WO2012043839A1 - 絶縁電線 - Google Patents

絶縁電線 Download PDF

Info

Publication number
WO2012043839A1
WO2012043839A1 PCT/JP2011/072683 JP2011072683W WO2012043839A1 WO 2012043839 A1 WO2012043839 A1 WO 2012043839A1 JP 2011072683 W JP2011072683 W JP 2011072683W WO 2012043839 A1 WO2012043839 A1 WO 2012043839A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
dielectric constant
relative dielectric
insulated wire
layer
Prior art date
Application number
PCT/JP2011/072683
Other languages
English (en)
French (fr)
Inventor
真 大矢
武藤 大介
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2012536602A priority Critical patent/JP5877159B2/ja
Priority to EP11829392.7A priority patent/EP2555204B1/en
Priority to CN201180008178.5A priority patent/CN102782773B/zh
Priority to KR1020127020276A priority patent/KR20130024880A/ko
Publication of WO2012043839A1 publication Critical patent/WO2012043839A1/ja
Priority to US13/556,902 priority patent/US20120285724A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Definitions

  • the present invention relates to an insulated wire.
  • Inverters are being attached to many electrical devices as efficient variable speed controllers. However, switching is performed at several kHz to several tens of kHz, and a surge voltage is generated for each of those pulses. Such an inverter surge is reflected at an impedance discontinuity in the propagation system, for example, at the start or end of a connected wiring, and as a result, a phenomenon in which a voltage twice as high as the inverter output voltage is applied at the maximum. It is.
  • an output pulse generated by a high-speed switching element such as an IGBT has a high voltage steepness, so that even if the connection cable is short, the surge voltage is high, and furthermore, the voltage attenuation by the connection cable is also small. As a result, the inverter output voltage A voltage nearly twice as large as that of the current is generated.
  • Insulator-related devices such as high-speed switching elements, inverter motors, transformers, and other electrical equipment coils use insulated wires that are mainly enameled wires as magnet wires. Therefore, as described above, in inverter-related equipment, a voltage nearly twice as high as the inverter output voltage is applied, so that it is required for insulated wires to minimize the partial discharge deterioration caused by inverter surge. It is coming. In order to prevent the deterioration of the insulated wire due to such partial discharge, an insulated wire having a high partial discharge voltage has been studied. In order to obtain this insulated wire, a method of increasing the thickness of the insulating layer of the insulated wire or using a resin having a low relative dielectric constant for the insulating layer can be considered.
  • the insulating layer is thickened, the insulated wire becomes thick, resulting in an increase in the size of the electrical equipment.
  • This goes against the recent demand for miniaturization in electrical equipment represented by motors and transformers.
  • the performance of a rotating machine such as a motor is determined by how many wires can be put in the stator slot.
  • the conductor cross-sectional area with respect to the stator slot cross-sectional area is determined.
  • the ratio (space factor) has become very high in recent years. Therefore, increasing the thickness of the insulating layer is not preferable because the space factor decreases.
  • an insulated wire having a low relative dielectric constant of an insulating layer a wire obtained by applying a polyimide resin paint having a fluorine atom or a perfluoroalkyl group at a specific site in a molecule on a conductor has been proposed (for example, , See Patent Document 1).
  • an insulating layer is formed by applying a solvent-containing paint on a conductor a plurality of times and drying it.
  • the polyimide resin described in Patent Document 1 does not have sufficient interlayer adhesion. If the interlayer adhesion of the resin paint formed on the conductor is insufficient, delamination occurs in an extreme case when processing an insulated wire, and it cannot be used.
  • the insulated wire described in Patent Document 3 includes (1) a first insulating layer substantially composed of at least one of polyamide-imide and polyimide, and (2) polyamide imide A having a glass transition temperature of 140 ° C. or higher.
  • a first insulating layer substantially composed of at least one of polyamide-imide and polyimide
  • polyamide imide A having a glass transition temperature of 140 ° C. or higher.
  • the heat resistance evaluated by the heat softening temperature is 400 ° C. or higher.
  • the laminated structure of the first insulating layer and the second insulating layer there is no mention of the relative dielectric constant of each layer, and there is a problem that the dielectric breakdown strength is low.
  • the present invention comprises at least two stacked units formed by laminating a layer having a low relative dielectric constant and a layer having a high relative dielectric constant, thereby including a layer having a high relative dielectric constant.
  • An object of the present invention is to provide an insulated wire having a high dielectric breakdown voltage without increasing the relative dielectric constant as compared with an insulated wire having a single layer obtained by blending a material having a low dielectric constant with a material having a high dielectric constant. .
  • an insulated wire in which an insulating layer having a high relative dielectric constant and an insulating layer having a low relative dielectric constant are repeatedly formed on a conductor has a layer with a high relative dielectric constant.
  • it has a high dielectric breakdown voltage without increasing the relative dielectric constant compared to an insulated wire having a single layer blended with a material with a low relative dielectric constant to a material with a high relative dielectric constant.
  • ⁇ 1> Directly or indirectly on the conductor, in order from the conductor side, the first insulating layer (X1) and the second insulating layer (X2) having a higher relative dielectric constant than the first insulating layer (X1)
  • An insulated wire characterized by having at least two laminated units. ⁇ 2> The first insulating layer of the other laminated unit ( ⁇ (X2)) of the second insulating layer (X2) in one laminated unit is located on the outer layer side of the laminated unit ( ⁇ 1>).
  • the first insulating layer (X1, X1 ′,...) Having a low relative dielectric constant is made of polyetherimide, polyethersulfone, polyphenylene ether, polyphenylsulfone, and polyimide, respectively.
  • the first insulating layer (X1, X1 ′,...) Having a low relative dielectric constant is made of polyetherimide, polyethersulfone, polyphenylene ether, polyphenylsulfone, and polyimide, respectively.
  • the second insulating layer (X2, X2 ′,%) Having a high relative dielectric constant is composed of a resin composition containing polyamideimide, respectively ⁇ 4 > Or ⁇ 5>.
  • the second insulating layer (X2, X2 ′,...) Having a high relative dielectric constant each contains polyamideimide, and further polyetherimide, polyethersulfone, polyphenylene ether, polyphenyl.
  • the “second insulating layer having a higher relative dielectric constant than the first insulating layer” as described above is simply referred to as “second insulating layer having a higher relative dielectric constant” or “
  • the “insulating layer having a high relative dielectric constant” and the “first insulating layer having a relative dielectric constant lower than that of the second insulating layer” in this relationship are simply referred to as “the first insulating layer having a low relative dielectric constant” or Sometimes referred to as an “insulating layer having a low relative dielectric constant”.
  • an insulated wire excellent in partial discharge resistance because it has excellent interlayer adhesion even if an insulating resin coating is laminated, and therefore has high dielectric breakdown resistance and low relative dielectric constant.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of the insulated wire of the present invention.
  • FIG. 2 (a) is a cross-sectional view schematically showing a part of one embodiment of the insulated wire of the present invention, and
  • FIG. 2 (b) shows another embodiment of the insulated wire of the present invention.
  • FIG. 2C is a cross-sectional view schematically showing a part of still another embodiment of the insulated wire of the present invention.
  • the insulated wire of the present invention has a conductor 1 and an insulating layer 2 covering the conductor 1.
  • the insulated wire of the present invention is a laminate in which an insulating layer (X1) and an insulating layer (X2) having a relative dielectric constant higher than that of the insulating layer (X1) are laminated on a conductor directly or indirectly from the conductor side. It has at least two units.
  • FIG. 1 an insulated wire having an insulating layer directly on the conductor is described. However, as described later, an insulating layer is provided via an adhesion layer (not shown in FIG.
  • FIGS. 2A to 2C show a part of the AA ′ partial enlarged view of the insulated wire having the adhesion layer and the top coat as shown in FIG.
  • a stacked unit is formed by stacking an insulating layer (X1) and an insulating layer (X2) having a higher dielectric constant than the insulating layer (X1). Accordingly, as an example having at least two stacked units, for example, as shown in FIG.
  • the insulating layer 22 (X2) having a higher relative dielectric constant than the insulating layer 21 (X1) on the insulating layer 21 (X1). are laminated to form a first laminated unit, and further, on the first laminated unit, an insulating layer 23 (X1 ′) having a low relative dielectric constant and further on the insulating layer 23 (X1 ′) In addition, an insulating layer 24 (X2 ′) having a high relative dielectric constant is stacked to form a second stacked unit.
  • the insulating layer 22 (X2) having a high relative dielectric constant in the first laminated unit and the insulating layer 23 (X1 ′) having a low relative dielectric constant belonging to a second laminated unit different from the first laminated unit. ) Is preferably expressed by the following formula (1).
  • ⁇ (X2)> ⁇ (X1 ′) Formula (1)
  • ⁇ (X2) represents the relative dielectric constant of the insulating layer (X2)
  • ⁇ (X1 ′) represents the relative dielectric constant of the insulating layer (X1 ′).
  • the relationship represented by the formula (1) is not limited to the case where it is satisfied between two adjacent stacked units as exemplified above, and includes the above-described ⁇ 2> item including this aspect. As specified in the above, it may be filled between two specific stacked units that are not necessarily adjacent to each other.
  • the insulated wire of the present invention has at least two or more laminated units in which insulating layers having a low relative dielectric constant and insulating layers having a higher relative dielectric constant than the insulating layers are alternately laminated in order from the conductor side. ing.
  • the conductor 1 is made of, for example, copper, copper alloy, aluminum, aluminum alloy, or a combination thereof.
  • the cross-sectional shape of the conductor 1 is not limited, and a circular shape, a rectangular shape (flat angle), or the like can be applied.
  • the size of the conductor 1 (diameter when the cross-sectional shape is circular, or long side length when the cross-sectional shape is rectangular) can be set as appropriate, but can be 0.05 to 5 mm. More preferably, the size is 0.1 to 4 mm.
  • the thickness of the insulating layer 2 can be set as appropriate, but the total of the insulating layers 21 to 24 can be set to a thickness of 20 to 200 ⁇ m. More preferably, the thickness is 30 to 150 ⁇ m.
  • an insulating layer 21 (X1) and an insulating layer 22 (X2) having a higher dielectric constant than the insulating layer 21 (X1) are formed on a conductor.
  • an insulating layer 23 (X1 ′) having a dielectric constant lower than that of the insulating layer 22 (X2) is formed on the insulating layer 22 (X2), and further, the insulating layer 23 (X1 ′) has the above-described insulating layer 23 (X1 ′).
  • An insulating layer 24 (X2 ′) having a relative dielectric constant higher than that of the insulating layer 23 (X1 ′) is formed.
  • the stacking units can be further stacked to form three or more stacking units.
  • the relative dielectric constant can be measured using a commercially available measuring instrument.
  • the measurement temperature and the measurement frequency can be changed as necessary, but unless otherwise specified in the present specification, the measurement temperature is 25 ° C. and the measurement frequency is 50 Hz.
  • the relative dielectric constant of each insulating layer refers to a value measured by drying a resin composition paint constituting the insulating layer and volatilizing a solvent contained in the paint.
  • the absolute value of the difference in relative dielectric constant between two layers in contact with each other in each insulating layer is preferably 0.2 or more, more preferably 0.3 to 1.8. Further, the difference in relative dielectric constant between two insulating layers in contact with each other in each stacked unit is equal to the inner layer with a low relative dielectric constant of the insulating layer of the outer layer having a high relative dielectric constant (on the side away from the conductor).
  • the difference with respect to the relative dielectric constant of the insulating layer on the side close to the conductor is preferably 0.2 or more, more preferably 0.3 to 1.8. If the difference in relative dielectric constant is too small, an insulated wire having a low relative dielectric constant cannot be obtained. Even if the difference in relative permittivity is too large, the relative permittivity of X2 will increase as a result, and the relative permittivity of the entire film cannot be lowered.
  • the insulating layer of the insulated wire of the present invention can be formed directly or indirectly on the conductor.
  • each of the insulating layers 21 to 24 is formed by coating the resin composition constituting the insulating layer, drying it appropriately, and laminating it. Can do.
  • the insulating layer 21 may be formed directly on the conductor, but the adhesive layer 11 having excellent adhesion to the conductor between the conductor 1 and the insulating layer 21 at the lowermost layer (closest to the conductor). May be formed.
  • the adhesive layer that can be used include polyimide, polyurethane, polyamideimide, polyester, polyesterimide, melamine resin, and epoxy resin.
  • the insulating layer 21 is a layer formed on the adhesion layer without including the adhesion layer.
  • adhesion layer resins include silane alkoxide adhesion improvers (silane coupling agents), titanium alkoxides, titanium acylates, titanium chelates such as titanium chelates, triazine adhesion improvers, and imidazole adhesion improvers. Adhesion improvers such as melamine adhesion improvers and thiol adhesion improvers may be added.
  • each of the insulating layers 21 to 24 a layer having a low relative dielectric constant and a layer having a high relative dielectric constant are stacked, so that a material having a low relative dielectric constant is included in a high ratio even though a layer having a high relative dielectric constant is included.
  • an insulating wire having a high dielectric breakdown voltage can be obtained without increasing the relative dielectric constant.
  • the relative dielectric constant is determined by the volume of each material per volume.
  • the insulated wire of the present invention has a high dielectric breakdown voltage and is excellent in electrical insulation.
  • an insulated wire using a resin having a low relative dielectric constant for example, polyetherimide or polyethersulfone alone, as an insulating layer has a low dielectric constant, but a low dielectric breakdown voltage.
  • the insulated wire of the present invention provides a layer having a high relative dielectric constant by providing a plurality of layers obtained by laminating a layer using a resin having a low relative dielectric constant and a resin having a high relative dielectric constant, for example.
  • high dielectric breakdown without increasing the relative dielectric constant compared to an insulated wire with a single layer made by mixing a material with a low relative dielectric constant with a material with a high relative dielectric constant Can have a voltage.
  • the insulated wire of the present invention preferably has a relative dielectric constant of 3.9 or less, more preferably 3.8 or less.
  • the lower limit value of the relative dielectric constant of the entire film is not particularly limited, but is usually 2.5 or more, preferably 3.0 or more.
  • the entire coating refers to the adhesion layer (primer layer), an insulating layer having a low relative dielectric constant, an insulating layer having a higher relative dielectric constant, and a top coat such as a surface lubricating layer or an abrasion resistant layer. Means the whole.
  • an insulating layer having a low relative dielectric constant and an insulating layer having a higher relative dielectric constant are collectively referred to as an insulating layer 2 or a stacked portion.
  • the relative dielectric constant difference between the layers in contact with each other between the insulating layers is 0.2 or more with respect to the lower layer. If the relative dielectric constant of the entire film is too high, partial discharge occurs even if the dielectric breakdown voltage is high, so that the resin deteriorates and the dielectric strength is not sufficient.
  • the dielectric breakdown voltage of the insulated wire of the present invention is preferably 9.0 kV or more by the twisted pair method described in the examples described later.
  • a conventional one having a relative dielectric constant of 4.0 and a coating layer thickness of about 40 ⁇ m has been used.
  • the thickness of the coating layer that can be reduced within a range in which the partial discharge start voltage is kept at the same level is 5%. is there. That is, the thickness of the coating layer can be reduced by 2.0 ⁇ m. As a result, the size after coil forming can be greatly reduced.
  • An insulated wire having a general polyamideimide coating layer is produced, for example, by superposing polyamideimide having a thickness of 2 ⁇ m.
  • the insulated wire of the present invention has an insulating layer 31 having a lower relative dielectric constant than the insulating layer 24 (X2 ') on the insulating layer 24 (X2') having a higher relative dielectric constant.
  • (Y1 ′) and insulating layers 32 (Y2 ′) having a relative dielectric constant higher than that of the insulating layer 31 (Y1 ′) may be alternately formed.
  • the insulating layer 31 and the insulating layer 32 are the third stack unit.
  • the cause of this is not clear, but dielectric breakdown is said to occur due to the avalanche effect of the electron, and the breakdown voltage per unit thickness improves as the thickness of the insulator, which is an enameled wire film, decreases. It is considered that the effect is sustained by laminating.
  • the number of lamination of the layer having a high relative dielectric constant and the layer having a low relative dielectric constant is preferably 2 to 30 times, and more preferably 2 to 15 times. When the number of times of lamination is too large, a problem that the working efficiency is deteriorated occurs. Further, as shown in FIG.
  • an insulating layer 31 (Y1 ′) having a lower relative dielectric constant than the insulating layer 24 (X2 ′) is formed on the insulating layer 24 (X2 ′) having a higher relative dielectric constant.
  • An insulating layer 32 (Y2 ′) having a higher relative dielectric constant than that of the insulating layer 31 (Y1 ′) is formed.
  • the insulating layer (33, 35, 37) having a lower relative dielectric constant and a relative dielectric constant are also formed. Insulating layers (34, 36, 38) having a high height may be alternately formed. In this case, a total of six lamination units are provided.
  • the insulating layer having a low relative dielectric constant in each of the laminated units such as the insulating layer (X1) and the insulating layer (X1 ′) is polyetherimide, polyethersulfone, polyphenylene ether, polyphenylsulfone. And at least one selected from polyimides.
  • the polyetherimide for example, Ultem (trade name, manufactured by GE Plastics) or the like can be used.
  • polyethersulfone examples include Sumika Excel PES (trade name, manufactured by Sumitomo Chemical Co., Ltd.), PES (trade name, manufactured by Mitsui Chemicals), Ultra Zone E (trade name, manufactured by BASF Japan), and Radel A (manufactured by Solvay Advanced Polymers).
  • Product name can be used.
  • polyphenylene ether for example, Zylon (trade name, manufactured by Asahi Kasei Chemicals), Iupiace (trade name, manufactured by Mitsubishi Engineering Plastics), and the like can be used.
  • polyphenylsulfone for example, Radel R (trade name, manufactured by Solvay Advanced Polymer) or the like can be used.
  • polyimide for example, U-varnish (trade name, manufactured by Ube Industries), HCI series (trade name, manufactured by Hitachi Chemical Co., Ltd.), Uimide (trade name, manufactured by Unitika), Aurum (trade name, manufactured by Mitsui Chemicals, Inc.) are used. can do.
  • the relative permittivity of these resins is polyetherimide (relative permittivity 3.2 to 3.4), polyethersulfone (relative permittivity 3.5), polyphenylene ether (relative permittivity 2.7), polyphenyl It is sulfone (relative dielectric constant 3.4) polyimide (relative dielectric constant 3.5) and has a low relative dielectric constant.
  • the insulating layer having a low dielectric constant in each laminated unit such as the insulating layer (X1) and the insulating layer (X1 ′) was selected from polyetherimide, polyethersulfone, polyphenylene ether, polyphenylsulfone, and polyimide.
  • the dielectric constant can be lowered by using at least one kind and further foaming.
  • the insulating layer which has a high dielectric constant in each laminated unit such as the said insulating layer (X2) and insulating layer (X2 ')
  • contains a polyamideimide when these insulating layers contain polyamideimide, an insulated wire having heat resistance and workability can be obtained.
  • the insulating layer having a high relative dielectric constant in each of the laminated units such as the insulating layer (X2) and the insulating layer (X2 ′) contains polyamideimide, and is further polyetherimide.
  • the resin composition containing at least 1 sort (s) chosen from polyethersulfone, polyphenylene ether, polyphenylsulfone, and a polyimide.
  • s polyethersulfone
  • polyphenylene ether polyphenylsulfone
  • polyimide a polyimide
  • the polyamideimide is preferably 20 to 100% by mass, and more preferably 60 to 90% by mass.
  • polyamideimides include Viromax (trade name, manufactured by Toyobo), Torlon (trade name, manufactured by Solvay Advanced Polymers), HI-400, HI-405, and HI-406 series (trade names, manufactured by Hitachi Chemical Co., Ltd.). Can be used.
  • Viromax trade name, manufactured by Toyobo
  • Torlon trade name, manufactured by Solvay Advanced Polymers
  • HI-400 HI-400
  • HI-405 HI-406 series
  • the polyetherimide for example, Ultem (trade name, manufactured by GE Plastics) or the like can be used.
  • polyethersulfone examples include Sumika Excel PES (trade name, manufactured by Sumitomo Chemical Co., Ltd.), PES (trade name, manufactured by Mitsui Chemicals), Ultra Zone E (trade name, manufactured by BASF Japan), Veradel (product manufactured by Solvay Advanced Polymers, Inc.) Name) etc.
  • polyphenylene ether for example, Zylon (trade name, manufactured by Asahi Kasei Chemicals), Iupiace (trade name, manufactured by Mitsubishi Engineering Plastics), and the like can be used.
  • polyphenylsulfone for example, Radel R (trade name, manufactured by Solvay Advanced Polymer) or the like can be used.
  • polyimide for example, U-varnish (trade name, manufactured by Ube Industries), HCI series (trade name, manufactured by Hitachi Chemical Co., Ltd.), Uimide (trade name, manufactured by Unitika), Aurum (trade name, manufactured by Mitsui Chemicals, Inc.) are used. can do.
  • amorphous resins such as polyetherimide and polyethersulfone have poor chemical resistance, and after forming an insulated wire into a coil shape, cracks occur in the insulation film when the coil is impregnated with varnish.
  • the crack is considered to be a phenomenon in which the chemical penetrates into the resin in which residual stress exists and the polymer chain easily moves, resulting in local stress relaxation and cracking in the coating.
  • an insulated wire is wound to form a coil and immersed in an impregnated varnish such as an epoxy resin, and then the impregnated varnish is cured, cracks are likely to occur due to the penetration of the impregnated varnish.
  • Solvent resistance can be improved by being comprised with the resin composition containing at least 1 sort (s) chosen from imide, polyethersulfone, polyphenylene ether, polyphenylsulfone, and a polyimide.
  • polyamideimide is contained as a resin component
  • polyetherimide poly What contains at least 1 sort (s) chosen from the group which consists of ether sulfone, polyphenylene ether, polyphenyl sulfone, and a polyimide can be used.
  • polyamideimide poly What contains at least 1 sort (s) chosen from the group which consists of ether sulfone, polyphenylene ether, polyphenyl sulfone, and a polyimide can be used.
  • 5 to 70% by mass of polyamideimide is contained as a resin component as a resin composition constituting an insulating layer having a low relative dielectric constant in each laminated unit such as the insulating layer (X1) and the insulating layer (X1 ′).
  • polyetherimide containing at least one kind selected from the group consisting of polyetherimide, polyethersulfone, polyphenylene ether, polyphenylsulfone, and polyimide.
  • the resin composition having this configuration the dielectric constant can be kept low without lowering the dielectric breakdown voltage.
  • Polyamideimide has a relative dielectric constant of 4.0, but a resin composition mixed with at least one selected from the group consisting of polyetherimide, polyethersulfone, polyphenylene ether, polyphenylsulfone, and polyimide should be used. Thus, the relative dielectric constant can be kept low.
  • Polyamideimide is excellent in heat resistance and solvent resistance.
  • polyamideimide is 10 to 60% by mass
  • polyetherimide At least one selected from the group consisting of polyethersulfone, polyphenylene ether, polyphenylsulfone, and polyimide is more preferably 90 to 40% by mass.
  • polyetherimide polyethersulfone, polyphenylene ether, polyphenylsulfone, and polyimide
  • the decrease in relative dielectric constant is small. If the amount is too large, the solvent resistance is deteriorated and the dielectric breakdown voltage is further decreased.
  • polyamideimides include Viromax (trade name, manufactured by Toyobo), Torlon (trade name, manufactured by Solvay Advanced Polymers), HI-400, HI-405, and HI-406 series (trade names, manufactured by Hitachi Chemical Co., Ltd.). Can be used.
  • Ultem brand name made by GE Plastics
  • polyethersulfone examples include Sumika Excel PES (trade name, manufactured by Sumitomo Chemical Co., Ltd.), PES (trade name, manufactured by Mitsui Chemicals), Ultra Zone E (trade name, manufactured by BASF Japan), Veradel (product manufactured by Solvay Advanced Polymers, Inc.) Name) etc.
  • polyphenylene ether for example, Zylon (trade name, manufactured by Asahi Kasei Chemicals), Iupiace (trade name, manufactured by Mitsubishi Engineering Plastics), and the like can be used.
  • polyphenylsulfone for example, Radel R (trade name, manufactured by Solvay Advanced Polymer Co., Ltd.) can be used.
  • polyimide for example, U-varnish (trade name, manufactured by Ube Industries), HCI series (trade name, manufactured by Hitachi Chemical Co., Ltd.), Uimide (trade name, manufactured by Unitika), Aurum (trade name, manufactured by Mitsui Chemicals, Inc.) are used. can do.
  • the insulating layer having a low relative dielectric constant in each of the laminated units such as the insulating layer (X1) and the insulating layer (X1 ′) has a relative dielectric constant of normal polyimide instead of the polyimide.
  • a low polyimide hereinafter also referred to as a low relative dielectric constant polyimide or a low relative dielectric constant PI
  • This low dielectric constant polyimide can be obtained by an imidization reaction between a predetermined amine component and a predetermined acid component.
  • the amine component includes 2,2-bis [4- [4-aminophenoxy] phenyl] propane, 4,4′-oxydianiline, p-phenylenediamine, 4,4′-diaminobenzophenone, 4 4,4′-bis (4-aminophenyl) sulfide, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, and the like can be used.
  • a single component may be used for an amine component, or there is no restriction
  • the acid component a single component may be used, or there is no particular limitation on the combination of the components such as mixing plural kinds.
  • the low relative dielectric constant polyimide those having a large number of nonpolar hydrocarbon portions in the structure are preferable.
  • the relative dielectric constant of the low dielectric constant polyimide is about 2.8, which is lower than the relative dielectric constant 3.5 of ordinary polyimide.
  • the low relative dielectric constant polyimide is inferior to ordinary polyimide in heat resistance and solvent resistance. Therefore, even if the enameled wire is composed only of the low relative dielectric constant polyimide, it does not show excellent characteristics.
  • the present inventors constitute an insulating layer having the above-mentioned low relative dielectric constant with a low relative dielectric constant polyimide, while having the above high relative dielectric constant with polyamideimide, polyimide, etc. excellent in heat resistance and solvent resistance.
  • an insulating layer comprising a low relative dielectric constant polyimide is constituted by constituting an insulating layer and laminating two or more laminated units on the conductor as these two kinds of insulating layers as a laminated unit, It has been found that the obtained insulated wire exhibits high heat resistance and solvent resistance.
  • the conductor may have the adhesion layer (primer layer), and may have a surface lubricating layer or an abrasion resistant layer as the outermost layer (top coat) of the insulating layer.
  • a surface lubrication layer For example, liquid paraffin, a solid paraffin, etc.
  • lubricants such as various waxes, polyethylene, a fluororesin
  • coated and lubricants, such as various waxes, polyethylene, a fluororesin
  • various resins such as polyamideimide resin, polyimide resin, and polyesterimide resin are filled with an inorganic filler such as silicon oxide, titanium oxide, zirconia, or alumina, and formed on the outermost layer of the insulating layer. You may let them.
  • the thickness of the adhesion layer is not particularly limited, but may be, for example, 3 to 9 ⁇ m.
  • the thickness of the top coat is not particularly limited, but can be 2 to 8 ⁇ m, for example.
  • the manufacturing method of the insulated wire of this invention is demonstrated referring FIG.
  • the above resin composition is used as a resin composition constituting the insulating layer 21 around the conductor, and the insulating layer 21 is formed by repeating coating and drying as appropriate. Thereafter, by further forming insulating layers 22 to 24 in the same manner, a desired insulated wire can be obtained.
  • the obtained insulated wire may be a single insulated wire (multi-core wire) by bundling a plurality of insulated wires and covering them together.
  • the inventors manufactured insulated wires having the configurations shown in Tables 1 to 4 and evaluated their performance. Insulating layers with low dielectric constants listed in Tables 1 to 4 and insulating layers with high relative dielectric constants are alternately laminated on a copper conductor having a diameter of 1 mm with the number of repetitions listed in Tables 1 to 4, and listed in Tables 1 to 4 Insulating wires were formed in Examples 1 to 13 and Comparative Examples 1 to 4 by forming an insulating layer with a thickness of.
  • HI-406 series (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used as the adhesive polyamideimide layer described in Tables 1 to 4 around the conductor. What was formed was used.
  • Example 1 to 10 a top coat formed with a lubricous polyamideimide AIB-SL3 (trade name, manufactured by Furukawa Electric Co., Ltd.) was used.
  • Example 1 to 13 and Comparative Examples 1 to 4 the following resins are used as the resin constituting the insulating layer, and when a resin is mixed to form a composition, it is shown in Tables 1 to 4. The thing of mass ratio was used.
  • PEI polyetherimide
  • PES polyethersulfone
  • PI Polyimide
  • PAI Polyamideimide
  • HI-406 series trade name, manufactured by Hitachi Chemical Co., Ltd.
  • PPSU polyphenylsulfone
  • Radel R trade name, manufactured by Solvay Advanced Polymer
  • PPE polyphenylene ether
  • the low relative dielectric constant polyimide produced as described above is used for the varnish used for forming the insulating layers (X1) and (X1 ′) having the low relative dielectric constant, and this is baked (coating and drying).
  • the insulated wires of Examples 14 and 15 were obtained.
  • the breakdown voltage was measured by the twisted pair method. A dielectric breakdown voltage of 9.0 kV or higher was considered acceptable. (Twisted pair method) Two insulated wires were twisted together, an AC voltage with a sine wave of 50 Hz was applied between the conductors, and the voltage (effective value) at which dielectric breakdown occurred while continuously boosting was measured. The measurement temperature was 25 ° C.
  • Tables 1 to 4 show the evaluation results of the insulated wires obtained in Examples 1 to 15 and Comparative Examples 1 to 4.
  • the insulated wires of Examples 1 to 15 showed excellent results in relative dielectric constant, dielectric breakdown voltage, and solvent resistance.
  • an insulated wire consisting only of a polyetherimide layer had a low relative dielectric constant, but failed withstand voltage (dielectric breakdown voltage) and solvent resistance (Comparative Example 1).
  • the insulated wire which consists only of a polyamideimide layer had high withstand voltage (dielectric breakdown voltage), since the dielectric constant was high, it was disqualified (Comparative Example 2).
  • Comparative Example 3 is a test example simulating Example 12 described in Patent Document 3 (Japanese Patent Laid-Open No. 2001-155551).

Abstract

【課題】 絶縁樹脂塗料を積層しても層間密着性に優れるため絶縁破壊が高く、比誘電率が低いため、耐部分放電性にも優れた絶縁電線を提供すること。 【解決手段】 導体(1)上に直接又は間接に、導体側から順に、絶縁層(21、23)と、前記絶縁層(21、23)よりもそれぞれ比誘電率の高い絶縁層(22、24)とを積層した積層単位を少なくとも2つ有する絶縁電線。

Description

絶縁電線
 本発明は、絶縁電線に関する。
 インバータは、効率的な可変速制御装置として、多くの電気機器に取り付けられるようになってきている。しかし、数kHz~数十kHzでスイッチングが行われ、それらのパルス毎にサージ電圧が発生する。このようなインバータサージは、伝搬系内におけるインピーダンスの不連続点、例えば接続する配線の始端または終端等において反射が発生し、その結果、最大でインバータ出力電圧の2倍の電圧が印加される現象である。特に、IGBT等の高速スイッチング素子により発生する出力パルスは、電圧峻度が高く、それにより接続ケーブルが短くてもサージ電圧が高く、更にその接続ケーブルによる電圧減衰も小さく、その結果、インバータ出力電圧の2倍近い電圧が発生する。
 インバータ関連機器、例えば高速スイッチング素子、インバータモーター、変圧器等の電気機器コイルには、マグネットワイヤとして主にエナメル線である絶縁電線が用いられている。従って、前述したように、インバータ関連機器では、インバータ出力電圧の2倍近い電圧がかかることから、インバータサージに起因する部分放電劣化を最小限にすることが、絶縁電線に要求されるようになってきている。
 このような部分放電による絶縁電線の劣化を防ぐため、部分放電の発生電圧が高い絶縁電線の検討が行われている。この絶縁電線を得るためには、絶縁電線の絶縁層の厚さを厚くするか、絶縁層に比誘電率が低い樹脂を用いるという方法が考えられる。
 しかし、絶縁層を厚くすると絶縁電線が太くなり、その結果、電気機器の大型化を招く。このことは、近年のモーターや変圧器に代表される電気機器において、小型化という要求に逆行する。例えば、具体的には、ステータースロット中に何本の電線を入れられるかにより、モーターなどの回転機の性能が決定するといっても過言ではなく、その結果、ステータースロット断面積に対する導体断面積の比率(占積率)が、近年非常に高くなってきている。従って、絶縁層の厚さを厚くすると占積率が低くなってしまうため好ましくない。
 一方、絶縁層の比誘電率が低い絶縁電線として、分子内の特定部位にフッ素原子又はパーフルオロアルキル基を有するポリイミド樹脂塗料を導体上に塗布して得られたものが提案されている(例えば、特許文献1参照)。しかし、通常の絶縁電線は、溶剤を含んだ塗料を導体上に複数回塗り重ねて、乾燥させることにより、絶縁層が形成されている。上記の特許文献1記載のポリイミド樹脂は、層間密着力が十分でない。導体上に形成された樹脂塗料の層間密着力が不十分であると、絶縁電線を加工する際に極端な場合には層間剥離が起き、使用することができない。明確な層間剥離が起きない場合でも、絶縁破壊電圧が低く、電気絶縁性に問題のあることが多い。また、高温になるとフッ化水素をはじめとする腐食性のガスが発生するために使用機器の金属部の早期劣化を発生させるという問題点がある。
 そのほかに絶縁層の比誘電率が低い絶縁電線として、繰り返し単位当たりのアミド基の数及びイミド基の数を減らしたポリアミドイミド樹脂塗料を用いた絶縁電線が提案されている(例えば、特許文献2参照)。この絶縁電線の場合、アミド基の数及びイミド基の数を減らしているため、導体との密着力が十分でない。導体との密着力は曲げや伸びなどの加工を行った際に導体と絶縁皮膜との剥離が発生し、電気絶縁性に問題があることが多い。また、使用する原料が特殊なものであり非常に高価である。
 また、厳しい圧延加工や巻線加工などを行なっても皮膜に損傷などを生じない耐加工性と、ポリアミドイミドと同等の高い耐熱性とを有し、しかも絶縁電線の端末を接合する工程で、接合部付近の絶縁皮膜が接合の熱などによって発泡したりしない接合性を有する絶縁電線が提案されている(例えば、特許文献3参照)。この特許文献3記載の絶縁電線は、(1)実質的にポリアミドイミド、およびポリイミドのうちの少なくとも一方からなる第1絶縁層と、(2)ポリアミドイミドAに、ガラス転移温度140℃以上の熱可塑性樹脂Bを、重量比A/Bで表してA/B=70/30~30/70の割合で配合してなる第2絶縁層とをこの順に被覆、積層することによって、導体上に、上記第1絶縁層の膜厚Tと、第2絶縁層の膜厚Tとの比T/TがT/T=5/95~40/60の範囲内で、かつ残留溶剤量が絶縁皮膜総量の0.05重量%以下である絶縁皮膜を形成したものである。特許文献3記載の絶縁電線では、熱軟化温度で評価される耐熱性が、400℃以上である。しかし、前記第1絶縁層と前記第2絶縁層の2層の積層構造について、各層の比誘電率については何らの言及がなく、絶縁破壊強度が低いという問題点がある。
特開2002-56720号公報 特開2009-161683号公報 特開2001-155551号公報
 本発明は、比誘電率の低い層と比誘電率の高い層を積層してなる積層単位を少なくとも2つ具備してなることにより、高い比誘電率の層を含むのにもかかわらず、比誘電率の低い材料を高い比誘電率の材料にブレンドした単独の層を有する絶縁電線に比べて比誘電率を高くすることがなく、絶縁破壊電圧の高い絶縁電線を提供することを課題とする。
 本発明者等は、上記課題に鑑み鋭意検討した結果、導体上に比誘電率の高い絶縁層と比誘電率の低い絶縁層を複数繰り返して形成した絶縁電線が、比誘電率の高い層を含むのにもかかわらず、比誘電率の低い材料を高い比誘電率の材料にブレンドした単独の層を有する絶縁電線に比べて比誘電率を高くすることがなく、高い絶縁破壊電圧を有することを見出した。本発明はこの知見に基づきなされたものである。
 本発明によれば、以下の手段が提供される:
<1>導体上に直接又は間接に、導体側から順に、第一の絶縁層(X1)と、前記第一の絶縁層(X1)よりも比誘電率の高い第二の絶縁層(X2)とを積層してなる積層単位を少なくとも2つ有することを特徴とする絶縁電線。
<2>ある1つの積層単位中の第二の絶縁層(X2)の比誘電率(ε(X2))が、その積層単位より外層側に位置する他の積層単位の第一の絶縁層(X1’)の比誘電率(ε(X1’))よりも高いことを特徴とする<1>記載の絶縁電線。
<3>前記絶縁層の内で互いに接する2つの層の比誘電率の差の絶対値が0.2以上であることを特徴とする<1>又は<2>記載の絶縁電線。
<4>各積層単位において、比誘電率の低い第一の絶縁層(X1、X1’、…)が、それぞれ、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドからなる群から選ばれた少なくとも1種を含有する樹脂組成物で構成されていることを特徴とする<1>~<3>のいずれか1項記載の絶縁電線。
<5>各積層単位において、比誘電率の低い第一の絶縁層(X1、X1’、…)が、それぞれ、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドからなる群から選ばれた少なくとも1種を含有し、さらにポリアミドイミドを含有する樹脂組成物で構成されていることを特徴とする<1>~<3>のいずれか1項記載の絶縁電線。
<6>各積層単位において、比誘電率の高い第二の絶縁層(X2、X2’、…)が、それぞれ、ポリアミドイミドを含有する樹脂組成物で構成されていることを特徴とする<4>又は<5>記載の絶縁電線。
<7>各積層単位において、比誘電率の高い第二の絶縁層(X2、X2’、…)が、それぞれ、ポリアミドイミドを含有し、さらにポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドからなる群から選ばれた少なくとも1種を含有する樹脂組成物で構成されていることを特徴とする<4>又は<5>記載の絶縁電線。
 ここで、本明細書においては、上で説明したような「第一の絶縁層よりも比誘電率の高い第二の絶縁層」を単に「比誘電率の高い第二の絶縁層」あるいは「比誘電率の高い絶縁層」とも、また、この関係にある「第二の絶縁層よりも比誘電率の低い第一の絶縁層」を単に「比誘電率の低い第一の絶縁層」あるいは「比誘電率の低い絶縁層」とも、それぞれいう場合がある。
 本発明により、絶縁樹脂塗料を積層しても層間密着性に優れるため耐絶縁破壊性が高く、比誘電率が低いため、耐部分放電性にも優れた絶縁電線を提供することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明の絶縁電線の一実施態様を模式的に示した断面図である。 図2(a)は、本発明の絶縁電線の一実施態様の一部を模式的に示した断面図であり、図2(b)は、本発明の絶縁電線のさらに別の実施態様の一部を模式的に示した断面図であり、図2(c)は、本発明の絶縁電線のさらに別の実施態様の一部を模式的に示した断面図である。
 以下、本発明の絶縁電線の実施態様について、図面を参照して説明する。
 図1に断面図を示した本発明の絶縁電線の一実施態様では、導体1と、導体1を被覆した絶縁層2とを有している。本発明の絶縁電線は、導体上に直接又は間接に、導体側から順に、絶縁層(X1)と、前記絶縁層(X1)よりも比誘電率の高い絶縁層(X2)とを積層した積層単位を少なくとも2つ有している。図1では、導体上に直接、絶縁層を有する絶縁電線が記載されているが、後述のように、導体上の密着層(図1には図示せず)を介して絶縁層を有していてもよい。また絶縁層の最表層に表面潤滑層や耐磨耗層などのトップコート(図1には図示せず)を有していてもよい。図2(a)~(c)には、密着層とトップコートを有する絶縁電線について、図1に示すように、A-A’の部分拡大図の一部が示されている。
 本明細書において、絶縁層(X1)と、前記絶縁層(X1)よりも比誘電率の高い絶縁層(X2)とを積層したものを積層単位という。したがって、積層単位を少なくとも2つ有するものとしては、例えば、図1に示すように、絶縁層21(X1)上に前記絶縁層21(X1)よりも比誘電率の高い絶縁層22(X2)が積層されて第一の積層単位が形成され、さらに該第一の積層単位の上に、比誘電率が低い絶縁層23(X1’)とさらにその上に前記絶縁層23(X1’)よりも比誘電率の高い絶縁層24(X2’)が積層されて第二の積層単位が形成されたものを挙げることができる。
 さらに好ましくは、第一の積層単位中の比誘電率の高い絶縁層22(X2)と、該第一の積層単位と異なる第二の積層単位に属する比誘電率の低い絶縁層23(X1’)の比誘電率が、下記式(1)で表されることが好ましい。
  ε(X2)>ε(X1’)           式(1)
 上記式(1)において、ε(X2)は絶縁層(X2)における比誘電率、ε(X1’)は絶縁層(X1’)における比誘電率を表す。
 ここで、式(1)で表わされる関係は、上で例示したような隣り合う2つの積層単位の間で満たされる場合に限定されるものではなく、この態様を包含して前記<2>項で規定したように、必ずしも隣接していない特定の2つの積層単位の間で満たされていてもよい。
 これにより、本発明の絶縁電線は、導体側から順に、比誘電率の低い絶縁層とその絶縁層よりも比誘電率の高い絶縁層が交互に積層された積層単位を少なくとも2つ以上有している。
 導体1は、例えば、銅、銅合金、アルミニウム、アルミニウム合金又はそれらの組み合わせ等で作られている。導体1の断面形状は限定されるものではなく、円形、矩形(平角)などが適用できる。
 導体1のサイズ(断面形状が円形の場合には直径、又は断面形状が矩形の場合には長辺の長さ)は適宜設定できるが、0.05~5mmとすることができる。さらに好ましくは、サイズ0.1~4mmである。
 絶縁層2の厚さは適宜設定できるが、絶縁層21~24の合計で、厚さ20~200μmとすることができる。さらに好ましくは、厚さ30~150μmである。
 図1に示すように、本発明の絶縁電線は、導体上に、絶縁層21(X1)と、前記絶縁層21(X1)よりも比誘電率の高い絶縁層22(X2)が形成され、さらに好ましくは、前記絶縁層22(X2)上に前記絶縁層22(X2)よりも比誘電率の低い絶縁層23(X1’)が形成され、さらに前記絶縁層23(X1’)上に前記絶縁層23(X1’)よりも比誘電率の高い絶縁層24(X2’)が形成されている。絶縁層24(X2’)上には、さらに積層単位を積み重ねて積層単位を3つ以上とすることができる。比誘電率は、市販の測定器を使用して測定することができる。測定温度および測定周波数については、必要に応じて変更できるが、本明細書において特に記載のない限り、測定温度を25℃とし、測定周波数を50Hzとして測定した値をいう。各絶縁層の比誘電率は、絶縁層を構成する樹脂組成物塗料を乾燥し、該塗料に含まれる溶剤を揮発させたもので測定した値をいう。
 各絶縁層間の内で互いに接する2つの層の比誘電率の差の絶対値が、0.2以上あることが好ましく、さらに好ましくは0.3~1.8である。さらに、各積層単位内の互いに接する2つの絶縁層の比誘電率の差は、比誘電率の高い外層(導体から離れた側)の絶縁層の比誘電率の、比誘電率の低い内層(導体に近い側)の絶縁層の比誘電率に対する差が0.2以上あることが好ましく、さらに好ましくはこの差が0.3~1.8である。比誘電率の差が小さすぎると、比誘電率の低い絶縁電線を得ることができない。比誘電率の差が大きすぎる場合でも、X2の比誘電率が結果的に高くなることになり、皮膜全体としての比誘電率を下げることができない。
 本発明の絶縁電線の絶縁層は導体上に直接又は間接に形成できる。例えば、図2(a)に示すように、各絶縁層21~24は、絶縁層を構成する樹脂組成物を塗り重ねて、適宜乾燥して、積層することにより、各絶縁層を形成することができる。このように絶縁層21は、導体上に直接形成してもよいが、導体1と最下層の(導体に一番近い)絶縁層21との間に導体との密着性に優れた密着層11を形成してもよい。密着層として使用できるものとして、例えば、ポリイミド、ポリウレタン、ポリアミドイミド、ポリエステル、ポリエステルイミド、メラミン樹脂、エポキシ樹脂などを挙げることができる。これらの樹脂は通常、比誘電率が高いため、密着層を含めないで密着層上に形成した層を絶縁層21とする。これら密着層の樹脂には、例えば、シランアルコキシド系密着改良剤(シランカップリング剤)、チタンアルコキシド、チタンアシレート、チタンキレートなどチタン系密着改良剤、トリアジン系密着改良剤、イミダゾール系密着改良剤、メラミン系密着改良剤、チオール系密着改良剤などの密着改良剤を加えてもよい。
 各絶縁層21~24において、比誘電率の低い層と比誘電率の高い層を積層することにより、高い比誘電率の層を含むのにもかかわらず、比誘電率の低い材料を高い比誘電率の材料にブレンドした単独の層を有する絶縁電線と比較して比誘電率を高くすることがなく、絶縁破壊電圧の高い絶縁電線を得ることができる。この原因については、定かではないが、比誘電率は体積あたりの各材料の体積によって決まるためと考えられる。さらに、本発明の絶縁電線は、高い絶縁破壊電圧を有し、電気絶縁性に優れる。従来、比誘電率の低い樹脂、例えば、ポリエーテルイミドやポリエーテルスルホンを単独で絶縁層に用いた絶縁電線は、確かに比誘電率は低いが、絶縁破壊電圧が低かった。これに対して、本発明の絶縁電線は、例えば、これらの比誘電率の低い樹脂を用いた層と比誘電率の高い樹脂を積層した層を複数設けることにより、比誘電率の高い層を含むのにもかかわらず、比誘電率の低い材料を高い比誘電率の材料に混合して作製した単独の層を有する絶縁電線と比較して比誘電率を高くすることがなく、高い絶縁破壊電圧を有することができる。
 本発明の絶縁電線は、皮膜全体の比誘電率が3.9以下、さらに好ましくは3.8以下のものが好ましい。皮膜全体の比誘電率の下限値には特に制限はないが、通常、2.5以上、好ましくは3.0以上である。ここで、皮膜全体とは、前記の密着層(プライマー層)、低い比誘電率を有する絶縁層、それより高い比誘電率を有する絶縁層、及び表面潤滑層や耐磨耗層などのトップコートを合わせた全体をいう。また、低い比誘電率を有する絶縁層と、それより高い比誘電率を有する絶縁層とを合わせて、絶縁層2といい、あるいは積層部ともいう。上述のように、各絶縁層間のうち接する層の比誘電率の差が下層に対し0.2以上あることが好ましい。皮膜全体の比誘電率が高すぎると、絶縁破壊電圧が高くても部分放電が発生するため樹脂が劣化し、絶縁耐力が十分とはいえない。本発明の絶縁電線の絶縁破壊電圧は、後述の実施例記載のツイストペア法で9.0kV以上であることが好ましい。
 例えば、ポリアミドイミドを被覆層とする絶縁電線の場合、従来、比誘電率が4.0、被覆層の厚さが40μm程度のものが使用されている。仮に、本発明の構成を用いて被覆樹脂の比誘電率を0.2だけ下げて3.8にすると、部分放電開始電圧を同程度に留める範囲で削減できる被覆層の厚さは5%である。つまり、被覆層の厚さを2.0μm削減することができる。これによってコイル成形後の大きさを大幅に減少させることができる。一般のポリアミドイミドを被覆層とする絶縁電線は、例えば、一層2μmの厚さのポリアミドイミドを重ねて製造されている。比誘電率を0.2下げることにより、ポリアミドイミドの塗り重ね回数を1回減らすことができるという優れた効果を奏する。
 図2(b)に示されるように、本発明の絶縁電線は、比誘電率の高い絶縁層24(X2’)上に、絶縁層24(X2’)よりも比誘電率の低い絶縁層31(Y1’)と、前記絶縁層31(Y1’)よりも比誘電率の高い絶縁層32(Y2’)が交互に形成されていてもよい。この場合、絶縁層31と絶縁層32が第三の積層単位である。このように、比誘電率の高い層と比誘電率の低い層の積層回数を多くすることにより、高い絶縁破壊電圧を有する絶縁電線を得ることができる。この原因については定かではないが、誘電体の絶縁破壊は電子のなだれ効果により発生するとされており、エナメル線皮膜である絶縁体の厚さが薄いほど単位厚さあたりの絶縁破壊電圧が向上するという現象が、積層することによって効果が持続するものと考えられる。比誘電率の高い層と比誘電率の低い層の積層回数は2~30回であることが好ましく、さらに好ましくは、2~15回である。積層回数が多すぎると、作業効率が悪くなる問題が発生する。
 また図2(c)に示されるように、比誘電率の高い絶縁層24(X2’)上に、絶縁層24(X2’)よりも比誘電率の低い絶縁層31(Y1’)と、前記絶縁層31(Y1’)よりも比誘電率の高い絶縁層32(Y2’)が形成され、さらに、同様にして、比誘電率の低い絶縁層(33、35、37)と比誘電率の高い絶縁層(34、36、38)が交互に形成されていてもよい。この場合、積層単位は計6つ設けられている。
 本発明の絶縁電線は、前記絶縁層(X1)及び絶縁層(X1’)等の各積層単位における低い比誘電率を有する絶縁層が、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドから選ばれた少なくとも1種で構成されていることが好ましい。ポリエーテルイミドとしては、例えば、ウルテム(GEプラスチック社製商品名)などを使用することができる。ポリエーテルスルホンとしては、例えば、スミカエクセルPES(住友化学社製商品名)、PES(三井化学社製商品名)、ウルトラゾーンE(BASFジャパン社製商品名)、レーデルA(ソルベイアドバンストポリマーズ社製商品名)などを使用することができる。ポリフェニレンエーテルとしては、例えば、ザイロン(旭化成ケミカルズ社製商品名)、ユピエース(三菱エンジニアリングプラスチックス社製商品名)などを使用することができる。ポリフェニルスルホンとしては、例えば、レーデルR(ソルベイアドバンストポリマー社製商品名)などを使用することができる。ポリイミドとしては、例えば、U-ワニス(宇部興産社製商品名)、HCIシリーズ(日立化成社商品名)、Uイミド(ユニチカ社製商品名)、オーラム(三井化学社製商品名)などを使用することができる。これらの樹脂の比誘電率は、ポリエーテルイミド(比誘電率3.2~3.4)、ポリエーテルスルホン(比誘電率3.5)、ポリフェニレンエーテル(比誘電率2.7)、ポリフェニルスルホン(比誘電率3.4)ポリイミド(比誘電率3.5)であり、比誘電率が低い。しかしこれらの樹脂単独での絶縁破壊電圧は低いが、後述の絶縁層(X2)及び絶縁層(X2’)に用いられる樹脂と組み合わせることにより、比誘電率が低く、絶縁破壊電圧の高い絶縁電線を得ることができる。
 前記絶縁層(X1)及び絶縁層(X1’)等の各積層単位における低い比誘電率を有する絶縁層を、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドから選ばれた少なくとも1種を用い、さらに発泡させることにより、比誘電率を低くすることができる。
 本発明の絶縁電線においては、前記絶縁層(X2)及び絶縁層(X2’)等の各積層単位における高い比誘電率を有する絶縁層が、ポリアミドイミドを含有することが好ましい。これらの絶縁層がポリアミドイミドを含有することにより、耐熱性と加工性を具備する絶縁電線を得ることができる。
 さらに好ましくは、本発明の絶縁電線は、前記絶縁層(X2)及び絶縁層(X2’)等の各積層単位における高い比誘電率を有する絶縁層が、ポリアミドイミドを含有し、さらにポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドから選ばれた少なくとも1種を含有する樹脂組成物で構成されていることが好ましい。ポリアミドイミドを必須樹脂成分として含み、さらにポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドから選ばれた少なくとも1種を含有する樹脂組成物とすることにより、耐熱性に優れた低い比誘電率の絶縁材料を得ることができる。樹脂組成物の樹脂成分中、ポリアミドイミドが20~100質量%であることが好ましく、さらに好ましくは、60~90質量%である。ポリアミドイミドが少なすぎると耐溶剤性および耐熱性が悪くなり、多すぎると比誘電率を低くする効果が十分に得られなくなる。
 ポリアミドイミドとしては、例えば、バイロマックス(東洋紡社製商品名)、トーロン(ソルベイアドバンストポリマーズ社製商品名)、HI-400,HI-405,HI-406シリーズ(日立化成工業社製商品名)などを使用することができる。ポリエーテルイミドとしては、例えば、ウルテム(GEプラスチック社製商品名)などを使用することができる。ポリエーテルスルホンとしては、例えば、スミカエクセルPES(住友化学社製商品名)、PES(三井化学社製商品名)、ウルトラゾーンE(BASFジャパン社製商品名)、ベラデル(ソルベイアドバンストポリマーズ社製商品名)などを使用することができる。ポリフェニレンエーテルとしては、例えば、ザイロン(旭化成ケミカルズ社製商品名)、ユピエース(三菱エンジニアリングプラスチックス社製商品名)などを使用することができる。ポリフェニルスルホンとしては、例えば、レーデルR(ソルベイアドバンストポリマー社製商品名)などを使用することができる。ポリイミドとしては、例えば、U-ワニス(宇部興産社製商品名)、HCIシリーズ(日立化成社商品名)、Uイミド(ユニチカ社製商品名)、オーラム(三井化学社製商品名)などを使用することができる。
 一般にポリエーテルイミド、ポリエーテルスルホンなどの非晶性樹脂は、耐薬品性に乏しく、絶縁電線をコイル状に成形した後に、該コイルをワニスに含浸する処理を行う際に絶縁被膜にクラックを発生し、電気特性を低下させやすい。この原因については定かではないが、該クラックは、残留応力の存在する樹脂に薬品が浸透し、ポリマー鎖が動き易くなる結果、局所的に応力が緩和され被膜に亀裂が発生する現象と考えられる。例えば、絶縁電線を巻線してコイルを形成し、エポキシ樹脂等の含浸ワニスに浸漬後、含浸ワニスを硬化するときに、含浸ワニスの浸透を受けてクラックが発生しやすい。
 これに対して、前記絶縁層(X2)及び絶縁層(X2’)等の各積層単位における高い比誘電率を有する絶縁層、特に最外層の絶縁層が、ポリアミドイミドを含有し、さらにポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドから選ばれた少なくとも1種を含有する樹脂組成物で構成されていることにより、耐溶剤性を向上させることができる。
 前記絶縁層(X1)及び絶縁層(X1’)等の各積層単位における低い比誘電率を有する絶縁層を構成する樹脂組成物として、ポリアミドイミドを樹脂成分として含有し、さらにポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドからなる群から選ばれた少なくとも1種を含有したものを使用することができる。この場合、前記絶縁層(X1)及び絶縁層(X1’)等の各積層単位における低い比誘電率を有する絶縁層を構成する樹脂組成物として、ポリアミドイミド5~70質量%を樹脂成分として含有し、さらにポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドからなる群から選ばれた少なくとも1種95~30質量%を含有したものを使用することが好ましい。この構成の樹脂組成物を用いることにより、絶縁破壊電圧を低下させることなく比誘電率を低く保つことができる。ポリアミドイミドの比誘電率は4.0であるが、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドからなる群から選ばれた少なくとも1種と混合した樹脂組成物を用いることで、比誘電率を低く保つことができる。またポリアミドイミドは耐熱性・耐溶剤性の特性が優れているため、この樹脂組成物を用いることにより、含浸ワニス時の高温硬化処理時のクラックを防ぐ効果を奏する。
 前記絶縁層(X1)及び絶縁層(X1’)等の各積層単位における低い比誘電率を有する絶縁層を構成する樹脂組成物の樹脂成分中、ポリアミドイミドは10~60質量%、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドからなる群から選ばれた少なくとも1種は90~40質量%であることがさらに好ましい。ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドが少なすぎると比誘電率の低下が小さく、多すぎると耐溶剤性が悪化し、さらに絶縁破壊電圧が低下する。
 ポリアミドイミドとしては、例えば、バイロマックス(東洋紡社製商品名)、トーロン(ソルベイアドバンストポリマーズ社製商品名)、HI-400,HI-405,HI-406シリーズ(日立化成工業社製商品名)などを使用することができる。また、ポリエーテルイミドとしては、例えば、ウルテム(GEプラスチック社製商品名)などを使用することができる。ポリエーテルスルホンとしては、例えば、スミカエクセルPES(住友化学社製商品名)、PES(三井化学社製商品名)、ウルトラゾーンE(BASFジャパン社製商品名)、ベラデル(ソルベイアドバンストポリマーズ社製商品名)などを使用することができる。ポリフェニレンエーテルとしては、例えば、ザイロン(旭化成ケミカルズ社製商品名)、ユピエース(三菱エンジニアリングプラスチックス社製商品名)などを使用することができる。ポリフェニルスルホンとしては、例えば、レーデルR(ソルベイアドバンストポリマー社製商品名)などを使用することができる。ポリイミドとしては、例えば、U-ワニス(宇部興産社製商品名)、HCIシリーズ(日立化成社商品名)、Uイミド(ユニチカ社製商品名)、オーラム(三井化学社製商品名)などを使用することができる。
 本発明においては、前記絶縁層(X1)及び絶縁層(X1’)等の各積層単位における低い比誘電率を有する絶縁層には、前記のポリイミドに代えて、比誘電率が通常のポリイミドより低いポリイミド(以下、低比誘電率ポリイミド、又は低比誘電率PIともいう。)を用いることができる。この低比誘電率ポリイミドは、所定のアミン成分と所定の酸成分とのイミド化反応により得ることができる。ここで、前記アミン成分としては、2,2-ビス[4-[4-アミノフェノキシ]フェニル]プロパン、4,4’-オキシジアニリン、p-フェニレンジアミン、4,4’-ジアミノベンゾフェノン、4,4’-ビス(4-アミノフェニル)スルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル等を用いることができる。またアミン成分は単一成分を用いてもよく、または複数種を混合するなどその成分の組み合わせには特に制限はない。一方、前記酸成分としては、5,5’-[1-メチル-1,1-エタンジイルビス(1,4-フェニレン)ビスオキシ]ビス(イソベンゾフラン-1,3-ジオン)、無水ピロメリット酸、オキシジフタル酸二無水物、ビフェニル-3,4,3’,4’テトラカルボン酸二無水物、ベンゾフェノン-3,4,3’,4’-テトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロビリデン)ジフタル酸無水物等を用いることができる。酸成分は単一成分を用いてもよく、または複数種を混合するなどその成分の組み合わせには特に制限はない。
 低比誘電率ポリイミドとしては、その構造中に、非極性炭化水素部分が多いものが好ましい。
 低比誘電率ポリイミドの比誘電率は2.8程度であり、通常のポリイミドの比誘電率3.5よりも低い。
 通常、低比誘電率ポリイミドは、耐熱性および耐溶剤性が通常のポリイミドよりも劣っているため、低比誘電率ポリイミドのみでエナメル線を構成しても優れた特性を示さなかった。本発明者らは、低比誘電率ポリイミドで前記の低い比誘電率を有する絶縁層を構成し、一方、耐熱性および耐溶剤性に優れるポリアミドイミドやポリイミドなどで前記の高い比誘電率を有する絶縁層を構成して、これら2種の絶縁層を積層単位として2つ以上の積層単位を導体上に積層させることによって、低比誘電率ポリイミドを含んでなる絶縁層が構成されていても、得られる絶縁電線が高い耐熱性および耐溶剤性を発現することを見出したものである。
 本発明の絶縁電線の絶縁層としては、本発明の目的とする効果を損なわない範囲内で、顔料、染料などの着色剤、無機又は有機のフィラー、潤滑剤などの各種の添加剤を含む樹脂組成物を用いることができる。前記のとおり、導体上には前記の密着層(プライマー層)を有していてもよく、絶縁層の最表層(トップコート)として表面潤滑層や耐磨耗層を有していてもよい。表面潤滑層としては、特に制限されないが、例えば、流動パラフィンや固形パラフィンなどを塗布したり、各種ワックス、ポリエチレン、フッ素樹脂などの潤滑剤を絶縁層の最表層に製膜することができる。耐磨耗層としては、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエステルイミド樹脂等の各種樹脂中に酸化ケイ素、酸化チタン、ジルコニア、アルミナなどの無機フィラーを充填させたものを絶縁層の最表層に製膜させてもよい。
 ここで、密着層の厚さには特に制限はないが、例えば3~9μmとすることができる。また、トップコートの厚さには特に制限はないが、例えば2~8μmとすることができる。
 本発明の絶縁電線の製造方法を図1を参照しながら説明する。例えば、導体の周りに、絶縁層21を構成する樹脂組成物として、前記の樹脂組成物を用い、適宜、塗り重ねと乾燥を繰り返して絶縁層21を形成する。その後、同様の方法で、さらに絶縁層22~24を形成することで、所望の絶縁電線が得られる。得られた絶縁電線は、複数本の絶縁電線を束ねた上で、これらをまとめて被覆して1本の絶縁電線(多芯線)としてもよい。
 以下、本発明を実施例に基いてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明者らは、表1~4に記載の構成の絶縁電線を製造し、その性能について評価した。直径1mmの銅導体に、表1~4記載の比誘電率の低い絶縁層と比誘電率の高い絶縁層を、表1~4記載の繰り返し回数で交互に積層して、表1~4記載の厚さで、絶縁層を形成して実施例1~13と、比較例1~4の絶縁電線を得た。ここで実施例1~10、実施例13、及び比較例3においては、導体の周りに表1~4記載の密着性ポリアミドイミド層として、HI-406シリーズ(日立化成工業社製商品名)を形成したものを使用した。得られた絶縁電線について、以下の項目について評価した。また実施例1~10、実施例12、及び比較例3では、トップコートとして、潤滑性ポリアミドイミドAIB-SL3(古河電気工業社製商品名)を形成したものを使用した。
 実施例1~13、比較例1~4においては、絶縁層を構成する樹脂として、以下のものを使用し、樹脂を混合して組成物としたものを用いる場合は、表1~4に示す質量比のものを用いた。
(1)PEI;ポリエーテルイミド(ウルテム(GEプラスチック社製商品名))
(2)PES;ポリエーテルスルホン(スミカエクセルPES(住友化学社製商品名))
(3)PI;ポリイミド(Uイミド(ユニチカ社製商品名))
(4)PAI;ポリアミドイミド(HI-406シリーズ(日立化成工業社製商品名))
(5)PPSU;ポリフェニルスルホン(レーデルR(ソルベイアドバンストポリマー社製商品名))
(6)PPE;ポリフェニレンエーテル(ザイロン(旭化成ケミカルズ社製商品名))
<低比誘電率ポリイミドの調製>
 実施例14、15では、前記実施例1~13の絶縁電線の調製と同様にして、但し、以下のように調製した表3記載の低比誘電率ポリイミド(低比誘電率PI)を用いて絶縁電線を調製した。
 すなわち、500mlのフラスコに、N-メチル-2-ピロリドン395g、2,2-ビス[4-[4-アミノフェノキシ]フェニル]プロパン47.94g(0.117mol)及び5,5’-[1-メチル-1,1-エタンジイルビス(1,4-フェニレン)ビスオキシ]ビス(イソベンゾフラン-1,3-ジオン)57.06g(0.117mol)を加え、室温、窒素雰囲気下で12時間攪拌して反応させ、低比誘電率ポリイミドを得た。
 以上のように作製した低比誘電率ポリイミドを、前記の低い比誘電率を有する絶縁層(X1)および(X1’)等の形成に使用するワニスに用いて、これを焼き付ける(塗布、乾燥)ことで実施例14および15の絶縁電線を得た。
[比誘電率]
 比誘電率は、エナメル線の静電容量を測定し、静電容量と絶縁層の厚さから得られた比誘電率を測定値とした。静電容量の測定には、LCRハイテスタ(日置電機株式会社製、型式3532-50)を用いた。測定温度は25℃、測定周波数は50Hzとした。比誘電率が3.9以下を合格とした。
[絶縁破壊電圧]
 ツイストペア法で絶縁破壊電圧を測定した。絶縁破壊電圧が9.0kV以上を合格とした。
(ツイストペア法)
 2本の絶縁電線を撚り合わせ、各々の導体間に正弦波50Hzの交流電圧を印加して、連続的に昇圧させながら絶縁破壊する電圧(実効値)を測定した。測定温度は25℃とした。
[耐溶剤性]
 長さ50cmの絶縁電線を直径50mmの棒に巻付けたものを室温にてクレゾールに1時間浸漬し、その後取り出し、絶縁電線の表面を観察した。その様子からクラックの発生がないものを合格とし、合格のものは表1~4に○、不合格のものは表1~4に×で表示した。
 実施例1~15および比較例1~4で得られた絶縁電線の評価結果を、表1~4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4からわかるように、実施例1~15の絶縁電線は比誘電率、絶縁破壊電圧及び耐溶剤性において優れた結果を示した。一方、ポリエーテルイミド層のみからなる絶縁電線は、比誘電率は低いが、耐電圧(絶縁破壊電圧)と耐溶剤性が不合格であった(比較例1)。またポリアミドイミド層のみからなる絶縁電線は、耐電圧(絶縁破壊電圧)は高いが、比誘電率が高かったために不合格であった(比較例2)。さらに、比較例3に示されるように、比誘電率が低い層としてポリエーテルイミドを用い、比誘電率が高い層としてポリイミドを用いても、積層単位が1つのみのものは、比誘電率は合格レベルであったが、絶縁破壊電圧が不合格であった。また、比較例4は、前記特許文献3(特開2001-155551号公報)に記載の実施例12を模した試験例であるが、表4に示したように、比誘電率が低い層としてポリイミドのワニスを用い、比誘電率が高い層としてポリエーテルイミドとポリアミドイミドからなるワニスを用いても、積層単位が1つのみのものは、比誘電率は合格レベルであったが、耐溶剤性に劣り、また、絶縁破壊電圧が不合格であった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2010年10月1日に日本国で特許出願された特願2010-224337に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 1  導体
 2  絶縁層
 11 密着層
 21 第一の絶縁層(X1)
 22 第一の絶縁層(X1)より比誘電率の高い絶縁層(X2)
 23 第一の絶縁層(X1’)
 24 第一の絶縁層(X1’)より比誘電率の高い絶縁層(X2’)
 31 第一の絶縁層(Y1’)
 32 第一の絶縁層(Y1’)より比誘電率の高い絶縁層(Y2’)
 33、35、37 比誘電率の低い絶縁層
 34、36、38 比誘電率の高い絶縁層
 41 トップコート

Claims (7)

  1.  導体上に直接又は間接に、導体側から順に、第一の絶縁層と、前記第一の絶縁層よりも比誘電率の高い第二の絶縁層とを積層してなる積層単位を少なくとも2つ有することを特徴とする絶縁電線。
  2.  ある1つの積層単位中の第二の絶縁層の比誘電率が、その積層単位より外層側に位置する他の積層単位の第一の絶縁層の比誘電率よりも高いことを特徴とする請求項1記載の絶縁電線。
  3.  前記絶縁層の内で互いに接する2つの層の比誘電率の差の絶対値が0.2以上であることを特徴とする請求項1又は2記載の絶縁電線。
  4.  各積層単位において、第一の絶縁層が、それぞれ、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドからなる群から選ばれた少なくとも1種を含有する樹脂組成物で構成されていることを特徴とする請求項1~3のいずれか1項記載の絶縁電線。
  5.  各積層単位において、第一の絶縁層が、それぞれ、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドからなる群から選ばれた少なくとも1種を含有し、さらにポリアミドイミドを含有する樹脂組成物で構成されていることを特徴とする請求項1~3のいずれか1項記載の絶縁電線。
  6.  各積層単位において、第二の絶縁層が、それぞれ、ポリアミドイミドを含有する樹脂組成物で構成されていることを特徴とする請求項4又は5記載の絶縁電線。
  7.  各積層単位において、第二の絶縁層が、それぞれ、ポリアミドイミドを含有し、さらにポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニルスルホン、及びポリイミドからなる群から選ばれた少なくとも1種を含有する樹脂組成物で構成されていることを特徴とする請求項4又は5記載の絶縁電線。
PCT/JP2011/072683 2010-10-01 2011-09-30 絶縁電線 WO2012043839A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012536602A JP5877159B2 (ja) 2010-10-01 2011-09-30 絶縁電線
EP11829392.7A EP2555204B1 (en) 2010-10-01 2011-09-30 Insulated wire
CN201180008178.5A CN102782773B (zh) 2010-10-01 2011-09-30 绝缘电线
KR1020127020276A KR20130024880A (ko) 2010-10-01 2011-09-30 절연 전선
US13/556,902 US20120285724A1 (en) 2010-10-01 2012-07-24 Insulated wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010224337 2010-10-01
JP2010-224337 2010-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/556,902 Continuation US20120285724A1 (en) 2010-10-01 2012-07-24 Insulated wire

Publications (1)

Publication Number Publication Date
WO2012043839A1 true WO2012043839A1 (ja) 2012-04-05

Family

ID=45893276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072683 WO2012043839A1 (ja) 2010-10-01 2011-09-30 絶縁電線

Country Status (6)

Country Link
US (1) US20120285724A1 (ja)
EP (1) EP2555204B1 (ja)
JP (1) JP5877159B2 (ja)
KR (1) KR20130024880A (ja)
CN (1) CN102782773B (ja)
WO (1) WO2012043839A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680698A (zh) * 2012-09-04 2014-03-26 日立金属株式会社 绝缘电线和使用该绝缘电线的线圈
JP2014063601A (ja) * 2012-09-20 2014-04-10 Hitachi Metals Ltd 絶縁電線及びそれを用いたコイル
JP5972375B2 (ja) * 2013-02-07 2016-08-17 古河電気工業株式会社 絶縁電線及びモータ
JP2017059540A (ja) * 2013-02-07 2017-03-23 古河電気工業株式会社 エナメル樹脂絶縁積層体並びにそれを用いた絶縁ワイヤ及び電気・電子機器

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103665A1 (ja) 2012-12-28 2014-07-03 古河電気工業株式会社 絶縁ワイヤ、電気機器および絶縁ワイヤの製造方法
JP5391341B1 (ja) 2013-02-05 2014-01-15 古河電気工業株式会社 耐インバータサージ絶縁ワイヤ
JP6226169B2 (ja) * 2013-06-11 2017-11-08 日立化成株式会社 絶縁被覆ワイヤ及びマルチワイヤ配線板
CA2928719C (en) 2013-11-11 2020-05-05 General Cable Technologies Corporation Data cables having an intumescent tape
WO2015098640A1 (ja) * 2013-12-26 2015-07-02 古河電気工業株式会社 絶縁ワイヤ、コイルおよび電子・電気機器
WO2015130681A1 (en) * 2014-02-25 2015-09-03 Essex Group, Inc. Insulated winding wire
FR3018403B1 (fr) * 2014-03-04 2017-10-13 Moteurs Leroy-Somer Fil conducteur isole electriquement
WO2015143167A1 (en) * 2014-03-19 2015-09-24 Advanced Green Technologies, Llc Self-healing cable
JP6016846B2 (ja) * 2014-06-03 2016-10-26 古河電気工業株式会社 絶縁ワイヤおよびその製造方法
CN105405529B (zh) * 2015-07-30 2019-04-05 凡甲电子(苏州)有限公司 数据传输线缆
US11004575B2 (en) * 2018-05-07 2021-05-11 Essex Furukawa Magnet Wire Usa Llc Magnet wire with corona resistant polyimide insulation
WO2019217254A1 (en) * 2018-05-07 2019-11-14 Essex Group, Inc. Magnet wire with corona resistant polyimide insulation
US11352521B2 (en) * 2018-05-07 2022-06-07 Essex Furukawa Magnet Wire Usa Llc Magnet wire with corona resistant polyamideimide insulation
US11728068B2 (en) * 2018-05-07 2023-08-15 Essex Furukawa Magnet Wire Usa Llc Magnet wire with corona resistant polyimide insulation
US11728067B2 (en) * 2018-05-07 2023-08-15 Essex Furukawa Magnet Wire Usa Llc Magnet wire with flexible corona resistant insulation
EP3948900A4 (en) * 2019-03-29 2022-11-02 Essex Furukawa Magnet Wire Usa Llc MAGNET WIRE WITH THERMOPLASTIC INSULATION
US11705771B2 (en) * 2019-05-06 2023-07-18 Essex Furukawa Magnet Wire Usa Llc Electric machines having insulation formed on laminated structures
DE102020210889A1 (de) * 2020-08-28 2022-03-03 Vitesco Technologies GmbH Elektrische Durchführung
CN115881342A (zh) * 2021-09-27 2023-03-31 日立金属株式会社 绝缘电线和绝缘电线的制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136405A (en) * 1979-04-11 1980-10-24 Sumitomo Electric Industries Rubber plastic insulated cable
JPS5669714A (en) * 1979-11-09 1981-06-11 Hitachi Cable Electric power cable
JPS57152612A (en) * 1981-03-16 1982-09-21 Hubbell Inc Harvey Insulating high voltage cable
JPH03152804A (ja) * 1989-11-09 1991-06-28 Fujikura Ltd 絶縁電線
JPH0621118U (ja) * 1992-08-21 1994-03-18 株式会社潤工社 絶縁電線および同軸ケーブル
JP2001155551A (ja) 1999-11-30 2001-06-08 Sumitomo Electric Ind Ltd 絶縁電線
JP2002056720A (ja) 2000-08-10 2002-02-22 Nippon Shokubai Co Ltd 巻線の絶縁被覆材料
JP2005302597A (ja) * 2004-04-14 2005-10-27 Hitachi Cable Ltd エナメル線及びそれに用いる絶縁塗料
JP2009161683A (ja) 2008-01-09 2009-07-23 Hitachi Magnet Wire Corp ポリアミドイミド樹脂絶縁塗料及びそれを用いた絶縁電線
JP2010224337A (ja) 2009-03-25 2010-10-07 Toppan Printing Co Ltd カラーフィルタ基板、その製造方法及び液晶表示装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USB462089I5 (ja) * 1961-03-31
IT1173045B (it) * 1984-01-17 1987-06-18 Pirelli Cavi Spa Cavo elettrico ad olio fluido perfezionato
IT1231486B (it) * 1988-10-21 1991-12-07 Pirelli Cavi Spa Cavo elettrico con isolante stratificato impregnato di un fluido iso lante e formato da avvolgimenti di nastri di un laminato comprendente uno straterello di carta ed un film di materiale polimerico
US5337941A (en) * 1993-03-31 1994-08-16 The Furukawa Electric Co., Ltd. Magnet wire having a high heat resistance and a method of removing insulating film covering magnet wire
IT1269822B (it) * 1994-05-24 1997-04-15 Pirelli Cavi Spa Cavo per alte tensioni
JPH08264349A (ja) * 1995-03-20 1996-10-11 Hitachi Ltd 乾式変圧器巻線
US5675299A (en) * 1996-03-25 1997-10-07 Ast Research, Inc. Bidirectional non-solid impedance controlled reference plane requiring no conductor to grid alignment
DE69704528T2 (de) * 1996-08-30 2002-03-28 Yamaha Corp Verfahren und Vorrichtung zur Erzeugung von Musiktönen, zur Bearbeitung und Wiedergabe von Musikdaten mit Hilfe von Speichermitteln
US5902681A (en) * 1996-11-08 1999-05-11 Sumitomo Electric Industries, Ltd. Insulated wire
US6288342B1 (en) * 1998-12-15 2001-09-11 Sumitomo Electric Industries, Ltd. Insulated wire
DE19923799A1 (de) * 1999-02-23 2000-09-14 Tai I Electric Wire & Cable Co Cr¶2¶O¶3¶ enthaltende Lackdrähte, die gegen Pulsspannungsstöße beständig sind
CN1868095B (zh) * 2003-09-05 2010-06-16 尼威尔公司 电线及其制造方法
FR2888389B1 (fr) * 2005-07-05 2007-08-31 Arkema Sa Structure multicouche isolante
US20100078196A1 (en) * 2007-12-19 2010-04-01 Mclaughlin Thomas Category cable using dissimilar solid multiple layer
JP5320639B2 (ja) * 2008-02-13 2013-10-23 日立電線株式会社 絶縁電線
JP5243880B2 (ja) * 2008-08-05 2013-07-24 日立電線株式会社 絶縁電線
JP5306742B2 (ja) * 2008-08-28 2013-10-02 古河電気工業株式会社 絶縁ワイヤ
US8679628B2 (en) * 2009-06-18 2014-03-25 Hitachi Cable, Ltd. Insulated wire

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136405A (en) * 1979-04-11 1980-10-24 Sumitomo Electric Industries Rubber plastic insulated cable
JPS5669714A (en) * 1979-11-09 1981-06-11 Hitachi Cable Electric power cable
JPS57152612A (en) * 1981-03-16 1982-09-21 Hubbell Inc Harvey Insulating high voltage cable
JPH03152804A (ja) * 1989-11-09 1991-06-28 Fujikura Ltd 絶縁電線
JPH0621118U (ja) * 1992-08-21 1994-03-18 株式会社潤工社 絶縁電線および同軸ケーブル
JP2001155551A (ja) 1999-11-30 2001-06-08 Sumitomo Electric Ind Ltd 絶縁電線
JP2002056720A (ja) 2000-08-10 2002-02-22 Nippon Shokubai Co Ltd 巻線の絶縁被覆材料
JP2005302597A (ja) * 2004-04-14 2005-10-27 Hitachi Cable Ltd エナメル線及びそれに用いる絶縁塗料
JP2009161683A (ja) 2008-01-09 2009-07-23 Hitachi Magnet Wire Corp ポリアミドイミド樹脂絶縁塗料及びそれを用いた絶縁電線
JP2010224337A (ja) 2009-03-25 2010-10-07 Toppan Printing Co Ltd カラーフィルタ基板、その製造方法及び液晶表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680698A (zh) * 2012-09-04 2014-03-26 日立金属株式会社 绝缘电线和使用该绝缘电线的线圈
JP2014063601A (ja) * 2012-09-20 2014-04-10 Hitachi Metals Ltd 絶縁電線及びそれを用いたコイル
JP5972375B2 (ja) * 2013-02-07 2016-08-17 古河電気工業株式会社 絶縁電線及びモータ
JP2017059540A (ja) * 2013-02-07 2017-03-23 古河電気工業株式会社 エナメル樹脂絶縁積層体並びにそれを用いた絶縁ワイヤ及び電気・電子機器

Also Published As

Publication number Publication date
EP2555204A4 (en) 2014-06-25
EP2555204B1 (en) 2018-02-14
EP2555204A1 (en) 2013-02-06
CN102782773A (zh) 2012-11-14
CN102782773B (zh) 2015-12-02
JPWO2012043839A1 (ja) 2014-02-24
KR20130024880A (ko) 2013-03-08
JP5877159B2 (ja) 2016-03-02
US20120285724A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5877159B2 (ja) 絶縁電線
CN109074909B (zh) 绝缘电线、线圈和电气/电子设备
JP7423509B2 (ja) 絶縁ワイヤ、コイル及び電気・電子機器
JP6839695B2 (ja) 絶縁電線、モーターコイルおよび電気・電子機器
US20160322126A1 (en) Insulated wire, coil, and electrical/electronic equipment, and method of preventing cracking of insulated wire
US10032540B2 (en) Multilayer insulated wire, coil, and electrical/electronic equipment
JPWO2015033821A1 (ja) 平角電線およびその製造方法並びに電気機器
KR20150118015A (ko) 절연 전선 및 모터
JPWO2015098640A1 (ja) 絶縁ワイヤ、コイルおよび電子・電気機器
JP6932642B2 (ja) 絶縁電線、絶縁電線の製造方法、コイル、回転電機および電気・電子機器
JP7405750B2 (ja) 絶縁電線、コイル、及び電気・電子機器
WO2012153636A1 (ja) ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ
JP4904312B2 (ja) 耐インバータサージ絶縁ワイヤおよびその製造方法
JP2011159578A (ja) 絶縁電線及びそれを用いた電機コイル、モータ
JP7257558B1 (ja) 絶縁電線、コイル、回転電機および電気・電子機器
JP6490505B2 (ja) 絶縁電線、コイル及び電気・電子機器
JP2012097177A (ja) ポリアミドイミドワニス及びそれを用いた絶縁電線、電気コイル、モータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008178.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829392

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012536602

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011829392

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127020276

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE