力する代わりに、必要に応じて記憶装置10内にあるCADデータ及び部品データベース11やLSIデータベース12から必要なデータを自動的に抽出することができる。
 CADデータ及び部品データベース11は、配線幅や、配線ルートのXY2軸座標によるルート指定や、配線全長等の情報を含んでいる。さらに、接続先の部品名称や型番などの情報を含んでいる。従って、接続先の部品名称から、CADデータ及び部品データベース11の中で、その部品の等価回路モデルを探索し、モデルを選択することができる。上記の動作は、図30におけるS103とS104に相当する。
 また入力されたCADデータ及び部品データベース11と連動し、記憶装置10内にある複数のLSIの設計情報、及びLSIデータベース12、及び複数の判定基準データベース4から、LSIに関する必要なデータを抽出することも可能である。上記の動作は、図31におけるS105に相当する。
 さらにLSIデータベース12から電源回路に接続されるLSIの名称、パッケージのデータ等を自動的に抽出する。そしてLSIデータベース12から、必要なLSIの全回路設計情報とパッケージや電源分配回路の情報等が含まれたLSIデータベース、及びその電源回路における電源変動条件の情報が自動的に選択され入力される。
 上記の場合、入力装置1は使用しなくても良いし、入力を開始する為のアクションを入力する為だけに使用しても良い。
 また、S4において電源変動条件判定手段3が得た結果を、CADデータ及び部品データベース11の中に出力することできる。この処理は図5におけるS101に相当し、電源配線構造変更処理(S12)による基板構造の変更処理を行った結果を出力している処理は図17におけるS109に相当する。
 具体的にはCADデータ及び部品データベース11には、CAD上に表示されたPCBの電源回路における基板の電源配線や、接続されている対策部品の情報に、このままの状態で安定か、安定でなかったので回路構造を変更した、といった情報が書き込まれる。
 上記構成にすることにより、例えばCADデータを表示した場合、ユーザーは、電源回路を構成する部分を観測するとその情報が出力されるような構造にすれば、その電源回路が電圧変動に対し元々安定であったか、回路構造の変更を行い安定な構造になっているのかを容易に判断することができる。
 また、図28の電源変動条件判定手段3によって得られた結果を、記憶装置10内にあるLSI設計情報+LSIデータベース12の中に出力することも可能である。上記の処理は図5におけるS102に相当し、電源配線構造変更処理(S12)による半導体集積回路の構造または動作の変更処理を行った結果を出力している処理は図17におけるS108に相当する。
 S9の回路動作変更処理において、LSIの回路構造変更処理の情報を、LSIデータベース12のなかに出力することができる。具体的には、CADデータにリンクするLSIやパッケージの情報に、このままの状態で安定か、安定でなかったので回路構造を変更した、といった情報が書き込まれる。このように情報が書き変えられることにより、設計者側がパッケージを含めたLSIに対しどのような対策を行えば良いかの具体的な指針も得ることができる。
 〔第9の実施形態〕次に、第9の実施形態について説明を行う。
 本実施形態は、S1とS7における等価回路モデル生成処理(図5)の動作を詳細に説明したものである。それ以外の構造、接続関係は、第2の実施形態と同様である。以下、本実施形態では、S1とS7(図5)における等価回路モデル生成処理を、図29に記載のS13~S17を用いて説明する。
 〔動作の説明〕S13において、入力装置1は、基板情報入力処理として、PCBのレイアウト及び断面構造、及び実装される部品の情報等である基板の設計情報及び部品データベースを入力する。次にS14に処理を進める。
 S14において、等価回路モデル生成手段8は、基板等価回路モデル生成処理として、LSIを除く実装される受動部品を含めた基板等価回路モデルを生成する。次にS15に処理を進める。
 S15において、入力装置1は、LSI情報入力処理として、LSIの全回路接続情報やレイアウト情報、LSIの動作情報等の設計情報、及びLSIの内部を構成している部品のデータベース、追加される容量セルの情報等を入力する。次に、S16に処理を進める。
 S16において、等価回路モデル生成手段8は、LSI等価回路モデル生成処理を行い、入力された情報からLSIの電源に流れる電流や等価アドミタンス、LSI電源配線のインピーダンス等、LSIの電源系の特性を見積もったLSI等価回路モデルを生成する。次にS17に処理を進める。
 このとき、LSI等価回路モデルとしては、図35Aに示したような簡易構成のモデルと、図35Bに示すように位置情報や解析する周波数範囲を考慮して分割されたLSI内を分割したモデル等が考えられ、構造の選択もデータベース内に記載されているとする。
 S17において、等価回路モデル生成手段8は、電源系等価回路モデル生成処理として、生成された基板等価回路モデルとLSI等価回路モデルを結合し、電源系等価回路モデルを生成する。
 ここで、基板等価回路モデルの生成(S13→S14)と、LSI等価回路モデルの生成(S15→S16)の処理の順序は逆になっても良い。また、先に基板情報入力処理(S13)とLSI情報入力処理(S15)が行われてから、基板等価回路モデル生成処理(S14)とLSI等価回路モデル生成処理(S15)が行われるような順序を選択しても良い。
 ここで図30は、等価回路モデル生成手段8内の、基板等価回路モデルを作成する手段がフィールドソルバを備えている場合、S13からS14における基板等価回路モデル生成処理の具体的処理を示したフローチャートである。
 S18において、入力装置1は、基板電源系の構造入力処理として、プリント基板における基板の電源系の構造情報を入力する。入力される具体的な情報は、図3に示すようなLSIその他部品が実装されて電源供給系回路を構成しているPCBを例に取ると、基板電源配線64のレイアウト情報及び層構造である。次に、S19に処理を進める。
 基板が図32Aに例示するようなベタ構造であった場合、構造情報とは基板の電源層21、グランド層22、絶縁層23の層構成24と寸法、及びそれぞれの導電率(σ)や比誘電率(εr)、誘電正接(tanδ)などの構造、材料特性に関する数値である。
 一方、図32Bに示されるようなマイクロストリップ配線の構造をしていた場合、構造情報とは層構成24及び線幅25の線幅26、線長を含めた各部の寸法と、それぞれの材料特性に関する数値である。
 層構成及び各部の寸法は、プリント配線基板の設計CADシステムで持っている情報から抽出することが可能である。また図32は、ある配線パターンの基板の構成(断面図)であるが、ここで材料定数の代わりに例えば銅などの材料名を入力し、内部のデータベースから導電率に置き換えるなどの処理を行うことも可能である。こうして、基板の電源供給回路の電気的等価回路を求めるのに必要な各部のパラメータ、及び部品のデータベースが入力される。
 次にS19において、等価回路モデル生成手段8は、ソルバ処理として、基板電源系の等価回路モデルの作成を行う。この処理は、等価回路モデル生成手段8内に備えられたフィールドソルバによって行われる。ここで行われる処理とは、プリント配線基板における配線パターンの物理的な寸法、材料定数及び層構成等のパラメータをもとに、SPICEなどの回路シミュレータで使用するための、抵抗、インダクタンス、キャパシタンス、コンダクタンスで表した単位長さあたりの集中定数もしくは分布定数で表現された等価回路モデルを作成する処理である。次に、S20に処理を進める。
 このフィールドソルバとして、PEEC(Partial Element Equivalent Circuit)法やFEM(Finite Element Method)法等を適用した電磁界解析エンジンが備えられているとしてよい。この処理が行われ得られた電源供給回路の単位長さ辺りの等価回路モデルの一例を図33Aに示す。
 このモデルは集中定数で定義されており、配線の単位長さ辺りの抵抗、インダクタンス、容量、コンダクタンスの値はそれぞれ、RU、LU、CU、GUとなっている。またRU及びLUはモデルの単位長さ辺りのインピーダンスZUを表し、CU及び1/GUはモデルの単位長さ辺りのアドミタンスYUを表している。
 もし図32Aのように電源供給回路がベタプレーン構造をしていた場合には、この単位長さ辺りのモデルを図33Bのように組み合わせ、ベタプレーン構造を表現する。一方、図32Bのように電源供給回路が配線構造をしていた場合、この単位長さ辺りのモデルを図33Cのようにラダー状に組み合わせ、配線構造を表現する。
 上記のように記述された単位長さ辺りのモデルが寸法分接続されることにより、基板の電源供給回路の等価回路モデルが生成されるが、勿論集中定数記述では無く分布定数記述で表現されていても構わない。
 次に、S20において、入力装置1は、部品データ入力処理として、実装されているLSI以外の部品のデータベースを入力する。図3は、LSI61と直流電源62とを電源配線64とで接続しているPCBであり、電源配線64に対策部品であるチップコンデンサ63が接続している。ここで入力される具体的な情報は、直流電源62及びチップコンデンサ63のデータベースであり、ここではデータベース内に各部品の等価回路モデルが入力される。次に、S21に処理を進める。
 次に、S21において、等価回路モデル生成手段8は、モデル結合処理として、S19のソルバ処理により生成された基板電源における基板単体の等価回路モデルと、各部品の等価回路モデルを、実際のPCBのレイアウトに合わせて結合する。こうして、PCBにおける基板等価回路モデルが生成される。
 なお、処理の順番としては、部品データ入力処理(S20)が最初に行われた後、基板電源系の構造情報の入力処理(S18)とソルバ処理(S19)が行われても良く、先に基板電源系の構造情報の入力処理(S18)と部品データ入力処理(S20)が同時に行なわれた後にソルバ処理(S19)が行われても良い。
 図31は、図29におけるLSI等価回路モデルの生成(S15⇒S16)の具体的処理を示したフローチャートである。
 S22において、入力装置1は、LSI情報入力処理として、LSIの全回路接続情報やレイアウト情報、LSIの動作情報等の設計情報、及びLSIの内部を構成している部品のデータベース等を入力する。次に、S23に、処理を進める。
 S23において、等価回路モデル生成手段8は、動作部分モデル生成処理として、LSIの設計情報からLSIの電源端子に流れる電流を等価的に流せるように記述されたLSIの動作部分のモデル31を生成する。次に、S24に処理を進める。
 ここで生成されるLSIの動作部分のモデル31は、図34に記述されているように電流源で記述することも出来るが、同等の電流を流すトランジスタで記述されていても良い。
 ここで、LSIの動作部分のモデル31、もしくはトランジスタ記述されたモデルで等価的に流れる電源電流の波形の一例を図36Aに示す。この波形は時間変動する電流波形を表したものであるが、必要に応じて、図36Bに記述されたような周波数特性を示す波形に変換しても良い。
 これらの波形の変換は、フーリエ変換、もしくは逆フーリエ変換によって容易に変換は可能である。また、電源回路の電圧の周波数特性を求める場合には、必要に応じて、簡単であるため周波数が変動しても一定の振幅を示す交流電源波形に置き換えても良い。
 S24において、等価回路モデル生成手段8は、アドミタンスモデル生成処理として、LSI内の等価的なアドミタンスを表現したアドミタンスモデルを生成する。ここで生成される図34に例示したLSIのアドミタンスモデル32は、容量や抵抗で構成されたモデルで表現出来るが、等価的なトランジスタ記述されたモデルで記述されていても良い。次に、S25に処理を進める。
 S25において、等価回路モデル生成手段8は、電源分配回路モデル生成処理として、LSIの電源分配回路モデルを生成する。ここで生成される電源分配回路モデルは、LSIの動作部分モデル31とLSIのアドミタンスモデル32とを合わせたLSI等価回路モデルと、LSIの2種類の電源端子(電源端子、GND端子)間に接続されるモデルである。なお図3に例示したPCBにおいては、LSI内の電源配線のモデルだけではなく、パッケージのモデルを含むものとしても良い。次に、S26に処理を進める。
 この電源分配回路モデルの構造としては、図35Aに例示したように簡単なインダクタンスのモデル33で表現しても良いが、状況に応じて図35Bに例示したように複数の回路ブロックが結合して構成される等価回路によって表現された構造になっていても良い。
 上記の電源分配回路モデルは、データベース内に等価回路モデルを用意しておき、それを読み込んでも良い。もしくは構造や材料定数と言ったパラメータである入力情報から、等価回路モデル生成手段8内に備えられたフィールドソルバによるソルバ処理によって作成するような方法を選択しても良い。
 S26において、等価回路モデル生成手段8は、モデル結合処理として、作成されたLSIの動作部分モデルとアドミタンスモデルと電源分配回路モデルを結合させ、図35に例示されるようなLSIの等価回路モデルを生成する。こうして、PCBに実装されるLSIの等価回路モデルが生成される。なお、各モデルの作成処理(S23、S24、S25)の順番は、適宜前後させることも可能である。
 こうした過程を経て、図5における等価回路モデル生成処理(S7)により、図3のPCBの電源回路モデルの一例は、図6のようになる。
 なお、図29に示す基板等価回路モデルの生成(S13→S14)の処理によって、図6における基板電源配線モデル74、直流電源モデル75、チップコンデンサモデル73が作成される。
 また図29におけるLSI等価回路モデルの生成(S15→S16)により、図6に示す電源分配回路モデル79と、LSIの動作部分のモデルであるLSI電流源77と、LSIの非動作部分のモデルでありLSI内部容量78で構成されるLSIの電源系の等価回路モデルのLSI電源モデル71、及びパッケージモデル72が作成される。
 図29の電源系等価回路モデル生成処理(S17)により、これらのモデルが結合され、PCBの電源系等価回路モデルが生成される。
 〔効果の説明〕上記構造により、LSI及びPCBの特性を再現した等価回路モデルを用いて解析を行うことにより、電源回路が電圧変動に対し安定に設計されているかどうかを、容易に判定することができる。また電源電圧変動特性は、絶対量で導出することが可能であり、定量的な評価及び対策を行うことが可能になる。
 また本実施形態は、上記の結果により、どれだけのマージンを持った設計となっているか、またどの周波数範囲で問題があるか等を絶対量で評価することが可能となる。またPCBの電源回路の等価回路モデルの生成処理、電源電圧変動特性の解析処理、及びLSIが安定に動作するように設計されているかどうかの判定処理は入力したデータに対し一定の処理を行わせるだけであるので、自動化が可能である。
 そのため本実施形態は、LSIやプリント基板配線について深い知識を有さない人間でも、容易に電源回路が電源変動に対し安定に設計されているかどうかの判定を行うことが出来る。
 また、LSIの等価回路モデルの作成手法及び装置は、既存の技術を流用することが可能である。そのため、市販用の基板の等価回路モデル作成用のフィールドソルバや回路解析ツールを利用することが可能であり、本実施形態におけるシステムは容易に構築すること可能である。
 またPCB上の一種類の電源系において、その電源回路が安定に設計されているかどうかの判定、もしくは安定に動作する電源回路の構造へ自動的に変更することが可能である。そのため、順次、他の電源系にも同じ処理を繰り返すことで、PCB上の全ての電源系において、電源回路が安定に設計されているかどうかの判定、もしくは安定な電源回路の構造への変更を、自動的に実行することも可能になる。
 〔第10の実施形態〕次に、本発明の第10の形態について図面を参照して詳細に説明する。
 〔構成の説明〕図37に示すように、本実施形態が第3の実施形態と異なる点は、各入力情報及びデータベースが記憶された記憶装置10を備えた点である。それ以外の構造、接続関係は、第3の実施形態と同様である。
 記憶装置10内は、LSIデータベース12とCADデータ及び部品データベース11と判定基準データベース4とを備えている。
 LSIデータベース12は、LSIの全回路接続情報やレイアウト情報、LSIの動作情報等の設計情報、及びLSIを構成している部品のデータベースを備えている。
 CADデータ及び部品データベース11は、PCBのレイアウト及び断面構造、及び実装される部品の情報等である基板の設計情報であるCADデータ及び部品のデータベースを備えている。
 〔作用・効果の説明〕
 本実施形態では、図9のフローチャートにおいてLSIの回路構造及び動作を変更する為に必要な回路の設計情報を、記憶装置10から自動的に抽出することができる。つまり入力装置1が回路の設計情報を入力する代わりに、必要に応じて記憶装置10内にあるLSIデータベース12から必要なデータを自動的に抽出することができる。
 S27として、回路動作割合変更手段51は、記憶装置10内にある判定基準データベース4内に用意された変更指針に従い、LSI内部の回路ブロックの動作割合を変更するLSI動作割合変更処理を行う。その際に、記憶装置10内にある複数のLSIの設計情報、及びLSIデータベース12より、必要とされるデータが入力され、LSI内部の回路ブロックの動作割合が自動的に変更される。次に、S28に処理を進める。上記の場合、入力装置1は使用しなくても良いし、入力を開始する為のアクションを入力する為だけに使用しても良い。
 S28において、回路動作割合変更手段51は、LSI回路動作変更処理としてLSI内の動作割合を、動作する回路ブロックと動作しない回路ブロックの変更、及びそれらに関連する電源分配回路やパッケージの情報などを自動的に選択し、回路動作の変更を行う。そして回路動作割合変更手段51は、変更されたLSIの設計情報をLSIデータベース12に入力し直す。
 このLSIデータベース12からのデータの読み出し、及びデータの書き込みの処理は、図9のS106に相当する。
 上記構成にすることにより、自動的に記憶装置10内にあるLSIデータベース12の情報が書き変えられることで、設計者側がLSI内の回路ブロックの動作割合をどのように変更すれば良いかの具体的な指針も得ることが出来る。
 〔第11の実施形態〕次に、本発明の第11の形態について図面を参照して詳細に説明する。
 〔構成の説明〕図38に示すように、本実施形態が第4の実施形態と異なる点は、各入力情報及びデータベースが記憶された記憶装置10を備えた点である。それ以外の構造、接続関係は、第4の実施形態と同様である。
 記憶装置10内は、LSIデータベース12とCADデータ及び部品データベース11と判定基準データベース4とを備えている。
 LSIデータベース12は、LSIの全回路接続情報やレイアウト情報、LSIの動作情報等の設計情報、及びLSIを構成している部品のデータベースを備えている。
 CADデータ及び部品データベース11は、PCBのレイアウト及び断面構造、及び実装される部品の情報等である基板の設計情報であるCADデータ及び部品のデータベースを備えている。
 〔作用・効果の説明〕
 本実施形態では、図13のフローチャートにおいてLSIの回路構造及び動作を変更する為の回路の設計情報を、記憶装置10から自動的に抽出することができる。つまり入力装置1が回路の設計情報を入力する代わりに、必要に応じて記憶装置10内にあるLSIデータベース12から必要なデータを自動的に抽出することができる。
 S29として、回路動作タイミング変更手段52は、記憶装置10内にある判定基準データベース4内に用意された変更指針に従い、LSI内部の複数の回路ブロックの動作するタイミングを変更するLSI動作タイミング変更処理を行う。その際に、記憶装置10内にある複数のLSIの設計情報、及びLSIデータベース12より、必要とされるデータが入力され、LSI内部の回路ブロックの動作のタイミングが自動的に変更される。次に、S30に処理を進める。上記の場合、入力装置1は使用しなくても良いし、入力を開始する為のアクションを入力する為だけに使用しても良い。
 S30において、回路動作タイミング変更手段52は、LSI回路動作タイミング変更処理としてLSI内の個々の回路ブロックと動作タイミングの変更、及びそれらに関連する電源分配回路やパッケージの情報などを自動的に選択し、回路動作の変更を行う。そして回路動作タイミング変更手段52は、変更されたLSIの設計情報をLSIデータベース12に入力し直す。
 このLSIデータベース12からのデータの読み出し、及びデータの書き込みの処理は、図13のS107に相当する。
 上記構成にすることにより、自動的に記憶装置10内にあるLSIデータベース12の情報が書き変えられることで、設計者側がLSI内の個々の回路ブロックの動作するタイミングをどのように変更すれば良いかの具体的な指針も得ることが出来る。
 〔第12の実施形態〕次に、本発明の第12の形態について図面を参照して詳細に説明する。
 〔構成の説明〕図39に示すように、本実施形態が第5の実施形態と異なる点は、各入力情報及びデータベースが記憶された記憶装置10を備えた点である。それ以外の構造、接続関係は、第5の実施形態と同様である。
 記憶装置10内は、LSIデータベース12とCADデータ及び部品データベース11と判定基準データベース4とを備えている。
 LSIデータベース12は、LSIの全回路接続情報やレイアウト情報、LSIの動作情報等の設計情報、及びLSIを構成している部品のデータベースを備えている。
 CADデータ及び部品データベース11は、PCBのレイアウト及び断面構造、及び実装される部品の情報等である基板の設計情報であるCADデータ及び部品のデータベースを備えている。
 〔作用・効果の説明〕本実施形態では、図17のフローチャートにおいてLSIの回路構造及び動作を変更する為の回路の設計情報を、記憶装置10から自動的に抽出することができる。つまり入力装置1が回路の設計情報を入力する代わりに、必要に応じて記憶装置10内にあるCADデータ及び部品データベース11、及びLSIデータベース12から必要なデータを自動的に抽出することができる。
 S31として、電源配線構造変更手段53は、記憶装置10内にある判定基準データベース4内に用意された変更指針に従い、LSI内部の電源配線構造を変更する電源配線構造変更処理を行う。その際に、記憶装置10内にあるCADデータ及び部品データベース11、及び複数のLSIの設計情報、及びLSIデータベース12より、必要とされるデータが入力され、LSIの電源配線構造が自動的に変更される。次に、S32に処理を進める。上記の場合、入力装置1は使用しなくても良いし、入力を開始する為のアクションを入力する為だけに使用しても良い。
 S32において、電源配線構造変更手段53は、LSI回路構造変更処理として、LSI内部の電源配線を変更する。つまり、LSI内の回路ブロックとそれらに関連する電源分配回路の構造の変更、及びそれらに関連するLSI内全体の電源分配回路やパッケージの情報などを自動的に選択し、回路構造の変更を行う。そして変更されたLSI内部及びパッケージの電源系の回路構造の入力情報を導出する。次に、S33に処理を進める。
 S33において、電源配線構造変更手段53は、基板構造変更処理として、LSIの電源回路構造の変更に対応して基板の構造を自動的に変更し、回路構造の変更を行う。そして電源配線構造変更手段53は、変更されたLSI及びそれを搭載したPCBの設計情報をLSIデータベース12及びCADデータ及び部品データベース11に入力し直す。
 このLSIデータベース12からのデータの読み出し、及びデータの書き込みの処理は、図17のS108に相当し、CADデータ及び部品データベース11からのデータの読み出し、及びデータの書き込みの処理は、図17のS109に相当する。
 上記構成にすることにより、自動的に記憶装置10内にあるLSIデータベース12の情報、及びCADデータ及び部品データベース11が書き変えられることで、設計者側がLSI内の回路ブロックに接続された電源配線の構造をどのように変更すれば良いかの具体的な指針も得ることが出来る。
 〔第13の実施形態〕次に、本発明の第13の形態について図面を参照して詳細に説明する。
 〔構成の説明〕図40に示すように、本実施形態が第6の実施形態と異なる点は、各入力情報及びデータベースが記憶された記憶装置10を備えた点である。それ以外の構造、接続関係は、第6の実施形態と同様である。
 記憶装置10内は、LSIデータベース12とCADデータ及び部品データベース11と判定基準データベース4とを備えている。
 LSIデータベース12は、LSIの全回路接続情報やレイアウト情報、LSIの動作情報等の設計情報、及びLSIを構成している部品のデータベースを備えている。
 CADデータ及び部品データベース11は、PCBのレイアウト及び断面構造、及び実装される部品の情報等である基板の設計情報であるCADデータ及び部品のデータベースを備えている。
 〔作用・効果の説明〕
 本実施形態では、図21のフローチャートにおいてLSIの回路構造及び動作を変更する為の回路の設計情報を、記憶装置10から自動的に抽出することができる。つまり入力装置1が回路の設計情報を入力する代わりに、必要に応じて記憶装置10内にあるCADデータ及び部品データベース11、及びLSIデータベース12から必要なデータを自動的に抽出することができる。
 S43として、LSI回路位置変更手段54は、記憶装置10内にある判定基準データベース4内に用意された変更指針に従い、LSI内部の回路ブロックの位置を変更するLSI回路位置変更処理を行う。その際に、記憶装置10内にあるCADデータ及び部品データベース11、及び複数のLSIの設計情報、及びLSIデータベース12より、必要とされるデータが入力され、LSI内部の回路構造及び電源配線構造が自動的に変更される。次に、S44に処理を進める。上記の場合、入力装置1は使用しなくても良いし、入力を開始する為のアクションを入力する為だけに使用しても良い。
 S44において、回路位置変更手段54は、LSI回路構造変更処理として、LSI内部の回路位置を変更する。つまり、LSI内の回路ブロックの配置の変更、及びそれらに関連する電源分配回路やパッケージの情報などを自動的に選択し、回路構造の変更を行う。そして変更されたLSI内部及びパッケージの電源系の回路構造の入力情報を導出する。次に、S45に処理を進める。
 S45において、回路位置変更手段54は、変更処理として、LSIの電源回路構造の変更に対応した基板構造の変更を行い、変更されたLSI及びそれを搭載したPCBの設計情報をLSIデータベース12及びCADデータ及び部品データベース11に入力し直す。
 このLSIデータベース12からのデータの読み出し、及びデータの書き込みの処理は、図21のS111に相当し、CADデータ及び部品データベース11からのデータの読み出し、及びデータの書き込みの処理は、図21のS112に相当する。
 上記構成にすることにより、自動的に記憶装置10内にあるLSIデータベース12の情報、及びCADデータ及び部品データベース11が書き変えられることで、設計者側がLSI内の回路ブロックの配置を、どのように変更すれば良いかの具体的な指針も得ることが出来る。
 〔第14の実施形態〕次に、本発明の第14の形態について図面を参照して詳細に説明する。
 〔構成の説明〕図41に示すように、本実施形態が第7の実施形態と異なる点は、各入力情報及びデータベースが記憶された記憶装置10を備えた点である。それ以外の構造、接続関係は、第7の実施形態と同様である。
 記憶装置10内は、LSIデータベース12とCADデータ及び部品データベース11と判定基準データベース4とを備えている。
 LSIデータベース12は、LSIの全回路接続情報やレイアウト情報、LSIの動作情報等の設計情報、及びLSIを構成している部品のデータベースを備えている。
 CADデータ及び部品データベース11は、PCBのレイアウト及び断面構造、及び実装される部品の情報等である基板の設計情報であるCADデータ及び部品のデータベースを備えている。
 〔作用・効果の説明〕本実施形態では、図25のフローチャートにおいてLSIの回路構造及び動作を変更する為の回路の設計情報を、記憶装置10から自動的に抽出することができる。つまり入力装置1が回路の設計情報を入力する代わりに、必要に応じて記憶装置10内にあるLSIデータベース12から必要なデータを自動的に抽出することができる。
 S46として、動作信号変更手段55は、記憶装置10内にある判定基準データベース4内に用意された変更指針に従い、LSI内の動作する回路ブロックの動作信号波形を変更するLSI動作信号変更処理を行う。その際に、記憶装置10内にある複数のLSIの設計情報、及びLSIデータベース12より、必要とされるデータが入力され、LSI内の回路ブロックの動作信号波形が自動的に変更される。次に、S47に処理を進める。上記の場合、入力装置1は使用しなくても良いし、入力を開始する為のアクションを入力する為だけに使用しても良い。
 S47において、動作信号変更手段55は、LSI回路動作の変更処理として、LSI内の回路ブロックの動作信号波形の変更、及びLSI内の回路ブロックとそれらに関連する電源分配回路やパッケージの情報などを自動的に選択し、回路動作の変更を行う。そして動作信号変更手段55は、変更されたLSIの設計情報をLSIデータベース12に入力し直す。
 このLSIデータベース12からのデータの読み出し、及びデータの書き込みの処理は、図25のS113に相当する。
 上記構成にすることにより、自動的に記憶装置10内にあるLSIデータベース12の情報が書き変えられることで、設計者側がLSI内の動作する回路ブロックの動作信号波形をどのように変更すれば良いかの具体的な指針も得ることが出来る。
 〔付記1〕
基板上に実装された半導体集積回路およびその他の部品とを接続する電源回路の設計情報に基づき、前記半導体集積回路における電圧変動の特性である電源電圧変動特性を導出する電源電圧変動導出手段と
前記電源回路において、前記電源電圧変動特性が許容される条件である電源変動条件と前記半導体集積回路の回路構造あるいは動作の少なくとも一方の変更指針を備える判定基準データベースと
前記電源電圧変動特性と前記電源変動条件とを比較し、前記電源電圧変動特性が前記電源変動条件を満たしているかどうか判定する電源電圧変動判定手段と
前記電源電圧変動特性が前記電源変動条件を満たさなかった場合、前記変更指針に従って前記半導体集積回路の構造及び動作の少なくとも一方の変更を行い、変更した前記半導体集積回路の設計情報を前記電源電圧変動導出手段へ出力する回路構造変更手段を備え、
前記変更指針は、前記半導体集積回路のサイズ変更をともなわないものであることを特徴とする電源回路設計システム。
 〔付記2〕
前記電源電圧変動導出手段は、
前記設計情報から前記電源回路における等価回路モデルを生成する等価回路モデル生成手段と、
前記等価回路モデルを解析して前記電源電圧変動特性を導出する演算手段とを備える電源電圧変動解析手段を備えることを特徴とする付記1記載の電源回路設計システム。
 〔付記3〕
前記回路構造変更手段として、前記変更指針に基づき、前記半導体集積回路内の複数の回路ブロックが動作する割合を変更する回路動作割合変更手段を備えていることを特徴とする付記1乃至2に記載の電源回路設計システム。
 〔付記4〕
前記回路動作割合変更手段は、
前記動作している回路ブロックが動作する割合を小さくすることを特徴とする付記3に記載の電源回路設計システム。
 〔付記5〕
前記回路構造変更手段として、前記変更指針に基づき、前記半導体集積回路内の動作している複数の回路ブロックのそれぞれの動作タイミングを変更し、前記複数の回路ブロックに流れる電流同士のタイミングをずらす回路動作タイミング変更手段を備えていることを特徴とする付記1乃至2に記載の電源回路設計システム。
 〔付記6〕
前記回路動作タイミング変更手段は、
前記動作している複数の回路ブロック同士の動作するタイミングのずれを大きくすることを特徴とする付記5に記載の電源回路設計システム。
 〔付記7〕
前記回路構造変更手段として、前記変更指針に基づき、前記半導体集積回路内の複数の回路ブロックと接続する電源端子とグランド端子の数を変更する電源配線子構造変更手段を備えていることを特徴とする付記1乃至2に記載の電源回路設計システム。
 〔付記8〕
前記電源配線構造変更手段は、
前記複数の回路ブロックに接続される、前記半導体集計回路の有する全端子における、前記電源端子と前記グランド端子の割合を大きくする
ことを特徴とする付記7に記載の電源回路設計システム。
 〔付記9〕
前記回路構造変更手段として、前記変更指針に基づき、前記半導体集積回路内の動作している回路ブロックと動作していない回路ブロックとの位置を変更する回路位置変更手段を備えていることを特徴とする付記1乃至2に記載の電源回路設計システム。
 〔付記10〕
前記回路位置変更手段は、前記複数の回路ブロックと接続する電源端子とグランド端子に近い位置に、前記動作している回路ブロックの位置を変更し、
前記電源端子と前記グランド端子に遠い位置に、前記動作していない回路ブロックの位置を変更することを特徴とする付記9に記載の電源回路設計システム。
 〔付記11〕
前記回路構造変更手段として、前記変更指針に基づき、前記半導体集積回路内の複数の回路ブロックの動作信号を変更する動作信号変更手段を備えていることを特徴とする付記1乃至2に記載の電源回路設計システム。
 〔付記12〕
前記動作信号変更手段は、
前記複数の回路ブロックの動作信号の立ち上がり時間および立ち下がり時間を長くすることを特徴とする付記11に記載の電源回路設計システム。
 〔付記13〕
前記電源回路の設計情報を備える記憶装置を設け、
前記電源電圧変動導出手段は、記憶装置に設けられた前記電源回路の設計情報に基づいて、電源電圧変動特性を導出することを特徴とする付記1乃至2に記載の電源回路設計システム。
 〔付記14〕
基板上に実装された半導体集積回路およびその他の部品とを接続する電源回路の設計情報の入力を行い、
前記設計情報に基づき、前記半導体集積回路における電圧変動の特性である電源電圧変動特性の導出を行い、
前記電源電圧変動特性とその許容される条件である電源変動条件とを比較する電源電圧変動比較処理を行い、
前記電源回路が前記電源電圧変動特性に対して条件を満たしているかどうかを判定する電源電圧特性判定処理を行い、
前記電源電圧特性判定処理において条件を満たさなかった場合、予め用意されている変更指針に従って半導体集積回路構造の変更を行い、変更した前記半導体集積回路の設計情報において再び前記電源電圧変動特性導出処理を行わせ、
前記変更指針は、前記半導体集積回路のサイズ変更をともなわないものであることを特徴とする電源回路設計方法。
 〔付記15〕
基板上に実装された半導体集積回路およびその他の部品とを接続する電源回路の設計情報を入力する回路設計情報入力処理と
前記設計情報に基づき、前記半導体集積回路における電圧変動の特性である電源電圧変動特性を導出する電源電圧変動特性導出処理と
前記電源電圧変動特性とその許容される条件である電源変動条件とを比較する電源電圧変動比較処理と、
前記電源回路が前記電源電圧変動特性に対して条件を満たしているかどうかを判定する電源電圧特性判定処理と
前記電源電圧特性判定処理において条件を満たさなかった場合、予め用意されている変更指針に従って半導体集積回路構造の変更を行い、変更した前記半導体集積回路の設計情報において再び前記電源電圧変動特性導出処理を行わせる回路構造変更処理とをコンピューターに実行させ、
前記変更指針は、前記半導体集積回路のサイズ変更をともなわないものであることを特徴とするプログラム。
 以上、本発明を上記実施の形態及び実施例に即して説明したが、本発明は、上記実施の形態、及び実施例の構成のみに限定されるものでなく、本発明の範囲内で当業者であればなし得るであろう各種変形、修正を含むことはもちろんである。
 なお、この出願は、2010年10月14日に出願された日本出願特願2010−231404を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  入力装置
 2  電源電圧変動導出手段
 3  電源変動条件判定手段
 4  判定基準データベース
 5  回路構造/動作変更手段
 6  出力装置
 7  電源電圧変動解析手段
 8  等価回路モデル生成手段
 9  演算手段
 10  記憶装置
 11  CADデータ及び部品データベース
 12  LSIデータベース
 21  電源層
 22  グランド層
 23  絶縁層
 24  層構成
 25  線幅
 31  LSIの動作部分のモデル
 32  LSIのアドミタンスモデル
 33  インダクタンスのモデル
 41  電源電圧波形Aの特性
 42  電源電圧波形Bの特性
 51  回路動作割合変更手段
 52  回路動作タイミング変更手段
 53  電源配線構造変更手段
 54  回路位置変更手段
 55  動作信号変更手段
 61  LSI
 62  直流電源
 63  チップコンデンサ
 64  電源配線
 71  LSI電源モデル
 72  パッケージモデル
 73  チップコンデンサモデル
 74  基板電源配線モデル
 75  直流電源モデル
 76  観測点
 77  LSI電流源
 78  LSI内部容量
 79  電源分配回路モデル
 82  回路ブロック
 83  電源端子
 84  グランド端子
 85  第1回路ブロック
 86  第2回路ブロック
 94、95  回路構造変更後の電源電圧波形
 92、93、96  回路動作変更後の電源電圧波形

Claims (10)

  1.  基板上に実装された半導体集積回路およびその他の部品とを接続する電源回路の設計情報に基づき、前記半導体集積回路における電圧変動の特性である電源電圧変動特性を導出する電源電圧変動導出手段と
     前記電源回路において、前記電源電圧変動特性が許容される条件である電源変動条件と前記半導体集積回路の回路構造あるいは動作の少なくとも一方の変更指針を備える判定基準データベースと
     前記電源電圧変動特性と前記電源変動条件とを比較し、前記電源電圧変動特性が前記電源変動条件を満たしているかどうか判定する電源電圧変動判定手段と
     前記電源電圧変動特性が前記電源変動条件を満たさなかった場合、前記変更指針に従って前記半導体集積回路の構造及び動作の少なくとも一方の変更を行い、変更した前記半導体集積回路の設計情報を前記電源電圧変動導出手段へ出力する回路構造変更手段を備え、
     前記変更指針は、前記半導体集積回路のサイズ変更をともなわないものであることを特徴とする電源回路設計システム。
  2.  前記電源電圧変動導出手段は、
     前記設計情報から前記電源回路における等価回路モデルを生成する等価回路モデル生成手段と、
     前記等価回路モデルを解析して前記電源電圧変動特性を導出する演算手段とを備える電源電圧変動解析手段を備えることを特徴とする請求項1記載の電源回路設計システム。
  3.  前記回路構造変更手段として、前記変更指針に基づき、前記半導体集積回路内の複数の回路ブロックが動作する割合を変更する回路動作割合変更手段を備えていることを特徴とする請求項1乃至2に記載の電源回路設計システム。
  4. 前記回路構造変更手段として、
    前記変更指針に基づき、前記半導体集積回路内の動作している複数の回路ブロックのそれぞれの動作タイミングを変更し、前記複数の回路ブロックに流れる電流同士のタイミングをずらす回路動作タイミング変更手段を備えていることを特徴とする付記1乃至2に記載の電源回路設計システム。
  5. 前記回路構造変更手段として、前記変更指針に基づき、前記半導体集積回路内の複数の回路ブロックと接続する電源端子とグランド端子の数を変更する電源配線子構造変更手段を備えていることを特徴とする付記1乃至2に記載の電源回路設計システム。
  6. 前記回路構造変更手段として、前記変更指針に基づき、前記半導体集積回路内の動作している回路ブロックと動作していない回路ブロックとの位置を変更する回路位置変更手段を備えていることを特徴とする付記1乃至2に記載の電源回路設計システム。
  7. 前記回路位置変更手段は、前記複数の回路ブロックと接続する電源端子とグランド端子に近い位置に、前記動作している回路ブロックの位置を変更し、
    前記電源端子と前記グランド端子に遠い位置に、前記動作していない回路ブロックの位置を変更することを特徴とする付記9に記載の電源回路設計システム。
  8. 前記回路構造変更手段として、前記変更指針に基づき、前記半導体集積回路内の複数の回路ブロックの動作信号を変更する動作信号変更手段を備えていることを特徴とする付記1乃至2に記載の電源回路設計システム。
  9.  前記動作信号変更手段は、
     前記複数の回路ブロックの動作信号の立ち上がり時間および立ち下がり時間を長くすることを特徴とする請求項8に記載の電源回路設計システム。
  10.  前記電源回路の設計情報を備える記憶装置を設け、
     前記電源電圧変動導出手段は、記憶装置に設けられた前記電源回路の設計情報に基づいて、電源電圧変動特性を導出することを特徴とする請求項1乃至2に記載の電源回路設計システム。
PCT/JP2011/072701 2010-10-14 2011-09-26 電源回路設計システム、及び電源回路設計方法 WO2012049988A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/879,284 US8819613B2 (en) 2010-10-14 2011-09-26 Power supply circuit design system and power supply circuit design method
JP2012538634A JPWO2012049988A1 (ja) 2010-10-14 2011-09-26 電源回路設計システム、及び電源回路設計方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-231404 2010-10-14
JP2010231404 2010-10-14

Publications (1)

Publication Number Publication Date
WO2012049988A1 true WO2012049988A1 (ja) 2012-04-19

Family

ID=45938218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072701 WO2012049988A1 (ja) 2010-10-14 2011-09-26 電源回路設計システム、及び電源回路設計方法

Country Status (3)

Country Link
US (1) US8819613B2 (ja)
JP (1) JPWO2012049988A1 (ja)
WO (1) WO2012049988A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8522181B2 (en) * 2012-01-24 2013-08-27 Synopsys, Inc. Capacitance extraction for advanced device technologies

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276612A (ja) * 2007-05-01 2008-11-13 Nec Corp 回路設計装置及び方法並びにプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124335A (ja) 2001-10-19 2003-04-25 Matsushita Electric Ind Co Ltd 半導体集積回路装置およびそのレイアウト設計方法
JP2004086881A (ja) 2002-06-27 2004-03-18 Matsushita Electric Ind Co Ltd 半導体集積回路設計装置、半導体集積回路設計方法、半導体集積回路の製造方法および可読記録媒体
US6823502B2 (en) * 2002-12-31 2004-11-23 Lsi Logic Corporation Placement of configurable input/output buffer structures during design of integrated circuits
US9087164B2 (en) * 2008-01-26 2015-07-21 National Semiconductor Corporation Visualization of tradeoffs between circuit designs
US8966414B2 (en) * 2009-05-29 2015-02-24 Cypress Semiconductor Corporation Implementing a circuit using an integrated circuit including parametric analog elements

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276612A (ja) * 2007-05-01 2008-11-13 Nec Corp 回路設計装置及び方法並びにプログラム

Also Published As

Publication number Publication date
US20130212551A1 (en) 2013-08-15
US8819613B2 (en) 2014-08-26
JPWO2012049988A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
US7643980B2 (en) Electromagnetic field analysis apparatus, method and computer program
US8504958B2 (en) Method and apparatus for thermal analysis
US20050177334A1 (en) Resistance value calculation method
US7240304B2 (en) Method for voltage drop analysis in integreted circuits
US20200285798A1 (en) Integrated device and method of forming the same
US8595677B1 (en) Method and system for performing voltage-based fast electrical analysis and simulation of an electronic design
US20090228845A1 (en) Method, design program and design system for semiconductor device
JP5262176B2 (ja) 電源回路の設計支援装置と設計支援方法
JP4858702B2 (ja) 電源電圧変動解析システム、電源電圧変動解析方法及びプログラム
JP5304460B2 (ja) プリント配線基板電源回路設計装置、プリント配線基板電源回路設計方法及びプログラム
US8302063B2 (en) Method and system to optimize semiconductor products for power, performance, noise, and cost through use of variable power supply voltage compression
WO2012049988A1 (ja) 電源回路設計システム、及び電源回路設計方法
JP2009140265A (ja) 半導体装置に対する同時動作信号ノイズ見積り方法における同時動作信号ノイズ基礎特性取得方法、及びプログラム
JP5003407B2 (ja) プリント回路基板設計システム、プリント回路基板設計方法及びプログラム
JP4575326B2 (ja) 基板レイアウトチェックシステムおよび方法
CN111046620B (zh) 计算系统以及设计与制造存储器系统的方法
JP2008276612A (ja) 回路設計装置及び方法並びにプログラム
US20110113395A1 (en) Method, Electronic Design Automation Tool, Computer Program Product, and Data Processing Program for Creating a Layout for Design Representation of an Electronic Circuit and Corresponding Port for an Electronic Circuit
JP5287523B2 (ja) プリント基板電源回路設計装置、およびプリント基板電源回路設計方法、及びプログラム
US20090222784A1 (en) Design method estimating signal delay time with netlist in light of terminal line in macro, and program
Qi et al. On-chip decoupling capacitor budgeting by sequence of linear programming
JP4530222B2 (ja) 高周波ノイズ解析装置、高周波ノイズ解析方法及び高周波ノイズ解析プログラム
Vaisband et al. Effective Radii of On-Chip Decoupling Capacitors
Tanaka et al. Greedy optimization algorithm for the power/ground network design to satisfy the voltage drop constraint
Mehrotra et al. Performance driven global routing and wiring rule generation for high speed PCBs and MCMs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538634

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13879284

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832425

Country of ref document: EP

Kind code of ref document: A1