WO2012046706A1 - 誘電体薄膜の成膜方法 - Google Patents

誘電体薄膜の成膜方法 Download PDF

Info

Publication number
WO2012046706A1
WO2012046706A1 PCT/JP2011/072805 JP2011072805W WO2012046706A1 WO 2012046706 A1 WO2012046706 A1 WO 2012046706A1 JP 2011072805 W JP2011072805 W JP 2011072805W WO 2012046706 A1 WO2012046706 A1 WO 2012046706A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
substrate
pzt
vacuum chamber
forming
Prior art date
Application number
PCT/JP2011/072805
Other languages
English (en)
French (fr)
Inventor
木村 勲
神保 武人
宏樹 小林
洋平 遠藤
大西 洋平
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020137011322A priority Critical patent/KR101517707B1/ko
Priority to EP11830638.0A priority patent/EP2626892B1/en
Priority to CN201180053170.0A priority patent/CN103189968B/zh
Priority to JP2012537709A priority patent/JP5636433B2/ja
Publication of WO2012046706A1 publication Critical patent/WO2012046706A1/ja
Priority to US13/857,421 priority patent/US9347128B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/02Oxides
    • C01G21/06Lead monoxide [PbO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to a method for forming a dielectric thin film.
  • FIG. 4 is a graph showing piezoelectric characteristics of a (100) / (001) -oriented PZT thin film and a (111) -oriented PZT thin film. It is known that a (100) / (001) -oriented PZT thin film exhibits larger piezoelectric properties than a (111) -oriented PZT thin film.
  • a substrate to be formed is a substrate in which a Ti thin film as an adhesion layer and a noble metal thin film as a lower electrode layer are laminated in advance in this order on a Si substrate with a thermal oxide film.
  • the noble metal thin film is a Pt or Ir thin film and is preferentially oriented in the (111) plane.
  • FIG. 5 shows the temperature change of the heat generating member for heating the substrate.
  • the heating member is heated and held at 640 ° C. in the evacuated vacuum chamber, and the substrate is brought to a deposition temperature suitable for forming the PZT thin film.
  • the introduced sputtering gas When a sputtering gas is introduced into the vacuum chamber and an AC voltage is applied to the target, the introduced sputtering gas is ionized and turned into plasma. The ions in the plasma sputter the surface of the target, and PZT particles are emitted from the target.
  • Some of the PZT particles emitted from the target are incident on the surface of the heated substrate, and a PZT thin film is formed on the noble metal thin film on the substrate.
  • the voltage application to the target is stopped and the introduction of the sputtering gas is stopped.
  • the temperature of the heat generating member is kept at 400 ° C. to cool the substrate.
  • FIG. 6 shows a center portion (Center), an outer edge portion (Edge), and an intermediate portion (Middle) between the center portion and the outer edge portion of the PZT thin film formed on the Pt thin film by a conventional dielectric thin film forming method.
  • X-ray diffraction patterns at three locations are shown. It can be seen that the PZT thin film formed is preferentially oriented in the (111) direction. That is, the conventional dielectric thin film forming method has a problem that it is difficult to form a (100) / (001) oriented PZT thin film.
  • the present invention was created to solve the above-mentioned disadvantages of the prior art, and an object thereof is to provide a dielectric thin film forming method capable of forming a (100) / (001) oriented PZT thin film. It is in.
  • the present inventors have found that Pb deficiency occurs in the PZT thin film due to the diffusion or re-evaporation of Pb toward the noble metal thin film in the initial stage of the PZT thin film formation, so that TiO 2 is formed. It is assumed that the PZT thin film formed on the TiO 2 / noble metal thin film is preferentially oriented in the (111) direction, and the above object can be achieved by previously forming a PbO seed layer on the noble metal thin film. I found it.
  • the present invention which has been made based on such knowledge, sputters by applying a voltage to a target of lead zirconate titanate (PZT) while heating the substrate in a vacuum evacuated vacuum chamber.
  • the present invention relates to a method for forming a dielectric thin film, wherein in the seed layer forming step, an emission source containing Pb and O in a chemical structure is heated in the vacuum chamber, and PbO is removed from the emission source.
  • the present invention relates to a method for forming a dielectric thin film, wherein in the seed layer forming step, a dielectric that introduces an inert gas that does not react with PbO into the vacuum chamber while releasing PbO gas from the emission source.
  • This is a method for forming a thin film.
  • the present invention relates to a method for forming a dielectric thin film, wherein in the seed layer forming step, the emission source is heated to a temperature higher than the temperature of the substrate in the film forming step. is there.
  • the present invention relates to a method for forming a dielectric thin film.
  • the dielectric thin film is formed by heating the emission source to a temperature higher by 50 ° C. than the substrate temperature in the film forming step. It is a membrane method.
  • the present invention is a method for forming a dielectric thin film, wherein the substrate has a thin film of a noble metal of either Pt or Ir preferentially oriented in the (111) plane on the surface. .
  • a (100) / (001) -oriented PZT thin film can be formed on a (111) -oriented Pt or Ir thin film, a piezoelectric element having a piezoelectric property greater than that of the prior art can be obtained.
  • FIG. 1 is an internal configuration diagram of the dielectric film forming apparatus 10.
  • the dielectric film forming apparatus 10 includes a vacuum chamber 11, a PZT target 21 disposed in the vacuum chamber 11, a substrate holding table 32 that is disposed at a position facing the target 21, and that holds a substrate 31.
  • a substrate heating unit 18 for heating the substrate 31 held on the table 32, a sputtering power source 13 for applying a voltage to the target 21, a sputtering gas introducing unit 14 for introducing a sputtering gas into the vacuum chamber 11, and the inside of the vacuum chamber 11
  • the first and second deposition preventing plates 34 and 35 are disposed at positions where the PZT particles released from the target 21 are attached.
  • a cathode electrode 22 is attached to the wall surface of the vacuum chamber 11 via an insulating member 28, and the cathode electrode 22 and the vacuum chamber 11 are electrically insulated.
  • the vacuum chamber 11 is at ground potential.
  • the surface of the cathode electrode 22 is exposed in the vacuum chamber 11.
  • the target 21 is fixed in close contact with the center of the surface of the cathode electrode 22, and the target 21 and the cathode electrode 22 are electrically connected.
  • the sputtering power supply 13 is disposed outside the vacuum chamber 11, is electrically connected to the cathode electrode 22, and is configured to apply an AC voltage to the target 21 via the cathode electrode 22.
  • a magnet device 29 is arranged on the opposite side of the cathode electrode 22 from the target 21. The magnet device 29 is configured to form magnetic lines of force on the surface of the target 21.
  • the substrate holding base 32 is silicon carbide (SiC) here, the outer periphery is formed larger than the outer periphery of the substrate 31, and the surface is directed to face the surface of the target 21.
  • the central portion of the surface of the substrate holder 32 is configured to hold the substrate 31 by electrostatic adsorption.
  • the back surface of the substrate 31 is brought into close contact with the center of the surface of the substrate holding table 32, and the substrate 31 is thermally connected to the substrate holding table 32. It has become so.
  • the first deposition preventing plate 34 is made of ceramics such as quartz and alumina, and has an inner circumference that is larger than the outer circumference of the substrate 31 so as to cover the outer edge portion that is the outer side of the center portion of the surface of the substrate holder 32. Is arranged. Therefore, the particles emitted from the target 21 do not adhere to the outer edge portion of the surface of the substrate holder 32.
  • the back surface of the first deposition preventing plate 34 is in close contact with the outer edge portion of the surface of the substrate holding table 32, and the first deposition preventing plate 34 is thermally connected to the substrate holding table 32.
  • the first deposition preventing plate 34 surrounds the outer side of the outer periphery of the substrate 31.
  • the second adhesion-preventing plate 35 is made of ceramics such as quartz and alumina, and has an inner circumference that is larger than the outer circumference of the target 21 and the outer circumference of the substrate 31.
  • the second deposition preventing plate 35 is disposed between the substrate holder 32 and the cathode electrode 21 and surrounds the side of the space between the substrate 31 and the target 21. Therefore, the particles emitted from the target 21 are prevented from adhering to the wall surface of the vacuum chamber 11.
  • the substrate heating unit 18 includes a heat generating member 33 and a heating power source 17.
  • the heat generating member 33 is SiC, and is disposed on the opposite side of the substrate holding table 32 from the substrate 31, and the heating power source 17 is electrically connected to the heat generating member 33.
  • the heat generating member 33 When a direct current is supplied from the heating power supply 17 to the heat generating member 33, the heat generating member 33 generates heat, the substrate holding table 32 is heated, and the substrate 31 on the substrate holding table 32 and the first deposition plate 34 are connected. It is designed to be heated together.
  • the back surface of the substrate 31 is in close contact with the center portion of the surface of the substrate holding table 32 so that heat is evenly transferred from the center portion of the substrate 31 to the outer edge portion.
  • a cooling device 38 is disposed on the side of the heat generating member 33 opposite to the substrate holding table 32.
  • the cooling device 38 is configured to circulate a temperature-controlled cooling medium therein so that the wall surface of the vacuum chamber 11 is not heated even when the heat generating member 33 generates heat.
  • the sputter gas introduction unit 14 is connected to the inside of the vacuum chamber 11 so that the sputter gas can be introduced into the vacuum chamber 11.
  • ⁇ Dielectric thin film deposition method> A method for forming a dielectric thin film according to the present invention will be described.
  • a Ti thin film as an adhesion layer and a noble metal thin film as a lower electrode layer are previously laminated in this order on a thermal oxide film (SiO 2 ) of a Si substrate.
  • the noble metal thin film is a Pt or Ir thin film and is preferentially oriented in the (111) plane.
  • a temperature of the substrate 31 (hereinafter referred to as a film formation temperature) suitable for forming a PZT thin film is obtained in advance by tests and simulations.
  • an evacuation device 15 is connected in the vacuum chamber 11 to evacuate the vacuum chamber 11. Thereafter, evacuation is continued and the vacuum atmosphere in the vacuum chamber 11 is maintained.
  • a dummy substrate different from the substrate 31 to be deposited is carried into the vacuum chamber 11 and placed on the center of the surface of the substrate holder 32. Sputtering of the target 21 is performed to deposit a PZT thin film in advance on the surface of the first deposition preventing plate 34. Next, the dummy substrate is carried out of the vacuum chamber 11 while maintaining the vacuum atmosphere in the vacuum chamber 11.
  • the present invention can attach a metal compound containing lead (Pb) and oxygen (O) in the chemical structure (hereinafter referred to as a release source) to the surface of the first deposition preventing plate 34, the vacuum chamber 11.
  • a metal compound containing lead (Pb) and oxygen (O) in the chemical structure hereinafter referred to as a release source
  • the plate 34 may be used by being carried into the vacuum chamber 11.
  • the substrate 31 to be deposited is carried into the vacuum chamber 11, and the noble metal thin film on the surface of the substrate 31 faces the surface of the target 21 in the direction of the substrate holder 32.
  • the substrate 31 is held at the center of the surface.
  • a cooling medium whose temperature is controlled is circulated in the cooling device 38.
  • FIG. 2 shows the temperature change of the heat generating member 33 in the following seed layer forming step and film forming step.
  • a seed layer forming step an inert gas that does not react with PbO is introduced into the vacuum chamber 11 from the sputtering gas introduction unit 14.
  • Ar gas which is a sputtering gas is used as the inert gas. Thereafter, the introduction of the inert gas is continued.
  • a release source containing Pb and O in the chemical structure is heated in the vacuum chamber 11 to release PbO gas from the release source.
  • a direct current is passed from the heating power source 17 to the heat generating member 33 to heat the heat generating member 33, and the PZT thin film adhering to the first deposition preventing plate 34 is heated to a temperature higher than the previously determined film forming temperature.
  • PbO gas is released from the PZT thin film attached to the first deposition preventing plate 34.
  • the PZT thin film adhering to the first deposition preventing plate 34 has a temperature higher by 50 ° C. or more than the previously determined film forming temperature. This is because more PbO gas is released.
  • the temperature of the heat generating member 33 is raised to 785 ° C., and the temperature is maintained.
  • a PbO seed layer is formed on the noble metal thin film on the surface of the substrate 31 and deposited on the noble metal thin film on the surface of the substrate 31.
  • the heat generating member 33 is cooled, and the substrate 31 is brought to the film forming temperature.
  • the heat generating member 33 is cooled to 640 ° C., and the temperature is maintained.
  • Ar gas which is a sputtering gas
  • sputtering gas introducing unit 14 is introduced from the sputtering gas introducing unit 14 into the vacuum chamber 11, and an AC voltage is applied from the power supply 13 to the cathode electrode 22.
  • the introduced sputtering gas is ionized and turned into plasma. Ions in the plasma are captured by the magnetic field lines formed by the magnet device 29 and are incident on the surface of the target 21 to blow off PZT particles from the target 21.
  • a part of the PZT particles emitted from the target 21 is incident on the surface of the substrate 31. Since a PbO seed layer is formed in advance on the noble metal thin film on the surface of the substrate 31, Pb and O are supplied from the seed layer, and no Pb deficiency occurs in the PZT thin film, and (001) / A (100) oriented PZT film is formed.
  • FIG. 3B shows a central portion (Center), an outer edge portion (Edge) of the PZT thin film formed on the Pt thin film by the film forming method of the present invention, and an intermediate portion (Middle) between the central portion and the outer edge portion.
  • X-ray diffraction patterns at three locations are shown. From the X-ray diffraction pattern of FIG. 3B, it can be seen that a PZT thin film preferentially oriented in the (100) / (001) direction was formed.
  • the voltage application from the power source 13 to the cathode electrode 22 is stopped, and the introduction of the sputtering gas from the sputtering gas introduction unit 14 into the vacuum chamber 11 is stopped. .
  • the current supply from the heating power supply 17 to the heat generating member 33 is stopped, the heat generating member 33 is cooled, and the substrate 31 is set to a temperature lower than the film forming temperature. This is because the substrate 31 is transported by the transport robot. Here, the temperature of the heat generating member 33 is lowered to 400 ° C. and the temperature is maintained.
  • the film-formed substrate 31 is carried out to the outside of the vacuum chamber 11, and then another non-film-formed substrate 31 is carried into the vacuum chamber 11, and the above-described seed layer forming step And the film forming process are repeated.
  • the emission source containing Pb and O in the chemical structure is heated in the vacuum chamber 11 and PbO gas can be emitted from the emission source
  • the method is not limited to the method of heating the PZT thin film attached to the adhesion preventing plate 34, and a heat generating member is disposed on the outer circumferential side surface of the second adhesion preventing plate 35 and adhered to the inner circumferential side surface of the second adhesion preventing plate 35.
  • the thin PZT film may be heated to release PbO gas. In this case, since the released PbO gas is incident on the surface of the substrate 31 without colliding with the inert gas, the introduction of the inert gas can be omitted.
  • a crucible (not shown) is arranged in the vacuum chamber 11 separately from the first deposition plate 34, and a release source such as PZT or PbO is placed in the crucible, and the release source in the crucible is heated to make PbO Gas may be released. If the opening of the crucible is oriented so that the released PbO gas is incident on the surface of the substrate 31, the introduction of the inert gas can be omitted.
  • a release source containing Pb and O in the chemical structure is heated in the vacuum chamber 11 to release the gas.
  • the method is not limited to the method of releasing the PbO gas from the source, and a PbO gas releasing part (not shown) that is disposed outside the vacuum tank 11 and releases the PbO gas is connected to the inside of the vacuum tank 11, A method is also included in which a PbO gas is introduced into the vacuum chamber 11 to adhere the PbO gas to the surface of the substrate 31.
  • the film forming step Since the PZT particles adhere to the emission source, that is, the emission source is replenished, the use efficiency of the film forming material is better than that using the PbO gas emission part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 (100)/(001)配向したPZTの薄膜を形成できる誘電体薄膜の成膜方法を提供する。 基板の表面にPbOのガスを付着させてシード層を形成した後、真空排気された真空槽内で基板を加熱しながら、チタン酸ジルコン酸鉛(PZT)のターゲットに電圧を印加してスパッタし、基板の表面にPZTの薄膜を成膜する。シード層からPbとOとが供給されてPZT薄膜にPb欠損は生じず、(001)/(100)配向したPZT膜が得られる。

Description

誘電体薄膜の成膜方法
 本発明は、誘電体薄膜の成膜方法に関する。
 現在、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3、PZT)等の強誘電体を用いた圧電素子は、インクジェットヘッドや加速度センサ等のMEMS(Micro Electro Mechanical Systems)技術に応用されている。
 図4は(100)/(001)配向のPZT薄膜と、(111)配向のPZT薄膜の圧電特性を示すグラフである。(100)/(001)配向のPZT薄膜は、(111)配向のPZT薄膜よりも大きい圧電特性を示すことが知られている。
 従来の誘電体薄膜の成膜方法を説明する。
 圧電素子を形成する場合、成膜すべき基板には、熱酸化膜付きSi基板上に、密着層であるTi薄膜と、下部電極層である貴金属の薄膜とがこの順にあらかじめ積層されたものを使用する。貴金属の薄膜はPt又はIrの薄膜であり、(111)面に優先配向している。
 図5は基板を加熱する発熱部材の温度変化を示している。
 真空排気された真空槽内で発熱部材をここでは640℃に昇温保持させ、基板をPZT薄膜の形成に適した成膜温度にする。
 真空槽内にスパッタガスを導入し、ターゲットに交流電圧を印加すると、導入されたスパッタガスは電離され、プラズマ化する。プラズマ中のイオンはターゲットの表面をスパッタし、ターゲットからPZTの粒子が放出される。
 ターゲットから放出されたPZTの粒子の一部は加熱された基板の表面に入射し、基板の貴金属の薄膜上にPZTの薄膜が形成される。
 所定の膜厚のPZTの薄膜を形成した後、ターゲットへの電圧印加を停止し、スパッタガスの導入を停止する。発熱部材を400℃に降温保持して、基板を冷却する。
 図6は従来の誘電体薄膜の成膜方法でPt薄膜上に形成したPZT薄膜の中央部(Center)と、外縁部(Edge)と、中央部と外縁部との間の中間部(Middle)の3箇所のX線回折パターンを示している。形成されるPZTの薄膜は(111)方向に優先配向していることが分かる。
 すなわち、従来の誘電体薄膜の成膜方法では、(100)/(001)配向したPZT薄膜を形成することが困難であるという問題があった。
特開2007-327106号公報 特開2010-084180号公報 特開2003-081694号公報
 本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、(100)/(001)配向したPZTの薄膜を形成できる誘電体薄膜の成膜方法を提供することにある。
 本発明者らは、従来の成膜方法では、PZT薄膜の成膜初期において、Pbが貴金属の薄膜方向へ拡散したり、再蒸発する影響で、PZT薄膜にPb欠損が生じてTiO2が形成され、TiO2/貴金属の薄膜上に形成されるPZT薄膜が(111)方向に優先配向していたと推測し、貴金属の薄膜上にPbOのシード層を予め形成することにより上記目的を達成できることを見出した。
 係る知見に基づいて成された本発明は、真空排気された真空槽内で基板を加熱しながら、チタン酸ジルコン酸鉛(PZT)のターゲットに電圧を印加してスパッタし、前記基板の表面にPZTの薄膜を成膜する成膜工程を有する誘電体薄膜の成膜方法であって、前記成膜工程の前に、前記基板の表面にPbOのガスを付着させてシード層を形成するシード層形成工程を有する誘電体薄膜の成膜方法である。
 本発明は誘電体薄膜の成膜方法であって、前記シード層形成工程では、前記真空槽内で化学構造中にPbとOとを含有する放出源を加熱して、前記放出源からPbOのガスを放出させる誘電体薄膜の成膜方法である。
 本発明は誘電体薄膜の成膜方法であって、前記シード層形成工程では、前記放出源からPbOのガスを放出させながら、前記真空槽内にPbOと反応しない不活性ガスを導入する誘電体薄膜の成膜方法である。
 本発明は誘電体薄膜の成膜方法であって、前記シード層形成工程では、前記放出源を前記成膜工程での前記基板の温度よりも高い温度に加熱する誘電体薄膜の成膜方法である。
 本発明は誘電体薄膜の成膜方法であって、前記シード層形成工程では、前記放出源を前記成膜工程での前記基板の温度よりも50℃以上高い温度に加熱する誘電体薄膜の成膜方法である。
 本発明は誘電体薄膜の成膜方法であって、前記基板は表面に(111)面に優先配向したPt又はIrのうちいずれか一方の貴金属の薄膜を有する誘電体薄膜の成膜方法である。
 (111)配向したPt又はIrの薄膜上に(100)/(001)配向したPZT薄膜を成膜できるので、従来よりも圧電特性の大きい圧電素子を得ることができる。
本発明の誘電体薄膜の成膜方法で使用する誘電体成膜装置の内部構成図 本発明の誘電体薄膜の成膜方法における発熱部材の温度変化を示す図 本発明の誘電体薄膜の成膜方法で形成したPZT薄膜のX線回折パターンを示す図 (100)/(001)配向のPZT薄膜と、(111)配向のPZT薄膜の圧電特性を示すグラフ 従来の誘電体膜の成膜方法における発熱部材の温度変化を示す図 従来の誘電体薄膜の成膜方法で形成したPZT薄膜のX線回折パターンを示す図
<誘電体成膜装置の構造>
 本発明の誘電体薄膜の成膜方法で使用する誘電体成膜装置の構造を説明する。
 図1は誘電体成膜装置10の内部構成図である。
 誘電体成膜装置10は、真空槽11と、真空槽11内に配置されたPZTのターゲット21と、ターゲット21と対面する位置に配置され、基板31を保持する基板保持台32と、基板保持台32に保持された基板31を加熱する基板加熱部18と、ターゲット21に電圧を印加するスパッタ電源13と、真空槽11内にスパッタガスを導入するスパッタガス導入部14と、真空槽11内で、ターゲット21から放出されたPZTの粒子が付着する位置に配置された第一、第二の防着板34、35とを有している。
 真空槽11の壁面には、カソード電極22が絶縁部材28を介して取り付けられ、カソード電極22と真空槽11とは電気的に絶縁されている。真空槽11は接地電位におかれている。
 カソード電極22の表面は真空槽11内に露出されている。ターゲット21はカソード電極22の表面の中央部に密着して固定され、ターゲット21とカソード電極22とは電気的に接続されている。
 スパッタ電源13は真空槽11の外側に配置され、カソード電極22に電気的に接続され、カソード電極22を介してターゲット21に交流電圧を印加できるように構成されている。
 カソード電極22のターゲット21とは反対側には磁石装置29が配置されている。磁石装置29はターゲット21の表面に磁力線を形成するように構成されている。
 基板保持台32はここでは炭化ケイ素(SiC)であり、外周は基板31の外周よりも大きく形成され、表面はターゲット21の表面と対面するように向けられている。基板保持台32の表面の中央部は基板31を静電吸着して保持できるように構成されている。
 基板保持台32の表面の中央部に基板31を静電吸着させると、基板31の裏面は基板保持台32の表面の中央部に密着され、基板31は基板保持台32と熱的に接続されるようになっている。
 第一の防着板34は、石英、アルミナ等のセラミックスであり、内周が基板31の外周よりも大きい環状にされ、基板保持台32の表面の中央部の外側である外縁部を覆うように配置されている。そのため、ターゲット21から放出された粒子は基板保持台32の表面の外縁部に付着しないようになっている。
 第一の防着板34の裏面は基板保持台32の表面の外縁部に密着され、第一の防着板34は基板保持台32と熱的に接続されている。
 基板保持台32の表面の中央部に基板31を載置させると、第一の防着板34は基板31の外周より外側を取り囲むようになっている。
 第二の防着板35は、石英、アルミナ等のセラミックスであり、内周がターゲット21の外周や基板31の外周よりも大きい筒状にされている。第二の防着板35は、基板保持台32とカソード電極21との間に配置され、基板31とターゲット21との間の空間の側方を取り囲むようになっている。そのため、ターゲット21から放出された粒子は真空槽11の壁面に付着しないようにされている。
 基板加熱部18は、発熱部材33と加熱用電源17とを有している。
 発熱部材33はここではSiCであり、基板保持台32の基板31とは反対側に配置され、加熱用電源17は発熱部材33に電気的に接続されている。加熱用電源17から発熱部材33に直流電流が流されると、発熱部材33は発熱して、基板保持台32が加熱され、基板保持台32上の基板31と第一の防着板34とが一緒に加熱されるようになっている。
 基板31の裏面は基板保持台32の表面の中央部に密着され、基板31の中央部から外縁部まで均等に伝熱されるようになっている。
 発熱部材33の基板保持台32とは反対側には冷却装置38が配置されている。冷却装置38は内部に温度管理された冷却媒体を循環できるように構成され、発熱部材33が発熱しても真空槽11の壁面が加熱されないようになっている。
 スパッタガス導入部14は真空槽11内に接続され、真空槽11内にスパッタガスを導入できるようにされている。
<誘電体薄膜の成膜方法>
 本発明である誘電体薄膜の成膜方法を説明する。
 成膜すべき基板31には、ここではSi基板の熱酸化膜(SiO2)上に、密着層であるTi薄膜と、下部電極層である貴金属の薄膜とがこの順にあらかじめ積層されたものを使用する。貴金属の薄膜はPt又はIrの薄膜であり、(111)面に優先配向している。
 PZT薄膜の成膜に適した基板31の温度(以下成膜温度と呼ぶ)を試験やシミュレーションにより予め求めておく。
 まず、準備工程として、真空槽11内に真空排気装置15を接続して、真空槽11内を真空排気する。以後、真空排気を継続して真空槽11内の真空雰囲気を維持する。
 ここでは、真空槽11内の真空雰囲気を維持しながら、成膜すべき基板31とは異なるダミー基板を真空槽11内に搬入して、基板保持台32の表面の中央部に載置し、ターゲット21のスパッタを行って、第一の防着板34の表面に、あらかじめPZTの薄膜を付着させる。次いで、真空槽11内の真空雰囲気を維持しながらダミー基板を真空槽11の外側に搬出する。
 本発明は、化学構造中に鉛(Pb)と酸素(O)とを含有する金属化合物(以下、放出源と呼ぶ)を第一の防着板34の表面に付着できるならば、真空槽11内でダミー基板を使ってスパッタを行う方法に限定されず、別の成膜装置であらかじめPZTやPbO等の化学構造中にPbとOとを含有する金属化合物を付着させた第一の防着板34を真空槽11内に搬入して使用してもよい。
 真空槽11内の真空雰囲気を維持しながら、真空槽11内に成膜すべき基板31を搬入し、基板31表面の貴金属の薄膜がターゲット21の表面と対面する向きで、基板保持台32の表面の中央部に基板31を保持させる。
 冷却装置38に温度管理された冷却媒体を循環させておく。
 図2は以下のシード層形成工程と成膜工程での発熱部材33の温度変化を示している。
 シード層形成工程として、スパッタガス導入部14から真空槽11内にPbOとは反応しない不活性ガスを導入する。ここでは不活性ガスにスパッタガスであるArガスを用いる。以後、不活性ガスの導入を継続する。
 真空槽11内で化学構造中にPbとOとを含有する放出源を加熱して、放出源からPbOのガスを放出させる。
 ここでは、加熱用電源17から発熱部材33に直流電流を流して、発熱部材33を加熱し、第一の防着板34に付着したPZTの薄膜を、予め求めた成膜温度よりも高温にする。第一の防着板34に付着したPZTの薄膜からPbOのガスが放出される。
 第一の防着板34に付着したPZTの薄膜を、予め求めた成膜温度よりも50℃以上高温にするのが好ましい。なぜなら、PbOのガスがより多く放出されるからである。ここでは発熱部材33を785℃に昇温させ、その温度を保持させる。
 基板31表面の貴金属の薄膜上に付着し、基板31表面の貴金属の薄膜上にPbOのシード層が形成される。
 発熱部材33を冷却し、基板31を成膜温度にする。ここでは発熱部材33を640℃に冷却し、その温度を保持させる。
 次いで、成膜工程として、基板31を成膜温度に保持しながら、スパッタガス導入部14から真空槽11内にスパッタガスであるArガスを導入させ、電源13からカソード電極22に交流電圧を印加させると、導入されたスパッタガスが電離され、プラズマ化する。プラズマ中のイオンは磁石装置29が形成する磁力線に捕捉されてターゲット21の表面に入射し、ターゲット21からPZTの粒子を弾き飛ばす。
 ターゲット21から放出されたPZTの粒子の一部は基板31の表面に入射する。基板31表面の貴金属の薄膜上にはPbOのシード層が予め形成されているため、シード層からPbとOとが供給されてPZT薄膜にPb欠損は生じず、シード層上に(001)/(100)配向したPZT膜が形成される。
 図3(b)は本発明の成膜方法でPt薄膜上に形成したPZT薄膜の中央部(Center)と、外縁部(Edge)と、中央部と外縁部との間の中間部(Middle)の3箇所のX線回折パターンを示している。
 図3(b)のX線回折パターンから、(100)/(001)方向に優先配向したPZT薄膜が形成されたことが分かる。
 ターゲット21から放出されたPZTの粒子の一部は第一の防着板34の表面に付着し、次回のシード層形成工程におけるPbOのガスの放出源になる。
 基板31上に所定の膜厚のPZT薄膜を成膜した後、電源13からカソード電極22への電圧印加を停止し、スパッタガス導入部14から真空槽11内へのスパッタガスの導入を停止する。
 加熱用電源17から発熱部材33への電流の供給を停止して、発熱部材33を冷却し、基板31を成膜温度よりも低い温度にする。基板31を搬送ロボットで搬送させるためである。ここでは発熱部材33を400℃に降温させ、その温度を保持させる。
 真空槽11内の真空雰囲気を維持しながら成膜済みの基板31を真空槽11の外側に搬出し、次いで別の未成膜の基板31を真空槽11内に搬入し、上述のシード層形成工程と成膜工程とを繰り返す。
 本発明のシード層形成工程では、真空槽11内で化学構造中にPbとOとを含有する放出源を加熱して、放出源からPbOのガスを放出させることができるならば、第一の防着板34に付着したPZTの薄膜を加熱する方法に限定されず、第二の防着板35の外周側面に発熱部材を配置して、第二の防着板35の内周側面に付着したPZTの薄膜を加熱し、PbOのガスを放出させてもよい。この場合には、放出されたPbOのガスは不活性ガスと衝突しなくても、基板31表面に入射するので、不活性ガスの導入を省略できる。
 真空槽11内に第一の防着板34とは別にるつぼ(不図示)を配置し、るつぼ内にPZTやPbO等の放出源を入れておき、るつぼ内の放出源を加熱してPbOのガスを放出させてもよい。るつぼの開口を、放出されたPbOのガスが基板31表面に入射するような向きに向けておけば、不活性ガスの導入を省略できる。
 本発明のシード層形成工程では、基板31の表面にPbOのガスを付着させることができるならば、真空槽11内で化学構造中にPbとOとを含有する放出源を加熱して、放出源からPbOのガスを放出させる方法に限定されず、真空槽11の外側に配置され、PbOのガスを放出するPbOガス放出部(不図示)を真空槽11内に接続し、PbOガス放出部から真空槽11内にPbOのガスを導入して、基板31の表面にPbOのガスを付着させる方法も含まれる。
 第一、第二の防着板34、35を用いる方法のように、加熱される放出源がターゲット21から放出されたPZTの粒子が付着する位置に配置されている場合には、成膜工程中にPZTの粒子が放出源に付着し、すなわち放出源が補充されるので、PbOガス放出部を用いる方法に比べて、成膜材料の使用効率が良く好ましい。
 11……真空槽
 21……ターゲット
 31……基板
 

Claims (6)

  1.  真空排気された真空槽内で基板を加熱しながら、チタン酸ジルコン酸鉛(PZT)のターゲットに電圧を印加してスパッタし、前記基板の表面にPZTの薄膜を成膜する成膜工程を有する誘電体薄膜の成膜方法であって、
     前記成膜工程の前に、前記基板の表面にPbOのガスを付着させてシード層を形成するシード層形成工程を有する誘電体薄膜の成膜方法。
  2.  前記シード層形成工程では、前記真空槽内で化学構造中にPbとOとを含有する放出源を加熱して、前記放出源からPbOのガスを放出させる請求項1記載の誘電体薄膜の成膜方法。
  3.  前記シード層形成工程では、前記放出源からPbOのガスを放出させながら、前記真空槽内にPbOと反応しない不活性ガスを導入する請求項2記載の誘電体薄膜の成膜方法。
  4.  前記シード層形成工程では、前記放出源を前記成膜工程での前記基板の温度よりも高い温度に加熱する請求項3記載の誘電体薄膜の成膜方法。
  5.  前記シード層形成工程では、前記放出源を前記成膜工程での前記基板の温度よりも50℃以上高い温度に加熱する請求項4記載の誘電体薄膜の成膜方法。
  6.  前記基板は表面に(111)面に優先配向したPt又はIrのうちいずれか一方の貴金属の薄膜を有する請求項1乃至請求項5のいずれか1項記載の誘電体薄膜の成膜方法。
PCT/JP2011/072805 2010-10-06 2011-10-03 誘電体薄膜の成膜方法 WO2012046706A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137011322A KR101517707B1 (ko) 2010-10-06 2011-10-03 유전체 박막의 성막 방법
EP11830638.0A EP2626892B1 (en) 2010-10-06 2011-10-03 Method for producing dielectric thin film
CN201180053170.0A CN103189968B (zh) 2010-10-06 2011-10-03 电介质薄膜的成膜方法
JP2012537709A JP5636433B2 (ja) 2010-10-06 2011-10-03 誘電体薄膜の成膜方法
US13/857,421 US9347128B2 (en) 2010-10-06 2013-04-05 Method for forming dielectric thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010227008 2010-10-06
JP2010-227008 2010-10-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/857,421 Continuation US9347128B2 (en) 2010-10-06 2013-04-05 Method for forming dielectric thin film

Publications (1)

Publication Number Publication Date
WO2012046706A1 true WO2012046706A1 (ja) 2012-04-12

Family

ID=45927702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072805 WO2012046706A1 (ja) 2010-10-06 2011-10-03 誘電体薄膜の成膜方法

Country Status (6)

Country Link
US (1) US9347128B2 (ja)
EP (1) EP2626892B1 (ja)
JP (1) JP5636433B2 (ja)
KR (1) KR101517707B1 (ja)
TW (1) TWI545212B (ja)
WO (1) WO2012046706A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058726A (ja) * 2012-09-19 2014-04-03 Ulvac Japan Ltd Pzt膜形成方法、及び、pzt膜形成装置
KR20170021292A (ko) 2014-06-24 2017-02-27 울박, 인크 Pzt 박막적층체 및 pzt 박막적층체의 제조 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121139B2 (en) 2017-11-16 2021-09-14 International Business Machines Corporation Hafnium oxide and zirconium oxide based ferroelectric devices with textured iridium bottom electrodes
KR20220018978A (ko) * 2019-05-15 2022-02-15 어플라이드 머티어리얼스, 인코포레이티드 플라즈마 아크가 감소된 프로세스 챔버

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517147A (ja) * 1991-07-15 1993-01-26 Matsushita Electric Ind Co Ltd 鉛を含む複合酸化物薄膜の製造方法
JPH11284136A (ja) * 1998-03-30 1999-10-15 Hitachi Ltd 強誘電体薄膜およびその製造方法
JP2008112552A (ja) * 2006-10-27 2008-05-15 Samsung Electronics Co Ltd データ保存のための強誘電体薄膜の製造方法及びそれを利用した強誘電体記録媒体の製造方法
JP2008218620A (ja) * 2007-03-02 2008-09-18 Matsushita Electric Ind Co Ltd 圧電体薄膜素子、圧電体薄膜素子の製造方法、インクジェットヘッド、およびインクジェット式記録装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2877618B2 (ja) * 1992-07-06 1999-03-31 シャープ株式会社 強誘電体膜の形成方法
CN1181217C (zh) * 1997-11-21 2004-12-22 三星电子株式会社 使用籽晶层形成pzt薄膜的方法
JP4662112B2 (ja) 2001-09-05 2011-03-30 独立行政法人産業技術総合研究所 強誘電体薄膜及びその製造方法
JP5274753B2 (ja) 2006-06-08 2013-08-28 株式会社アルバック 含Pb結晶薄膜の形成方法
JP4276276B2 (ja) * 2007-09-07 2009-06-10 富士フイルム株式会社 圧電素子の製造方法
JP5280789B2 (ja) 2008-09-30 2013-09-04 富士フイルム株式会社 鉛含有ペロブスカイト型酸化物膜およびその作製方法、鉛含有ペロブスカイト型酸化物膜を用いる圧電素子、ならびにこれを用いる液体吐出装置
US20100206713A1 (en) * 2009-02-19 2010-08-19 Fujifilm Corporation PZT Depositing Using Vapor Deposition
CN103140601B (zh) * 2010-10-06 2015-08-05 株式会社爱发科 电介质成膜装置和电介质成膜方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517147A (ja) * 1991-07-15 1993-01-26 Matsushita Electric Ind Co Ltd 鉛を含む複合酸化物薄膜の製造方法
JPH11284136A (ja) * 1998-03-30 1999-10-15 Hitachi Ltd 強誘電体薄膜およびその製造方法
JP2008112552A (ja) * 2006-10-27 2008-05-15 Samsung Electronics Co Ltd データ保存のための強誘電体薄膜の製造方法及びそれを利用した強誘電体記録媒体の製造方法
JP2008218620A (ja) * 2007-03-02 2008-09-18 Matsushita Electric Ind Co Ltd 圧電体薄膜素子、圧電体薄膜素子の製造方法、インクジェットヘッド、およびインクジェット式記録装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2626892A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058726A (ja) * 2012-09-19 2014-04-03 Ulvac Japan Ltd Pzt膜形成方法、及び、pzt膜形成装置
KR20170021292A (ko) 2014-06-24 2017-02-27 울박, 인크 Pzt 박막적층체 및 pzt 박막적층체의 제조 방법

Also Published As

Publication number Publication date
JPWO2012046706A1 (ja) 2014-02-24
US20130220799A1 (en) 2013-08-29
CN103189968A (zh) 2013-07-03
JP5636433B2 (ja) 2014-12-03
EP2626892B1 (en) 2019-07-31
US9347128B2 (en) 2016-05-24
EP2626892A1 (en) 2013-08-14
EP2626892A4 (en) 2017-01-04
KR20130095288A (ko) 2013-08-27
TWI545212B (zh) 2016-08-11
KR101517707B1 (ko) 2015-05-04
TW201233826A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5747041B2 (ja) 誘電体成膜装置及び誘電体成膜方法
JP5636433B2 (ja) 誘電体薄膜の成膜方法
WO2015137198A1 (ja) 多層膜の製造方法および多層膜
WO2015194452A1 (ja) 多層膜及びその製造方法
CN104241183A (zh) 静电吸盘的制造方法,静电吸盘及等离子体处理装置
JP2003045949A (ja) 静電吸着装置及び真空処理装置
CN104241181A (zh) 静电吸盘的制造方法,静电吸盘及等离子体处理装置
TWI817054B (zh) 壓電膜的物理氣相沉積
JP5764789B2 (ja) プラズマcvd装置及び磁気記録媒体の製造方法
JP6410370B2 (ja) 多層膜並びにその製造方法及びその製造装置
CN103189968B (zh) 电介质薄膜的成膜方法
Ortner et al. Influence of bias voltage on the structure of lead zirconate titanate piezoelectric films prepared by gas flow sputtering
JP5256466B2 (ja) 成膜装置及び酸化物薄膜成膜用基板の製造方法
TW202342789A (zh) 純金屬主體的擴散接合
JP2020004767A (ja) 多層構造体並びにその製造方法及びその製造装置
JP2020152984A (ja) 成膜装置用の部品及びその製造方法
JP2017197812A (ja) スパッタリングターゲット
JP2015098631A (ja) 鉛化合物薄膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012537709

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011830638

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137011322

Country of ref document: KR

Kind code of ref document: A