WO2012045219A1 - 背光模块的发光源散热构造 - Google Patents

背光模块的发光源散热构造 Download PDF

Info

Publication number
WO2012045219A1
WO2012045219A1 PCT/CN2010/079151 CN2010079151W WO2012045219A1 WO 2012045219 A1 WO2012045219 A1 WO 2012045219A1 CN 2010079151 W CN2010079151 W CN 2010079151W WO 2012045219 A1 WO2012045219 A1 WO 2012045219A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat sink
backlight module
carrier
light source
Prior art date
Application number
PCT/CN2010/079151
Other languages
English (en)
French (fr)
Inventor
阙成文
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/000,989 priority Critical patent/US20120250288A1/en
Publication of WO2012045219A1 publication Critical patent/WO2012045219A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means

Definitions

  • the invention relates to a heat dissipation structure of a light source of a backlight module, in particular to a backlight module which uses a heat dissipation seat with a high heat dissipation efficiency to fix the light source structure and effectively heats and dissipates the light emitting diode by means of a heat dissipation seat with high heat dissipation efficiency.
  • Light source heat dissipation structure Light source heat dissipation structure.
  • Liquid crystal display Display LCD
  • LCD Liquid crystal display Display
  • FPD Fluorescence Deformation
  • the liquid crystal material of the liquid crystal display cannot be self-illuminated, and it is necessary to provide a light source externally. Therefore, a backlight module is required in the liquid crystal display to provide a desired light source.
  • the backlight module can be divided into a side-in type backlight module and a direct-lit backlight module. It is known that the backlight module mainly uses a cold cathode fluorescent lamp (CCFL), a hot cathode fluorescent lamp (HCFL) and a semiconductor light emitting component as a light source, and the semiconductor light emitting component mainly uses a light emitting diode (LED) to emit light, which is compared with the cold.
  • CCFL cold cathode fluorescent lamp
  • HCFL hot cathode fluorescent lamp
  • LED light emitting diode
  • Cathode fluorescent tubes are more energy-saving, longer lasting, and more compact, so there is a tendency to gradually replace cold-cathode fluorescent tubes. LEDs will be the main source of backlights for liquid crystal displays in the future.
  • the light-emitting diodes are mostly packaged in the form of chips for use as a light-emitting diode package structure, and then fixed on a long strip of circuit substrate to form a light bar (light) Bar), the back side of the last light bar is then joined to the aluminum heat sink substrate of the backlight module.
  • the heat dissipation structure of the above-mentioned light-emitting diode has a disadvantage in that the temperature of the light-emitting diode chip in the light-emitting diode package structure is extremely high, but the light-emitting diode package structure can only transfer thermal energy to the aluminum heat-dissipating substrate through the circuit substrate.
  • the thermal resistance of the PCB material of the printed circuit board itself is high, the aluminum heat dissipation substrate of the backlight module cannot take away the heat energy generated by the LED package structure in time, which not only causes the temperature in the vicinity of the LED package structure to rise significantly, resulting in a liquid crystal display.
  • the display blocks are uneven in temperature and appear reddish, which will affect the imaging quality of the liquid crystal display.
  • FIG. 1A shows a schematic diagram of a heat dissipation structure of a light source of a conventional side-lit backlight module.
  • the light source heat dissipation structure 10 of the existing edge-lit backlight module mainly includes at least one light source.
  • the structure 11, a heat sink 12 and a carrier plate 13 are formed.
  • FIG. 1B is a cross-sectional view of the light source cooling structure of the conventional side-entry backlight module taken along line A-A of FIG. 1A.
  • the at least one light source structure 11 has at least one light emitting diode 111 and at least one lead 112.
  • the at least one light emitting diode 111 is disposed on a first surface 131 of the carrier 13 and the at least one light emitting diode
  • the at least one pin 112 of the driving plate 13 is electrically connected to a circuit (not shown) on a first surface 131 of the carrier 13 , and a second surface 132 of the carrier 13 and the heat sink A bonding surface 121 of the 12 is attached so that the at least one light source structure 11 is dissipated through the heat sink 12 through the carrier 13 .
  • the heat transfer coefficient of the carrier 13 in the light source heat dissipation structure of the conventional side-entry backlight module is small, and the heat energy generated by the at least one light source structure 11 cannot be effectively conducted to the heat sink 12 .
  • the light-emitting diode itself is also very susceptible to its luminous efficiency and working stability due to the temperature rise of the working process. In severe cases, it may also be degraded due to long-term high temperature.
  • the circuit board of the light bar and the aluminum heat sink substrate are not Direct thermal contact, or an insulating adhesive between the two or the surface between the two is not closely attached, so it will affect the heat dissipation efficiency to some extent, and will increase the thickness of the overall structure without Conducive to thin design trends.
  • the adhesive may deteriorate and lose its viscosity, causing the light strip to be detached from the aluminum heat sink substrate. If the thermal energy of the light emitting diode package structure cannot be taken away by the aluminum heat sink substrate in real time, the light emitting diode package Construction will have the potential risk of overheating and burning.
  • An object of the present invention is to provide a heat dissipation structure for a light source of a backlight module, that is, to provide a light source heat dissipation structure for the light emitting diode of the backlight module to solve the heat dissipation problem existing in the prior art.
  • the present invention provides a light source heat dissipation structure of a backlight module, comprising at least one light source structure, a heat sink and a carrier, wherein the heat sink directly carries and thermally contacts the light source structure, thereby facilitating the
  • the light source structure directly conducts heat conduction and heat dissipation directly by the good heat conduction and heat dissipation characteristics of the heat sink, thereby further improving the heat dissipation efficiency and the service life of the light source structure.
  • the present invention provides a light source heat dissipation structure of a backlight module, wherein the light source structure, the heat sink and the carrier are sequentially coupled to each other, so that the carrier is not directly affected by the heat generated by the light source structure,
  • the service life of the carrier can be relatively increased.
  • the invention provides a light source heat dissipation structure of a backlight module, wherein the light source structure, the heat sink and the carrier are combined with each other in sequence, and the fixings filled in the heat sink and the through hole of the carrier are not only
  • the fixing member can also firmly bond the heat sink to the carrier, so that there is no need between the heat sink and the carrier.
  • the use of thermal adhesives also helps to reduce production costs and overall thickness to achieve the goal of thinner and lighter products.
  • the present invention provides a light source heat dissipation structure of a backlight module, wherein the light source heat dissipation structure of the backlight module includes: at least one light source structure each having at least one lead; and a heat sink having a bearing surface, a bonding surface and at least one first penetration hole; and a carrier plate having a first surface and at least one second penetration hole, the first surface being attached to the heat sink
  • the at least one light source is disposed on the bearing surface of the heat sink, and the at least one pin passes through the at least one first through hole of the heat sink and
  • the at least one second penetration hole of the carrier board is electrically connected to the carrier board.
  • the at least one illumination source structure each has at least one light emitting diode.
  • the present invention provides a light source heat dissipation structure of another backlight module
  • the light source heat dissipation structure of the backlight module includes: at least one light source structure, each having at least one light emitting diode and at least one pin; Having a bearing surface, a bonding surface and at least one first penetration hole, the at least one first penetration hole penetrating the bearing surface and the bonding surface; and a carrier plate having a first surface, a second surface and at least one second penetration hole, the at least one second penetration hole penetrating the first surface and the second surface, and the first surface is attached to the heat dissipation seat
  • the at least one light emitting diode of the at least one light source is disposed on the bearing surface of the heat sink, and the at least one pin passes through the at least one of the heat sink
  • the first through hole and the at least one second penetration hole of the carrier are electrically connected to the carrier.
  • the light source heat dissipation structure is a one-side light-emitting diode light strip or a direct-on light-emitting diode light strip.
  • the at least one first through hole of the heat sink and the at least one second through hole of the carrier are further filled with a fixing to make the at least A pin is fixed in the at least one first through hole and the at least one second through hole, and the heat sink is coupled to the carrier.
  • the anchor is an insulating colloid or other insulating material to electrically isolate the at least one pin from the heat sink.
  • the carrier is a printed circuit board.
  • the heat sink is a metal heat sink substrate or an alloy heat sink substrate.
  • the illuminating source heat dissipating structure of the backlight module of the present invention is configured to directly carry and thermally contact the illuminating source structure by using the heat dissipating socket with better heat dissipating efficiency, which can reduce the assembly cost and overall thickness of the backlight module, and
  • the light source structure directly supports heat conduction and heat dissipation directly by the good heat conduction and heat dissipation characteristics of the heat sink, thereby relatively improving the heat dissipation efficiency and the service life of the light source structure.
  • FIG. 1A is a schematic view showing a heat dissipation structure of a light source of a conventional side-entry backlight module.
  • FIG. 1B is a cross-sectional view of the light source cooling structure of the conventional side-entry backlight module taken along line A-A of FIG. 1A.
  • FIG. 2A is a schematic view showing a heat dissipation structure of a light source of a side-entry backlight module according to a first embodiment of the present invention.
  • FIG. 2B is a cross-sectional view of the light source heat dissipation structure of the side-entry backlight module of the first embodiment of the present invention taken along line B-B of FIG. 2A.
  • FIG. 3 is a schematic view showing a heat dissipation structure of a light source of a direct type backlight module according to a second embodiment of the present invention.
  • FIG. 2A and FIG. 2B a schematic diagram of a light source heat dissipation structure 20 of a side-entry backlight module according to a first embodiment of the present invention is disclosed, wherein the illumination source heat dissipation structure 20 of the first embodiment of the present invention is mainly applied.
  • the light source heat dissipation structure 20 mainly includes a light source structure 21, a heat sink 22, a carrier 23 and at least one fixture 24. The above components will be described in detail below.
  • FIG. 2B is a cross-sectional view of the light source heat dissipation structure of the side-entry backlight module according to the first embodiment of the present invention taken along line B-B of FIG. 2A.
  • the illuminating source heat dissipating structure 20 of the first embodiment of the present invention is a side-entry LED strip, so that the illuminating source heat dissipating structure 20 can be assembled on at least one side of the optical film of the backlight module to provide side entry. Backlight.
  • the at least one light source structure 21 has at least one light emitting diode 211 and at least one pin 212, and the light emitting diode 211 is a complete light emitting diode package, which is itself included from top to bottom. a package body, at least one LED chip, and a lead frame or a circuit substrate. The bottom surface of the lead frame or the circuit substrate is exposed, and the at least one pin 212 is disposed. The at least one pin 212 is used for introducing an external power source.
  • the light emitting diode 211 is capable of generating a specific light.
  • the heat sink 22 of the first embodiment of the present invention has a bearing surface 221 , a bonding surface 222 and at least one first through hole 223 .
  • the at least one first through hole 223 extends through the The bearing surface 221 and the bonding surface 222 , and the light source structure 21 is fixed to the heat sink 22 .
  • the heat sink 22 is made of a good heat conductive material with better heat dissipation efficiency, such as various metals or alloys, in particular, a metal heat sink substrate or an alloy heat sink substrate made of aluminum, aluminum alloy or aluminum material.
  • the contact portion of the at least one light emitting diode 111 and the carrying surface 121 of the heat sink 12 may be coated with an appropriate amount of thermal conductive adhesive (not shown), such that the at least one light emitting diode 111 and the There is better heat conduction and heat dissipation efficiency between the heat sinks 12.
  • the carrier 23 of the first embodiment of the present invention has a first surface 231 , a second surface 232 , and at least one second through hole 233 .
  • the at least one second through hole 233 extend through the first surface 231 of the carrier 23 and the bonding surface 222 of the heat sink 22, the heat sink 22
  • the at least one first penetration hole 223 and the at least one second penetration hole 233 of the carrier 23 are correspondingly overlapped.
  • the at least one LED 211 is further combined with the at least one pin 212, and the at least one LED 211 is correspondingly disposed on the bearing surface 221 of the heat sink 22, respectively.
  • the carrier 23 may be a printed circuit board (PCB), but is not limited thereto. For example, it may be selected from an anodized aluminum substrate or other substrate capable of providing a surface circuit pattern.
  • PCB printed circuit board
  • the at least one first through hole 223 of the heat sink 22 and the at least one second through hole 233 of the carrier 23 are further filled with the fixing material. 24, wherein the at least one pin 212 of the at least one LED 211 is stably fixed in the at least one first through hole 223 and the at least one second through hole 233, and the The at least one pin 212 of the at least one LED 211 is electrically isolated from the heat sink 22, wherein the fixture 24 is preferably an insulating colloid or other insulating material.
  • the fixing member 24 can also be used to firmly bond the heat sink 22 to the carrier 23, and the thermal pad 22 and the carrier 23 do not need to use thermal adhesive, so it helps to reduce The production cost and overall thickness of the light source heat dissipation structure 20 are to achieve the goal of lightening and thinning the product.
  • FIG. 3 it is a schematic diagram of a light source heat dissipation structure 30 of a direct type backlight module according to a second embodiment of the present invention.
  • the second embodiment of the present invention is similar to the light source heat dissipation structure 20 of the first embodiment of the present invention, and generally uses the same component name and figure number.
  • the light source heat dissipation structure 30 includes at least one light source structure 21, a common heat sink 22, a plurality of separately disposed carrier plates 23, and at least one fixture 24 (refer to FIG. 2B).
  • the difference between the second embodiment is that the illumination source heat dissipation structure 30 of the backlight module of the second embodiment is a direct-type LED light strip, which includes a relatively large number of illumination source configurations 21, thus The light source heat dissipation structure 30 can be assembled directly under the optical film of a backlight module to provide a direct type backlight.
  • the heat sink 22 is substantially a back plate structure of a metal material.
  • the above features of the first and second embodiments of the present invention are advantageous in that the light source structure 21, the heat sink 22 and the carrier 23 are sequentially coupled to each other, wherein the heat sink 22
  • the light source structure 21 is directly and thermally contacted, so that the light source structure 21 directly conducts heat conduction and heat dissipation directly by the good heat conduction and heat dissipation characteristics of the heat sink 22, and can relatively enhance the light source structure. 21 heat dissipation efficiency and service life.
  • the carrier 23 is also not directly affected by the thermal energy generated by the illumination source structure 21, so that the service life of the carrier 23 can be relatively increased.
  • the fixings 24 filled in the first and second penetration holes 223 and 233 of the heat sink 22 and the carrier 23 are electrically connected to the pins 212 and the heat sink 22 of the light source structure 21 .
  • the fixing member 24 can also firmly bond the heat sink 22 to the carrier 23, so that no heat conductive glue is needed between the heat sink 22 and the carrier 23, thereby helping to reduce the The production cost and overall thickness of the light source heat dissipation structures 20 and 30 are described to achieve the goal of lightening and thinning the product.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Liquid Crystal (AREA)

Description

背光模块的发光源散热构造 技术领域
本发明是有关于一种背光模块的发光源散热构造,特别是有关于一种利用高散热效率的散热座固定发光源构造并借助高散热效率的散热座使发光二极管有效导热及散热的背光模块的发光源散热构造。
背景技术
液晶显示器(liquid crystal display,LCD)是利用液晶材料的特性来显示图像的一种平板显示装置(flat panel display,FPD),其相较于其他显示装置而言更具轻薄、低驱动电压及低功耗等优点,已经成为整个消费市场上的主流产品。然而,液晶显示器的液晶材料无法自主发光,必需借助外在提供光源,因此液晶显示器中需设有背光模块以提供所需的光源。
一般而言,背光模块可分为侧入式背光模块和直下式背光模块两种形式。已知背光模块主要是以冷阴极荧光灯管(CCFL)、热阴极荧光灯管(HCFL)及半导体发光组件作为光源,而半导体发光组件主要又是利用发光二极管(LED)进行发光,其相较于冷阴极荧光灯管更为省电节能、使用寿命更长,且体积更为轻薄,因而有逐渐取代冷阴极荧光灯管的趋势,发光二极管将是液晶显示器的背光模块未来的主要光源。
现今,发光二极管多以芯片的形式进行半导体封装,以作为发光二极管封装构造,接着固定在一长条状的电路基板上以构成一灯条(light bar),最后灯条的背面再与背光模块的铝材散热基板接合。然而,上述发光二极管的散热构造的缺点在于:发光二极管封装构造中的发光二极管芯片工作过程中的温度极高,然而发光二极管封装构造却仅能间接通过电路基板将热能传递至铝材散热基板。由于印刷电路板的PCB材料本身热阻高,背光模块的铝材散热基板无法及时将发光二极管封装构造产生的热能带走,则不但会导致发光二极管封装构造附近的温度明显升高,造成液晶显示器各显示区块温度不均而出现泛红现象,因此将会影响液晶显示器的成像质量。
举例来说,请参照图1A所示,其显示现有的侧入式背光模块的发光源散热构造的示意图,其中现有的侧入式背光模块的发光源散热构造10主要包含至少一发光源构造11、一散热座12及一载板13。
请一并参照图1B,图1B是现有的侧入式背光模块的发光源散热构造沿图1A的A-A线所作的剖视图。所述至少一发光源构造11各具有至少一发光二极管111及至少一引脚112,所述至少一发光二极管111设置于所述载板13的一第一表面131,且所述至少一发光二极管111的所述至少一引脚112与所述载板13的一第一表面131上的电路(图未示)电性连结,而所述载板13的一第二表面132与所述散热座12的一贴合面121贴合,以使所述至少一发光源构造11通过所述载板13借助所述散热座12散热。现有的侧入式背光模块的发光源散热构造中的所述载板13的导热系数较小,不能有效地将所述至少一发光源构造11产生的热能传导至所述散热座12。
再者,发光二极管本身也极易因为工作过程的温升而影响其发光效率及工作稳定度,严重时也可能因长期处于高温的状态而降低其使用寿命。另外,若发光二极管封装构造仅是简单利用黏着剂黏固在铝材散热基板上或仅是利用螺丝锁付在铝材散热基板上,则由于灯条的电路基板与铝材散热基板之间并非直接热性接触,或两者之间存在了绝缘的黏着剂或两者之间的表面并未紧密贴接,因此将会在某程度上影响其散热效率,也会增加整体构造的厚度而不利于轻薄化的设计趋势。此外,长期处于高温的状态下,黏着剂也可能变质劣化而失去黏性,造成灯条脱离铝材散热基板,若发光二极管封装构造的热能无法被铝材散热基板实时带走,则发光二极管封装构造将存在过热烧毁的潜在风险。
技术问题
本发明的目的是提供一种背光模块的发光源散热构造,即对背光模块的发光二极管提供一种发光源散热构造,以解决现有技术所存在的散热问题。
技术解决方案
本发明提供一种背光模块的发光源散热构造,包含至少一发光源构造、一散热座及一载板,其中所述散热座直接承载及热性接触所述发光源构造,故有利于所述发光源构造直接借助所述散热座的良好导热及散热特性直接进行导热及散热,进而能相对提升所述发光源构造的散热效率及使用寿命。
本发明提供一种背光模块的发光源散热构造,其中所述发光源构造、散热座及载板依序相互结合,因此所述载板不会直接受到所述发光源构造产生的热能影响,故可相对提升所述载板的使用寿命。
本发明提供一种背光模块的发光源散热构造,其中所述发光源构造、散热座及载板依序相互结合,且填充在所述散热座及载板的穿透孔内的固着物除了使所述发光源构造的引脚与所述散热座电性隔绝之外,所述固着物也可使所述散热座稳固结合于所述载板,因而所述散热座与载板之间不需使用导热胶,故亦有助于降低生产成本及整体的厚度,以达到产品轻薄化的目标。
为达成本发明的前述目的,本发明提供一种背光模块的发光源散热构造,所述背光模块的发光源散热构造包含:至少一发光源构造,各具有至少一引脚;一散热座,具有一承载面、一贴合面及至少一第一穿透孔;及一载板,具有一第一表面及至少一第二穿透孔,所述第一表面贴合于所述散热座的所述贴合面;其中所述至少一发光源构造设置于所述散热座的所述承载面上,且所述至少一引脚穿过所述散热座的所述至少一第一穿透孔及所述载板的所述至少一第二穿透孔,并电性连接于所述载板。
在本发明的一实施例中,所述至少一发光源构造各具有至少一发光二极管。
再者,本发明提供另一种背光模块的发光源散热构造,所述背光模块的发光源散热构造包含:至少一发光源构造,各具有至少一发光二极管及至少一引脚;一散热座,具有一承载面、一贴合面及至少一第一穿透孔,所述至少一第一穿透孔贯穿所述承载面与所述贴合面;及一载板,具有一第一表面、一第二表面及至少一第二穿透孔,所述至少一第二穿透孔贯穿所述第一表面与所述第二表面,且所述第一表面贴合于所述散热座的所述贴合面;所述至少一发光源构造的所述至少一发光二极管设置于所述散热座的所述承载面上,且所述至少一引脚穿过所述散热座的所述至少一第一穿透孔及所述载板的所述至少一第二穿透孔并电性连接于所述载板。
在本发明的一实施例中,所述发光源散热构造是一侧入式发光二极管灯条或一直下式发光二极管灯条。
在本发明的一实施例中,所述散热座的所述至少一第一穿透孔及所述载板的所述至少一第二穿透孔内另填充一固着物,以使所述至少一引脚固着于所述至少一第一穿透孔及所述至少一第二穿透孔内,并使所述散热座结合于所述载板。
在本发明的一实施例中,所述固着物是绝缘胶体或其他绝缘物质,以使所述至少一引脚与所述散热座电性隔绝。
在本发明的一实施例中,所述载板是印刷电路板。
在本发明的一实施例中,所述散热座是金属散热基板或合金散热基板。
有益效果
本发明的背光模块的发光源散热构造是利用散热效率更佳的所述散热座直接承载及热性接触所述发光源构造,不但可简少所述背光模块的组装成本及整体厚度,并有利于所述发光源构造直接借助所述散热座的良好导热及散热特性直接进行导热及散热,进而相对提升所述发光源构造的散热效率及使用寿命。
附图说明
图1A是现有的侧入式背光模块的发光源散热构造的示意图。
图1B是现有的侧入式背光模块的发光源散热构造沿图1A的A-A线所作的剖视图。
图2A是本发明第一实施例的侧入式背光模块的发光源散热构造的示意图。
图2B是本发明第一实施例的侧入式背光模块的发光源散热构造沿图2A的B-B线所作的剖视图。
图3是本发明第二实施例的直下式背光模块的发光源散热构造的示意图。
本发明的最佳实施方式
为让本发明上述目的、特征及优点更明显易懂,下文特举本发明较佳实施例,并配合附图,作详细说明如下。再者,本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请一并参照图2A与图2B所示,其揭示本发明第一实施例的侧入式背光模块的发光源散热构造20的示意图,其中本发明第一实施例的发光源散热构造20主要应用在液晶显示器(LCD)领域。所述发光源散热构造20主要包含一发光源构造21、一散热座22、一载板23及至少一固着物24,本发明将于下文详细说明上述各组件。
请参照图2B所示,图2B是本发明第一实施例的侧入式背光模块的发光源散热构造沿图2A的B-B线所作的剖视图。本发明第一实施例的发光源散热构造20是一侧入式发光二极管灯条,因此所述发光源散热构造20可以组装在一背光模块的光学膜片的至少一侧边,以提供侧入式背光源。再者,所述至少一发光源构造21各具有至少一发光二极管211及至少一引脚212,所述发光二极管211是指包含一完整的发光二极管封装体,其本身由上而下依序包含一封装胶体、至少一发光二极管芯片及一导线架或电路基板,该导线架或电路基板的底面裸露,并设有所述至少一引脚212,所述至少一引脚212用以导入外部电源,使所述发光二极管211能产生特定光线。
请再参图2B,本发明第一实施例的散热座22具有一承载面221、一贴合面222及至少一第一穿透孔223,所述至少一第一穿透孔223贯穿所述承载面221与所述贴合面222,且所述发光源构造21是固接于所述散热座22上。所述散热座22是由散热效率更佳的良好导热性材料所制成,例如各种金属或合金,特别是利用铝、铝合金或含有铝材料所制成的金属散热基板或合金散热基板,以利于所述至少一发光二极管211或所述载板23借助所述散热座22的良好导热及散热特性进行导热及散热。必要时,所述至少一发光二极管111与所述散热座12的所述承载面121的接触部分更可涂上适量的导热胶(未绘示),使所述至少一发光二极管111与所述散热座12之间有更佳的导热及散热效率。
请再参照图2B所示,本发明第一实施例的载板23具有一第一表面231、一第二表面232及至少一第二穿透孔233,所述至少一第二穿透孔233贯穿所述第一表面231与所述第二表面232,且所述载板23的所述第一表面231与所述散热座22的所述贴合面222贴合,所述散热座22的所述至少一第一穿透孔223与所述载板23的所述至少一第二穿透孔233是对应的重迭设置。再者,所述至少一发光二极管211又各结合所述至少一引脚212,且所述至少一发光二极管211分别对应的设置于所述散热座22的所述承载面221上的所述至少一第一穿透孔223上,使所述至少一引脚212能顺利穿过所述散热座22的所述至少一第一穿透孔223及所述载板23的所述至少一第二穿透孔233,且所述至少一引脚212由所述载板23的所述第二表面232伸出,使所述至少一引脚212电性连接于所述载板23。所述载板23可以是印刷电路板(PCB),但并不限于此,例如其也可能选自阳极氧化铝基板或其他能设置表面电路图案的基板。
再者,请参照图2B所示,所述散热座22的所述至少一第一穿透孔223及所述载板23的所述至少一第二穿透孔233内另填充所述固着物24,以使所述至少一发光二极管211的所述至少一引脚212稳定的固着于所述至少一第一穿透孔223及所述至少一第二穿透孔233内,并使所述至少一发光二极管211的所述至少一引脚212与所述散热座22电性隔绝,其中所述固着物24优选是绝缘胶体或其他绝缘物质。再者,所述固着物24也可用以使所述散热座22稳固的结合于所述载板23,而所述散热座22与载板23之间不需使用导热胶,故有助于降低所述发光源散热构造20的生产成本及整体的厚度,以达到产品轻薄化的目标。
请参照图3所示,是本发明第二实施例的直下式背光模块的发光源散热构造30的示意图。本发明第二实施例相似于本发明第一实施例的发光源散热构造20,并大致沿用相同组件名称及图号。在本发明第二实施例中,所述发光源散热构造30包含至少一发光源构造21、一共用的散热座22、数个分开设置的载板23及至少一固着物24(参照图2B),但第二实施例的差异特征在于:所述第二实施例的背光模块的发光源散热构造30是一直下式发光二极管灯条,其包含相对较多数量的发光源构造21,因此所述发光源散热构造30可以组装在一背光模块的光学膜片的正下方,以提供直下式背光源。需要注意,于本发明第二实施例中散热座22实质上是一金属材质的背板结构。
如图2A、2B及3所示,本发明第一、第二实施例上述特征的优点在于:所述发光源构造21、散热座22及载板23依序相互结合,其中所述散热座22直接承载及热性接触所述发光源构造21,故有利于所述发光源构造21直接借助所述散热座22的良好导热及散热特性直接进行导热及散热,进而能相对提升所述发光源构造21的散热效率及使用寿命。再者,所述载板23也不会直接受到所述发光源构造21产生的热能影响,故可相对提升所述载板23的使用寿命。另外,填充在所述散热座22及载板23的第一、第二穿透孔223、233内的固着物24除了使所述发光源构造21的引脚212与所述散热座22电性隔绝之外,所述固着物24也可使所述散热座22稳固结合于所述载板23,因而所述散热座22与载板23之间不需使用导热胶,故有助于降低所述发光源散热构造20、30的生产成本及整体的厚度,以达到产品轻薄化的目标。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反的,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。
本发明的实施方式
工业实用性
序列表自由内容

Claims (10)

  1. 一种背光模块的发光源散热构造,其特征在于:所述背光模块的发光源散热构造包含:
    至少一发光源构造,各具有至少一发光二极管及至少一引脚;
    一散热座,具有一承载面、一贴合面及至少一第一穿透孔,所述至少一第一穿透孔贯穿所述承载面与所述贴合面;及
    一载板,具有一第一表面、一第二表面及至少一第二穿透孔,所述至少一第二穿透孔贯穿所述第一表面与所述第二表面,且所述第一表面贴合于所述散热座的所述贴合面;
    其中所述至少一发光源构造的所述至少一发光二极管设置于所述散热座的所述承载面上,且所述至少一引脚穿过所述散热座的所述至少一第一穿透孔及所述载板的所述至少一第二穿透孔,并电性连接于所述载板。
  2. 如权利要求1所述的背光模块的发光源散热构造,其特征在于:所述散热座的所述至少一第一穿透孔及所述载板的所述至少一第二穿透孔内另填充一固着物,以使所述至少一引脚固着于所述至少一第一穿透孔及所述至少一第二穿透孔内,并与所述散热座电性隔绝,以及使所述散热座结合于所述载板。
  3. 如权利要求1所述的背光模块的发光源散热构造,其特征在于:所述散热座的散热效率优于所述载板的散热效率,所述散热座是金属散热基板或合金散热基板,且所述载板是电路基板。
  4. 一种背光模块的发光源散热构造,其特征在于:所述背光模块的发光源散热构造包含:
    至少一发光源构造,各具有至少一引脚;
    一散热座,具有一承载面、一贴合面及至少一第一穿透孔,所述至少一第一穿透孔贯穿所述承载面与所述贴合面;及
    一载板,具有一第一表面及至少一第二穿透孔,所述至少一第二穿透孔贯穿所述第一表面与所述第二表面,所述第一表面贴合于所述散热座的所述贴合面;
    其中所述至少一发光源构造设置于所述散热座的所述承载面上,且所述至少一发光源构造的所述至少一引脚穿过所述散热座的所述至少一第一穿透孔及所述载板的所述至少一第二穿透孔,并电性连接于所述载板。
  5. 如权利要求4所述的背光模块的发光源散热构造,其特征在于:所述至少一发光源构造各具有至少一发光二极管。
  6. 如权利要求5所述的背光模块的发光源散热构造,其特征在于:所述发光源散热构造是一侧入式发光二极管灯条或一直下式发光二极管灯条。
  7. 如权利要求4所述的背光模块的发光源散热构造,其特征在于:所述散热座的所述至少一第一穿透孔及所述载板的所述至少一第二穿透孔内另填充一固着物,以使所述至少一引脚固着于所述至少一第一穿透孔及所述至少一第二穿透孔内,并使所述散热座结合于所述载板。
  8. 如权利要求7所述的背光模块的发光源散热构造,其特征在于:所述固着物是绝缘胶体,以使所述至少一引脚与所述散热座电性隔绝。
  9. 如权利要求4所述的背光模块的发光源散热构造,其特征在于:所述载板是印刷电路板。
  10. 如权利要求4所述的背光模块的发光源散热构造,其特征在于:所述散热座是金属散热基板或合金散热基板。
PCT/CN2010/079151 2010-10-08 2010-11-26 背光模块的发光源散热构造 WO2012045219A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/000,989 US20120250288A1 (en) 2010-10-08 2010-11-26 Light source heat-dissipation structure of backlight module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105076085A CN101975376B (zh) 2010-10-08 2010-10-08 背光模块的发光源散热构造
CN201010507608.5 2010-10-08

Publications (1)

Publication Number Publication Date
WO2012045219A1 true WO2012045219A1 (zh) 2012-04-12

Family

ID=43575279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079151 WO2012045219A1 (zh) 2010-10-08 2010-11-26 背光模块的发光源散热构造

Country Status (3)

Country Link
US (1) US20120250288A1 (zh)
CN (1) CN101975376B (zh)
WO (1) WO2012045219A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101804892B1 (ko) * 2011-04-14 2017-12-06 엘지디스플레이 주식회사 발광다이오드어셈블리 및 그를 포함한 액정표시장치
US9488772B2 (en) * 2011-07-11 2016-11-08 Seiko Epson Corporation Display device, electronic apparatus and illumination device
CN103712131B (zh) * 2013-12-27 2016-03-30 京东方科技集团股份有限公司 一种背光模组、显示装置
CN111983849A (zh) * 2020-08-10 2020-11-24 深圳市华星光电半导体显示技术有限公司 Led背光模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012788A1 (en) * 2000-08-09 2002-02-14 Relume Corporation Led mounting system
CN1697207A (zh) * 2005-06-07 2005-11-16 友达光电股份有限公司 光源模块
CN201053658Y (zh) * 2007-06-06 2008-04-30 姜建国 Led模组的散热结构
CN101271209A (zh) * 2006-10-27 2008-09-24 三星电子株式会社 背光单元及包括该背光单元的液晶显示装置
KR20100113418A (ko) * 2009-04-13 2010-10-21 주식회사 인성전자 엘이디 조명 및 램프의 효율적 방열을 위한 엘이디 패키지와 그 엘이디 방열 장치 및 이를 이용한 엘이디 소켓

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345308A (en) * 1978-08-25 1982-08-17 General Instrument Corporation Alpha-numeric display array and method of manufacture
US4410927A (en) * 1982-01-21 1983-10-18 Olin Corporation Casing for an electrical component having improved strength and heat transfer characteristics
US4803599A (en) * 1987-11-06 1989-02-07 Wilbrecht Electronics, Inc. Mounting bar structure for electrical signalling and indicating devices
US5785418A (en) * 1996-06-27 1998-07-28 Hochstein; Peter A. Thermally protected LED array
KR100991829B1 (ko) * 2001-12-29 2010-11-04 항조우 후양 신잉 띠앤즈 리미티드 Led 및 led램프
US6966674B2 (en) * 2004-02-17 2005-11-22 Au Optronics Corp. Backlight module and heat dissipation structure thereof
CN2689457Y (zh) * 2004-02-25 2005-03-30 周珑 适用于信号灯的led发光器件
CN2822175Y (zh) * 2005-09-20 2006-10-04 重庆大学 调节植物生长用半导体照射光源装置
JP4864419B2 (ja) * 2005-10-28 2012-02-01 株式会社東芝 プリント回路板および電子機器
KR101171186B1 (ko) * 2005-11-10 2012-08-06 삼성전자주식회사 고휘도 발광 다이오드 및 이를 이용한 액정 표시 장치
WO2007094426A1 (ja) * 2006-02-15 2007-08-23 Dai Nippon Printing Co., Ltd. 面光源装置および光源ユニット
TW200811522A (en) * 2006-08-22 2008-03-01 Chunghwa Picture Tubes Ltd Light-source fixing structure for backlight module
CN200975648Y (zh) * 2006-09-07 2007-11-14 深圳市方大国科光电技术有限公司 大功率led散热结构及应用该结构的大功率led台灯
CN200968506Y (zh) * 2006-11-17 2007-10-31 戴友谊 一体化led灯头
TW200847469A (en) * 2007-05-23 2008-12-01 Tysun Inc Substrates of curved surface for light emitting diodes
CN201059523Y (zh) * 2007-05-23 2008-05-14 新高功能医用电子有限公司 发光二极管灯具上的热源分散散热模组
CN101319773A (zh) * 2007-06-06 2008-12-10 华信精密股份有限公司 发光模块
CN201069134Y (zh) * 2007-06-26 2008-06-04 上海广电光电子有限公司 Led背光模组
TW200905914A (en) * 2007-07-25 2009-02-01 Tera Automation Corp Ltd High-power LED package
JP2009058768A (ja) * 2007-08-31 2009-03-19 Showa Denko Kk 表示装置、発光装置
CN101408302A (zh) * 2007-10-11 2009-04-15 富士迈半导体精密工业(上海)有限公司 具良好散热性能的光源模组
CN201293218Y (zh) * 2008-08-27 2009-08-19 深圳市爱索佳实业有限公司 柔和多发光角度的led日光灯
JP2010176968A (ja) * 2009-01-28 2010-08-12 Sony Corp 発光装置および液晶表示装置
JP2012033855A (ja) * 2010-07-01 2012-02-16 Hitachi Cable Ltd Ledモジュール、ledパッケージ、並びに配線基板およびその製造方法
KR101775671B1 (ko) * 2010-09-29 2017-09-20 삼성디스플레이 주식회사 발광다이오드 패키지를 갖는 백라이트 어셈블리 및 이를 갖는 표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012788A1 (en) * 2000-08-09 2002-02-14 Relume Corporation Led mounting system
CN1697207A (zh) * 2005-06-07 2005-11-16 友达光电股份有限公司 光源模块
CN101271209A (zh) * 2006-10-27 2008-09-24 三星电子株式会社 背光单元及包括该背光单元的液晶显示装置
CN201053658Y (zh) * 2007-06-06 2008-04-30 姜建国 Led模组的散热结构
KR20100113418A (ko) * 2009-04-13 2010-10-21 주식회사 인성전자 엘이디 조명 및 램프의 효율적 방열을 위한 엘이디 패키지와 그 엘이디 방열 장치 및 이를 이용한 엘이디 소켓

Also Published As

Publication number Publication date
US20120250288A1 (en) 2012-10-04
CN101975376A (zh) 2011-02-16
CN101975376B (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
KR101301317B1 (ko) 백라이트 유닛 및 이를 이용한 액정표시장치
US8702262B2 (en) Light source module and display apparatus having the same
TWI333580B (en) Backlight module and liquid crystal display using the same
JP3173051U (ja) 光源装置、バックライトモジュール、液晶ディスプレイ
JP2007311561A (ja) 表示装置、発光装置、および固体発光素子基板
JPWO2008078587A1 (ja) 発光装置、表示装置、および固体発光素子基板
US9004721B2 (en) Light source heat dissipation structure and backlight module
WO2014067173A1 (zh) Led灯条及用该led灯条的背光模组
WO2019071732A1 (zh) 一种灯条、背光模组及液晶显示器
WO2012045219A1 (zh) 背光模块的发光源散热构造
WO2012006834A1 (zh) 背光模块及其发光源封装构造
KR101419227B1 (ko) 백라이트 유닛 및 이를 적용한 액정 표시 장치
JP2009152146A (ja) 面光源装置および表示装置
WO2013078739A1 (zh) 液晶显示装置、背光模块及其散热方法
WO2012058837A1 (zh) 发光源散热构造及背光模块
JP2011146225A (ja) 光源装置およびそれを備えたバックライト装置
KR100993252B1 (ko) 발광 다이오드 모듈
KR101232148B1 (ko) 백라이트 유닛
CN205790041U (zh) Led模组
US8288782B2 (en) Backlight module and light-emitting source package structure thereof
JP2012093490A (ja) 照明装置及びそれを備えた画像表示装置
US20120294040A1 (en) Light-emitting diode heat-dissipation structure and backlight module
CN105652515B (zh) 发光二极管组件及包括其的液晶显示装置
KR101868845B1 (ko) Led 모듈과 이를 포함하는 액정 디스플레이 장치
JP2006039349A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13000989

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858049

Country of ref document: EP

Kind code of ref document: A1