WO2012046945A2 - 당뇨병 또는 비만의 예방 또는 치료용 약학 및 식품 조성물 - Google Patents

당뇨병 또는 비만의 예방 또는 치료용 약학 및 식품 조성물 Download PDF

Info

Publication number
WO2012046945A2
WO2012046945A2 PCT/KR2011/004836 KR2011004836W WO2012046945A2 WO 2012046945 A2 WO2012046945 A2 WO 2012046945A2 KR 2011004836 W KR2011004836 W KR 2011004836W WO 2012046945 A2 WO2012046945 A2 WO 2012046945A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
compound
diabetes
obesity
Prior art date
Application number
PCT/KR2011/004836
Other languages
English (en)
French (fr)
Other versions
WO2012046945A3 (ko
Inventor
임정한
김일찬
김덕규
한세종
이형석
다타바타라이 하리
김정은
김태경
오현철
조동규
이철순
김근식
이평천
박미라
박유경
김성진
강필성
박희용
박하주
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20100097678A external-priority patent/KR101481140B1/ko
Priority claimed from KR20100097677A external-priority patent/KR101485162B1/ko
Priority claimed from KR20110039155A external-priority patent/KR101481141B1/ko
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to US13/878,196 priority Critical patent/US8846750B2/en
Priority to EP11830831.1A priority patent/EP2626070B1/en
Priority to CN2011800591843A priority patent/CN103249410A/zh
Priority to JP2013532710A priority patent/JP5755749B2/ja
Publication of WO2012046945A2 publication Critical patent/WO2012046945A2/ko
Publication of WO2012046945A3 publication Critical patent/WO2012046945A3/ko
Priority to US13/900,361 priority patent/US8703814B1/en
Priority to US13/900,155 priority patent/US8697745B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D321/00Heterocyclic compounds containing rings having two oxygen atoms as the only ring hetero atoms, not provided for by groups C07D317/00 - C07D319/00
    • C07D321/02Seven-membered rings
    • C07D321/10Seven-membered rings condensed with carbocyclic rings or ring systems
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/09Lichens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • C07D307/88Benzo [c] furans; Hydrogenated benzo [c] furans with one oxygen atom directly attached in position 1 or 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • C07D307/89Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D313/00Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom
    • C07D313/02Seven-membered rings
    • C07D313/06Seven-membered rings condensed with carbocyclic rings or ring systems
    • C07D313/10Seven-membered rings condensed with carbocyclic rings or ring systems condensed with two six-membered rings
    • C07D313/12[b,e]-condensed
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a pharmaceutical and food composition for preventing or treating diabetes or obesity, and more specifically, to a novel compound synthesized from a compound isolated from the stereocaulon alpinum extract of Antarctic lichens as an active ingredient. It relates to a pharmaceutical composition and functional food for the prevention or treatment of diabetes or obesity.
  • Lichens are known to produce higher plants and other unique secondary metabolites (Ingolfsdottir, K., Phytochemistry, 61: 729, 2002), and the secondary metabolites produced by these lichens are mostly depsides and depsidones ( depsidone) and dibenzfurane, and these compounds are believed to be associated with low growth rates of lichens (Kumar, KCS et al., J. Nat. Prod., 62: 817, 1999; Huneck, S., Naturwissenschaften, 86: 559, 1999).
  • diabetes is a metabolic disorder including hyperglycemia caused by a deficiency of insulin action, insulin secretion, or both, and is a disease with high possibility of future vascular complications, and can be broadly divided into type 1 diabetes and type 2 diabetes.
  • Type 1 (insulin dependent) diabetes is caused by beta-cell destruction of the pancreatic islets due to immunity and the absolute lack of insulin
  • type 2 (insulin-independent) diabetes is not sufficient or is sufficient in insulin. It is caused by the body's inability to utilize insulin secreted effectively.
  • the body's energy sources especially sugars, are poorly used, resulting in insufficient energy. Unused sugar is more than necessary in the blood. Accumulated and eventually discharged into the urine is one of the chronic degenerative diseases that do not heal fundamentally.
  • Types of diabetes mellitus in Korea account for more than 99%, and the incidence of type 1 diabetes is less than about 1%.
  • Type 2 diabetes reported in foreign countries is about 90%, and about 10% It is different from type 1 diabetes.
  • the causes of diabetes are intertwined with a variety of factors, and important factors include heredity (approximately 20% of family history), environment, age (approximately 60% between 40-49 years old), obesity, reduced body resistance, drug abuse And stress stimulation.
  • the pathogenesis of diabetes has not yet been elucidated, but with the exception of a few specific diabetes mellitus (eg MODY), it is a disease that is caused by multigenic causes, and there is a limit to finding a coherent gene. In other words, the onset of diabetes is complicated by a number of genes and a large number of new genes continue to be identified.
  • Diabetes mellitus is caused by a variety of mechanisms, so the treatment also has to vary, moreover, the existing conventional treatments alone do not see a satisfactory effect, so a new treatment is required. Diabetes treatment research has been actively developed with the focus on Type 2 diabetes treatment, which accounts for more than 90% of patients with diabetes (Tables 1 and 2).
  • Insulin secretagogues pirogliride, linogliride, 2,4-diaminino-5-cyan-bromoripidine, incretin, repaglinide, nateglinide
  • insulin enhancers troglitazone
  • insulin resistance enhancers insulin-like effects in target tissues
  • Indicating drugs pirogliride, linogliride, dichloroacetate, insulin lispro, insulin aspart
  • glucosynthesis inhibitors lipase inhibitors, carnitine transferase inhibitors, beta antioxidants
  • drugs that delay carbohydrate absorption dietary fiber, alphaglucocyte
  • PTP-1b Protein tyrosine phosphatase-1b activity in adipocytes of people with obesity type and non-obese type 2 diabetes mellitus was tested. Was increased by 3 and 5.5 times, respectively, and activity was reported to be 71% and 88%.
  • recent studies have shown that mice knocked out of PTP-1b show increased sensitivity to insulin and resistance to high fat diet.
  • substances that inhibit the activity of PTP-1b may overcome insulin resistance by increasing insulin sensitivity in target cells. In Korea, randomized bulk screening is performed to develop inhibitors of PTP-1b activity from tens of thousands of compounds not yet developed as drugs by the Korea Compound Bank.
  • leptin is released from the adipocytes into the blood and passes through the cerebral blood membrane, acting on receptors in the central nervous system, inhibiting food intake, weight loss and promoting energy consumption.
  • PTP-1b modulates leptin activity itself, it is expected to have synergistic effects when used with leptin agonists (Koren, S., Best Pract. Res. Clin. Endocrinol. Metab). , 21: 621, 2007).
  • Stepocaulon alpinum is a salt of a Rover acid (Lobaric acid) isolated from extracts of sodium Rover rate (Sodium Lobarate to develop effective therapeutic agents for diabetes and obesity therapy ) Is not only water soluble and easy to apply, but also newly synthesized Lobarin and Lobarstin inhibit PTP-1b more effectively than Lobaric acid, and PTP in the protein tyrosine dekinase family. Selectively acting only on -1b confirms that the anti-diabetic effect when administered to disease model animals, the present invention was completed.
  • An object of the present invention is to provide a pharmaceutical composition and a functional food for preventing or treating diabetes or obesity containing a novel compound synthesized from a compound isolated from a stereocaulon alpinum extract as an active ingredient.
  • An object of the present invention is to provide a method for preventing or treating diabetes or obesity, comprising the step of administering a novel compound synthesized from a compound isolated from the stereocaulon alpinum extract.
  • An object of the present invention to provide a method for inhibiting the activity of protein tyrosine phosphatase-1b (PTP-1b) comprising the step of administering a novel compound synthesized from a compound isolated from a stereocaulon alpinum extract. .
  • PTP-1b protein tyrosine phosphatase-1b
  • An object of the present invention is to provide a novel compound synthesized from a compound isolated from the stereocaulon alpinum extract for the prevention or treatment of diabetes or obesity.
  • the present invention provides a compound represented by the following formula (1):
  • R 1 and R 2 are selected from the group consisting of H, alkyl, aryl, allyl, arylalkyl and acyl groups.
  • the present invention also provides a pharmaceutical composition for preventing or treating diabetes or obesity containing the compound represented by Formula 1 as an active ingredient.
  • the present invention also provides a food for the prevention or improvement of diabetes or obesity containing the compound represented by the formula (1) as an active ingredient.
  • the present invention also provides a compound represented by the following general formula (2):
  • the present invention also provides a method for preparing a compound represented by the following Chemical Formula 2, comprising the following steps:
  • step (b) eluting the stereocaulon alpinum extract obtained in step (a) with an aqueous solution of methanol or acetonitrile (CH 3 CN) using column chromatography;
  • step (c) eluting the fraction eluted in step (b) with acetonitrile (CH 3 CN) or aqueous methanol solution using reverse phase high performance liquid chromatography to obtain a fraction containing lobaric acid;
  • the present invention also provides a pharmaceutical composition for preventing or treating diabetes or obesity containing the compound represented by Formula 2 as an active ingredient.
  • the present invention also provides a food for preventing or improving diabetes or obesity containing the compound represented by Formula 2 as an active ingredient.
  • the present invention also provides a compound represented by Formula 3:
  • R 1 and R 2 are selected from the group consisting of H, alkyl, aryl, allyl, arylalkyl and acyl groups.
  • the present invention also provides a pharmaceutical composition for preventing or treating diabetes or obesity containing the compound represented by Formula 3 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention also provides a functional food for preventing or improving diabetes or obesity containing the compound represented by Formula 3 as an active ingredient.
  • the present invention also provides a compound represented by the following general formula (4):
  • the present invention also provides a method for preparing a compound represented by Formula 4, comprising the following steps:
  • step (b) eluting the stereocaulon alpinum extract obtained in step (a) with an aqueous solution of methanol or acetonitrile (CH 3 CN) using column chromatography;
  • step (c) eluting the fraction eluted in step (b) with acetonitrile (CH 3 CN) or aqueous methanol solution using reverse phase high performance liquid chromatography to obtain a fraction containing lobaric acid;
  • the present invention also provides a pharmaceutical composition for preventing or treating diabetes or obesity containing the compound represented by Formula 4 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention also provides a functional food for preventing or improving diabetes or obesity containing the compound represented by Formula 4 as an active ingredient.
  • the present invention also provides a compound represented by the following formula (5):
  • R 1 and R 2 are selected from the group consisting of H, alkyl, aryl, allyl, arylalkyl and acyl groups.
  • the present invention also provides a pharmaceutical composition for preventing or treating diabetes or obesity containing the compound represented by Formula 5 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention also provides a functional food for preventing or improving diabetes or obesity containing the compound represented by Formula 5 as an active ingredient.
  • the present invention also provides a compound represented by the following general formula (6):
  • the present invention also provides a method for preparing a compound represented by Chemical Formula 6, comprising the following steps:
  • step (b) eluting the stereocaulon alpinum extract obtained in step (a) with an aqueous solution of methanol or acetonitrile (CH 3 CN) using column chromatography;
  • step (c) eluting the fraction eluted in step (b) with acetonitrile (CH 3 CN) or an aqueous methanol solution using reverse phase high performance liquid chromatography to obtain a fraction containing lobaric acid;
  • the present invention also provides a pharmaceutical composition for preventing or treating diabetes or obesity containing the compound represented by Formula 6 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention also provides a functional food for preventing or improving diabetes or obesity containing the compound represented by Formula 6 as an active ingredient.
  • the present invention also provides a step of administering a compound represented by Formula 1, Formula 2, Formula 3, Formula 4, Formula 5 or Formula 6, which is a novel compound synthesized from a compound isolated from a stereocaulon alpinum extract. It includes, provides a method for preventing or treating diabetes or obesity.
  • the present invention also relates to diabetes or obesity of a compound represented by Formula 1, Formula 2, Formula 3, Formula 4, Formula 5 or Formula 6, which is a novel compound synthesized from a compound isolated from Stereocaulon alpinum extract. It provides a use for the prevention or treatment of.
  • the present invention also relates to a PTP- using a compound represented by Formula 1, Formula 2, Formula 3, Formula 4, Formula 5 or Formula 6, which is a novel compound synthesized from a compound isolated from Stereocaulon alpinum extract. It provides a method of inhibiting the activity of 1b.
  • the present invention also provides a PTP-containing compound represented by Formula 1, Formula 2, Formula 3, Formula 4, Formula 5 or Formula 6, which is a novel compound synthesized from a compound isolated from Stereocaulon alpinum extract.
  • a composition for inhibiting activity of 1b is provided.
  • Figure 2 shows the 1 H NMR spectrum (400 MHz, DMSO- d 6 ) of sodium lobarate.
  • HMBC data 400 MHz, DMSO- d 6 ) of sodium lobarate.
  • FIG. 6 is a graph showing the PTP-1b inhibitory activity of sodium lovarate.
  • FIG. 7 is a graph showing the absorbance at 620 nm showing the inhibitory activity against PTP-1b, PTPN2, PTPN5, PTPN6, PTPN7, and PTPN13.
  • Figure 9 is a graph of the results of blood glucose measurement after 6 hours fasting according to the intraperitoneal administration of sodium lovarate.
  • Figure 10 is a graph measuring the change in blood glucose 28 days after intraperitoneal administration of sodium lovarate.
  • Figure 13 shows a 1 H NMR spectrum (400 MHz, DMSO- d 6 ) of lovarin.
  • Figure 14 shows a 13 C NMR spectrum (400 MHz, DMSO- d 6 ) of lovarin.
  • FIG. 16 shows HMBC data (400MHz, DMSO- d 6 ) of lovarin.
  • 17 is a graph showing the PTP-1b inhibitory activity of lovarin.
  • Fig. 18 is a graph showing the absorbance of lovarin on PTP-1b, PTPN2, PTPN5, PTPN6, PTPN7, and PTPN13 by measuring absorbance at 620 nm.
  • 19 is a graph measuring blood glucose change after intraperitoneal administration of lovarin.
  • 20 is a graph of blood glucose measurement results after 6 hours fasting according to intraperitoneal administration of lovarin.
  • Figure 21 is a graph measuring the change in blood glucose 28 days after intraperitoneal administration of lovarin.
  • Figure 25 shows a 13 C NMR spectrum (400 MHz, DMSO- d 6 ) of lovastin.
  • FIG. 26 shows COSY data of lovastin (400 MHz, DMSO- d 6 ).
  • FIG. 27 shows HSQC data of lovastin (400 MHz, DMSO- d 6 ).
  • FIG. 30 is a graph showing the PTP-1b inhibitory activity of lovastin.
  • Fig. 31 is a graph showing the absorbance of lovastin to PTP-1b, PTPN2, PTPN5, PTPN6, PTPN7, and PTPN13 by measuring absorbance at 620 nm.
  • 32 is a graph measuring blood glucose change after intraperitoneal administration of lovastin.
  • 33 is a graph of blood glucose measurement results after 6 hours fasting according to intraperitoneal administration of lovastin.
  • 34 is a graph of glucose tolerance test 28 days after intraperitoneal administration of lovastin.
  • sodium lobarate represented by the following formula (2) which is a salt of robaric acid, was obtained from robaric acid separated from an extract of stereocaulon alpinum .
  • Sodium lovarate represented by the formula (2) is preferably prepared by a method comprising the following steps:
  • step (b) eluting the stereocaulon alpinum extract obtained in step (a) with an aqueous solution of methanol or acetonitrile (CH 3 CN) using column chromatography;
  • step (c) eluting the fraction eluted in step (b) with acetonitrile (CH 3 CN) or aqueous methanol solution using reverse phase high performance liquid chromatography to obtain a fraction containing lobaric acid;
  • step (d) is preferably dissolved in acetone fractions containing the robaric acid, NaHCO 3 , Na 2 CO 3 or NaH 2 PO 4 is added and stirred, NaHCO 3 , Na 2 CO 3 Alternatively, the solid produced simultaneously with addition of NaH 2 PO 4 may be filtered and concentrated to obtain a compound represented by the following Chemical Formula 2.
  • the lichen stereocaulon alpinum (Hedw.) GL Sm. Is located around King Sejong Station (S 62 ° 13.3 ', W58 ° 47.0') in King George Island, Antarctica, January 2003. It was taken from Barton Peninsular. Lovaric acid was extracted with dried Stereocaulon alpinum for 24 hours with methanol, and then the solvent was distilled off to obtain an extract. The extract was flash column chromatography filled with silica gel (C 18 ).
  • Sodium lovarate of Formula 2 may be obtained by filtering the solid produced simultaneously with addition of NaHCO 3 , Na 2 CO 3 or NaH 2 PO 4 and immediately concentrating it completely with a rotary evaporator.
  • R 1 and R 2 are selected from the group consisting of H, alkyl, aryl, allyl, arylalkyl and acyl groups.
  • the alkyl group, aryl group, allyl group, arylalkyl group and acyl group may have, for example, 1 to 20 carbon atoms, or 1 to 10 carbon atoms, and the alkyl group includes a substituted, unsubstituted alkyl group, a cycloalkyl group, and the like.
  • the compound of Formula 1 is obtained from the sodium lovarate of Formula 2 through a known compound synthesis and modification method known in the art.
  • R of the compound of Formula 1 can be obtained various derivatives by changing the number of carbon, the bonding structure.
  • R 1 and R 2 are propyl chains, they are derived from the reaction with sodium pentanoate.
  • Sodium butyrate, sodium propionate, sodium hexanoate and the like having different carbon numbers can be used to synthesize derivatives having different carbon numbers. .
  • sodium lobarate, a salt of lobaric acid, isolated from the extract of stereocaulon alpinum is superior to that of lobaric acid. It has an activity inhibiting activity, and has been confirmed to be effective in preventing or treating diabetes or obesity. Therefore, in another aspect, the present invention relates to a pharmaceutical composition for preventing or treating diabetes or obesity containing sodium lovarate as an active ingredient.
  • sodium lobarate according to the present invention may be provided as a functional food containing it as an active ingredient, and thus the present invention, in another aspect, for preventing or improving diabetes or obesity containing sodium lobarate as an active ingredient It relates to a functional food.
  • the compound of formula (1) or a pharmaceutically acceptable salt thereof modified with some alkyl groups as follows will also exhibit the same or similar effects, preventing or treating diabetes or obesity containing them It may be provided as a pharmaceutical composition or a functional food.
  • the analysis of the inhibitory activity of sodium lovarate against PTP-1b with lovaric acid showed that the IC 50 of lovaric acid was 870 nM, whereas sodium lovarate had a very good PTP- of 50 nM. 1b inhibitory effect, so it was confirmed that sodium lobarate is a drug that can be a pharmaceutical treatment and prevention for diabetes and obesity.
  • PTP-1b is the most similar to TC-PTP in the amino acid sequence and 3D structure, induces embrionic lethal, Selectively acts only on PTP-1b of the family of protein tyrosine dekinase containing TC-PTP (PTPN2), which has similar enzymatic properties to TC-PTP and is known to have similar active sites including 2nd aryl-phosphate binding site
  • PTPN2 protein tyrosine dekinase containing TC-PTP
  • a novel compound represented by the following Chemical Formula 4 was isolated from lovaric acid isolated from the extract of Stereocaulon alpinum , and this was named Lobarin.
  • novel compound lovarin represented by Formula 4 may preferably be prepared by a method comprising the following steps:
  • step (b) eluting the stereocaulon alpinum extract obtained in step (a) with an aqueous solution of methanol or acetonitrile (CH 3 CN) using column chromatography;
  • step (c) eluting the fraction eluted in step (b) with acetonitrile (CH 3 CN) or aqueous methanol solution using reverse phase high performance liquid chromatography to obtain a fraction containing lobaric acid;
  • the acidic solution in step (d) can be used for all kinds of acidic solution that can neutralize the aqueous solution, preferably in the step (d) the solvent is acetone, the base is NaOH or KOH, acidic solution May be HCl solution, H 2 SO 4 solution or HNO 3 solution, and the concentrated reaction solution of step (d) is concentrated, and then methylene chloride, methylene chloride, chloroform or It may be characterized by obtaining a chloroform or ethylene chloride dissolved layer and concentrating to obtain a compound represented by the following formula (4).
  • the solvent is acetone
  • the base is NaOH or KOH
  • acidic solution May be HCl solution, H 2 SO 4 solution or HNO 3 solution
  • the concentrated reaction solution of step (d) is concentrated, and then methylene chloride, methylene chloride, chloroform or It may be characterized by obtaining a chloroform or ethylene chloride dissolved layer and concentrating to obtain a compound represented by the following formula (4).
  • R 1 and R 2 are selected from the group consisting of H, alkyl, aryl, allyl, arylalkyl and acyl groups.
  • the alkyl group, aryl group, arylalkyl group and acyl group may be, for example, 1 to 20 carbon atoms, or 1 to 10, the alkyl group includes a substituted, unsubstituted alkyl group, cyclo alkyl group and the like.
  • R of the compound of Formula 3 may be obtained various derivatives by changing the number of carbon, the bond structure.
  • R 1 and R 2 are propyl chains, they are derived from the reaction with sodium pentanoate.
  • Sodium butyrate, sodium propionate, sodium hexanoate and the like having different carbon numbers can be used to synthesize derivatives having different carbon numbers. .
  • the present invention relates to a pharmaceutical composition for preventing or treating diabetes or obesity containing lovarin of Formula 4 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • lovarin according to the present invention may be provided as a functional food containing it as an active ingredient, and thus the present invention, in another aspect, a functional food for the prevention or improvement of diabetes or obesity containing lovarin as an active ingredient It is about.
  • the compound of the formula (3) or a pharmaceutically acceptable salt thereof modified with some alkyl groups as follows will also exhibit the same or similar effects, for the prevention or treatment of diabetes or obesity containing them It may be provided as a pharmaceutical composition, a functional food.
  • the anti-diabetic effect was verified by determining the correlation between blood glucose and insulin resistance by measuring glubarine and db / db mice, the disease animal models, by measuring changes in blood glucose and blood insulin concentration. .
  • the lovarin of the general formula (4) used in the present invention may be in the form of a pharmaceutically acceptable salt.
  • Pharmaceutically acceptable salts in the present invention can be prepared by conventional methods in the art, for example, salts with inorganic acids such as hydrochloric acid, hydrogen bromide, sulfuric acid, sodium hydrogen sulfate, phosphoric acid, carbonic acid, and the like.
  • a pharmaceutically acceptable acid together with an organic acid such as formic acid, acetic acid, oxalic acid, benzoic acid, citric acid, tartaric acid, gluconic acid, gestyic acid, fumaric acid, lactobionic acid, salicylic acid, or acetylsalicylic acid (aspirin) Salts may be formed, or they may be reacted with alkali metal ions such as sodium or potassium to form their metal salts, or they may be reacted with ammonium ions to form another form of a pharmaceutically acceptable salt.
  • an organic acid such as formic acid, acetic acid, oxalic acid, benzoic acid, citric acid, tartaric acid, gluconic acid, gestyic acid, fumaric acid, lactobionic acid, salicylic acid, or acetylsalicylic acid (aspirin) Salts may be formed, or they may be reacted with alkali metal ions such as sodium or potassium to form their metal
  • a novel compound represented by the following Chemical Formula 6 was isolated from lovaric acid isolated from an extract of Stereocaulon alpinum , which was named Lobarstin.
  • novel compound lovastin represented by Formula 6 may preferably be prepared by a method comprising the following steps:
  • step (b) eluting the stereocaulon alpinum extract obtained in step (a) with an aqueous solution of methanol or acetonitrile (CH 3 CN) using column chromatography;
  • step (c) eluting the fraction eluted in step (b) with acetonitrile (CH 3 CN) or an aqueous methanol solution using reverse phase high performance liquid chromatography to obtain a fraction containing lobaric acid;
  • the acidic solution in step (d) can be used for all kinds of acidic solution that can neutralize the aqueous solution, preferably in the step (d) the solvent is acetone, the base is NaOH or KOH, acidic solution May be HCl solution, H 2 SO 4 solution or HNO 3 solution, and the concentrated reaction solution of step (d) is concentrated, and then methylene chloride, methylene chloride, chloroform or It may be characterized by obtaining a chloroform or ethylene chloride dissolved layer and concentrating to obtain a compound represented by the following formula (6).
  • the solvent is acetone
  • the base is NaOH or KOH
  • acidic solution May be HCl solution, H 2 SO 4 solution or HNO 3 solution
  • the concentrated reaction solution of step (d) is concentrated, and then methylene chloride, methylene chloride, chloroform or It may be characterized by obtaining a chloroform or ethylene chloride dissolved layer and concentrating to obtain a compound represented by the following formula (6).
  • R 1 and R 2 are selected from the group consisting of H, alkyl, aryl, allyl, arylalkyl and acyl groups.
  • the alkyl group, aryl group, allyl group arylalkyl group and acyl group may be, for example, 1 to 20 carbon atoms, or 1 to 10, the alkyl group includes a substituted, unsubstituted alkyl group, cyclo alkyl group and the like.
  • R of the compound of Formula 5 may obtain various derivatives through the change in the number of carbons and the bonding structure.
  • R 1 and R 2 are propyl chains, they are derived from the reaction with sodium pentanoate. Sodium butyrate, sodium propionate, sodium hexanoate and the like having different carbon numbers can be used to synthesize derivatives having different carbon numbers. .
  • lovastin a novel derivative of lovaric acid isolated from the extract of Stereocaulon alpinum , has an excellent activity of inhibiting the activity of PTP-1b, and thus it is confirmed that it is effective in preventing or treating diabetes or obesity.
  • the present invention relates to a pharmaceutical composition for preventing or treating diabetes or obesity containing lovastin of Formula 6 or a pharmaceutically acceptable salt thereof as an active ingredient.
  • lovastin according to the present invention may be provided as a functional food containing the same as an active ingredient, the present invention in another aspect, to prevent or improve the functional food for diabetes or obesity containing lovastin as an active ingredient It is about.
  • the compound of the formula (5) or a pharmaceutically acceptable salt thereof modified with some alkyl groups as shown below will also exhibit the same or similar effects, for the prevention or treatment of diabetes or obesity containing them It may be provided as a pharmaceutical composition, a functional food.
  • the anti-diabetic effect was verified by determining the correlation between blood glucose and insulin resistance by measuring glustatin and blood insulin concentrations by administering lovastin to a disease animal model db / db mouse. .
  • lovastin of the formula (6) used in the present invention may be in the form of a pharmaceutically acceptable salt.
  • Pharmaceutically acceptable salts in the present invention can be prepared by conventional methods in the art, for example, salts with inorganic acids such as hydrochloric acid, hydrogen bromide, sulfuric acid, sodium hydrogen sulfate, phosphoric acid, carbonic acid, and the like.
  • a pharmaceutically acceptable acid together with an organic acid such as formic acid, acetic acid, oxalic acid, benzoic acid, citric acid, tartaric acid, gluconic acid, gestyic acid, fumaric acid, lactobionic acid, salicylic acid, or acetylsalicylic acid (aspirin) Salts may be formed, or they may be reacted with alkali metal ions such as sodium or potassium to form their metal salts, or they may be reacted with ammonium ions to form another form of a pharmaceutically acceptable salt.
  • an organic acid such as formic acid, acetic acid, oxalic acid, benzoic acid, citric acid, tartaric acid, gluconic acid, gestyic acid, fumaric acid, lactobionic acid, salicylic acid, or acetylsalicylic acid (aspirin) Salts may be formed, or they may be reacted with alkali metal ions such as sodium or potassium to form their metal
  • compositions comprising the compounds according to the invention, respectively, in the form of powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols or the like, external preparations, suppositories and sterile injectable solutions according to conventional methods.
  • Carriers, excipients and diluents that may be included in the composition comprising the compound include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate , Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • Solid form preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, which include at least one excipient such as starch, calcium carbonate, sucrose ( It is prepared by mixing sucrose or lactose, gelatin and the like.
  • excipients such as starch, calcium carbonate, sucrose ( It is prepared by mixing sucrose or lactose, gelatin and the like.
  • lubricants such as magnesium stearate and talc are also used.
  • Oral liquid preparations include suspensions, solvents, emulsions, and syrups, and may include various excipients, such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories.
  • the non-aqueous solvent and suspending agent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate and the like can be used.
  • As the base of the suppository witepsol, macrogol, tween 60, cacao butter, laurin butter, glycerogelatin and the like can be used.
  • the functional food of the present invention includes various foods, candy, chocolate, beverages, gums, teas, vitamin complexes, health supplements, and the like, and can be used in the form of powders, granules, tablets, capsules or beverages.
  • the compounds of the present invention may be added to foods or beverages for the purpose of preventing diabetes and obesity.
  • the amount of the compound in the food or beverage is generally added to the dietary supplement composition of the present invention to 0.01 to 50% by weight, preferably 0.1 to 20% by weight of the total food weight, the health beverage composition is 100 ml It can be added at a ratio of 0.02 to 10 g, preferably 0.3 to 1 g as a reference.
  • the health beverage composition of the present invention has no particular limitation on the liquid component except for containing the compound of the present invention as an essential ingredient in the indicated ratio, and may contain various flavors or natural carbohydrates as additional ingredients, such as ordinary drinks.
  • natural carbohydrates include monosaccharides such as glucose, fructose and the like, disaccharides such as maltose, sucrose and the like, conventional sugars such as polysaccharides such as dextrin, cyclodextrin and xylitol Sugar alcohols such as sorbitol and erythritol.
  • natural flavoring agents such as sorbitol and erythritol.
  • the ratio is generally about 1 to 20 g, preferably about 5 to 12 g per 100 ml of the composition of the present invention, in addition to the above, the functional food of the present invention includes various nutrients, vitamins, minerals (electrolytes), synthetic flavors and natural flavors.
  • Flavoring agents coloring and neutralizing agents (cheese, chocolate, etc.), pectic acid and salts thereof, alginic acid and salts thereof, organic acids, protective colloidal thickeners, pH regulators, stabilizers, preservatives, glycerin, alcohols, carbonated drinks Carbonic acid used, etc.
  • the functional food of the present invention may also contain pulp for the production of natural fruit juices and fruit juice beverages and vegetable beverages.
  • the ratio of such additives is not so critical but is usually selected in the range of 0 to about 20 parts by weight per 100 parts by weight of the composition of the present invention.
  • the present invention provides a compound represented by Formula 1, Formula 2, Formula 3, Formula 4, Formula 5, or Formula 6, which is a novel compound synthesized from a compound isolated from Stereocaulon alpinum extract. It relates to a method for preventing or treating diabetes or obesity, comprising the step of administering.
  • Preferred dosages of the compounds of the present invention depend on the condition and weight of the patient, the extent of the disease, the form of the drug, the route and duration of the patient. It depends, but can be appropriately selected by those skilled in the art. However, for the preferred effect, the compound of the present invention is preferably administered at 0.1 to 1000 ⁇ g / kg, preferably at 1 to 100 ⁇ g / kg. Administration may be administered once a day or may be divided orally. The dosage does not limit the scope of the invention in any aspect.
  • the present invention is a novel compound synthesized from a compound isolated from Stereocaulon alpinum extract of Formula 1, Formula 2, Formula 3, Formula 4, Formula 5 or Formula 6 It relates to the use for the prevention or treatment of diabetes or obesity.
  • the present invention since sodium lovarate, lovarin, and lovastin synthesized from a compound isolated from a stereocaulon alpinum extract have excellent inhibitory effects on PTP-1b activity, a method of inhibiting the activity of PTP-1b using the same It is about. Specifically, the present invention relates to a method for inhibiting activity of PTP-1b comprising administering to a subject a compound represented by Formula 1, Formula 2, Formula 3, Formula 4, Formula 5 or Formula 6.
  • the present invention relates to a PTP-1b containing a compound represented by Formula 1, Formula 2, Formula 3, Formula 4, Formula 5 or Formula 6, which is a new compound synthesized from a compound isolated from Stereocaulon alpinum extract. It relates to a composition for inhibiting activity.
  • Example 1-2 10 mg (22 umol) of lobaric acid obtained in Example 1-2 was dissolved in 3 ml of acetone, and 50ul of 1M NaHCO 3 was added, followed by stirring for 1-2 minutes. The solid produced simultaneously with NaHCO 3 addition was filtered and concentrated immediately by rotary evaporator. When concentration is complete, a white solid, sodium lovarate ( ⁇ 10 mg) is obtained. It was then analyzed by reverse phase HPLC using an Agilent Eclipse XDB-C18 column (4.6 x 150 mm, USA) to remove excess salt to increase purity. The solvent system used was 0.1% formic acid mixed water (A Line) and 0.1% formic acid mixed acetonitrile (B line).
  • the structure of sodium lobarate was confirmed by comparing the NMR data of the compound with the NMR data of lobaric acid.
  • PTP-1b protein tyrosine phosphatase-1b
  • PTP-1b (Bionia, Korea), PTP-1b buffer solution (20 mM Tris-Hcl, pH 8.0, 0.75 mM NaCl, 0.5 mM EDTA, 5 mM ⁇ -mercaptoethanol, 50% Glycerol) Sodium lovarate 0, 1, 3, 10, 30, 100, 300, 1000, 3000 nM and the substrate [pTyr1146] Insulin Receptor (1142-1153, Sigma, USA) were added and then reacted at room temperature for 10-30 minutes.
  • PTP-1b inhibitory activity of lobaric acid was measured and compared as a control.
  • PTP-1b was purchased from BIOMOL (USA) and used for experiments.
  • PTP-1b and PTP-1b buffer solutions 50 mM citrate) at a concentration of about 0.2 ⁇ g / ml , pH 6.0, 0.1M NaCl, 1 mM EDTA, 1 mM DTT), lobaric acid, 4 mM pNPP were added and gently shaken, reacted at 37 ° C. for 30 minutes, and the absorbance was measured at 405 nm.
  • IC 50 0.87 It was confirmed that the ⁇ M, 870nM.
  • the sodium lobarate according to the present invention has a superior PTP-1b inhibitory effect, and the sodium lobarate is a substance capable of pharmaceutical treatment and prevention of diabetes and obesity.
  • TC-PTP TC-PTP
  • TC-PTP (PTPN2), known to be the most similar kinase to PTP-1b in its amino acid sequence and 3D structure, is an embrionic lethal and has an enzymatic characteristic similar to that of PTP-1b and has an active site containing a 2nd aryl-phosphate binding site. It is known to be similar.
  • PTPN2 TC-PTP
  • Doses (expressed in test substance (mg) / weight of test animal (Kg)) were determined based on preliminary, potent, toxicological, and data studies on sodium lovarate. Seven-week-old male db / db mice (type 2 diabetes model animals, C57 / BLKS / J-db / db, Korea Research Institute of Bioscience and Biotechnology) were treated with 200 ⁇ l of PBS as a control and sodium lovaba as an experimental inhibitor. A 10 mg / kg rate was intraperitoneally administered daily to measure blood glucose twice a week.
  • PBS 200 was used as a control in 7-week-old male db / db mice (type 2 diabetes model animals, C57 / BLKS / J-db / db, Korea Research Institute of Bioscience and Biotechnology). After the intraperitoneal injection of sodium lovarate 10 mg / kg into the experimental group daily, blood glucose was measured twice a week. At this time, after fasting for 6 hours after the intraperitoneal injection blood glucose was measured.
  • IPGTT Intraperitoneal glucose tolerance test
  • mice type 2 diabetes model animals, C57 / BLKS / J-db / db, Korea Research Institute of Bioscience and Biotechnology
  • physiological saline as a control
  • sodium lovarate 10mg / kg as an experimental group for 28 days.
  • glucose 500 mg / ml, administration volume 200 ⁇ l
  • Example 5 show that sodium lobarate according to the present invention has a very good antidiabetic effect.
  • Example 6 The molecular structure of lovarin synthesized in Example 6 was characterized by high resolution mass spectrometry (HRESIMS) and NMR spectroscopy.
  • HRESIMS high resolution mass spectrometry
  • NMR spectroscopy The molecular structure of lovarin synthesized in Example 6 was characterized by high resolution mass spectrometry (HRESIMS) and NMR spectroscopy.
  • HRESIMS HRESIMS
  • lovarin showed a molecular ion peak of m / z 473.1774, which is lovarin. It is shown that the molecular formula of C 25 H 30 O 9 .
  • HMQC data (FIG. 15) and HMBC data (FIG. 16) confirmed the location of the peaks for each carbon and hydrogen of lobulin, and these data were similar to the NMR measurements of lovalic acid.
  • HMBC correlations from the peak corresponding to the protons of the OH functional group (7.65 ppm) to the 13 C NMR peaks corresponding to the C-6, C-7, and C-8 positions are important data to elucidate the structure of the presented lovarin. Provided.
  • aHMBC correlations optimized for 8 Hz, are from proton (s) stated to the indicated carbon (s).
  • PTP-1b (Bionia, Korea), PTP-1b buffer solution (20 mM Tris-Hcl, pH 8.0, 0.75 mM NaCl, 0.5 mM EDTA, 5 mM ⁇ -mercaptoethanol, 50% Glycerol)
  • PTP-1b buffer solution 20 mM Tris-Hcl, pH 8.0, 0.75 mM NaCl, 0.5 mM EDTA, 5 mM ⁇ -mercaptoethanol, 50% Glycerol
  • lovarin 0, 1, 3, 10, 30, 100, 300, 1000, 3000 nM and the substrate [pTyr1146] Insulin Receptor (1142-1153, Sigma, USA) and reacted at room temperature for 10-30 minutes.
  • Malachite Green-Molybdate Dye Solution (1142-1153, Sigma, USA) was added to react at room temperature for 10 minutes to terminate the reaction with PTP-1b, lovarin and substrate, the absorbance was measured at 620 nm.
  • lobulin showed an inhibition rate of 52.2% at 200 nM of IC 50 against PTP-1b, especially TC-PTP (PTPN2). There was no inhibitory activity against other protein tyrosine kinase families.
  • Doses (expressed as test substance (mg) / weight of test animal (Kg)) were determined based on preliminary, potent, toxicological, and data for lovarin. Seven-week-old male db / db mice (type 2 diabetic model animals, C57 / BLKS / J-db / db, Korea Research Institute of Bioscience and Biotechnology) were intraperitoneally administered 200 ⁇ l of PBS as a control and 10 mg / kg of lovarin as experimental groups daily. Blood glucose was measured twice a week.
  • IPGTT intraperitoneal glucose tolerance test
  • mice type 2 diabetic model animals, C57 / BLKS / J-db / db, Korea Research Institute of Bioscience and Biotechnology
  • 20% DMSO as a control
  • 10 mg / kg of lovarin daily as experimental groups.
  • fasting glucose 500 mg / ml, administration volume 200 ⁇ l
  • intraperitoneal injection after 16 hours without 20% DMSO and lovarin, respectively, 0, 15, 30, 60 Blood glucose changes were observed in blood samples taken from the tail vein at 90 and 120 minutes.
  • HRESIMS high resolution mass spectrometry
  • NMR spectroscopy NMR spectroscopy
  • Anion analysis of HRESIMS was measured using a Q-TOF micro LC-MS / MS instrument (Waters, USA).
  • lovastin showed a molecular ion peak of m / z 455.1708, which is lovastin. It is shown that the molecular formula of is C 25 H 28 O 8 .
  • HMBC Heteronuclear Multiple-Bond Coherence
  • the structure of lovastin has a structure very similar to that of lovarin, and considering that the difference in molecular weight is 18 dalton, it could be predicted that the compound was produced through the removal reaction of water molecules from lovarin.
  • sp 3 hybrid carbons C-8 of lovastin
  • sp 3 hybrid carbons exhibit absorption peaks, especially in the low field shifted observed in lovalin in the 13 C NMR spectrum. , 106.3 ppm) and the absorption peaks of aliphatic methylene carbon disappeared and instead the absorption peaks observed in the two double bond regions were observed.
  • HMBC data confirmed the location of the peaks corresponding to the respective carbon and hydrogen of lovastin, especially from H-5, 9, 10 and 11 in the lovastin structure.
  • HMBC correlations provided important data to elucidate the structure of lovastin presented.
  • the geometric conformation of the double bonds formed in C-8 and C-9 was Z-type (cis-type) based on the observation of NOE correlation between H-5 and H-9 (FIG. 29).
  • aHMBC correlations optimized for 8 Hz, are from proton (s) stated to the indicated carbon (s).
  • the enzyme activity was measured spectroscopically. That is, 0.5 mg / ml PTP-1b (Bionia, Korea), PTP-1b buffer solution (20 mM Tris-Hcl, pH 8.0, 0.75 mM NaCl, 0.5 mM EDTA, 5 mM ⁇ -mercaptoethanol, 50% Glycerol) To lovastin 0, 1, 3, 10, 30, 100, 300, 1,000, 3,000 nM and the substrate [pTyr1146] Insulin Receptor (1142-1153, Sigma, USA) were added and then reacted at room temperature for 10-30 minutes.
  • IC 50 154.6 nM showed excellent PTP-1b inhibitory effect, it was confirmed that the inhibition rate increased depending on the concentration It was confirmed that the drug is capable of pharmacological treatment and prevention of diabetes and obesity.
  • the IC 50 inhibition rate of PTP-1b at 200 nM lovastin was 47.96%, particularly TC-PTP (PTPN2).
  • PTPN2 TC-PTP
  • Doses (expressed as test substance (mg) / weight of test animal (Kg)) were determined based on preliminary, potent, toxicological, and data for lovastin. Seven-week-old male db / db mice (type 2 diabetes model animals, C57 / BLKS / J-db / db, Korea Research Institute of Bioscience and Biotechnology) were intraperitoneally administered 200 ⁇ l of PBS as a control and 10 mg / kg of lovastin as experimental groups daily. Blood glucose was measured twice a week.
  • lovastin For more accurate antidiabetic effect on lovastin, 200 ⁇ l of PBS was used as a control in 7-week-old male db / db mice (type 2 diabetes model animals, C57 / BLKS / J-db / db, Korea Research Institute of Bioscience and Biotechnology). After the intraperitoneal injection of lovastin 10 mg / kg daily in the experimental group, blood glucose was measured twice a week. At this time, after fasting for 6 hours after the intraperitoneal injection blood glucose was measured.
  • IPGTT Intraperitoneal glucose tolerance test
  • mice type 2 diabetic model animals, C57 / BLKS / J-db / db, Korea Research Institute of Bioscience and Biotechnology
  • 20% DMSO as a control
  • 10 mg / kg of lovastin as experimental groups.
  • glucose 500 mg / ml, administration volume 200 ⁇ l
  • blood glucose changes were observed in blood samples taken from the tail vein at 60, 90 and 120 minutes.
  • the novel compound according to the present invention is very excellent in PTP-1b (protein tyrosine phosphatase-1b) inhibitory activity, selectively acts only on PTP-1b of the protein tyrosine dephosphatase family, and is a substantial PTP-1b inhibitor. Available for the treatment of diabetes, effective for the prevention or treatment of diabetes and obesity.
  • PTP-1b protein tyrosine phosphatase-1b

Abstract

본 발명은 당뇨병 또는 비만의 예방 또는 치료용 약학 및 식품 조성물에 관한 것으로, 보다 구체적으로는, 남극 지의류인 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한 신규 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물과 기능성 식품에 관한 것이다. 본 발명에 따른 신규 화합물은 PTP-1b (protein tyrosine phosphatase-1b) 저해활성이 매우 뛰어나며, 단백질타이로신탈인산화효소족 중 PTP-1b에만 선택적으로 작용하고, 실질적인 PTP-1b 저해제로 당뇨치료에 이용가능한바, 당뇨병 및 비만의 예방 또는 치료에 효과적이다.

Description

당뇨병 또는 비만의 예방 또는 치료용 약학 및 식품 조성물
본 발명은 당뇨병 또는 비만의 예방 또는 치료용 약학 및 식품 조성물에 관한 것으로, 보다 구체적으로는, 남극 지의류인 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한 신규 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물과 기능성 식품에 관한 것이다.
지의류는 고등 식물과 다른 독특한 이차대사 산물을 생산하는 것으로 알려져 있으며 (Ingolfsdottir, K., Phytochemistry, 61:729, 2002), 이들 지의류가 생산하는 이차 대사산물은 대부분 뎁시드 (depside), 뎁시돈 (depsidone) 및 디벤즈푸란 (dibenzfurane)에 속하고, 이러한 화합물들은 지의류의 낮은 성장률과 관련이 있는 것으로 추측된다 (Kumar, K.C.S. et al., J. Nat. Prod., 62:817, 1999; Huneck, S., Naturwissenschaften, 86:559, 1999). 또한, 항생제, 항마이코박테리아, 항바이러스, 진통 효과 및 해열작용 등을 포함하는 지의류 대사산물의 다양한 생물학적 활성이 스크리닝 과정에 의해 확인되었다 (Ingolfsdottir, K., Phytochemistry, 61:729, 2002; Kumar, K.C.S. et al., J. Nat. Prod., 62:817, 1999). 따라서, 지의류의 대사산물을 이용한 의약품 개발에 대한 관심이 증가하고 있다.
한편, 당뇨병은 인슐린 작용, 인슐린 분비 또는 이러한 두 가지 모두의 결함으로 발생하는 고혈당을 비롯한 대사장애 증후군으로 장래 혈관합병증 가능성이 높은 질환으로, 크게 1형 당뇨병과 2형 당뇨병으로 나누어질 수 있다. 제1형 (인슐린 의존성)당뇨병은 면역에 의한 췌도의 베타세포 파괴와 이에 따른 인슐린의 절대적 부족이 원인이며, 제2형 (인슐린 비의존성) 당뇨병은 인슐린이 분비되기는 하지만, 양이 충분하지 않거나 우리 몸이 분비되는 인슐린을 효과적으로 활용하지 못하여 발생하는 것이다. 몸의 세포가 효과적인 작용을 못하는 '인슐린 내성 (Insulin resistance)'이라는 상태에서는, 체내의 에너지원 특히 당분의 이용이 잘 되지 않아 필요한 에너지가 부족하게 되며, 사용되지 못한 당분은 혈액 중에 필요 이상으로 많이 쌓여 결국은 소변으로 배출되는 질환으로서 근본적인 치유가 되지 않는 만성퇴행성 질환 중의 하나이다.
세계보건기구 (World health organization: WHO)와 국제연합 (United Nations: UN)은 2007년 말에는 전 세계 당뇨병 환자가 약 2억 4600만 명이 될 것이며, 당뇨병으로 인한 사망도 해마다 점차 증가하고 있어 당뇨병의 발병예방, 엄격한 혈당 조절과 합병증의 예방이 중요하다고 강조하고 있다. 아울러, 대한당뇨병학회와 건강보험심사평가원에서 조사한 바에 따르면, 우리나라에서 2003년에 전체 당뇨병 환자가 401만 명이었으며, 2030년에는 당뇨병 환자가 720만 명에 이르러 국민 7명당 1명이 될 것이라고 보고하고 있다. 특히 급격한 의료비 증가는 당뇨병 환자 수의 폭발적 증가와 더불어 당뇨병으로 인한 합병증의 지속적 증가, 당뇨병 환자의 평균수명 증가와도 밀접한 연관성을 지니고 있다. 급속한 경제 발전에 따른 식생활의 변화로 평균수명은 연장되는 것에 반하여 당뇨병 등의 만성퇴행성질환은 증가하는 현상을 보이고 있다.
우리나라 당뇨병의 특징은 제2형 당뇨병이 99%이상을 차지하며, 제1형 당뇨병의 발병 확률이 약 1% 이하로, 외국에서 보고된 제2형 당뇨병이 90% 정도이고, 10%정도의 제1형 당뇨병인 것과는 다르다. 당뇨병의 발병 원인은 다양한 요인들이 복합적으로 얽혀져 있으며 중요한 요인으로는 유전 (가족력이 약 20%)과 환경, 나이 (40-49세 사이 약 60% 내외), 비만, 신체의 저항력 저하, 약물남용, 그리고 스트레스에 의한 자극 등이 있다. 당뇨병의 발병 기전은 아직 상세하게 밝혀지지 않고 있으나 몇 가지 특별한 당뇨병 (예 MODY 등)을 제외하고는 다유전자적인 원인으로 발병되는 질환으로 일관성 있는 연관 유전자를 찾기에 한계성이 있다. 즉, 당뇨병의 발병은 여러 가지 유전자들이 복잡하게 연관되어 있으며 현재도 많은 수의 새로운 유전자들이 계속 밝혀지고 있다.
당뇨병은 다양한 발병 기전에 의하여 발병되므로 그 치료법 또한 다양할 수밖에 없으며, 더구나 기존의 고식적인 치료법만으로 만족할 만한 효과를 보지 못하는 경우도 많기에 새로운 치료법이 요구된다. 당뇨병 치료제 연구는 당뇨병 환자의 90%이상을 차지하는 제 2형 당뇨병 치료제를 중심으로 기술개발이 활발히 이루어지고 있다 (표 1, 2).
표 1
Figure PCTKR2011004836-appb-T000001
자료 : 2004-백서 의약품 산업, 한국보건산업진흥원, 2004, 12
인슐린분비 촉진물질 (pirogliride, linogliride, 2,4-디아미니노-5-시안-브로모리피딘, incretin, repaglinide, nateglinide), 인슐린 작용증강제 (troglitazone), 인슐린 저항성 개선제, 표적조직에서 인슐린 유사 효과를 나타내는 약물 (pirogliride, linogliride, dichloroacetate, insulin lispro, insulin aspart), 포도당신합성 억제제 (지방분해억제제, 카르니틴 전이효소 억제제, 베타산화억제제), 탄수화물 흡수를 지연시키는 약제 (식이성 섬유, 알파글루코시테이즈 억제제), amylin 유사체 (pramlintide)에 대한 많은 연구가 수행되고 있다.
이들 중 일부는 현재 시판되고 있으나, 상당수가 아직도 인체에 사용하기에는 미흡한 실험단계에 있거나 독성 검사단계에 있다. 특히, 생체리듬을 고려한 속효성 인슐린 분비촉진제와 인슐린 저항성 개선제는 당뇨병 치료수단에서 유효한 방법 중의 하나가 될 것이며, 향후 이러한 약제 개방이 더욱 활기를 띨 것으로 예상된다.
또한, 이제까지의 당뇨병 병인에 관한 연구는 인슐린 저항성의 원인이 인슐린 수용체에 문제가 있을 것으로 추정하고 지난 10여 년간 연구를 계속해 왔으며, 현재는 인슐린의 신호전달 체계 쪽으로 연구방향이 전환되고 있다.
표 2
Figure PCTKR2011004836-appb-T000002
자료 : 보건산업기술동향, "당뇨병 치료제의 최근 연구동향", 2003.
비만형 (obese type)및 비-비만형 (non-obese type) 제 2형 당뇨병을 갖는 사람의 지방세포에 있는 PTP-1b (protein tyrosine phosphatase-1b)의 활성을 검사한 결과, 정상군과 비교하여 단백질의 발현은 각각 3배, 5.5배로 증가하고, 활성은 71%, 88%로 나타나는 것으로 보고되었다. 또한, 최근 PTP-1b를 knock-out시킨 마우스를 통하여 인슐린에 대한 감수성의 증가와 고지방식에 대한 저항성을 보인다는 실험결과가 보고되었다. 아울러, 최근 발표된 다수의 연구에 위하면 PTP-1b의 활성을 억제하는 물질이 표적세포에서 인슐린의 감수성의 증가시켜 인슐린 저항성을 극복할 수 있을 것으로 보인다. 국내에서도 한국화합물 은행에서 아직 약물로 개발되지 않은 수만 개의 화합물로부터 PTP-1b 활성 저해제 개발을 위하여 무작위로 대량 스크리닝을 수행하고 있다.
한편, 렙틴 (Leptin)은 지방세포에서 혈중으로 방출되어 뇌혈액막을 통과한 후 중추 신경계내의 수용체에서 작용하며, 음식물의 섭취를 억제하고, 체중을 감소시키며 에너지 소비를 촉진한다. 이에 PTP-1b가 렙틴활성 자체를 조절한다는 새로운 발견이 나오면서 PTP-1b가 렙틴 효능제와 함께 사용할 때 상승적 작용을 가져올 것으로 기대되고 있다 (Koren, S., Best Pract. Res. Clin. Endocrinol. Metab., 21:621, 2007).
따라서, 비만 및 비만형 당뇨의 치료개발에 있어서 PTP-1b에 대한 억제제에 대한 중요성이 증가하고 있으며, 최근 HTS (hight throughput screening)를 통하여 발견된 선도물질에 대한 보고가 있다. 현재까지 PTP-1b에 대한 연구와 그 저해제의 개발은 임상적으로 성공한 예는 없으나 표 3에 나타난 바와 같이, 많은 연구단체와 기업에서 관심을 가지고 진행중에 있는 것으로 알려져 있다.
표 3
Figure PCTKR2011004836-appb-T000003
자료 : Pharmaproject, 2002
그러나, 대부분의 PTP-1b의 억제제는 양전하로 충진된 PTP-1b의 활성 부위를 타겟으로 하는 비가수분해성 포스포티로신 모방체로 개발되었기 때문에 선택성과 생물학적 이용가능성에 어려움이 있었다 (Liu, S. et al., J. Am. Chem. Soc., 130:17075, 2008).
이에, 본 발명자들은 당뇨병 및 비만 치료에 효과적인 치료제를 개발하기 위하여 예의 노력한 결과, 남극 지의류인 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리된 로바릭산 (Lobaric acid)의 염인 소듐 로바레이트 (Sodium Lobarate)가 수용성으로 적용이 용이할 뿐 아니라, 이러한 소듐 로바레이트 이외 새롭게 합성한 로바린 (Lobarin), 로바스틴 (Lobarstin)이 로바릭산보다도 효과적으로 PTP-1b를 저해하며, 단백질타이로신탈인산화효소족 중 PTP-1b에만 선택적으로 작용하며 질환모델동물 투여 시 항당뇨 효과를 보임을 확인하고, 본 발명을 완성하였다.
발명의 요약
본 발명의 목적은 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한 신규 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물 및 기능성 식품을 제공하는 데 있다.
본 발명의 목적은 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한 신규 화합물을 투여하는 단계를 포함하는, 당뇨병 또는 비만의 예방 또는 치료방법을 제공하는데 있다.
본 발명의 목적은 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한 신규 화합물을 투여하는 단계를 포함하는, PTP-1b (protein tyrosine phosphatase-1b)의 활성 억제방법을 제공하는데 있다.
본 발명의 목적은 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한 신규 화합물의 당뇨병 또는 비만의 예방 또는 치료를 위한 용도를 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
화학식 1
Figure PCTKR2011004836-appb-C000001
여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
본 발명은 또한, 상기 화학식 1로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물을 제공한다.
본 발명은 또한, 본 발명은 또한, 상기 화학식 1로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 식품을 제공한다.
본 발명은 또한, 하기 화학식 2로 표시되는 화합물을 제공한다:
화학식 2
Figure PCTKR2011004836-appb-C000002
본 발명은 또한, 다음의 단계를 포함하는 하기 화학식 2로 표시되는 화합물의 제조방법을 제공한다:
(a) 스테레오카울론 알피넘 (Stereocaulon alpinum)을 메탄올로 추출하는 단계;
(b) (a)단계에서 수득된 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물을 컬럼크로마토그래피를 이용하여 메탄올 또는 아세토니트릴 (CH3CN) 수용액으로 용출하는 단계;
(c) (b)단계에서 용출된 분획물을 역상 고속 액체 크로마토그래피를 이용하여 아세토니트릴 (CH3CN) 또는 메탄올 수용액으로 용출시켜 로바릭산 (Lobaric acid)을 함유하는 분획을 수득하는 단계; 및
(d) 상기 로바릭산을 함유하는 분획을 용매에 용해한 후, NaHCO3, Na2CO3 또는 NaH2PO4를 첨가하고 교반한 다음, 하기 화학식 2로 표시되는 화합물을 수득하는 단계.
본 발명은 또한, 상기 화학식 2로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물을 제공한다.
본 발명은 또한, 상기 화학식 2로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 식품을 제공한다.
본 발명은 또한, 화학식 3으로 표시되는 화합물을 제공한다:
화학식 3
Figure PCTKR2011004836-appb-C000003
여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
본 발명은 또한, 상기 화학식 3으로 표시되는 화합물 또는 그의 약제학적으로 허용 가능한 염을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물을 제공한다.
본 발명은 또한, 상기 화학식 3으로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 기능성 식품을 제공한다.
본 발명은 또한, 하기 화학식 4로 표시되는 화합물을 제공한다:
화학식 4
Figure PCTKR2011004836-appb-C000004
본 발명은 또한, 다음의 단계를 포함하는 상기 화학식 4로 표시되는 화합물의 제조방법을 제공한다:
(a) 스테레오카울론 알피넘 (Stereocaulon alpinum)을 메탄올로 추출하는 단계;
(b) (a)단계에서 수득된 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물을 컬럼크로마토그래피를 이용하여 메탄올 또는 아세토니트릴 (CH3CN) 수용액으로 용출하는 단계;
(c) (b)단계에서 용출된 분획물을 역상 고속 액체 크로마토그래피를 이용하여 아세토니트릴 (CH3CN) 또는 메탄올 수용액으로 용출시켜 로바릭산 (Lobaric acid)을 함유하는 분획을 수득하는 단계; 및
(d) 상기 로바릭산을 함유하는 분획을 용매에 용해한 후, 염기를 첨가하고 교반한 다음, 산성용액을 첨가하여 반응을 종결시킨 후, 하기 화학식 4로 표시되는 화합물을 수득하는 단계.
본 발명은 또한, 상기 화학식 4로 표시되는 화합물 또는 그의 약제학적으로 허용 가능한 염을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물을 제공한다.
본 발명은 또한, 상기 화학식 4로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 기능성 식품을 제공한다.
본 발명은 또한, 하기 화학식 5로 표시되는 화합물을 제공한다:
화학식 5
Figure PCTKR2011004836-appb-C000005
여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
본 발명은 또한, 상기 화학식 5로 표시되는 화합물 또는 그의 약제학적으로 허용 가능한 염을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물을 제공한다.
본 발명은 또한, 상기 화학식 5로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 기능성 식품을 제공한다.
본 발명은 또한, 하기 화학식 6으로 표시되는 화합물을 제공한다:
화학식 6
Figure PCTKR2011004836-appb-C000006
본 발명은 또한, 다음의 단계를 포함하는 상기 화학식 6으로 표시되는 화합물의 제조방법을 제공한다:
(a) 스테레오카울론 알피넘 (Stereocaulon alpinum)을 메탄올로 추출하는 단계;
(b) (a)단계에서 수득된 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물을 컬럼크로마토그래피를 이용하여 메탄올 또는 아세토니트릴 (CH3CN) 수용액으로 용출하는 단계;
(c) (b)단계에서 용출된 분획물을 역상 고속 액체 크로마토그래피를 이용하여 아세토니트릴 (CH3CN) 또는 메탄올 수용액으로 용출시켜 로바릭산을 함유하는 분획을 수득하는 단계; 및
(d) 상기 로바릭산을 함유하는 분획을 용매에 용해한 후, 물과 염기를 첨가하고 교반한 다음, 산성용액을 첨가하여 반응을 종결시킨 후, 하기 화학식 6으로 표시되는 화합물을 수득하는 단계.
본 발명은 또한, 상기 화학식 6으로 표시되는 화합물 또는 그의 약제학적으로 허용 가능한 염을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물을 제공한다.
본 발명은 또한, 상기 화학식 6으로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 기능성 식품을 제공한다.
본 발명은 또한, 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한 신규 화합물인 화학식 1, 화학식 2, 화학식 3, 화학식 4, 화학식 5 또는 화학식 6으로 표시되는 화합물을 투여하는 단계를 포함하는, 당뇨병 또는 비만의 예방 또는 치료방법을 제공한다.
본 발명은 또한, 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한 신규 화합물인 화학식 1, 화학식 2, 화학식 3, 화학식 4, 화학식 5 또는 화학식 6으로 표시되는 화합물의 당뇨병 또는 비만의 예방 또는 치료를 위한 용도를 제공한다.
본 발명은 또한, 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한 신규 화합물인 화학식 1, 화학식 2, 화학식 3, 화학식 4, 화학식 5 또는 화학식 6으로 표시되는 화합물을 이용한 PTP-1b의 활성 억제방법을 제공한다.
본 발명은 또한, 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한 신규 화합물인 화학식 1, 화학식 2, 화학식 3, 화학식 4, 화학식 5 또는 화학식 6으로 표시되는 화합물 함유한 PTP-1b의 활성 억제용 조성물을 제공한다.
본 발명의 다른 특징 및 구현예는 다음의 상세한 설명 및 첨부된 특허청구범위로부터 더욱 명백해 질 것이다.
도 1은 HPLC에 의한 소듐 로바레이트 (Sodium lobarate)의 정제도를 나타낸다.
도 2는 소듐 로바레이트의 1H NMR 스펙트럼 (400MHz, DMSO-d 6 )을 나타낸다.
도 3은 소듐 로바레이트의 13C NMR 스펙트럼 (100MHz, DMSO-d 6 )을 나타낸다.
도 4는 소듐 로바레이트의 HSQC 데이터 (400MHz, DMSO-d 6 )을 나타낸다.
도 5는 소듐 로바레이트의 HMBC 데이터 (400MHz, DMSO-d 6 )을 나타낸다.
도 6은 소듐 로바레이트의 PTP-1b 저해활성을 나타내는 그래프이다.
도 7은 PTP-1b, PTPN2, PTPN5, PTPN6, PTPN7, PTPN13에 대한 억제활성을 620nm에서 흡광도를 측정하여 나타낸 그래프이다.
도 8은 소듐 로바레이트의 복강 투여 후 혈당 변화를 측정한 그래프이다.
도 9는 소듐 로바레이트의 복강 투여에 따른 6시간 공복 후 혈당 측정 결과 그래프이다.
도 10은 소듐 로바레이트의 복강 투여 28일 후 혈당 변화를 측정한 그래프이다.
도 11은 HPLC 분석에 의한 로바린 (Lobarin)의 정제도를 나타낸다.
도 12는 로바린의 HRESIMS 분석결과를 나타낸다.
도 13은 로바린의 1H NMR 스펙트럼 (400MHz, DMSO-d 6 )을 나타낸다.
도 14는 로바린의 13C NMR 스펙트럼 (400MHz, DMSO-d 6 )을 나타낸다.
도 15는 로바린의 HSQC 데이터 (400MHz, DMSO-d 6 )을 나타낸다.
도 16은 로바린의 HMBC 데이터 (400MHz, DMSO-d 6 )을 나타낸다.
도 17은 로바린의 PTP-1b 저해활성을 나타내는 그래프이다.
도 18은 로바린의 PTP-1b, PTPN2, PTPN5, PTPN6, PTPN7, PTPN13에 대한 억제활성을 620nm에서 흡광도를 측정하여 나타낸 그래프이다.
도 19는 로바린의 복강 투여 후 혈당 변화를 측정한 그래프이다.
도 20은 로바린의 복강 투여에 따른 6시간 공복 후 혈당 측정 결과 그래프이다.
도 21은 로바린의 복강 투여 28일 후 혈당 변화를 측정한 그래프이다.
도 22는 HPLC 분석에 의한 로바스틴 (Lobarstin)의 정제도를 나타낸다.
도 23은 로바스틴의 HRESIMS 분석결과를 나타낸다.
도 24는 로바스틴의 1H NMR 스펙트럼 (400MHz, DMSO-d 6 )을 나타낸다.
도 25는 로바스틴의 13C NMR 스펙트럼 (400MHz, DMSO-d 6 )을 나타낸다.
도 26은 로바스틴의 COSY 데이터 (400MHz, DMSO-d 6 )을 나타낸다.
도 27은 로바스틴의 HSQC 데이터 (400MHz, DMSO-d 6 )을 나타낸다.
도 28은 로바스틴의 HMBC 데이터 (400MHz, DMSO-d 6 )을 나타낸다.
도 29는 로바스틴의 NOESY 데이터 (400MHz, DMSO-d 6 )을 나타낸다.
도 30은 로바스틴의 PTP-1b 저해활성을 나타내는 그래프이다.
도 31은 로바스틴의 PTP-1b, PTPN2, PTPN5, PTPN6, PTPN7, PTPN13에 대한 억제활성을 620nm에서 흡광도를 측정하여 나타낸 그래프이다.
도 32는 로바스틴의 복강 투여 후 혈당 변화를 측정한 그래프이다.
도 33은 로바스틴의 복강 투여에 따른 6시간 공복 후 혈당 측정 결과 그래프이다.
도 34는 로바스틴의 복강 투여 28일 후 포도당 내성검증 그래프이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는 스테레오카울론 알피넘 (Stereocaulon alpinum)의 추출물에서 분리한 로바릭산으로부터 로바릭산의 염인 하기 화학식 2로 표시되는 소듐 로바레이트 (Sodium Lobarate)를 수득하였다.
화학식 2
Figure PCTKR2011004836-appb-I000001
상기 화학식 2로 표시되는 소듐 로바레이트는 바람직하게는 다음의 단계를 포함하는 방법에 의하여 제조될 수 있다:
(a) 스테레오카울론 알피넘 (Stereocaulon alpinum)을 메탄올로 추출하는 단계;
(b) (a)단계에서 수득된 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물을 컬럼크로마토그래피를 이용하여 메탄올 또는 아세토니트릴 (CH3CN) 수용액으로 용출하는 단계;
(c) (b)단계에서 용출된 분획물을 역상 고속 액체 크로마토그래피를 이용하여 아세토니트릴 (CH3CN) 또는 메탄올 수용액으로 용출시켜 로바릭산 (Lobaric acid)을 함유하는 분획을 수득하는 단계; 및
(d) 상기 로바릭산을 함유하는 분획을 용매에 용해한 후, NaHCO3, Na2CO3 또는 NaH2PO4를 첨가하고 교반한 다음, 하기 화학식 2로 표시되는 화합물을 수득하는 단계.
이때, 상기 (d) 단계는 바람직하게는 상기 로바릭산을 함유하는 분획을 아세톤에 용해한 후, NaHCO3, Na2CO3 또는 NaH2PO4를 첨가하고 교반한 다음, NaHCO3, Na2CO3 또는 NaH2PO4 첨가와 동시에 생성되는 고체를 여과한 후, 농축하여 하기 화학식 2로 표시되는 화합물을 수득하는 것을 특징으로 할 수 있다.
본 발명의 일 양태에서, 지의류 스테레오카울론 알피넘 (Stereocaulon alpinum (Hedw.) G.L. Sm.)은 2003년 1월 남극 킹조지섬의 세종기지 (S 62°13.3', W58°47.0') 주위의 바튼 반도 (Barton Peninsular)에서 채취하여 사용하였다. 로바릭산은 건조된 스테레오카울론 알피넘 (Stereocaulon alpinum)을 24시간 동안 메탄올로 추출한 후, 용매를 증류시켜 추출물을 수득하고, 상기 추출물은 실리카겔 (C18)이 충진된 플래쉬 컬럼 크로마토그래피 (flash column chromatography, 5×25㎝)에 로딩하고, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 및 100% (v/v) 메탄올 (MeOH)을 순차적으로 주입시키고, 각각의 분획물을 수득한 다음, 상기 분획물 중 PTP-1b 억제 활성이 뛰어난 분획을 선택하여 PTP-1b 억제 활성이 뛰어난 화합물로서 하기 화학식 7의 로바릭산 (Lobaric acid)을 분리하였다.
화학식 7
Figure PCTKR2011004836-appb-C000007
로바릭산은 스테레오카울론 알피넘 (Stereocaulon alpinum)을 메탄올로 추출하여, 수득된 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물을 컬럼크로마토그래피를 이용하여 메탄올 수용액에서 용출하고, 용출된 분획물을 역상 고속 액체 크로마토그래피를 이용하여 아세토니트릴 (CH3CN) 수용액으로 용출시켜 수득할 수 있으며, 소듐 로바레이트는 수득한 로바릭산을 아세톤에 녹이고 NaHCO3, Na2CO3 또는 NaH2PO4를 첨가하여 교반함으로써, NaHCO3, Na2CO3 또는 NaH2PO4 첨가와 동시에 생성되는 고체를 여과한 후 바로 rotary evaporator로 완전 농축시킴으로써 하기 화학식 2의 소듐 로바레이트를 수득할 수 있다.
화학식 2
Figure PCTKR2011004836-appb-I000002
상기 소듐 로바레이트의 PTP-1b의 억제 활성도에 관하여 보고된 적은 없으며, 아울러 당뇨 및 비만 치료 효능도 보고된 바가 없다.
또한, 위의 화학식 2의 소듐 로바레이트로부터 일부 알킬기가 변형된 다른 유도체 또한 본 발명의 범위에 속할 것이다. 이러한 관점에서, 본 발명은 화학식 1의 화합물에 관한 것이다:
화학식 1
Figure PCTKR2011004836-appb-I000003
여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
상기, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기는 예컨대, 탄소수 1 내지 20, 또는, 1 내지 10일 수 있으며, 상기 알킬기에는 치환, 비치환된 알킬기, 시클로 알킬기 등을 포함한다.
상기 화학식 2의 소듐 로바레이트로부터, 당업계에 알려져 있는 공지의 화합물 합성, 변형 방법을 통해, 화학식 1의 화합물을 얻는 것은 당업자에게 자명하다. 예컨대, 화학식 1의 화합물의 R은 탄소의 개수, 결합구조의 변화를 통해 여러 가지 유도체를 얻을 수 있다. 예컨대, R1 및 R2가 propyl chain인 경우는 sodium pentanoate와의 반응에서 유래된 것이며, 이 sodium pentanoate와 탄소수가 다른 sodium butyrate, sodium propionate, sodium hexanoate 등을 이용하여 탄소수가 다른 유도체의 합성이 가능하다.
본 발명에서는 스테레오카울론 알피넘 (Stereocaulon alpinum)의 추출물에서 분리한 로바릭산 (Lobaric acid)의 염인 소듐 로바레이트 (Sodium Lobarate)가 로바릭산에 비하여도 우수한 PTP-1b (protein tyrosine phosphatase-1b)의 활성 억제능을 가지고 있어, 당뇨병 또는 비만의 예방 또는 치료에 효과적임을 확인하였다. 따라서, 본 발명은 다른 관점에서, 소듐 로바레이트를 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물에 관한 것이다. 아울러, 본 발명에 따른 소듐 로바레이트는 이를 유효성분으로 함유하는 기능성 식품으로 제공될 수 있으며, 따라서 본 발명은 또 다른 관점에서, 소듐 로바레이트를 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 기능성 식품에 관한 것이다.
또한, 상기 화학식 2의 소듐 로바레이트 뿐만 아니라, 아래와 같은 일부 알킬기가 변형된 화학식 1의 화합물 또는 그 약제학적으로 허용 가능한 염 또한 동일 내지는 유사한 효과를 발휘할 것이므로, 이들을 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학조성물, 기능성 식품으로 제공될 수 있다.
본 발명의 일 양태에서, 소듐 로바레이트의 PTP-1b에 대한 억제 활성도를 로바릭산과 비교 분석한 결과, 로바릭산의 IC50 이 870nM인데 반해, 소듐 로바레이트는 IC50은 350nM로 매우 뛰어난 PTP-1b 억제효과를 보였으며, 이에 소듐 로바레이트는 당뇨병 및 비만에 대한 약학적인 치료 및 예방이 가능한 물질임을 확인하였다.
아울러, 본 발명의 일 실시예에서는 소듐 로바레이트의 단백질타이로신탈인산화효소족에 대한 선택성을 조사한 결과, PTP-1b는 아미노산 서열 및 3D 구조에서 TC-PTP와 가장 유사하며, embrionic lethal을 유도하고, TC-PTP와 유사한 효소특성을 가지고 2nd aryl-phosphate binding site를 포함한 활성화 부위 (active site)가 유사한 것으로 알려져 있는 TC-PTP (PTPN2)를 포함한 단백질타이로신탈인산화효소족 중 PTP-1b에만 선택적으로 작용함을 보임을 확인하였으며, 이러한 실험결과는 본 발명에 따른 화합물인 소듐 로바레이트가 PTP-1b 저해제로 당뇨치료에 이용 가능함을 제시한다.
본 발명의 다른 실시예에서는, 소듐 로바레이트를 질환동물모델인 db/db 마우스에 투여하여 혈중 포도당 농도, 혈중 인슐린 농도 변화를 측정함으로써 혈당, 인슐린 저항성과의 상관관계를 확인하여 항당뇨 효과를 검증하였다.
또한, 본 발명에서는 스테레오카울론 알피넘 (Stereocaulon alpinum)의 추출물에서 분리한 로바릭산으로부터 하기 화학식 4로 표시되는 신규 화합물을 분리한 다음, 이를 로바린 (Lobarin)이라고 명명하였다.
화학식 4
Figure PCTKR2011004836-appb-I000004
상기 화학식 4로 표시되는 신규 화합물 로바린은 바람직하게는 다음의 단계를 포함하는 방법에 의하여 제조될 수 있다:
(a) 스테레오카울론 알피넘 (Stereocaulon alpinum)을 메탄올로 추출하는 단계;
(b) (a)단계에서 수득된 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물을 컬럼크로마토그래피를 이용하여 메탄올 또는 아세토니트릴 (CH3CN) 수용액으로 용출하는 단계;
(c) (b)단계에서 용출된 분획물을 역상 고속 액체 크로마토그래피를 이용하여 아세토니트릴 (CH3CN) 또는 메탄올 수용액으로 용출시켜 로바릭산 (Lobaric acid)을 함유하는 분획을 수득하는 단계; 및
(d) 상기 로바릭산을 함유하는 분획을 용매에 용해한 후, 염기를 첨가하고 교반한 다음, 산성용액을 첨가하여 반응을 종결시킨 후, 하기 화학식 4로 표시되는 화합물을 수득하는 단계.
이때, 상기 (d) 단계에서 산성용액은 수용액을 중화시킬 수 있는 모든 종류의 산성용액이 사용가능하며, 바람직하게는 상기 (d) 단계에서 용매는 아세톤이고, 염기는 NaOH 또는 KOH이며, 산성용액은 HCl 용액, H2SO4 용액 또는 HNO3 용액일 수 있으며, 상기 (d) 단계의 종결된 반응액을 농축한 다음, 메틸렌 클로라이드, 크로로포름 또는 에틸렌클로라이드 및 수용액 간의 분배를 통하여 메틸렌 클로라이드, 크로로포름 또는 에틸렌클로라이드 용해층을 획득하고 농축하여 하기 화학식 4로 표시되는 화합물을 수득하는 것을 특징으로 할 수 있다.
본 발명의 일 양태에서, 로바린은 로바릭산을 아세톤 (acetone)에 용해한 후 NaOH를 첨가하여 상온에서 교반하고 HCl 용액을 첨가하여 반응을 종결시킨 후, 반응혼합물은 농축한 뒤 Methylene chloride 및 수용액 (pH = 2)간의 분배를 통하여 methylene chloride 용해 층을 획득하여 하기 화학식 4의 로바린을 수득할 수 있다.
화학식 4
Figure PCTKR2011004836-appb-I000005
또한, 위의 화학식 4의 로바린으로부터 일부 알킬기가 변형된 다른 유도체 또한 본 발명의 범위에 속할 것이다. 이러한 관점에서, 본 발명은 화학식 3의 화합물에 관한 것이다:
화학식 3
Figure PCTKR2011004836-appb-I000006
여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
상기, 알킬기, 아릴기, 아릴알킬기 및 아실기는 예컨대, 탄소수 1 내지 20, 또는, 1 내지 10일 수 있으며, 상기 알킬기에는 치환, 비치환된 알킬기, 시클로 알킬기 등을 포함한다.
상기 화학식 4의 로바린으로부터, 당업계에 알려져 있는 공지의 화합물 합성, 변형 방법을 통해, 화학식 3의 화합물을 얻는 것은 당업자에게 자명하다. 예컨대, 화학식 3의 화합물의 R은 탄소의 개수, 결합구조의 변화를 통해 여러 가지 유도체를 얻을 수 있다. 예컨대, R1 및 R2가 propyl chain인 경우는 sodium pentanoate와의 반응에서 유래된 것이며, 이 sodium pentanoate와 탄소수가 다른 sodium butyrate, sodium propionate, sodium hexanoate 등을 이용하여 탄소수가 다른 유도체의 합성이 가능하다.
본 발명에서는 스테레오카울론 알피넘 (Stereocaulon alpinum)의 추출물에서 분리한 로바릭산의 신규 유도체인 로바린이 매우 뛰어난 PTP-1b의 활성 억제능을 가지고 있어, 당뇨병 또는 비만의 예방 또는 치료에 효과적임을 확인하였다. 따라서, 본 발명은 또 다른 관점에서, 상기 화학식 4의 로바린 또는 그의 약제학적으로 허용 가능한 염을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물에 관한 것이다. 아울러, 본 발명에 따른 로바린은 이를 유효성분으로 함유하는 기능성 식품으로 제공될 수 있으며, 따라서 본 발명은 또 다른 관점에서, 로바린을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 기능성 식품에 관한 것이다.
또한, 상기 화학식 4의 로바린 뿐만 아니라, 아래와 같은 일부 알킬기가 변형된 화학식 3의 화합물 또는 그 약제학적으로 허용 가능한 염 또한 동일 내지는 유사한 효과를 발휘할 것이므로, 이들을 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학조성물, 기능성 식품으로 제공될 수 있다.
본 발명의 일 실시예에서는, 로바린의 PTP-1b에 대한 억제 활성도를 측정한 결과, IC50 = 149 nM로 매우 뛰어난 PTP-1b 억제효과를 보였으며, 이에 신규 화합물 로바린이 당뇨병 및 비만에 대한 약학적인 치료 및 예방이 가능한 물질임을 확인하였다.
아울러, 본 발명의 일 실시예에서는 로바린의 단백질타이로신탈인산화효소족에 대한 선택성을 조사한 결과, 아미노산 서열 및 3D 구조에서 PTP-1b와 가장 유사하며, embrionic lethal이고, PTP-1b와 유사한 효소특성을 가지고 2nd aryl-phosphate binding site를 포함한 활성화 부위 (active site)가 유사한 것으로 알려져 있는 TC-PTP (PTPN2)를 포함한 단백질타이로신탈인산화효소족 중 PTP-1b에만 선택적으로 작용함을 보임을 확인하였으며, 이러한 실험결과는 본 발명에 따른 화합물인 로바린이 PTP-1b 저해제로 당뇨치료에 이용가능함을 제시한다.
본 발명의 다른 실시예에서는, 로바린을 질환동물모델인 db/db 마우스에 투여하여 혈중 포도당 농도, 혈중 인슐린 농도 변화를 측정함으로써 혈당, 인슐린 저항성과의 상관관계를 확인하여 항당뇨 효과를 검증하였다.
한편, 본 발명에서 이용되는 상기 화학식 4의 로바린은 약제학적으로 허용되는 염의 형태일 수 있다. 본 발명에서의 약제학적으로 허용 가능한 염은 당해 기술분야에서 통상적인 방법에 의해 제조될 수 있는 것으로, 예를 들면, 염산, 브롬화수소, 황산, 황산수소나트륨, 인산, 탄산 등의 무기산과의 염 또는 개미산, 초산, 옥살산, 벤조산, 시트르산, 타르타르산, 글루콘산, 게스티스산, 푸마르산, 락토비온산, 살리실릭산, 또는 아세틸살리실릭산 (아스피린)과 같은 유기산과 함께 약제학적으로 허용 가능한 산의 염을 형성하거나, 또는 소듐, 포타슘 등의 알칼리 금속이온과 반응하여 이들의 금속염을 형성하거나, 또는 암모늄 이온과 반응하여 또 다른 형태의 약제학적으로 허용 가능한 염을 형성할 수 있다.
또한, 본 발명에서는 스테레오카울론 알피넘 (Stereocaulon alpinum)의 추출물에서 분리한 로바릭산으로부터 하기 화학식 6으로 표시되는 신규 화합물을 분리한 다음, 이를 로바스틴 (Lobarstin)이라고 명명하였다.
화학식 6
Figure PCTKR2011004836-appb-I000007
상기 화학식 6으로 표시되는 신규 화합물 로바스틴은 바람직하게는 다음의 단계를 포함하는 방법에 의하여 제조될 수 있다:
(a) 스테레오카울론 알피넘 (Stereocaulon alpinum)을 메탄올로 추출하는 단계;
(b) (a)단계에서 수득된 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물을 컬럼크로마토그래피를 이용하여 메탄올 또는 아세토니트릴 (CH3CN) 수용액으로 용출하는 단계;
(c) (b)단계에서 용출된 분획물을 역상 고속 액체 크로마토그래피를 이용하여 아세토니트릴 (CH3CN) 또는 메탄올 수용액으로 용출시켜 로바릭산을 함유하는 분획을 수득하는 단계; 및
(d) 상기 로바릭산을 함유하는 분획을 용매에 용해한 후, 물과 염기를 첨가하고 교반한 다음, 산성용액을 첨가하여 반응을 종결시킨 후, 하기 화학식 6으로 표시되는 화합물을 수득하는 단계.
이때, 상기 (d) 단계에서 산성용액은 수용액을 중화시킬 수 있는 모든 종류의 산성용액이 사용가능하며, 바람직하게는 상기 (d) 단계에서 용매는 아세톤이고, 염기는 NaOH 또는 KOH이며, 산성용액은 HCl 용액, H2SO4 용액 또는 HNO3 용액일 수 있으며, 상기 (d) 단계의 종결된 반응액을 농축한 다음, 메틸렌 클로라이드, 크로로포름 또는 에틸렌클로라이드 및 수용액 간의 분배를 통하여 메틸렌 클로라이드, 크로로포름 또는 에틸렌클로라이드 용해층을 획득하고 농축하여 하기 화학식 6으로 표시되는 화합물을 수득하는 것을 특징으로 할 수 있다.
본 발명의 일 양태에서, 로바스틴은 로바릭산을 아세톤 (acetone)에 용해한 후 NaOH를 첨가하여 상온에서 교반하고 HCl 용액을 첨가하여 반응을 종결시킨 후, 반응혼합물은 농축한 뒤 메틸렌클로라이드 (Methylene chloride) 및 수용액 (pH = 2)간의 분배를 통하여 메틸렌클로라이드 용해층을 획득하여 하기 화학식 6의 로바스틴을 수득할 수 있다.
화학식 6
Figure PCTKR2011004836-appb-I000008
또한, 위의 화학식 6의 로바스틴으로부터 일부 알킬기가 변형된 다른 유도체 또한 본 발명의 범위에 속할 것이다. 이러한 관점에서, 본 발명은 화학식 5의 화합물에 관한 것이다:
화학식 5
Figure PCTKR2011004836-appb-I000009
여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
상기, 알킬기, 아릴기, 알릴기 아릴알킬기 및 아실기는 예컨대, 탄소수 1 내지 20, 또는, 1 내지 10일 수 있으며, 상기 알킬기에는 치환, 비치환된 알킬기, 시클로 알킬기 등을 포함한다.
상기 화학식 6의 로바스틴으로부터, 당업계에 알려져 있는 공지의 화합물 합성, 변형 방법을 통해, 화학식 5의 화합물을 얻는 것은 당업자에게 자명하다. 예컨대, 화학식 5의 화합물의 R은 탄소의 개수, 결합구조의 변화를 통해 여러 가지 유도체를 얻을 수 있다. 예컨대, R1 및 R2가 propyl chain인 경우는 sodium pentanoate와의 반응에서 유래된 것이며, 이 sodium pentanoate와 탄소수가 다른 sodium butyrate, sodium propionate, sodium hexanoate 등을 이용하여 탄소수가 다른 유도체의 합성이 가능하다.
본 발명에서는 스테레오카울론 알피넘 (Stereocaulon alpinum)의 추출물에서 분리한 로바릭산의 신규 유도체인 로바스틴이 매우 뛰어난 PTP-1b의 활성 억제능을 가지고 있어, 당뇨병 또는 비만의 예방 또는 치료에 효과적임을 확인하였다. 따라서, 본 발명은 또 다른 관점에서, 상기 화학식 6의 로바스틴 또는 그의 약제학적으로 허용 가능한 염을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물에 관한 것이다. 아울러, 본 발명에 따른 로바스틴은 이를 유효성분으로 함유하는 기능성 식품으로 제공될 수 있으며, 본 발명은 또 다른 관점에서, 로바스틴을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 기능성 식품에 관한 것이다.
또한, 상기 화학식 6의 로바스틴 뿐만 아니라, 아래와 같은 일부 알킬기가 변형된 화학식 5의 화합물 또는 그 약제학적으로 허용 가능한 염 또한 동일 내지는 유사한 효과를 발휘할 것이므로, 이들을 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학조성물, 기능성 식품으로 제공될 수 있다.
본 발명의 일 실시예에서는, 로바스틴의 PTP-1b에 대한 억제 활성도를 측정한 결과, IC50 =154.6nM로 매우 뛰어난 PTP-1b 억제효과를 보였으며, 이에 신규 화합물 로바스틴이 당뇨병에 대한 약학적인 치료 및 예방이 가능한 물질임을 확인하였다.
아울러, 본 발명의 일 실시예에서는 로바스틴의 단백질타이로신탈인산화효소족에 대한 선택성을 조사한 결과, 아미노산 서열 및 3D 구조에서 PTP-1b와 가장 유사하며, embrionic lethal이고, PTP-1b와 유사한 효소특성을 가지고 2nd aryl-phosphate binding site를 포함한 활성화 부위 (active site)가 유사한 것으로 알려져 있는 TC-PTP (PTPN2)를 포함한 단백질타이로신탈인산화효소족 중 PTP-1b에만 선택적으로 작용함을 보임을 확인하였으며, 이러한 실험결과는 본 발명에 따른 화합물인 로바스틴이 PTP-1b 저해제로 당뇨치료에 이용 가능함을 제시한다.
본 발명의 다른 실시예에서는, 로바스틴을 질환동물모델인 db/db 마우스에 투여하여 혈중 포도당 농도, 혈중 인슐린 농도 변화를 측정함으로써 혈당, 인슐린 저항성과의 상관관계를 확인하여 항당뇨 효과를 검증하였다.
한편, 본 발명에서 이용되는 상기 화학식 6의 로바스틴은 약제학적으로 허용 가능한 염의 형태일 수도 있다. 본 발명에서의 약제학적으로 허용 가능한 염은 당해 기술분야에서 통상적인 방법에 의해 제조될 수 있는 것으로, 예를 들면, 염산, 브롬화수소, 황산, 황산수소나트륨, 인산, 탄산 등의 무기산과의 염 또는 개미산, 초산, 옥살산, 벤조산, 시트르산, 타르타르산, 글루콘산, 게스티스산, 푸마르산, 락토비온산, 살리실릭산, 또는 아세틸살리실릭산 (아스피린)과 같은 유기산과 함께 약제학적으로 허용 가능한 산의 염을 형성하거나, 또는 소듐, 포타슘 등의 알칼리 금속이온과 반응하여 이들의 금속염을 형성하거나, 또는 암모늄 이온과 반응하여 또 다른 형태의 약제학적으로 허용 가능한 염을 형성할 수 있다.
본 발명에 따른 화합물을 포함하는 약학 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 화합물을 포함하는 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈,수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다.
제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 화합물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘카보네이트 (calcium carbonate), 수크로스 (sucrose) 또는 락토오스 (lactose), 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용된다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜 (propylene glycol), 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔 (witepsol), 마크로골, 트윈 (tween) 60, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.
본 발명의 기능성 식품은, 예를 들어, 각종 식품류, 캔디, 초콜릿, 음료, 껌, 차, 비타민 복합제, 건강보조 식품류 등이 있고, 분말, 과립, 정제, 캡슐 또는 음료인 형태로 사용할 수 있다.
본 발명의 화합물은 당뇨 및 비만 예방을 목적으로 식품 또는 음료에 첨가될 수 있다. 이때, 식품 또는 음료 중의 상기 화합물의 양은 일반적으로 본 발명의 건강 기능 식품 조성물은 전체 식품 중량의 0.01 내지 50 중량%, 바람직하게는 0.1 내지 20 중량%로 가할 수 있으며, 건강 음료 조성물은 100 ㎖를 기준으로 0.02 내지 10 g, 바람직하게는 0.3 내지 1 g의 비율로 가할 수 있다.
본 발명의 건강 음료 조성물은 지시된 비율로 필수 성분으로서 본 발명의 화합물을 함유하는 것 외에는 액체성분에는 특별한 제한점은 없으며 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 천연 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등, 디사카라이드, 예를 들어 말토스, 슈크로스 등, 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당알코올이다. 향미제로서 천연 향미제 (타우마틴, 스테비아 추출물 (예를 들어 레바우디오시드 A, 글리시르히진등) 및 합성 향미제 (사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 100 ㎖당 일반적으로 약 1 내지 20g, 바람직하게는 약 5 내지 12g이다. 상기 외에 본 발명의 기능성 식품은 여러 가지 영양제, 비타민, 광물 (전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제 (치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산 음료에 사용되는 탄산화제 등을 함유할 수 있다. 그밖에 본 발명의 기능성 식품은 천연 과일 쥬스 및 과일 쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 그렇게 중요하진 않지만 본 발명의 조성물 100 중량부 당 0 내지 약 20 중량부의 범위에서 선택되는 것이 일반적이다.
또 다른 관점에서, 본 발명은 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한 신규 화합물인 화학식 1, 화학식 2, 화학식 3, 화학식 4, 화학식 5 또는 화학식 6으로 표시되는 화합물을 투여하는 단계를 포함하는, 당뇨병 또는 비만의 예방 또는 치료방법에 관한 것이다.
본 발명의 신규 화합물인 화학식 1, 화학식 2, 화학식 3, 화학식 4, 화학식 5 또는 화학식 6으로 표시되는 화합물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나, 바람직한 효과를 위해서, 본 발명의 화합물은 1일 0.1~1000㎍/kg으로, 바람직하게는 1~100㎍/kg으로 투여하는 것이 좋다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 경구 투여할 수도 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.
또 다른 관점에서, 본 발명은 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한 신규 화합물인 화학식 1, 화학식 2, 화학식 3, 화학식 4, 화학식 5 또는 화학식 6으로 표시되는 화합물의 당뇨병 또는 비만의 예방 또는 치료를 위한 용도에 관한 것이다.
본 발명은 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한 소듐 로바레이트, 로바린, 로바스틴은 우수한 PTP-1b 활성 억제 효능을 보이고 있으므로, 이를 이용한 PTP-1b의 활성 억제방법에 관한 것이다. 구체적으로, 신규 화합물인 화학식 1, 화학식 2, 화학식 3, 화학식 4, 화학식 5 또는 화학식 6으로 표시되는 화합물을 대상에 투여하는 단계를 포함하는 PTP-1b의 활성 억제방법에 관한 것이다.
본 발명은 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물에서 분리한 화합물로부터 합성한신규 화합물인 화학식 1, 화학식 2, 화학식 3, 화학식 4, 화학식 5 또는 화학식 6으로 표시되는 화합물을 함유한 PTP-1b의 활성 억제용 조성물에 관한 것이다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1
지의류 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출로부터 로바릭산 (Lobaric acid)의 제조
1-1: 지의류 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물의 제조
지의류 스테레오카울론 알피넘 (Stereocaulon alpinum (Hedw.) G.L. Sm.)은 2003년 1월 남극 킹조지섬의 세종기지 (S 62°13.3', W58°47.0') 주위의 바튼 반도 (Barton Peninsular)에서 채취하였으며, 바튼반도에서 용이하게 채취할 수 있는 지의류이다.
건조된 스테레오카울론 알피넘 (Stereocaulon alpinum) 50g을 24시간 동안 메탄올 1L로 2번 추출하여, 메탄올 추출물 3.6g을 수득하였다. 상기 수득한 추출물을 실리카겔 (C18)이 충진된 플래쉬 컬럼 크로마토그래피 (flash column chromatography, 5×25㎝)에 로딩하고, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 및 100% (v/v) 메탄올 (MeOH)로 계단식으로 농도구배를 주어, 각각의 분획물을 수득하였다.
1-2: 지의류 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물로부터 로바릭산의 제조
실시예 1-1에서 수득한 80% 메탄올로 용출하여 얻은 분획물 204.6㎎을 다시 실리카겔 (C18)이 충진된 플래쉬 컬럼 크로마토그래피 (flash column chromatography, 2.5×30㎝)에 로딩하여, TLC분석에 의해 수득한 8개의 주요한 분획을 수득하기 위해 각각 200㎖의 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% 및 10%의 메탄올 (in CH2Cl2)용액 및 100% (v/v) 메탄올을 주입시켜 각각의 분획물을 수득하였다.
9% 메탄올로 용출한 분획 59mg을 다시 반-분취 역상 (semi-preparative reverse-phase) HPLC에 주입한 후, 0.1% 포름산 (formic acid)을 함유하는 아세토니트릴 (CH3CN) 수용액을 75 내지 83%의 농도 구배를 주면서 30분 이상 용출시켜 화학식 7의 로바릭산을 분리하였다 (22.9mg; tR=39분).
화학식 7
Figure PCTKR2011004836-appb-I000010
실시예 2
소듐 로바레이트 (Sodium Lobarate)의 합성
2-1: 로바릭산으로부터 소듐 로바레이트의 제조
실시예 1-2에서 수득한 로바릭산 10mg (22 umol)을 아세톤 (Acetone) 3 ml에 녹이고 1M NaHCO3 50ul를 첨가한 후 1~2분간 교반하였다. NaHCO3 첨가와 동시에 생성되는 고체를 여과한 후 바로 rotary evaporator로 완전 농축시켰다. 농축이 완료되면 흰색 고체인 소듐 로바레이트 (<10 mg)를 얻을 수 있다. 그 다음, 여분의 염을 제거하여 순도를 높이기 위하여 Agilent Eclipse XDB-C18 컬럼 (4.6 x 150mm, 미국)을 사용하여 역상 (reverse phase) HPLC로 분석하였다. 사용한 용매 시스템은 0.1% 포름산이 섞인 물 (A Line)과 0.1% 포름산이 섞인 아세토나이트릴 (B line)을 사용하였다. 시작은 아세토나이트릴 40%에서 50%까지 5분, 50%에서 80%까지 15분, 80%에서 90%까지 10분으로 분석을 진행하여 최종 순도는 92.1%이었다 (도 1). 수득된 소듐 로바레이트는 100% 물에 용해되어 수용성을 확보하였다.
화학식 2
Figure PCTKR2011004836-appb-I000011
2-2: 소듐 로바레이트의 구조분석
소듐 로바레이트의 구조는 화합물의 NMR 데이터를 로바릭산의 NMR 데이터와 비교함으로써 확인하였다. 각 NMR 데이터는 시료를 DMSO-d 6 용매에 용해한 후 JEOL ECP-400 spectrometer (JEOL, 일본)를 사용하여 측정하였으며, 화학적 이동값은 용매로 사용한 DMSO-d 6 의 화학적 이동값 (dC/dH = 40.0/2.50 ppm)을 기준으로 표시하였다. HMQC (1H-Detected heteronuclear Multiple-Quantum Coherence) 경우 1JCH = 140Hz로 설정하고 측정하였으며, HMBC (Heteronuclear Multiple-Bond Coherence) 실험은 nJCH = 8Hz로 설정한 후 실행하였다.
화학식 8
Figure PCTKR2011004836-appb-C000008
1: 로바릭산, 2: 소듐 로바레이트
로바릭산과 소듐 로바레이트의 NMR 데이터는 표 4와 같다.
표 4
Figure PCTKR2011004836-appb-T000004
비교 결과, 특히 C-7'의 작용기가 carboxylic acid에서 carboxylate 음이온으로 변함에 따른 화학적 이동 값의 변화 및 그 주변 탄소의 화학적 이동 값의 변화가 관찰되었고, 이는 화합물 2 (소듐 로바레이트)의 구조를 규명하는 중요한 자료이다. 도 2 내지 5는 각각, 소듐 로바레이트의 1H NMR 스펙트럼 (400MHz, DMSO-d 6 ), 13C NMR 스펙트럼 (100MHz, DMSO-d 6 ), HSQC 데이터 (400MHz, DMSO-d 6 ) 및 HMBC 데이터 (400MHz, DMSO-d 6 )를 나타낸다.
실시예 3
소듐 로바레이트의 PTP-1b 억제 활성 분석
PTP-1b (protein tyrosine phosphatase-1b) 억제 활성을 분석하기 위하여, 분광학적으로 효소 활성을 측정하였다.
즉, 0.5㎎/㎖농도의 PTP-1b (바이오니아, 한국), PTP-1b 완충용액 (20 mM Tris-Hcl, pH 8.0, 0.75 mM NaCl, 0.5 mM EDTA, 5 mM β-mercaptoethanol, 50% Glycerol)에 소듐 로바레이트 0, 1, 3, 10, 30, 100, 300, 1000, 3000 nM과 기질 [pTyr1146] Insulin Receptor (1142-1153, 시그마, 미국)을 첨가한 다음 상온에서 10~30분 동안 반응시킨 후 Malachite Green-Molybdate Dye Solution (1142-1153, 시그마, 미국)을 첨가하여 상온에서 10분간 반응시켜 PTP-1b, 소듐 로바레이트 및 기질과의 반응을 종료 시킨 후 620 nm에서 흡광도를 측정하였다.
그 결과, 도 6에 나타난 바와 같이, 소듐 로바레이트의 PTP-1b에 대한 억제 활성도를 분석한 결과, IC50 = 350nM로 뛰어난 PTP-1b 억제효과를 보이며, 농도의존적으로 저해율이 증가함을 확인하였다.
한편, 대조군으로서 로바릭산의 PTP-1b 억제 활성을 측정하여 비교하였다. PTP-1b는 BIOMOL (미국)사에서 제조한 제품을 구입하여 실험에 사용하였으며, 분광학적으로 효소활성을 측정하기 위하여 약 0.2㎍/㎖농도의 PTP-1b, PTP-1b 완충용액 (50 mM citrate, pH 6.0, 0.1M NaCl, 1 mM EDTA, 1mM DTT), 로바릭산, 4 mM pNPP를 첨가하고 가볍게 흔들어 준 다음 30 분 동안 37℃에서 반응시킨 후 405 nm에서 흡광도를 측정하였으며, IC50 =0.87μM, 즉 870nM임을 확인하였다.
이에 본 발명에 따른 소듐 로바레이트의 경우 PTP-1b 억제효과가 더 우수함을 확인할 수 있었으며, 이러한 소듐 로바레이트는 당뇨병 및 비만에 대한 약학적인 치료 및 예방이 가능한 물질임을 확인하였다.
실시예 4
소듐 로바레이트의 단백질타이로신인산화효소족에 대한 선택성 분석
소듐 로바레이트의 단백질타이로신탈인산화효소족에 대한 선택성을 조사하기 위하여 PTP-1b, PTPN2, PTPN5, PTPN6, PTPN7, PTPN13에 대한 억제활성을 분광학적으로 효소 활성을 측정을 통하여 조사하였다.
먼저, 0.5/농도의 PTP-1b, PTPN2, PTPN5, PTPN6, PTPN7, PTPN13 (바이오니아, 한국)와 단백질타이로신탈인산효소 완충용액 (20 mM Tris-Hcl, pH 8.0, 0.75 mM NaCl, 0.5 mM EDTA, 5 mM β-mercaptoethanol, 50% Glycerol)에 소듐 로바레이트 0, 50, 100, 200nM과 기질 [pTyr1146]Insulin Receptor (1142-1153, 시그마, 미국)를 첨가한 다음 상온에서 10~30 분 동안 반응시킨 후 Malachite Green-Molybdate Dye Solution (시그마, 미국)을 첨가하여 상온에서 10분간 반응시켜 기질과의 반응을 종료시킨 후 620 nm에서 흡광도를 측정하였다.
소듐 로바레이트의 단백질타이로신탈인산화효소족에 대한 선택성을 조사한 결과, 도 7에 나타난 바와 같이, 소듐 로바레이트는 PTP-1b에 대한 IC50 = 200 uM에서 저해율은 50.0%이었음에 반하여, 특히 PTP-1b와 가장 유사한 인산화효소로 알려진 TC-PTP (PTPN2)에 대한 저해율은 83.7%임을 확인할 수 있었다.
아미노산 서열 및 3D 구조에서 PTP-1b와 가장 유사한 인산화효소로 알려진 TC-PTP (PTPN2)는 embrionic lethal이며 PTP-1b와 유사한 효소특성을 가지고 2nd aryl-phosphate binding site를 포함한 활성화 부위 (active site)가 유사한 것으로 알려져 있다. 따라서 757개 물질이 PTP-1b를 타겟으로 등록되어 있으나 PTP-1b를 주타겟으로 임상에 진입한 화합물은 하나도 없고 PTP-1b를 포함하여 여러 타겟에 작용하는 식물 추출물만이 출시되었거나 임상 중에 있는 상태이다.
이에, 단백질타이로신탈인산화효소족 중 PTP-1b에만 선택적으로 작용함을 보이는 상기 실험결과는 본 발명에 따른 화합물인 소듐 로바레이트가 PTP-1b 저해제로 당뇨치료에 이용가능함을 제시한다.
실시예 5
질환모델동물에 대한 소듐 로바레이트의 효능 검증
5-1: 소듐 로바레이트를 복강 투여한 후 혈당 변화 관찰
소듐 로바레이트에 대한 예비실험, 효력실험, 독성실험, 자료를 바탕으로 투여량 (실험 물질 (mg)/실험동물의 체중 (Kg)으로 표시함)을 결정하였다. 7주령된 수컷 db/db 마우스 (제 2형 당뇨 모델 동물, C57/BLKS/J-db/db, 한국생명공학연구원)에 대조군으로 PBS 200 ㎕를, 실험군으로 PTP-1b 활성 억제 물질인 소듐 로바레이트 10mg/kg을 매일 복강 투여하여, 일주일에 두 번씩 혈당을 측정하였다.
7주령 된 수컷 db/db 마우스 (제 2형 당뇨 모델 동물, C57/BLKS/J-db/db, 한국생명공학연구원)에 PTP-1b 활성 억제 물질 소듐 로바레이트의 복강주사에 따른 혈당 변화를 측정한 결과, 도 8에 나타난 바와 같이, 소듐 로바레이트 10mg/kg을 복강주사한 실험군 (n=6)에서는 평균 0일 267 mg/dL, 3일 276 mg/dL, 7일 378 mg/dL, 10일 378 mg/dL, 14일 407 mg/dL, 17일 415 mg/dL, 21일 459 mg/dL로 대조군에 비하여 낮은 혈당 증가 현상이 나타남을 확인할 수 있었다.
5-2: 소듐 로바레이트를 복강 투여한 후 6시간 공복 후 혈당 변화 관찰
소듐 로바레이트에 대한 보다 정확한 항당뇨 효과 측정을 위하여, 7주령된 수컷 db/db 마우스 (제 2형 당뇨 모델 동물, C57/BLKS/J-db/db, 한국생명공학연구원)에 대조군으로 PBS 200㎕를, 실험군으로 소듐 로바레이트 10mg/kg을 매일 복강주사 후, 일주일에 두 번씩 혈당을 측정하였다. 이때, 복강주사 후 6시간 동안 금식시킨 후 혈당을 측정하였다.
그 결과, 도 9에 나타난 바와 같이, 소듐 로바레이트 10 mg/kg을 복강주사한 실험군 (n=6)에서는 평균 0일 141 mg/dL, 3일 142 mg/dL, 7일 185 mg/dL, 10일 206 mg/dL, 14일 232 mg/dL, 17일 236 mg/dL, 21일 313 mg/dL로 실시예 4-1과 마찬가지로 대조군에 비하여 낮은 혈당 증가 현상을 보였다.
5-3: 소듐 로바레이트의 복강 투여 28일 후 포도당 내성 검사 (IPGTT) 검증
소듐 로바레이트의 동물모델에서의 복강 내 포도당 내성 검사 (IPGTT, Intraperitoneal glucose tolerance test)를 측정하기 위하여, 다음과 같은 실험을 수행하였다.
7주령 된 수컷 db/db 마우스 (제 2형 당뇨 모델 동물, C57/BLKS/J-db/db, 한국생명공학연구원)에 대조군으로 생리식염수를, 실험군으로 소듐 로바레이트 10mg/kg을 매일 28일간 복강주사 후, 생리식염수 및 소듐 로바레이트를 각각 투여하지 않은 상태에서 16시간 공복 후 포도당 (500 ㎎/㎖, 투여 부피 200㎕)을 복강주사의 방법으로 주입 한 후 0, 15, 30, 60, 90, 120분에 꼬리 정맥에서 채취한 혈액 샘플에서 혈당 변화를 관찰하였다.
제 2형 당뇨동물에서 글루코오즈 피하 투여에 따른 포도당 내성 변화를 측정한 결과, 도 10에 나타난 바와 같이, 대조군 (생리식염수 주사)의 경우 포도당의 투여 후 0분 341 mg/dL, 15분 579 mg/dL, 30분 557 mg/dL, 60분 589 mg/dL, 90분 600 mg/dL, 120분 555 mg/dL을 나타내며 급격한 혈당증가 경향 및 매우 느린 혈당 강하 거동을 보이는 반면, 소듐 로바레이트 10 mg/kg을 28일 간 복강 투여한 실험군에서는 각각 0분 153 mg/dL, 15분 291 mg/dL, 30분 361 mg/dL, 60분 385 mg/dL, 90분 335 mg/dL, 120분 290 mg/dL로 약물 농도 의존성으로 낮은 혈당증가 및 빠른 혈당 강하를 통한 혈당 정상화를 확인할 수 있었다.
이러한 실시예 5의 1 내지 3의 결과는 본 발명에 따른 소듐 로바레이트가 매우 우수한 항당뇨 효과를 가짐을 나타낸다.
실시예 6
로바릭산으로부터 신규 화합물 로바린 (Lobarin)의 제조
실시예 1-2의 로바릭산 50 mg을 5 mL의 아세톤 (acetone)에 용해한 후 0.5 N NaOH를 1 mL 첨가하고 상온에서 5분간 교반하고 0.5 mL의 1N HCl 용액을 첨가하여 반응을 종결시켰다. 반응혼합물은 농축한 뒤 Methylene chloride 및 수용액 (pH = 2)간의 분배를 통하여 methylene chloride 용해 층을 획득하고 농축하여 하기 화학식 신규 화합물을 50 mg을 수득한 다음, 이를 "로바린 (Lobarin)"이라고 명명하였다.
화학식 4
Figure PCTKR2011004836-appb-I000012
한편, 순도를 높이기 위하여 Agilent Eclipse XDB-C18 칼럼 (4.6 x 150mm, 미국)을 사용하여 역상 (reverse phase) HPLC로 분석하였다. 사용한 용매 시스템은 0.1% 포름산이 섞인 물 (A Line)과 0.1% 포름산이 섞인 아세토나이트릴 (B line)을 사용하였다. 시작은 아세토나이트릴 40%에서 50%까지 5분, 50% 에서 80%까지 15분, 80%에서 90%까지 10분으로 분석을 진행하여 최종 순도는 96.1%이었다 (도 11).
실시예 7
신규 화합물 로바린의 구조분석
실시예 6에서 합성된 로바린의 분자구조는 고분해능 질량 분석 (HRESIMS) 및 NMR 분광분석을 통하여 규명하였다.
HRESIMS의 음이온 분석은 Q-TOF micro LC-MS/MS instrument (Waters, 미국)를 사용하여 측정하였으며, 도 12에 나타난 바와 같이, 로바린은 m/z 473.1774의 분자이온 피크를 나타내었으며 이는 로바린의 분자식이 C25H30O9임을 제시하였다.
로바린의 NMR 스펙트라 (NMR spectra)는 로바린을 DMSO-d 6 용매에 용해한 후 JEOL ECP-400 spectrometer (JEOL, 일본)를 사용하여 측정하였으며, 화학적 이동값은 용매로 사용한 DMSO-d 6 의 화학적 이동값 (δC/δH = 40.0/2.50 ppm)을 기준으로 표시하였다. HMQC (1H-Detected heteronuclear Multiple-Quantum Coherence) 경우 1JCH = 140Hz로 설정하고 측정하였으며, HMBC (Heteronuclear Multiple-Bond Coherence) 실험은 nJCH = 8Hz로 설정한 후 실행하였다. 질량분석은 Q-TOF micro LC-MS/MS를 사용하여 측정하였다.
먼저 1H NMR 및 13C NMR 스펙트럼 결과를 보면, 도 13 및 도 14에 나타난 바와 같이, 로바린의 1H NMR 및 13C NMR spectra는 로바릭산의 NMR spectra와 매우 유사한 양상을 보였다. 따라서 로바린의 구조는 로바릭산과 매우 유사한 구조를 가지며, 분자량의 차이가 18 dalton임을 감안하면 로바릭산으로부터 수화반응을 통하여 생성된 화합물임을 예측할 수 있었다. 로바릭산의 NMR data와 로바린의 NMR data를 비교하면 특히 13C NMR spectrum에서 로바릭산에서 관찰되었던 ketone 작용기에 해당하는 13C peak가 사라지고 대신 106.3 ppm에서 13C 피크가 관찰되었으며 1H NMR에서 OH 작용기의 양성자에 해당하는 피크 (7.65 ppm)가 관찰 되었다. 이러한 NMR data의 차이를 근거로 로바린의 구조는 화학식 7에 보여 진 바와 같이 로바릭산의 ketone 작용기가 수산화기의 친핵성 공격에 의하여 산소음이온으로 변하고 이는 연속적으로 이웃한 ester 작용기에 친핵성 첨가 반응이 발생하면서 에스터기가 분해된 화합물로 예측 되었다. 예측된 구조는 추가적인 이차원 NMR 분광 분석법인 HMQC 및 HMBC의 분석을 통하여 확정 되었다 (표 5).
HMQC data (도 15) 및 HMBC data (도 16)의 분석을 통하여 로바린의 각 탄소 및 수소에 해당하는 피크의 위치를 확인 하였으며 이러한 자료는 로바릭산의 NMR 측정치와 유사함을 알 수 있었다. 또한 OH 작용기의 양성자에 해당하는 피크 (7.65 ppm)로부터 C-6, C-7, 및 C-8 위치에 해당하는 13C NMR 피크들로의 HMBC correlation들은 제시된 로바린의 구조를 규명하는 중요한 자료를 제공하였다.
표 5
Figure PCTKR2011004836-appb-T000005
aHMBC correlations, optimized for 8 Hz, are from proton(s) stated to the indicated carbon(s).
실시예 8
로바린의 PTP-1b 억제 활성 분석
로바린의 단백질 PTP-1b에 대한 억제 활성을 분석하기 위하여, 분광학적으로 효소 활성을 측정하였다.
즉, 0.5㎎/㎖농도의 PTP-1b (바이오니아, 한국), PTP-1b 완충용액 (20 mM Tris-Hcl, pH 8.0, 0.75 mM NaCl, 0.5 mM EDTA, 5 mM β-mercaptoethanol, 50% Glycerol)에 로바린 0, 1, 3, 10, 30, 100, 300, 1000, 3000 nM과 기질 [pTyr1146] Insulin Receptor (1142-1153, 시그마, 미국)를 첨가한 다음 상온에서 10~30분 동안 반응시킨 후 Malachite Green-Molybdate Dye Solution (1142-1153, 시그마, 미국)을 첨가하여 상온에서 10분간 반응시켜 PTP-1b, 로바린 및 기질과의 반응을 종료시킨 후 620 nm에서 흡광도를 측정하였다.
그 결과, 도 17에 나타난 바와 같이, 로바린 의 PTP-1b에 대한 억제 활성도를 분석한 결과, IC50 = 149 nM로 뛰어난 PTP-1b 억제효과를 보이며, 농도의존적으로 저해율이 증가함을 확인하여 당뇨병 및 비만에 대한 약학적인 치료 및 예방이 가능한 물질임을 확인하였다.
실시예 9
로바린의 단백질타이로신인산화효소족에 대한 선택성 분석
로바린의 단백질타이로신인산화효소족에 대한 선택성을 조사하기 위하여 PTP-1b, PTPN2, PTPN5, PTPN6, PTPN7 및 PTPN13에 대한 억제활성을 분광학적으로 효소 활성을 측정을 통하여 조사하였다.
먼저, 0.5/농도의 PTP-1b, PTPN2, PTPN5, PTPN6, PTPN7, PTPN13 (바이오니아, 한국)와 단백질타이로신탈인산효소 완충용액 (20 mM Tris-Hcl, pH 8.0, 0.75 mM NaCl, 0.5 mM EDTA, 5 mM β-mercaptoethanol, 50% Glycerol)에 로바린 0, 50, 100, 200nM과 기질 [pTyr1146] Insulin Receptor (1142-1153, 시그마, 미국)를 첨가한 다음 상온에서 10~30 분 동안 반응시킨 후 Malachite Green-Molybdate Dye Solution (시그마, 미국)을 첨가하여 상온에서 10분간 반응시켜 기질과의 반응을 종료시킨 후 620 nm에서 흡광도를 측정하였다.
로바린의 단백질타이로신탈인산화효소족에 대한 선택성을 조사한 결과, 도 18에 나타난 바와 같이, 로바린은 PTP-1b에 대한 IC50 200nM에서 저해율은 52.2%이었으며, 특히 TC-PTP (PTPN2)를 포함한 다른 단백질타이로신인산화효소족에 대한 저해활성은 없는 것으로 조사되었다.
이에, 단백질타이로신탈인산화효소족 중 PTP-1b에만 선택적으로 작용함을 보이는 상기 실험결과는 본 발명에 따른 화합물인 로바린이 PTP-1b 저해제로 당뇨치료에 이용가능함을 제시한다.
실시예 10
질환모델동물에 대한 로바린의 효능 검증
10-1: 로바린을 복강 투여한 후 혈당 변화 관찰
로바린에 대한 예비실험, 효력실험, 독성실험, 자료를 바탕으로 투여량 (실험 물질 (mg)/실험동물의 체중 (Kg)으로 표시함)을 결정하였다. 7주령된 수컷 db/db 마우스 (제 2형 당뇨 모델 동물, C57/BLKS/J-db/db, 한국생명공학연구원)에 대조군으로 PBS 200㎕를, 실험군으로 로바린 10mg/kg을 매일 복강 투여하여, 일주일에 두 번씩 혈당을 측정하였다.
7주령 된 수컷 db/db 마우스 (제 2형 당뇨 모델 동물, C57/BLKS/J-db/db, 한국생명공학연구원)에 로바린의 복강주사에 따른 혈당 변화를 측정한 결과, 도 19에 나타난 바와 같이, 대조군 (n=6)에서는 평균 0일 268 mg/dL, 3일 381 mg/dL, 7일 404 mg/dL, 10일 432 mg/dL, 14일 454 mg/dL, 17일 479 mg/dL, 21일 482 mg/dL 로 급격한 혈당 증가 현상이 나타났으나, 로바린 10mg/kg을 복강주사한 실험군 (n=6)에서는 평균 0일 267 mg/dL, 3일 278 mg/dL, 7일 298 mg/dL, 10일 315 mg/dL, 14일 352 mg/dL, 17일 379 mg/dL, 21일 425 mg/dL로 대조군에 비하여 낮은 혈당 증가 현상이 나타남을 확인할 수 있었다.
10-2: 로바린을 복강 투여한 후 6시간 공복 후 혈당 변화 관찰
로바린에 대한 보다 정확한 항당뇨 효과 측정을 위하여, 7주령된 수컷 db/db 마우스 (제 2형 당뇨 모델 동물, C57/BLKS/J-db/db, 한국생명공학연구원)에 대조군으로 PBS 200㎕를, 실험군으로 로바린을 10mg/kg씩 매일 복강주사 후, 일주일에 두 번씩 혈당을 측정하였다. 이때, 복강주사 후 6시간 동안 금식시킨 후 혈당을 측정하였다.
그 결과, 도 20에 나타난 바와 같이, 대조군 (n=6)에서는 평균 0일 151 mg/dL, 3일 199 mg/dL, 7일 262 mg/dL, 10일 291 mg/dL, 14일 397 mg/dL, 17일 455 mg/dL, 21일 483 mg/dL 로 급격한 혈당 증가하였으나, 로바린 10 mg/kg을 복강주사한 실험군 (n=6)에서는 평균 0일 152 mg/dL, 3일 141 mg/dL, 7일 155 mg/dL, 10일 198 mg/dL, 14일 261 mg/dL, 17일 287 mg/dL, 21일 340 mg/dL로 실시예 10-1과 마찬가지로 대조군에 비하여 낮은 혈당 증가 현상을 보였다.
10-3: 로바린의 복강 투여 28일 후 포도당 내성 검사 검증
로바린의 동물모델에서의 복강 내 포도당 내성 검사 (IPGTT, Intraperitoneal glucose tolerance test)를 측정하기 위하여 다음과 같은 실험을 수행하였다.
7주령 된 수컷 db/db 마우스 (제 2형 당뇨 모델 동물, C57/BLKS/J-db/db, 한국생명공학연구원)에 대조군으로 20% DMSO를, 실험군으로 로바린을 10mg/kg씩 매일 28일간 복강주사 후, 20% DMSO 및 로바린을 각각 투여하지 않은 상태에서 16시간 공복 후 포도당 (500 ㎎/㎖, 투여 부피 200㎕)을 복강주사의 방법으로 주입 한 후 0, 15, 30, 60, 90, 120분에 꼬리 정맥에서 채취한 혈액 샘플에서 혈당 변화를 관찰하였다.
제 2형 당뇨동물에서 글루코오즈 피하 투여에 따른 포도당 내성 변화를 측정한 결과, 도 21에 나타난 바와 같이, 대조군 (20% DMSO 복강 투여)의 경우 포도당의 투여 후 0분 293 mg/dL, 15분 429 mg/dL, 30분 557 mg/dL, 60분 553 mg/dL, 90분 539 mg/dL, 120분 568 mg/dL을 나타내며 급격한 혈당증가 경향 및 매우 느린 혈당 강하 거동을 보이는 반면, PTP-1b 활성 억제 물질 로바린 10 mg/kg을 투여한 실험군에서는 각각 0분 153 mg/dL, 15분 358 mg/dL, 30분 436 mg/dL, 60분 390 mg/dL, 90분 335 mg/dL, 120분 290 mg/dL로 약물 농도 의존성으로 낮은 혈당증가 및 빠른 혈당 강하를 통한 혈당 정상화를 확인할 수 있었다.
이러한 실시예 10의 1 내지 3의 결과는 본 발명에 따른 신규 화합물 로바린이 매우 우수한 항당뇨 효과를 가짐을 나타낸다.
실시예 11
로바릭산으로부터 신규 화합물 로바스틴 (Lobarstin)의 제조
실시예 1-2의 로바릭산 50 mg을 50 mL의 아세톤 (acetone)에 용해한 후 물을 50 mL 첨가하여 교반시켜 주었다. 2 N NaOH를 0.25 mL 첨가하고 상온에서 15분간 교반하고 0.5 mL의 1N HCl 용액을 첨가하여 반응을 종결시켰다. 반응혼합물은 농축한 뒤 메틸클로라이드 및 수용액 (pH = 2)간의 분배를 통하여 메틸클로라이드 용해층을 획득하고 농축하여 하기 화학식 6의 신규 화합물을 50 mg을 수득한 다음, 이를 "로바스틴 (Lobarstin)"이라고 명명하였다.
화학식 6
Figure PCTKR2011004836-appb-I000013
한편, 순도를 높이기 위하여 Agilent Eclipse XDB-C18 칼럼 (4.6 x 150mm, 미국)을 사용하여 역상 (reverse phase) HPLC로 분석하였다. 사용한 용매 시스템은 0.1% 포름산이 섞인 물 (A line)과 0.1% 포름산이 섞인 아세토나이트릴 (B line)을 사용하였다. 시작은 아세토나이트릴 40%에서 50%까지 5분, 50% 에서 80%까지 15분, 80%에서 90%까지 10분으로 분석을 진행하여 최종 순도는 97.6%이었다 (도 22).
실시예 12
신규 화합물 로바스틴의 구조분석
실시예 11에서 합성된 로바스틴의 분자구조는 고분해능질량분석 (HRESIMS) 및 NMR 분광분석을 통하여 규명하였다. HRESIMS의 음이온 분석은 Q-TOF micro LC-MS/MS instrument (Waters, 미국)를 사용하여 측정하였으며, 도 23에 나타난 바와 같이, 로바스틴은 m/z 455.1708의 분자이온 피크를 나타내었으며 이는 로바스틴의 분자식이 C25H28O8임을 제시하였다.
로바스틴의 NMR 스펙트라 (NMR spectra)는 DMSO-d 6 용매에 용해한 후 JEOL ECP-400 spectrometer (JEOL, Japan)를 사용하여 측정하였으며, 화학적 이동값은 용매로 사용한 DMSO-d 6 의 화학적 이동값 (δC/δH = 40.0/2.50 ppm)을 기준으로 표시하였다. HSQC (1H-Detected heteronuclear Single-Quantum Coherence) 경우 1JCH = 140Hz로 설정하고 측정하였으며, HMBC (Heteronuclear Multiple-Bond Coherence) 실험은 nJCH = 8Hz로 설정한 후 실행하였다.
먼저 1H NMR 및 13C NMR 스펙트럼 결과를 보면, 도 24 및 도 25에 나타난 바와 같이, 로바스틴의 1H NMR 및 13C NMR spectra는 화학식 4의 로바린의 NMR spectra와 매우 유사한 양상을 보였다.
화학식 4
Figure PCTKR2011004836-appb-I000014
따라서 로바스틴의 구조는 로바린과 매우 유사한 구조를 가지며, 분자량의 차이가 18 dalton임을 감안하면 로바린으로부터 물 분자의 제거반응을 통하여 생성된 화합물임을 예측할 수 있었다. 로바린의 NMR 자료와 로바스틴의 NMR 자료를 비교하면 특히 13C NMR spectrum에서 로바린에서 관찰되는 저 자장 영역 (down field shifted)에서 흡수피크를 보이는 sp3혼성 탄소 (로바스틴의 C-8번, 106.3 ppm)와 지방족 메틸렌 탄소의 흡수 피크가 사라지고 대신에 2개의 이중결합 영역에서 관찰되는 흡수 피크가 관찰되었다. 또한 1H NMR에서 로바린 화합물에서는 존재하지 않았던 올레핀족 수소가 전형적으로 나타나는 자장 영역의 흡수 피크 (6.00 ppm)가 관찰 되었으며 또한 이 피크는 지방족 메틸렌기와 스핀-스핀 커플링을 하고 있음이 COSY 자료의 분석을 통하여 확인되었다 (도 26). 따라서 로바스틴의 구조는 로바린에서 존재하던 3차 알코올 작용기가 탈수반응을 통하여 제거 되면서 8번 및 9번 탄소에 이중결합이 형성된 화합물로 예측되었다. 이상과 같이 예측된 로바스틴의 구조는 추가적인 이차원 NMR 분광 분석법인 HSQC 및 HMBC의 분석을 통하여 확정 되었다 (표 6). HSQC (도 27) 및 HMBC 자료 (도 28)의 분석을 통하여 로바스틴의 각 탄소 및 수소에 해당하는 피크의 위치를 확인하였으며, 특히 로바스틴 구조내의 H-5, 9, 10 및 11로부터 관찰되는 HMBC correlation들은 제시된 로바스틴의 구조를 규명하는 중요한 자료를 제공하였다. 또한 C-8 및 C-9에 형성된 이중결합의 기하학적 입체구조는 Z-형 (시스형)임이 H-5와 H-9간의 NOE correlation 관찰을 근거로 확인 되었다 (도 29).
표 6
Figure PCTKR2011004836-appb-T000006
aHMBC correlations, optimized for 8 Hz, are from proton(s) stated to the indicated carbon(s).
실시예 13
로바스틴의 PTP-1b 억제 활성 분석
로바스틴의 PTP-1b 억제 활성을 분석하기 위하여, 분광학적으로 효소 활성을 측정하였다. 즉, 0.5 ㎎/㎖농도의 PTP-1b (바이오니아, 한국), PTP-1b 완충용액 (20 mM Tris-Hcl, pH 8.0, 0.75 mM NaCl, 0.5 mM EDTA, 5 mM β-mercaptoethanol, 50% Glycerol)에 로바스틴 0, 1, 3, 10, 30, 100, 300, 1,000, 3,000 nM과 기질 [pTyr1146] Insulin Receptor (1142-1153, 시그마, 미국)를 첨가한 다음 상온에서 10~30분 동안 반응시킨 후 Malachite Green-Molybdate Dye Solution (1142-1153, 시그마, 미국)을 첨가하여 상온에서 10분간 반응시켜 PTP-1b 저해용 화합물 로바스틴 및 기질과의 반응을 종료시킨 후 620 nm에서 흡광도를 측정하였다.
그 결과, 도 30에 나타난 바와 같이, 로바스틴의 PTP-1b에 대한 억제 활성도를 분석한 결과, IC50 = 154.6 nM로 뛰어난 PTP-1b 억제효과를 보이며, 농도의존적으로 저해율이 증가함을 확인하여 당뇨병 및 비만에 대한 약학적인 치료 및 예방이 가능한 물질임을 확인하였다.
실시예 14
로바스틴의 단백질타이로신인산화효소족 에 대한 선택성 분석
로바스틴의 단백질타이로신탈인산화효소족에 대한 선택성을 조사하기 위하여 PTP-1b, PTPN2, PTPN5, PTPN6, PTPN7 및 PTPN13에 대한 억제활성을 분광학적으로 효소 활성을 측정을 통하여 조사하였다. 먼저, 0.5 unit 농도의 PTP-1b, PTPN2, PTPN5, PTPN6, PTPN7, PTPN13 (바이오니아, 한국)와 단백질타이로신탈인산효소 완충용액 (20 mM Tris-Hcl, pH 8.0, 0.75 mM NaCl, 0.5 mM EDTA, 5 mM β-mercaptoethanol, 50% Glycerol)에 로바스틴 0, 50, 100, 200nM과 기질 [pTyr1146] Insulin Receptor (1142-1153, 시그마, 미국)를 첨가한 다음 상온에서 10~30 분 동안 반응시킨 후 Malachite Green-Molybdate Dye Solution (시그마, 미국)을 첨가하여 상온에서 10분간 반응시켜 기질과의 반응을 종료시킨 후 620 nm에서 흡광도를 측정하였다.
로바스틴의 단백질타이로신탈인산화효소족에 대한 선택성을 조사한 결과, 도 31에 나타난 바와 같이, 200 nM 로바스틴에서 PTP-1b에 대한 IC50 저해율은 47.96%이었으며, 특히 TC-PTP (PTPN2)를 포함한 다른 단백질타이로신탈인산화효소족에 대한 저해활성은 없는 것으로 조사되었다 (도 31).
이에, 단백질타이로신탈인산화효소족 중 PTP-1b에만 선택적으로 작용함을 보이는 상기 실험결과는 본 발명에 따른 화합물인 로바스틴이 PTP-1b 저해제로 당뇨치료에 이용가능함을 제시한다.
실시예 15
로바스틴 의 당뇨병 질환모델동물에 대한 효능 검증
15-1: 로바스틴을 복강 투여한 후 혈당 변화 관찰
로바스틴에 대한 예비실험, 효력실험, 독성실험, 자료를 바탕으로 투여량 (실험 물질 (mg)/실험동물의 체중 (Kg)으로 표시함)을 결정하였다. 7주령된 수컷 db/db 마우스 (제 2형 당뇨 모델 동물, C57/BLKS/J-db/db, 한국생명공학연구원)에 대조군으로 PBS 200㎕를, 실험군으로 로바스틴 10mg/kg을 매일 복강 투여하여, 일주일에 두 번씩 혈당을 측정하였다.
7주령 된 수컷 db/db 마우스 (제 2형 당뇨 모델 동물, C57/BLKS/J-db/db, 한국생명공학연구원)에 로바스틴의 복강주사에 따른 혈당 변화를 측정한 결과, 도 32에 나타난 바와 같이, 대조군 (n=6)에서는 평균 0일 271 mg/dL, 7일 326 mg/dL, 14일 479 mg/dL, 21일 486 mg/dL 로 급격한 혈당 증가 현상이 나타났으나, 로바스틴 10mg/kg을 복강주사한 실험군 (n=6)에서는 평균 0일 299 mg/dL, 7일 259 mg/dL, 14일 267 mg/dL, 21일 242 mg/dL로 대조군에 비하여 낮은 혈당 증가 현상이 나타남을 확인할 수 있었다 (도 32).
15-2: 로바스틴을 복강 투여한 후 6시간 공복 후 혈당 변화 관찰
로바스틴에 대한 보다 정확한 항당뇨 효과 측정을 위하여, 7주령된 수컷 db/db 마우스 (제 2형 당뇨 모델 동물, C57/BLKS/J-db/db, 한국생명공학연구원)에 대조군으로 PBS 200 ㎕를, 실험군으로 로바스틴을 10 mg/kg씩 매일 복강주사 후, 일주일에 두 번씩 혈당을 측정하였다. 이때, 복강주사 후 6시간 동안 금식시킨 후 혈당을 측정하였다.
그 결과, 도 33에 나타난 바와 같이, 대조군 (n=6)에서는 평균 0일 134 mg/dL, 7일 238 mg/dL, 14일 350 mg/dL, 21일 479 mg/dL 로 급격한 혈당 증가 현상이 나타났으나, 로바스틴 10mg/kg을 복강주사한 실험군 (n=6)에서는 평균 0일 134 mg/dL, 7일 182 mg/dL, 14일 162 mg/dL, 21일 204 mg/dL로 실시예 5-1과 마찬가지로 대조군에 비하여 낮은 혈당 증가 현상을 보였다.
15-3: 로바스틴의 복강 투여 28일 후 포도당 내성 검사 검증
동물모델에서의 로바스틴을 복강 투여한 후 포도당 내성 검사 (IPGTT, Intraperitoneal glucose tolerance test)를 측정하기 위하여 다음과 같은 실험을 수행하였다.
7주령 된 수컷 db/db 마우스 (제 2형 당뇨 모델 동물, C57/BLKS/J-db/db, 한국생명공학연구원)에 대조군으로 20% DMSO를, 실험군으로 로바스틴을 10 mg/kg씩 매일 28일간 복강주사 후, 20% DMSO 및 로바스틴을 각각 투여하지 않은 상태에서 16시간 공복 후 포도당 (500 ㎎/㎖, 투여 부피 200㎕)을 복강주사의 방법으로 주입 한 후 0, 15, 30, 60, 90, 120분에 꼬리 정맥에서 채취한 혈액 샘플에서 혈당 변화를 관찰하였다.
제 2형 당뇨동물에서 글루코오즈 피하 투여에 따른 포도당 내성 변화를 측정한 결과, 도 34에 나타난 바와 같이, 대조군 (20% DMSO 복강 투여)의 경우 포도당의 투여 후 0분 204 mg/dL, 15분 496 mg/dL, 30분 572 mg/dL, 60분 542 mg/dL, 90분 483 mg/dL, 120분 424 mg/dL을 나타내며 급격한 혈당증가 경향 및 매우 느린 혈당 강하 거동을 보이는 반면, 로바스틴 10 mg/kg을 투여한 실험군에서는 각각 0분 152 mg/dL, 15분 229 mg/dL, 30분 307 mg/dL, 60분 205 mg/dL, 90분 162 mg/dL, 120분 147g/dL로 약물 농도 의존성으로 낮은 혈당증가 및 빠른 혈당 강하를 통한 혈당 정상화를 확인할 수 있었다 (도 34). 이러한 실시예 15-1 내지 15-3의 결과는 본 발명에 따른 신규 로바스틴이 매우 우수한 항당뇨 효과를 가짐을 나타낸다.
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
이상 설명한 바와 같이, 본 발명에 따른 신규 화합물은 PTP-1b (protein tyrosine phosphatase-1b) 저해활성이 매우 뛰어나며, 단백질타이로신탈인산화효소족 중 PTP-1b에만 선택적으로 작용하고, 실질적인 PTP-1b 저해제로 당뇨치료에 이용가능한바, 당뇨병 및 비만의 예방 또는 치료에 효과적이다.

Claims (26)

  1. 하기 화학식 1로 표시되는 화합물:
    화학식 1
    Figure PCTKR2011004836-appb-I000015
    여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
  2. 제1항에 있어서, 상기 화합물은 화학식 2로 표시되는 것을 특징으로 하는 화합물:
    화학식 2
    Figure PCTKR2011004836-appb-I000016
  3. 다음의 단계를 포함하는 하기 화학식 2로 표시되는 화합물의 제조방법:
    (a) 스테레오카울론 알피넘 (Stereocaulon alpinum)을 메탄올로 추출하는 단계;
    (b) (a)단계에서 수득된 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물을 컬럼크로마토그래피를 이용하여 메탄올 또는 아세토니트릴 (CH3CN) 수용액으로 용출하는 단계;
    (c) (b)단계에서 용출된 분획물을 역상 고속 액체 크로마토그래피를 이용하여 아세토니트릴 (CH3CN) 또는 메탄올 수용액으로 용출시켜 로바릭산 (Lobaric acid)을 함유하는 분획을 수득하는 단계; 및
    (d) 상기 로바릭산을 함유하는 분획을 용매에 용해한 후, NaHCO3, Na2CO3 또는 NaH2PO4를 첨가하고 교반한 다음, 하기 화학식 2로 표시되는 화합물을 수득하는 단계
    화학식 2
    Figure PCTKR2011004836-appb-I000017
    .
  4. 제3항에 있어서, 상기 (d) 단계는 상기 로바릭산을 함유하는 분획을 아세톤에 용해한 후, NaHCO3, Na2CO3 또는 NaH2PO4를 첨가하고 교반한 다음, NaHCO3, Na2CO3 또는 NaH2PO4 첨가와 동시에 생성되는 고체를 여과한 후, 농축하여 하기 화학식 2로 표시되는 화합물을 수득하는 것을 특징으로 하는 방법:
    화학식 2
    Figure PCTKR2011004836-appb-I000018
  5. 하기 화학식 1로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물:
    화학식 1
    Figure PCTKR2011004836-appb-I000019
    여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
  6. 제5항에 있어서, 상기 화합물은 화학식 2로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물:
    화학식 2
    Figure PCTKR2011004836-appb-I000020
  7. 하기 화학식 1로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 기능성 식품:
    화학식 1
    Figure PCTKR2011004836-appb-I000021
    여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
  8. 제7항에 있어서, 상기 화합물은 화학식 2로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 기능성 식품:
    화학식 2
    Figure PCTKR2011004836-appb-I000022
  9. 하기 화학식 3으로 표시되는 화합물:
    화학식 3
    Figure PCTKR2011004836-appb-I000023
    여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
  10. 제9항에 있어서, 상기 화합물은 화학식 4로 표시되는 것을 특징으로 하는 화합물:
    화학식 4
    Figure PCTKR2011004836-appb-I000024
  11. 다음의 단계를 포함하는 하기 화학식 4로 표시되는 화합물의 제조방법:
    (a) 스테레오카울론 알피넘 (Stereocaulon alpinum)을 메탄올로 추출하는 단계;
    (b) (a)단계에서 수득된 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물을 컬럼크로마토그래피를 이용하여 메탄올 또는 아세토니트릴 (CH3CN) 수용액으로 용출하는 단계;
    (c) (b)단계에서 용출된 분획물을 역상 고속 액체 크로마토그래피를 이용하여 아세토니트릴 (CH3CN) 또는 메탄올 수용액으로 용출시켜 로바릭산 (Lobaric acid)을 함유하는 분획을 수득하는 단계; 및
    (d) 상기 로바릭산을 함유하는 분획을 용매에 용해한 후, 염기를 첨가하고 교반한 다음, 산성용액을 첨가하여 반응을 종결시킨 후, 하기 화학식 4로 표시되는 화합물을 수득하는 단계.
    화학식 4
    Figure PCTKR2011004836-appb-I000025
  12. 제11항에 있어서, 상기 (d) 단계에서 용매는 아세톤이고, 염기는 NaOH 또는 KOH이며, 산성용액은 HCl 용액, H2SO4 용액 또는 HNO3 용액인 것을 특징으로 하는 방법.
  13. 제11항에 있어서, 상기 (d) 단계의 종결된 반응액을 농축한 다음, 메틸렌 클로라이드, 크로로포름 또는 에틸렌클로라이드 및 수용액 간의 분배를 통하여 메틸렌 클로라이드, 크로로포름 또는 에틸렌클로라이드 용해층을 획득하고 농축하여 하기 화학식 4로 표시되는 화합물을 수득하는 것을 특징으로 하는 방법:
    화학식 4
    Figure PCTKR2011004836-appb-I000026
  14. 하기 화학식 3으로 표시되는 화합물 또는 그의 약제학적으로 허용 가능한 염을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물:
    화학식 3
    Figure PCTKR2011004836-appb-I000027
    여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
  15. 제14항에 있어서, 상기 화합물은 화학식 4로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물:
    화학식 4
    Figure PCTKR2011004836-appb-I000028
  16. 하기 화학식 3으로 표시되는 화합물 또는 그의 약제학적으로 허용 가능한 염을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 기능성 식품:
    화학식 3
    Figure PCTKR2011004836-appb-I000029
    여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
  17. 제16항에 있어서, 상기 화합물은 화학식 4로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 기능성 식품:
    화학식 4
    Figure PCTKR2011004836-appb-I000030
  18. 하기 화학식 5로 표시되는 화합물:
    화학식 5
    Figure PCTKR2011004836-appb-I000031
    여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
  19. 제18항에 있어서, 상기 화합물은 화학식 6으로 표시되는 것을 특징으로 하는 화합물:
    화학식 6
    Figure PCTKR2011004836-appb-I000032
  20. 다음의 단계를 포함하는 하기 화학식 6으로 표시되는 화합물의 제조방법:
    (a) 스테레오카울론 알피넘 (Stereocaulon alpinum)을 메탄올로 추출하는 단계;
    (b) (a)단계에서 수득된 스테레오카울론 알피넘 (Stereocaulon alpinum) 추출물을 컬럼크로마토그래피를 이용하여 메탄올 또는 아세토니트릴 (CH3CN) 수용액으로 용출하는 단계;
    (c) (b)단계에서 용출된 분획물을 역상 고속 액체 크로마토그래피를 이용하여 아세토니트릴 (CH3CN) 또는 메탄올 수용액으로 용출시켜 로바릭산을 함유하는 분획을 수득하는 단계; 및
    (d) 상기 로바릭산을 함유하는 분획을 용매에 용해한 후, 물과 염기를 첨가하고 교반한 다음, 산성용액을 첨가하여 반응을 종결시킨 후, 하기 화학식 6으로 표시되는 화합물을 수득하는 단계
    화학식 6
    Figure PCTKR2011004836-appb-I000033
  21. 제20항에 있어서, 상기 (d) 단계에서 용매는 아세톤이고, 염기는 NaOH 또는 KOH이며, 산성용액은 HCl 용액, H2SO4 용액 또는 HNO3 용액인 것을 특징으로 하는 방법.
  22. 제20항에 있어서, 상기 (d) 단계의 종결된 반응액을 농축한 다음, 메틸렌 클로라이드, 크로로포름 또는 에틸렌클로라이드 및 수용액 간의 분배를 통하여 메틸렌 클로라이드, 크로로포름 또는 에틸렌클로라이드 용해층을 획득하고 농축하여 하기 화학식 6으로 표시되는 화합물을 수득하는 것을 특징으로 하는 방법:
    화학식 6
    Figure PCTKR2011004836-appb-I000034
  23. 하기 화학식 5로 표시되는 화합물 또는 그의 약제학적으로 허용 가능한 염을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물:
    화학식 5
    Figure PCTKR2011004836-appb-I000035
    여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
  24. 제23항에 있어서, 상기 화합물은 화학식 6으로 표시되는 것을 특징으로 하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물:
    화학식 6
    Figure PCTKR2011004836-appb-I000036
  25. 하기 화학식 5로 표시되는 화합물을 유효성분으로 함유하는 당뇨병 또는 비만의 예방 또는 개선용 기능성 식품:
    화학식 5
    Figure PCTKR2011004836-appb-I000037
    여기서, 상기 R1 및 R2는 H, 알킬기, 아릴기, 알릴기, 아릴알킬기 및 아실기로 구성되는 군으로부터 선택됨.
  26. 제25항에 있어서, 상기 화합물은 화학식 6으로 표시되는 것을 특징으로 하는 당뇨병 또는 비만의 예방 또는 개선용 기능성 식품:
    화학식 6
    Figure PCTKR2011004836-appb-I000038
PCT/KR2011/004836 2010-10-07 2011-07-01 당뇨병 또는 비만의 예방 또는 치료용 약학 및 식품 조성물 WO2012046945A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/878,196 US8846750B2 (en) 2010-10-07 2011-07-01 Pharmaceutical and food compositions for preventing or treating diabetes or obesity
EP11830831.1A EP2626070B1 (en) 2010-10-07 2011-07-01 Pharmaceutical and food composition for preventing or treating diabetes or obesity
CN2011800591843A CN103249410A (zh) 2010-10-07 2011-07-01 预防或治疗糖尿病或肥胖症的药物组合物和食品组合物
JP2013532710A JP5755749B2 (ja) 2010-10-07 2011-07-01 糖尿病若しくは肥満の予防、または治療用医薬組成物及び食品組成物
US13/900,361 US8703814B1 (en) 2010-10-07 2013-05-22 Pharmaceutical and food compositions for preventing or treating diabetes or obesity
US13/900,155 US8697745B2 (en) 2010-10-07 2013-05-22 Pharmaceutical and food compositions for preventing or treating diabetes or obesity

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2010-0097677 2010-10-07
KR20100097678A KR101481140B1 (ko) 2010-10-07 2010-10-07 신규 화합물 로바린을 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물
KR10-2010-0097678 2010-10-07
KR20100097677A KR101485162B1 (ko) 2010-10-07 2010-10-07 소듐 로바레이트를 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물
KR10-2011-0039155 2011-04-26
KR20110039155A KR101481141B1 (ko) 2011-04-26 2011-04-26 신규 화합물 로바스틴을 함유하는 당뇨병 예방 또는 치료용 약학 조성물

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/878,196 A-371-Of-International US8846750B2 (en) 2010-10-07 2011-07-01 Pharmaceutical and food compositions for preventing or treating diabetes or obesity
US13/900,155 Division US8697745B2 (en) 2010-10-07 2013-05-22 Pharmaceutical and food compositions for preventing or treating diabetes or obesity
US13/900,361 Division US8703814B1 (en) 2010-10-07 2013-05-22 Pharmaceutical and food compositions for preventing or treating diabetes or obesity

Publications (2)

Publication Number Publication Date
WO2012046945A2 true WO2012046945A2 (ko) 2012-04-12
WO2012046945A3 WO2012046945A3 (ko) 2012-06-14

Family

ID=45928177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004836 WO2012046945A2 (ko) 2010-10-07 2011-07-01 당뇨병 또는 비만의 예방 또는 치료용 약학 및 식품 조성물

Country Status (5)

Country Link
US (1) US8846750B2 (ko)
EP (2) EP2617464B1 (ko)
JP (2) JP5755749B2 (ko)
CN (2) CN103249410A (ko)
WO (1) WO2012046945A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065545A1 (ko) * 2012-10-24 2014-05-01 한국해양과학기술원 로바스틴을 함유하는 뇌암의 예방 또는 치료용 약학 조성물 및 이를 이용한 뇌암의 치료를 위한 병용요법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703814B1 (en) 2010-10-07 2014-04-22 Korea Ocean Research And Development Institute Pharmaceutical and food compositions for preventing or treating diabetes or obesity
CN104059049A (zh) * 2013-03-21 2014-09-24 华东师范大学 具有光学活性的苯并二氧杂环衍生物及其制备方法和应用
RU2613271C1 (ru) * 2015-12-24 2017-03-15 Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет имени М.К. Аммосова" Способ коррекции метаболических нарушений при сахарном диабете второго типа
CN106176834A (zh) * 2016-08-28 2016-12-07 成都宝科生物科技有限公司 一种用于治疗糖尿病的地衣提取物
KR102022543B1 (ko) * 2017-12-29 2019-09-18 한국해양과학기술원 로바릭산 및 그 유사체의 합성방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040198815A1 (en) * 2003-03-31 2004-10-07 Council Of Scientific And Industrial Research Antimicrobial and anticancer properties of methyl-beta-orcinolcarboxylate from lichen (Everniastrum cirrhatum)
WO2008156654A2 (en) * 2007-06-15 2008-12-24 Massachusetts Institute Of Technology Cytoskeleton modulators for treating metabolic disorders
US20090048332A1 (en) 2007-08-14 2009-02-19 Hej Research Insitute Natural Novel Antioxidants
KR100957203B1 (ko) * 2007-11-14 2010-05-11 한국해양연구원 단백질 타이로신 탈인산화효소 1b의 활성 억제능을 갖는스테레오카울론 알피넘 추출물 및 이로부터 분리된우스닉산 유도체
KR101185137B1 (ko) * 2009-04-07 2012-09-24 한국해양연구원 스테레오카울론 알피넘 유래 화합물을 함유하는 당뇨병 또는 비만의 예방 또는 치료용 약학 조성물

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Pharmaceutical Industry White Paper", December 2004, KOREA HEALTH INDUSTRY DEVELOPMENT INSTITUTE
"Recent Trends in Studies on Diabetes Therapeutic Agents", TRENDS IN HEALTH INDUSTRY & TECHNOLOGY, 2003
BARTON PENINSULA ON KING GEORGE ISLAND, January 2003 (2003-01-01)
HUNECK, S., NATURWISSENSCHAFTEN, vol. 86, 1999, pages 559
INGOLFSDOTTIR, K., PHYTOCHEMISTRY, vol. 61, 2002, pages 729
KOREN, S., BEST PRACT. RES. CLIN. ENDOCRINOL. METAB., vol. 21, 2007, pages 621
KUMAR, K.C.S. ET AL., J. NAT. PROD., vol. 62, 1999, pages 817
LIU, S. ET AL., J. AM. CHEM. SOC., vol. 130, 2008, pages 17075
See also references of EP2626070A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065545A1 (ko) * 2012-10-24 2014-05-01 한국해양과학기술원 로바스틴을 함유하는 뇌암의 예방 또는 치료용 약학 조성물 및 이를 이용한 뇌암의 치료를 위한 병용요법
KR20140052396A (ko) * 2012-10-24 2014-05-07 한국해양과학기술원 로바스틴을 함유하는 뇌암의 예방 또는 치료용 약학 조성물 및 이를 이용한 뇌암의 치료를 위한 병용요법
KR101892078B1 (ko) 2012-10-24 2018-08-28 한국해양과학기술원 로바스틴을 함유하는 뇌암의 예방 또는 치료용 약학 조성물 및 이를 이용한 뇌암의 치료를 위한 병용요법

Also Published As

Publication number Publication date
EP2626070A2 (en) 2013-08-14
US8846750B2 (en) 2014-09-30
CN103249410A (zh) 2013-08-14
JP2013543503A (ja) 2013-12-05
EP2626070A4 (en) 2014-04-09
JP2015212255A (ja) 2015-11-26
JP5755749B2 (ja) 2015-07-29
WO2012046945A3 (ko) 2012-06-14
US20130261174A1 (en) 2013-10-03
EP2626070B1 (en) 2018-01-24
EP2617464A1 (en) 2013-07-24
CN105175371B (zh) 2018-03-13
EP2617464B1 (en) 2016-06-15
CN105175371A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2012046945A2 (ko) 당뇨병 또는 비만의 예방 또는 치료용 약학 및 식품 조성물
WO2017030410A1 (ko) 검정콩잎 추출물 및 이로부터 분리한 플라보놀배당체를 유효성분으로 함유하는 대사증후군의 예방 또는 치료용, 또는 항산화용 조성물
WO2011083999A2 (ko) 바이구아나이드 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 약학 조성물
WO2018124508A1 (ko) 3,5-디카페오일퀴닉에시드 또는 국화 추출물을 함유하는 근육 질환 예방 및 치료용 또는 근 기능 개선용 조성물
WO2022035115A1 (ko) 오리나무 추출물 또는 이로부터 분리된 화합물을 함유하는 골격근 근육관련 질환의 예방 및 치료용 조성물 및 이의 용도
WO2014175543A1 (ko) 복합 추출물을 포함하는 대장염 예방, 개선 또는 치료용 조성물
WO2019212196A1 (ko) 신규한 asm 활성 직접 억제 화합물 2-아미노-2-(1,2,3-트리아졸-4-일)프로판-1,3-디올 유도체 및 이의 용도
WO2015099392A1 (ko) 피라노크로메닐페놀 유도체, 및 대사증후군 또는 염증 질환 치료용 약학 조성물
WO2009125923A2 (en) Novel indol carboxylic acid bispyridyl carboxamide derivatives, pharmaceutically acceptable salt thereof, preparation method and composition containing the same as an active ingredient
WO2013183920A1 (ko) 베르베논 유도체를 함유하는 퇴행성 뇌질환 치료 또는 예방용 약학 조성물
WO2014027832A1 (ko) 대장염 예방 또는 치료용 조성물
WO2012067316A1 (ko) 테로카판계 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 대사성 질환 또는 이들의 합병증의 예방 또는 치료용, 또는 항산화용 조성물
WO2014007447A1 (ko) 하이드록시 챨콘 화합물을 유효성분으로 함유하는 혈관신생으로 인한 질환의 예방 또는 치료용 조성물
WO2018004263A1 (ko) 광학 활성 피라노크로메닐페놀 유도체 및 그를 포함하는 약학적 조성물
WO2010090498A2 (ko) 이고들빼기 추출물, 이의 분획물 또는 이로부터 분리한 화합물을 유효성분으로 함유하는 간 기능 개선용 약학적 조성물 및 간 기능 개선용 건강기능 식품조성물
WO2011122815A2 (en) Novel quinoxaline derivatives
WO2018008803A1 (ko) 세스퀴테르펜 유도체의 신규한 용도
WO2020050462A1 (ko) 결명 새싹 유래 나프토파이론 유도체를 포함하는 신경세포 보호용 조성물
WO2019194583A1 (ko) 3-페닐-2,8-디히드로피라노[2,3-f]크로멘 유도체 및 이를 포함하는 약학적 조성물
WO2021187766A1 (ko) P38 제거능을 갖는 화합물, 이의 제조방법 및 이를 포함하는 만성 염증성 질환 치료용 조성물
WO2021230710A1 (ko) 신규 ido/tdo 억제제, 그의 항암 용도, 그의 항암 병용 요법
WO2020080641A1 (ko) 지노스테마 론기페스 vk1 추출물 또는 이로부터 분리한 화합물을 유효성분으로 포함하는 ampk 관련 질환 예방 또는 치료용 조성물
WO2018217009A1 (ko) 신선초 추출물 또는 이로부터 분리된 화합물을 함유하는 근육관련 질환의 예방 및 치료용 조성물 및 이의 용도
WO2020139001A1 (ko) 세포 내 atp 생성 촉진을 위한 약제학적 조성물
WO2018016901A1 (ko) 골질환의 예방 또는 치료용 약학적 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830831

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011830831

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013532710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13878196

Country of ref document: US