WO2012043525A1 - 円柱状ボンド磁石 - Google Patents

円柱状ボンド磁石 Download PDF

Info

Publication number
WO2012043525A1
WO2012043525A1 PCT/JP2011/071984 JP2011071984W WO2012043525A1 WO 2012043525 A1 WO2012043525 A1 WO 2012043525A1 JP 2011071984 W JP2011071984 W JP 2011071984W WO 2012043525 A1 WO2012043525 A1 WO 2012043525A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
cylindrical
bond magnet
columnar
magnetic
Prior art date
Application number
PCT/JP2011/071984
Other languages
English (en)
French (fr)
Inventor
公平 井原
松村 周治
敬貴 西野
Original Assignee
日亜化学工業株式会社
アイ・アンド・ピー株式会社
ケイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日亜化学工業株式会社, アイ・アンド・ピー株式会社, ケイテック株式会社 filed Critical 日亜化学工業株式会社
Priority to US13/822,636 priority Critical patent/US8830019B2/en
Publication of WO2012043525A1 publication Critical patent/WO2012043525A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • H01F7/0278Magnetic circuits with PM for magnetic field generation for generating uniform fields, focusing, deflecting electrically charged particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/34Reciprocating, oscillating or vibrating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present invention relates to a structure of a columnar or cylindrical bonded magnet in which N poles and S poles are alternately magnetized in the axial direction.
  • a columnar magnet or a cylindrical magnet in which a plurality of permanent magnets are arranged so that the same kind of magnetic poles face each other is used in various fields.
  • it is used in a foreign matter removing device for removing iron powder and the like from foods, and a linear motor stator (Patent Documents 1 to 3).
  • Such columnar magnets and cylindrical magnets have N poles and S poles alternately formed radially on the outer peripheral surface thereof in the axial direction of the magnet.
  • the magnetic lines of force extend radially from the N pole in the direction orthogonal to the axial direction, and the magnetic lines of force are large toward the S pole adjacent to the N pole.
  • Draw an arc for the magnetic pole generated on the outer peripheral surface of such a magnet, for example, for the N pole, the magnetic lines of force extend radially from the N pole in the direction orthogonal to the axial direction, and the magnetic lines of force are large toward the S pole adjacent to the N pole.
  • a columnar or cylindrical alternating multipolar magnet As a result, many magnetic fields can be formed on the outer peripheral surface of the columnar magnet or cylindrical magnet. Therefore, when such a magnet is used for a linear motor or a linear actuator, a strong driving force can be obtained.
  • a magnet is referred to as a columnar or cylindrical alternating multipolar magnet.
  • the mover In order to use a columnar or cylindrical alternating multipole magnet for a linear motor or a linear actuator, when the stator is composed of the magnet, the mover is in the axial direction of the columnar or cylindrical alternating multipole magnet. Coils arranged concentrically in the orthogonal direction are provided (Patent Documents 2 to 3). The mover can obtain thrust in the axial direction of the columnar or cylindrical alternating multipolar magnets by the interaction between the current flowing through the coil and the magnetic field created by the permanent magnets that constitute the stator.
  • JP 2003-303714 A Japanese Patent Laid-Open No. 2005-73466 Japanese Patent No. 3952190 JP 2010-130728 A
  • the coil arranged concentrically in the direction orthogonal to the axial direction of the magnet provided in the mover
  • the lines of magnetic force emerging from the magnetic poles on the outer peripheral surface of the magnet had to reach the coil in a radial manner while maintaining a direction orthogonal to the axial direction of the magnet.
  • the magnetic field lines oriented in the direction orthogonal to the direction of thrust which is the axial direction of the magnet, exerts thrust on the current flowing in the coil of the mover, but the magnetic lines of force are directed in the direction of thrust, which is the axial direction of the magnet.
  • the magnetic field lines of conventional columnar or cylindrical alternating multipole magnets create a magnetic field in the radial direction, but many of the magnetic field lines that emerge from this magnet are radial in the direction perpendicular to the axial direction of the magnet. And draw an arc and proceed to the adjacent pole.
  • many of the magnetic lines of force that have emerged from the north pole of the magnet 601 extend radially in a direction perpendicular to the axial direction of the magnet, and to each south pole adjacent to the front and rear of the north pole. A large arc will be drawn while being dispersed.
  • the line of magnetic force is directed in the direction perpendicular to the axial direction of the magnet on the outer peripheral surface of the magnet, but deviates from the direction orthogonal to the axial direction of the magnet as the distance from the outer peripheral surface of the magnet increases. It becomes. Therefore, many magnetic lines of force are not effective with respect to the current flowing through the coil provided in the mover, that is, many of the magnetic lines do not reach a straight line.
  • the magnetic lines of force of the columnar or cylindrical alternating multipole magnets constituting the stator extend radially in a direction perpendicular to the axial direction of the magnet, and thus extend radially.
  • different magnetic poles with a strong magnetic field are made over the outer peripheral surface of the magnet so as to surround the magnetic pole generated on the outer peripheral surface of the magnet. There must be.
  • the cylindrical alternating multipole that becomes another stator so as to surround the stator further A magnet must be provided.
  • adhesion is performed while arranging multiple pieces of columnar and cylindrical sintered magnets magnetized in the axial direction so that the same poles face each other. It was necessary to bond with the agent.
  • the same kind of magnetic poles must be opposed to each other, and it is very dangerous because it receives a large repulsive force, so that workability is poor and the jig is solidified until the adhesive is solidified.
  • the present invention has been made in view of such conventional problems, and its main object is to form a magnetic field orthogonal to the direction of thrust and to be used in various fields, such as linear motors and linear actuators. It is providing the structure of the cylindrical bond magnet which can comprise.
  • a cylindrical shape formed such that one or more pairs of N poles and S poles appear alternately along the longitudinal direction. It has a cylindrical shape that is arranged so as to surround the outer periphery of the columnar bond magnet around the axis of the columnar bond magnet, and has an inner periphery along the longitudinal direction of the columnar bond magnet.
  • a cylindrical bonded magnet formed so that one or more pairs of N poles and S poles alternately appear, and in the direction perpendicular to the axis of the cylindrical bonded magnet, The magnetic poles of the bond magnet and the inner peripheral magnetic pole of the cylindrical bond magnet can be arranged to have different polarities.
  • the cylinder positioned in the direction perpendicular to the axial direction of the columnar bonded magnet is configured such that the lines of magnetic force that emerge from the circumferential magnetic pole of the columnar bonded magnet are aligned.
  • the magnetic field lines extending from the magnetic pole on the inner periphery of the cylindrical bond magnet are moved radially about the axis of the cylindrical bond magnet. It can advance toward the magnetic pole of the circumference of the cylindrical bond magnet located in the direction orthogonal to the axial direction.
  • the magnetic lines of force generated from the magnetic poles of the cylindrical bond magnet are directed to the adjacent different poles of the cylindrical bond magnet, and the magnetic lines of force generated from the magnetic poles on the inner peripheral surface of the cylindrical bond magnet are Because the magnet structure is such that the direction of the magnetic flux toward the adjacent different pole of the bond magnet is in a direction opposite to each other, the magnetic flux is not directed to the adjacent different pole of the same magnet, and the cylindrical bond in which the directions of the magnetic flux are aligned. It heads for the magnetic pole of the cylindrical bond magnet located in the direction orthogonal to the axis of the magnet.
  • the magnetic field lines coming out of the circumferential magnetic pole of the cylindrical bond magnet move from the magnetic pole to the inner magnetic pole of the cylindrical bond magnet located in a direction perpendicular to the axial direction of the cylindrical bond magnet.
  • the magnetic field lines emanating from the inner magnetic pole of the cylindrical bond magnet advance from the magnetic pole to the circumferential magnetic pole of the cylindrical bond magnet located in a direction perpendicular to the axial direction of the cylindrical bond magnet. be able to.
  • the first surface magnetic flux density profile obtained by measuring the surface magnetic flux density along the circumference of the cylindrical bond magnet is a circle of the cylindrical bond magnet.
  • a second surface that is long in the first direction passing through the center in the cross section, the second direction orthogonal to the first direction is shorter than the first direction, and the surface magnetic flux density is measured along the inner circumference of the cylindrical bond magnet.
  • the length of the first surface magnetic flux density profile obtained by measuring the surface magnetic flux density along the circumference of the cylindrical bond magnet and the second surface magnetic flux obtained by measuring the surface magnetic flux density along the inner circumference of the cylindrical bond magnet is smoothed. That is, it is possible to smooth the profile balance of the magnetic field in the direction orthogonal to the axial direction of the cylindrical bonded magnet that is the direction of thrust.
  • the cylindrical bonded magnet can be configured to divide the hollow portion of the cylinder along the axial direction.
  • the columnar bonded magnet and the cylindrical bonded magnet can be integrally formed.
  • the pitch between the different magnetic poles adjacent to each other in the longitudinal direction of the cylindrical bond magnet constituting the present magnet structure, and the pitch between the different magnetic poles adjacent to each other in the longitudinal direction of the cylindrical bond magnet constituting the present magnet structure. Can be aligned.
  • a cylindrical bond magnet formed such that one or more pairs of N poles and S poles appear alternately along the longitudinal direction, and the cylindrical bond It can be constituted by a combination with a yoke material constituting a magnetic circuit arranged so as to surround the outer periphery of the cylindrical bonded magnet around the magnet axis.
  • the cylindrical bond magnet magnetized alternately in multipoles along the longitudinal direction, and the cylindrical bond magnet around the axis of the cylindrical bond magnet A cylindrical bond magnet that is arranged so as to surround the outer periphery of the cylindrical bond magnet, and whose inner periphery is alternately multipolar magnetized along the longitudinal direction of the cylindrical bond magnet, and the magnetic pole of the cylindrical bond magnet and the cylinder It can arrange
  • the concave portion of the surface magnetic flux density profile obtained by measuring the surface magnetic flux density along the circumference of the cylindrical bond magnet, and the inside of the cylindrical bond magnet can be arranged so that the convex portions of the surface magnetic flux density profile obtained by measuring the surface magnetic flux density along the circumference substantially coincide with each other.
  • FIG. 2 is a horizontal sectional view taken along line II-II in FIG. It is a vertical sectional view showing a magnet structure according to another embodiment.
  • FIG. 4 is a horizontal sectional view taken along line IV-IV in FIG. 3.
  • FIG. 4 is a horizontal sectional view showing only a magnet among the sectional views taken along the line II-II in FIG. 1 and the line IV-IV in FIG. 3.
  • FIG. 6 is a horizontal sectional view showing a second surface magnetic flux density profile by a single magnet on the outer side among the magnets shown in FIG. 5.
  • FIG. 8 is a horizontal sectional view showing a third surface magnetic flux density profile in which the magnet of FIG. 6 and the magnet of FIG. 7 are combined.
  • FIG. 4 is a vertical sectional view showing a magnetic path of the magnet structure according to FIGS. 1 and 3.
  • FIG. 4 is a vertical sectional view showing a magnetic path of each of a columnar bonded magnet and a cylindrical bonded magnet of the magnet structure according to FIGS. 1 and 3. It is a vertical sectional view showing lines of magnetic force on the opposing surfaces of a cylindrical bond magnet and a cylindrical bond magnet.
  • It is a perspective view which shows a mode that a cylindrical bond magnet is integrally molded.
  • It is a horizontal sectional view showing an example in which a cylindrical bonded magnet is divided into two parts.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and a plurality of elements are shared by some members, and conversely, functions of some members are plural. It can also be realized by sharing with members.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • FIG. 1 shows a schematic vertical sectional view of a cylindrical bonded magnet according to an embodiment of the present invention
  • FIG. 2 shows a horizontal sectional view thereof
  • 3 shows a schematic vertical sectional view of a cylindrical bonded magnet according to another embodiment
  • FIG. 4 shows a horizontal sectional view thereof.
  • FIG. 9 is a diagram schematically showing the magnetic path of the magnet structure of FIGS. 1 and 3.
  • FIG. 10 shows a schematic magnetic path of magnetic flux when each of the columnar bond magnet and the cylindrical bond magnet constituting the magnet structure is used alone.
  • the edge portion of the support portion (movable element) 105 is not shown for ease of explanation.
  • the method described in the specification of Japanese Patent Application No. 2009-268143 can be used. Moreover, it is manufactured by alternating multi-pole bonded magnets manufactured by other manufacturing methods including the orientation method during molding, or by the method of assembling the magnet pieces one by one as in the past, although the productivity is low.
  • alternate multipolar sintered magnets can be used. That is, one or more pairs of N poles and S poles appear alternately in the longitudinal direction, and any combination of columnar and cylindrical magnets having a magnetic path schematically shown in FIG.
  • when it is a bond magnet you may implement the magnet arrangement
  • FIG. 9 The magnetic flux density distribution between the columnar bonded magnet 101 and the cylindrical bonded magnet 102 shown in FIG. 9 differs depending on the distance between the magnets.
  • FIGS. the magnetic flux density distribution obtained by the magnetic field simulation by the finite element method is shown in FIGS.
  • a magnet having a residual magnetic flux density of 1 T, a coercive force of 758 kA / m, and a magnetic permeability of 1.05 H / m is assumed.
  • the pitch between the N pole and the S pole of each bonded magnet was 7 mm
  • the radius of the cylindrical bonded magnet 101 was 3.25 mm
  • the difference between the inner diameter and the outer diameter of the cylindrical bonded magnet 102 was 3.25 mm.
  • FIG. 17 shows the case where the distance between the magnets is 2 mm
  • FIG. 18 shows the case where the distance between the magnets is 5 mm.
  • FIG. 1 is different from FIG. 1 in that FIG. 1 includes a magnet in the stator and a coil in the mover, whereas FIG. 3 includes a coil in the stator and a magnet in the mover.
  • FIG. 1 when the moving direction of the support portion (movable element) 105 is B, the direction of the current flowing through the coil 103a is clockwise when viewed from the direction of FIG. 2, and the direction of the current flowing through the coil 103b is as shown in FIG. It is counterclockwise when viewed from the direction of.
  • FIG. 3 when the moving direction of the support portion (movable element) 105 is B, the direction of the current flowing through the coil 103a is counterclockwise when viewed from the direction of FIG. 4, and the direction of the current flowing through the coil 103b is As seen from the direction of FIG.
  • FIG. 1 and 3 show one embodiment of a set of N and S, but the embodiment can be implemented with two or more alternating magnets of N and S.
  • the support part (mover) 105, the support part (stator) 106, and the coil support part 102 are schematically attached for the description of the columnar bonded magnet according to the embodiment of the present invention.
  • the present invention is not limited to this.
  • FIG. 5 is a horizontal sectional view taken along the line II-II in FIG. 1 and the line IV-IV in FIG. 3, and FIG. 5 and FIG. 4 show only the cylindrical bond magnet 101 and the cylindrical bond magnet 102 for explanation.
  • FIG. The first and second surface magnetic flux profiles shown in FIGS. 6 and 7 schematically show the surface magnetic flux density distribution of the same value measured along the circumference of the cylindrical bond magnet and the inner circumference of the cylindrical bond magnet, respectively. ing.
  • the first surface magnetic flux density profile of the cylindrical bonded magnet shown in FIG. 6 is long in the first direction B passing through the center line, and is short in the second direction C crossing the first direction B and passing through the center line. .
  • a surface magnetic flux density profile that is not point-symmetric with respect to the center in this way for example, by molding with a mold 30 that is divided into two so as to be sandwiched from the left and right of a cylindrical bond magnet 101. Obtainable.
  • the magnetic powder is insufficiently oriented at the time of injection molding above and below the cylindrical bond magnet where the mating surfaces of the molds 30 are located, and the magnetic flux density is lowered.
  • the second surface magnetic flux density profile of the cylindrical bonded magnet shown in FIG. 7 is short in the first direction D that passes through the center line, and is long in the second direction E that intersects the first direction D and passes through the center line. ing.
  • the cylindrical bond magnet of FIG. 6 and the cylindrical bond magnet of FIG. 7 are arranged so that the B direction and the D direction and the C direction and the E direction are aligned as shown in FIG.
  • the synthesized third surface magnetic flux density profile 50 can complement one of the weak magnetic flux density regions on the other side as shown by a thick broken line in FIG. Strong magnetic flux density can be realized.
  • the conventional magnetic field lines have many components that are curved in an arc as shown in FIG.
  • the cylindrical bonded magnet is not limited to the integrally formed configuration, and can be configured to divide the hollow portion of the cylinder along the axial direction. By doing in this way, it becomes easy to raise magnetic force. That is, if an attempt is made to obtain a cylindrical bonded magnet that is integrally molded in advance in a cylindrical shape, a rod-shaped magnet for orientation that is inserted into the center of the cylindrical shape when being molded with the mold 34 as shown in FIG. The size of 32 will be limited. Particularly when the cylindrical bonded magnet is downsized, the orientation bar magnet 32 must be downsized, but it is not easy to increase the magnetic force of the small bar magnet.
  • the above cylindrical bonded magnet can intensively form an effective linear magnetic field orthogonal to the direction of thrust in a 360-degree radial manner, the conventional magnetic force deficiency that has been a problem with bonded magnets has been generated. It can be compensated by increasing the effective magnetic flux density for the electric field provided for the purpose. As its application, it can be used as a linear motor or a linear actuator.
  • actuators that perform linear reciprocating motions that include multiple elements such as compact and light weight that are difficult to realize with sintered magnets, less cracking and chipping, require dimensional accuracy, and support for the pitch between narrow magnetic poles. It is also effective as a magnet structure for an actuator with a small size.
  • the cylindrical bonded magnet can intensively form an effective linear magnetic field orthogonal to the direction of thrust in a 360-degree radial manner, the magnetic field region having an effective magnetic flux density is wider in the direction of the electric field than in the past.
  • the effective area of the electric field provided for generating the thrust is also widened. That is, the fact that a magnetic field region having a wider effective magnetic flux density can be secured has produced an effect of expanding the options of the number of turns and thickness of the coils combined as an electric field. This contributes to the effect of increasing the number of turns of the coil and increasing the thrust, and securing the maximum power amount by increasing the thickness of the coil.
  • the present invention also provides an effect of widening the range of selection conditions between the configuration in which the coil is provided in the mover and the configuration in which the magnet is provided in the stator.
  • the profile balance of the magnetic field formed radially in the direction perpendicular to the thrust direction axis can be smoothed. This can be expected to improve the thrust direction stability.
  • the distribution of the magnetic flux density by the combination of the columnar bond magnet and the cylindrical bond magnet obtained by the magnetic field simulation by the finite element method is shown in the graph of FIG.
  • the angle position [deg] indicated by the horizontal axis is the angle position in the horizontal sectional view of the columnar and cylindrical bond magnets shown in FIG. That is, the angular position shown in FIG. 20 represents 90 ° in the counterclockwise direction when an arbitrary center line passing through the center of the cylindrical bonded magnet 101 in FIG.
  • the radius of the cylindrical bond magnet 101 is 10 mm
  • the difference between the inner diameter and the outer diameter of the cylindrical bond magnet 102 is 5 mm
  • the distance between the outer diameter of the cylindrical bond magnet 101 and the inner diameter of the cylindrical bond magnet 102 is 5 mm.
  • the pitch between the N pole and S pole of each bonded magnet was 7 mm.
  • the magnetic permeability of each bonded magnet was 1.05 H / m.
  • the setting of the residual magnetic flux density is continuously changed in the cylindrical bonded magnet 101, with 0 ° being the maximum value 1T and 90 ° being the minimum value 0.5T.
  • 0 ° is continuously changed to a minimum value of 0.5T, and 90 ° is continuously changed to a maximum value of 1T.
  • the observation point of the magnetic flux density distribution by the simulation shown in FIG. 20 is an intermediate point between the outer diameter of the cylindrical bond magnet 101 and the inner diameter of the cylindrical bond magnet 102.
  • the magnet structure shown in this specification has a cylindrical magnet arranged so as to surround the cylindrical bond magnet around the axis of the cylindrical bond magnet, and is positioned in a direction perpendicular to the axis of the cylindrical bond magnet.
  • the magnetic poles of the columnar bonded magnet and the inner peripheral magnetic pole of the cylindrical bonded magnet are different from each other, but the present invention is not limited to this. That is, a cylindrical bond magnet formed so that one or more pairs of N poles and S poles appear alternately along the longitudinal direction, and arranged so as to surround the cylindrical bond magnet around the axis of the cylindrical bond magnet You may comprise by the combination with the cylindrical yoke material for comprising the made magnetic circuit.
  • the cylindrical yoke material Since the cylindrical yoke material has an action of drawing magnetic lines of force generated from the magnetic poles of the columnar magnet, an effective linear magnetic field orthogonal to the direction of thrust can be effectively formed.
  • the material used for the yoke material is preferably a material having a relative magnetic permeability of 1000 or more and a maximum magnetic flux density of 1T or more. As the relative permeability and the maximum permeability are larger, the magnetic resistance at the cylindrical yoke portion can be reduced, and the lines of magnetic force generated from the magnetic poles of the columnar magnet can be efficiently drawn.
  • the cylindrical bonded magnet of the present invention can be suitably used as a linear motor or a linear actuator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Linear Motors (AREA)
  • Electromagnets (AREA)

Abstract

【課題】推力の方向に直交する磁場を形成可能な円柱状ボンド磁石の構造を提供する。 【解決手段】長手方向に沿ってN極とS極が交互に1組以上出現するように形成された円柱状ボンド磁石と、その円柱状ボンド磁石を囲むように、長手方向に沿って内周にN極とS極が交互に1組以上出現するように形成された円筒状ボンド磁石を配置する。その円柱状ボンド磁石の磁極と円筒状ボンド磁石の内周の磁極とは、推力の方向である円柱状ボンド磁石の軸に直交する方向に位置し、互いに異極となるように組合せることにより、推力の方向に直交する磁場を形成する。表面磁束密度プロファイルバランスの平滑化は、円柱状ボンド磁石と円筒状ボンド磁石の表面磁束密度プロファイル間の長短の組合せによる。

Description

円柱状ボンド磁石
 本発明は、軸方向にN極とS極が交互に磁化された円柱状又は円筒状ボンド磁石の構造に関する。
 同種の磁極が対向するように複数の永久磁石を配置させた柱状磁石又は筒状磁石は、様々な分野で使用されている。例えば、食品から鉄粉等を除去するための異物除去装置や、リニアモータの固定子に用いられている(特許文献1~3)。このような柱状磁石や筒状磁石は、その外周面において磁石の軸方向にN極とS極が放射状に交互に形成されている。このような磁石の外周面に発生した磁極は、例えばN極については、N極から軸方向に対して直交する方向に放射状に磁力線が伸び、そのN極と隣接するS極へと磁力線が大きな弧を描く。その結果、柱状磁石や筒状磁石の外周面に多くの磁場を形成することができる。そのため、このような磁石をリニアモータやリニアアクチュエータに利用した場合には、強い推進力を得ることができる。以下、このような磁石のことを柱状又は筒状の交互多極磁石と呼ぶ。
 柱状又は筒状の交互多極磁石をリニアモータやリニアアクチュエータに利用するために、固定子をその磁石で構成する場合、可動子は、柱状又は筒状の交互多極磁石の軸方向に対して直交する方向に同心円状に配置されたコイルを備えている(特許文献2~3)。その可動子は、前記コイルに流れる電流と固定子を構成する永久磁石が作る磁場とが相互作用をすることにより、柱状又は筒状の交互多極磁石の軸方向に推力を得ることができる。
特開2003-303714号公報 特開2005-73466号公報 特許第3952190号公報 特開2010-130728号公報
 上述の場合において、可動子がその磁石の軸方向に最も効率よく推力を得るには、可動子に備えられるその磁石の軸方向に直交する方向に同心円状に配置されたコイルに対して、その磁石の外周面の磁極から出る磁力線は、その磁石の軸方向と直交する方向を保ちながら放射状にそのコイルに達する必要があった。なぜなら、その磁石の軸方向である推力の方向に直交する方向に向いた磁力線は、可動子が備えるコイルに流れる電流に推力を及ぼすが、その磁石の軸方向である推力の方向に向いた磁力線は、可動子が備えるコイルに流れる電流に推力を及ぼさないからである。このため、固定子を構成する柱状又は筒状の交互多極磁石が作る磁場と、可動子が備えるコイルを流れる電流とを、最も効果的に効率よく相互作用させるためには、推力の方向と直交する方向、すなわち固定子を構成するその磁石の軸方向に直交する方向に、その磁石の外周面に発生した磁極から出る磁力線を、如何に多く直線的に、可動子が備えるコイルに流れる電流に到達させられるかが課題となる。
 この課題に対して、従来の柱状又は筒状の交互多極磁石の磁力線は、径方向に磁場を作るものの、この磁石から出る磁力線の多くがその磁石の軸方向に対して直交する方向に放射状に伸び、弧を描き隣接する異極へと進む。例えば、図16に示すように、磁石601のN極から出た磁力線の多くは、その磁石の軸方向に対して直交する方向に放射状に伸び、そのN極の前後に隣接する各S極へと分散しながら大きな弧を描くこととなる。つまり、その磁力線は、その磁石の外周面ではその磁石の軸方向に対して直交する方向に向くが、その磁石の外周面から離れるに従い、その磁石の軸方向に対して直交する方向から外れることとなる。したがって、可動子が備えるコイルに流れる電流に対して、多くの磁力線が効果的に、すなわち多くの磁力線が直線状に到達しているわけではない。
 これに対して、固定子を構成する柱状又は筒状の交互多極磁石の外周面に発生した、ある磁極から出る多くの磁力線を、その磁極からその磁石の軸方向と直交する方向の可動子が備えるコイルに流れる電流に直線状に到達させるためには、その磁極からその磁石の軸方向と直交する方向でかつそのコイルを越えた位置に、その磁極から出た磁力線がその磁石の隣接する異極へと向かわないほどの強い磁場を備えた、異なる磁極を作ることが考えられる。そのことを磁石全体で考えると、固定子を構成する柱状又は筒状の交互多極磁石の磁力線は、その磁石の軸方向に対して直交する方向に放射状に伸びているため、その放射状に伸びた磁力線がその磁石の隣接する異極へと向かわないようにするためには、この磁石の外周面に発生した磁極を取り囲むように、その磁石の外周面にわたって強い磁場を備えた異なる磁極を作らなければならない。
 しかしながら、上記を実現するには、固定子を構成する柱状又は筒状の交互多極磁石の外周側に、さらにその固定子を取り囲むように、もう一つの固定子となる筒状の交互多極磁石を設けなければならない。従来、柱状又は筒状の交互多極磁石を製造する場合には、軸方向に着磁された、柱状及び筒状の焼結磁石の複数ピースを同極が対向するように配置しながら、接着剤により接着する必要があった。この方法では、磁石を組み立てる際に、同種の磁極同士を対向させなければならず、大きな反発力を受けるため非常に危険であり、作業性が悪く、また接着剤が固化するまでの間、冶具で磁石を固定する必要もあって、生産性が低いという問題があった。その上さらに、外周側にも、もう一つの固定子となる筒状の交互多極磁石を強い磁場を発生させるためにこの方法で構成することは、更なる作業性と生産性の悪化に繋がる。加えて、固定子外周側のもう一つの固定子となる筒状の交互多極磁石側では、内周面のみならず外周面にも磁極が分散して発生してしまい、効率よく強い磁場をその内周面に作る上での課題ともなる。
 本発明は、従来のこのような問題点に鑑みてなされたものであり、その主な目的は、推力の方向に直交する磁場を形成可能で、様々な分野に利用可能なリニアモータやリニアアクチュエータを構成できる円柱状ボンド磁石の構造を提供することにある。
課題を解決するための手段及び発明の効果
 上記目的を達成するため、本発明の第1の側面に係る円柱状ボンド磁石によれば、長手方向に沿ってN極とS極とが交互に1組以上出現するように形成された円柱状ボンド磁石と、前記円柱状ボンド磁石の軸を中心に、該円柱状ボンド磁石の外周を囲むように配置される円筒形状を有し、該円柱状ボンド磁石の長手方向に沿ってその内周にN極とS極とが交互に1組以上出現するように形成された円筒状ボンド磁石と、を備える磁石構造体であって、前記円柱状ボンド磁石の軸と直交する方向において、該円柱状ボンド磁石の磁極と前記円筒状ボンド磁石の内周の磁極とが、互いに異極となるように配置できる。
 また本発明の第2の側面に係る円柱状ボンド磁石によれば、前記円柱状ボンド磁石の円周の磁極から出る磁力線を、該円柱状ボンド磁石の軸方向と直交する方向に位置する前記円筒状ボンド磁石の内周の磁極に向かって、前記円柱状ボンド磁石の軸を中心に放射状に進行させており、前記円筒状ボンド磁石の内周の磁極から出る磁力線を、前記円柱状ボンド磁石の軸方向と直交する方向に位置する前記円柱状ボンド磁石の円周の磁極に向かって進行させることができる。すなわち、円柱状ボンド磁石の磁極より出た磁力線が、同円柱状ボンド磁石の隣接する異極へと向かう磁束方向と、円筒状ボンド磁石の内周面の磁極より出た磁力線が、同円筒状ボンド磁石の隣接する異極へと向かう磁束方向とが互いに相反する方向となる磁石構造体のため、磁束は互いに同磁石の隣接する異極へとは向かわず、磁束の方向が揃う円柱状ボンド磁石の軸に直交する方向に位置する円柱状ボンド磁石の磁極へと向かう。この結果、円柱状ボンド磁石の円周の磁極から出る磁力線が、磁極より円柱状ボンド磁石の軸方向に直交する方向に位置する円筒状ボンド磁石の内周の磁極へと円柱状ボンド磁石の軸を中心に放射状に進み、円筒状ボンド磁石の内周の磁極から出る磁力線が、磁極より円柱状ボンド磁石の軸方向に直交する方向に位置する円柱状ボンド磁石の円周の磁極へと進ませることができる。
 さらに本発明の第3の側面に係る円柱状ボンド磁石によれば、前記円柱状ボンド磁石の円周に沿って表面磁束密度を測定した第一表面磁束密度プロファイルが、該円柱状ボンド磁石の円状断面において中心を通る第一方向に長く、前記第一方向と直交する第二方向が前記第一方向より短く、前記円筒状ボンド磁石の内周に沿って表面磁束密度を測定した第二表面磁束密度プロファイルが、前記円筒状ボンド磁石の円状断面において中心を通る第一方向に長く、前記第一方向と直交する第二方向が前記第一方向より短い場合に、前記円柱状ボンド磁石の第一方向と前記円筒状ボンド磁石の第一方向とを互いに直交する方向になるように、前記円柱状ボンド磁石と前記円筒状ボンド磁石を配置することができる。これにより、前記円柱状ボンド磁石の円周に沿って表面磁束密度を測定した第一表面磁束密度プロファイルの長短と前記円筒状ボンド磁石の内周に沿って表面磁束密度を測定した第二表面磁束密度プロファイルの長短とが平滑化される。すなわち、推力の方向となる前記円柱状ボンド磁石の軸方向に対して直交する方向の磁場のプロファイルバランスを平滑化させることができる。
 さらにまた本発明の第4の側面に係る円柱状ボンド磁石によれば、前記円筒状ボンド磁石が、円筒の中空部分を軸方向に沿って分割するように構成することができる。これにより、円筒状ボンド磁石を一体物とせず、長手方向に沿うように分割された部材を連結して構成することで、成形時に磁力を高めることが容易となる利点が得られる。
 さらにまた本発明の第5の側面に係る円柱状ボンド磁石によれば、前記円柱状ボンド磁石と円筒状ボンド磁石とを一体成形することができる。これにより、本磁石構造体を構成する円柱状ボンド磁石の長手方向に隣接する異磁極間のピッチと、同じく本磁石構造体を構成する円筒状ボンド磁石の長手方向に隣接する異磁極間のピッチとを揃えることができる。
 さらに本発明の第6の側面に係る磁石構造体によれば、長手方向に沿ってN極とS極が交互に1組以上出現するように形成された円柱状ボンド磁石と、前記円柱状ボンド磁石の軸を中心に、前記円柱状ボンド磁石の外周を囲むよう配置された磁気回路を構成するヨーク材料との組み合わせで構成できる。
 さらに本発明の第7の側面に係る磁石構造体によれば、長手方向に沿って交互多極磁化された円柱状ボンド磁石と、前記円柱状ボンド磁石の軸を中心に、該円柱状ボンド磁石の外周を囲むように配置され、該円柱状ボンド磁石の長手方向に沿って内周が交互多極磁化された円筒状ボンド磁石と、を備えており、前記円柱状ボンド磁石の磁極と前記円筒状ボンド磁石の内周の磁極とが、互いに異極となるよう配置することができる。
 さらに本発明の第8の側面に係る磁石構造体によれば、前記円柱状ボンド磁石の円周に沿って表面磁束密度を測定した表面磁束密度プロファイルの凹状部分と、前記円筒状ボンド磁石の内周に沿って表面磁束密度を測定した表面磁束密度プロファイルの凸状部分が、略一致するように、前記円柱状ボンド磁石と前記円筒状ボンド磁石を配置することができる。
本発明の一実施の形態に係る磁石構造体を示す垂直断面図である。 図1のII-II線における水平断面図である。 他の実施の形態に係る磁石構造体を示す垂直断面図である。 図3のIV-IV線における水平断面図である。 図1のII-II線及び図3のIV-IV線における断面図のうち、磁石のみを表示する水平断面図である。 図5に示す磁石のうち、内部側の磁石単体による第一表面磁束密度プロファイルを示す水平断面図である。 図5に示す磁石のうち、外部側の磁石単体による第二表面磁束密度プロファイルを示す水平断面図である。 図6の磁石と図7の磁石とを組合せた第三表面磁束密度プロファイルを示す水平断面図である。 図1及び図3に係る磁石構造体の磁路を示す垂直断面図である。 図1及び図3に係る磁石構造体の円柱状ボンド磁石と円筒状ボンド磁石の各単体での磁路を示す垂直断面図である。 円柱状ボンド磁石と円筒状ボンド磁石の対向面における磁力線を示す垂直断面図である。 円筒状ボンド磁石を一体成形する様子を示す斜視図である。 円筒状ボンド磁石を二分割して構成する例を示す水平断面図である。 図13の分割された小片を形成する例を示す水平断面図である。 図6の円柱状ボンド磁石の製造方法の一例を示す斜視図である。 従来のボンド磁石における磁力線の向きを示す垂直断面図である。 図9に示す円柱状ボンド磁石と円筒状ボンド磁石との磁石間距離が2mmの場合の磁束密度分布を示すグラフである。 図9に示す円柱状ボンド磁石と円筒状ボンド磁石との磁石間距離が5mmの場合の磁束密度分布を示すグラフである。 円柱状及び円筒状ボンド磁石の角度位置を示す模式図である。 有限要素法による磁場シミュレーションにより得られた円柱状ボンド磁石と円筒状ボンド磁石との組み合わせによる磁束密度の分布である。
 本発明を実施するための最良の形態を、以下に図面を参照しながら説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するための円柱状ボンド磁石を例示するものであって、本発明は、円柱状ボンド磁石を以下に限定するものではない。また、本明細書は、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細な説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一部の部材で複数の要素を兼用する態様としてもよいし、逆に一部の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
 図1に、本発明の一実施の形態に係る円柱状ボンド磁石の模式的な垂直断面図を、図2にその水平断面図を、それぞれ示す。また図3は、他の実施の形態に係る円柱状ボンド磁石の模式的な垂直断面図を、図4はその水平断面図を、それぞれ示している。さらに図9は、図1及び図3の磁石構造体の磁路を模式的に示した図である。また、図10は、その磁石構造体を構成する円柱状ボンド磁石と円筒状ボンド磁石のそれぞれ単体とした際の磁束の模式的な磁路を示している。なお図1及び図3では、説明を容易にするため支持部(可動子)105のエッジ部は図示していない。
 このようなボンド磁石を製造する一例として、特願2009-268143号明細書記載の方法を利用することも可能である。また成形中の配向方法を含め、他の製造方法によって製造された交互多極ボンド磁石や、生産性の低さはあるものの、従来のように磁石ピースを一つずつ組み上げていく方法で作られた交互多極焼結磁石を利用することもできる。すなわち、長手方向にN極とS極が交互に1組以上出現され、図10に模式的に示す磁路を備える円柱状及び円筒状磁石の組合せであればよい。また、それがボンド磁石である場合は、図9で示す実施形態に係る円柱状及び円筒状ボンド磁石の磁石配置を、一体成形で実施しても構わない。さらに、図9で示す実施形態に係る円柱状ボンド磁石を、その内部を中空にして実施しても構わない。
 図9に示す円柱状ボンド磁石101と円筒状ボンド磁石102間の磁束密度分布は、磁石間距離によって異なる。ここで磁束密度の分布状態の一例として、有限要素法による磁場シミュレーションにより得られた磁束密度の分布を、図17と図18に示す。これらの図においては、残留磁束密度1T、保磁力758kA/m、透磁率1.05H/mの磁石を想定している。また各ボンド磁石のN極とS極のピッチを7mm、円柱状ボンド磁石101の半径を3.25mm、円筒状ボンド磁石102の内径と外径の差を3.25mmとした。また図17は磁石間距離が2mmの場合を示し、図18は磁石間距離が5mmの場合を示している。
 図1と図3との違いは、図1が固定子に磁石を備え、可動子にコイルを備えるのに対し、図3が固定子にコイルを備え、可動子に磁石を備える点である。図1において支持部(可動子)105の移動方向をBとする場合、コイル103aに流す電流の向きは、図2の方向から見て時計回りとし、コイル103bに流す電流の向きは、図2の方向から見て反時計回りとなる。一方、図3において支持部(可動子)105の移動方向をBとする場合、コイル103aに流す電流の向きは、図4の方向から見て反時計回りとし、コイル103bに流す電流の向きは、図4の方向から見て時計回りとなる。
 図1の場合も図3の場合も、可動子が移動中又は静止中に、コイル103aに流す電流の方向とコイル103bに流す電流の向きを同一方向とし、支持部(可動子)105に対し制動力を与えることができる。また、その場合に双方の電流のバランスを可変することも可能である。
 図1及び図3はNとSの1組の一実施の形態であるが、NとSの2組以上の交互の磁石でもその実施が可能である。また、支持部(可動子)105、支持部(固定子)106及びコイル支持部102は、本発明の一実施の形態に係る円柱状ボンド磁石の説明のために模式的に付したものであり、これに限定するものではない。
 図5は、図1のII-II線、図3のIV-IV線における水平断面図である図2、図4から、円柱状ボンド磁石101と円筒状ボンド磁石102のみを、説明のために抜き出した図である。図6及び図7に示す第一、第二表面磁束プロファイルは、それぞれ円柱状ボンド磁石の円周、及び円筒状ボンド磁石の内周に沿って測定した同値の表面磁束密度分布を模式的に示している。
 図6に示す円柱状ボンド磁石の第一表面磁束密度プロファイルは、中心線を通る第一方向Bに長く、この第一方向Bと交差して中心線を通る第二方向Cに短くなっている。このように中心に対して点対称としない表面磁束密度プロファイルを得るには、例えば図15に示すように、円柱状ボンド磁石101の左右から挟み込むように二分割した金型30で成形することによって得ることができる。図15において、金型30同士の合わせ面が位置する円柱状ボンド磁石の上下において、射出成形時に磁性粉末の配向が不十分となり、磁束密度が低下するからである。
 一方、図7に示す円筒状ボンド磁石の第二表面磁束密度プロファイルは、中心線を通る第一方向Dに短く、この第一方向Dと交差して中心線を通る第二方向Eに長くしている。このようにすることで、図8のようにB方向とD方向、C方向とE方向とをそれぞれ揃えるように配置された、図6の円柱状ボンド磁石と図7の円筒状ボンド磁石とで合成された第三表面磁束密度プロファイル50は、図8において太線破線で示すように一方の磁束密度の弱い領域を他方で補完できるため、円形状に近付けることができ、全周に渡って均一に強い磁束密度を実現できる。この結果、従来の磁力線が図16に示すように円弧状に湾曲する成分が多く、直進方向の成分が少ないのに対し、本実施の形態では図11に示すように、対向する磁極同士が異なる極性を有することから、この間で直進する磁力線の成分が増す結果、強い磁力を得て推進力を大きく改善できる利点が得られる。
 また円筒状ボンド磁石は、一体的に形成する構成に限られず、円筒の中空部分を軸方向に沿って分割するように構成することもできる。このようにすることで、磁力を高めることが容易となる。すなわち、予め円筒状に一体的に成形した円筒状ボンド磁石を得ようとすれば、図12に示すように金型34で成形する際に、円筒状の中心に挿入される配向用の棒状磁石32の大きさが制限されることとなる。特に円筒状ボンド磁石を小型化する場合は、配向用の棒状磁石32も小型化せざるを得ないが、小型の棒状磁石の磁力を高めることは容易でない。
 一方で、円筒状ボンド磁石を、図13に示すように中空部分に沿って分割した分割片102a、102bとすることで、いいかえると、中空の閉鎖空間を含まない形状に分割することで、分割された分割片102a、102bについては、円筒部分が無いため、配向用の磁石が棒状でなければならないという制限が無くなり、金型設計の自由度が高まる。例えば図14に示すような、比較的大型の金型36でも利用できることから、磁力を高めることが容易となる利点が得られる。
 以上の円柱状ボンド磁石は、推力の方向に直交する有効な直線状の磁場を集中的に360度放射状に形成可能なため、従来、ボンド磁石の課題であった磁気特性の不足を、推力発生のために設ける電場に対する有効な磁束密度を上げることで補うことができる。その用途としては、リニアモータやリニアアクチュエータとして利用できる。特に従来、焼結磁石では実現がむずかしい小型軽量、割れや欠けが少ない、寸法精度を要する、狭磁極間ピッチへの対応等の要素を複合的に含む直線往復運動を行うアクチュエータ、中でも比較的ストロークの小さいアクチュエータの磁石構造体としても有効である。
 また円柱状ボンド磁石は、推力の方向に直交する有効な直線状の磁場を集中的に360度放射状に形成可能なため、従来に比べ、有効な磁束密度をもつ磁場領域が電場の方向に広くなり、推力発生のために設ける電場の有効領域も広くなることとなる。すなわち、より広い有効な磁束密度をもつ磁場領域が確保できたことで、電場として組み合わされるコイルの巻き数や太さの仕様の選択肢が広がる効果を生み出している。このことは、コイルの巻き数を増し推力を上げる効果やコイルの太さを増すことでの最大電力量の確保に寄与することとなる。
 さらに、構成するボンド磁石が焼結磁石に比べて軽量であることに加え、従来のボンド磁石の課題であった磁気特性の不足に由来する磁石の大型化に対し、推力発生のために設ける電場の方向に対する有効な磁束密度を上げることにより、磁石の小型化が可能となる。その結果、従来、焼結磁石を用いたリニアモータやリニアアクチュエータの場合は、磁石は固定子として備えられる場合が多いが、使用用途に合わせて、磁石を可動子に備え、コイルを固定子に備える構成と、これとは反対に、コイルを可動子に備え、磁石を固定子に備える構成との選択条件の領域が広がる効果も提供している。さらに、コイルを固定子とする構成を選択した場合には、可動子の場合のようにはコイルの軽量化に考慮する必要が無くなる。このことは、コイルの巻き数を増し推力を上げる効果やコイルの太さを増すことでの最大電力量の確保という効果も生み出すこととなる。また、前述の電気エネルギーを運動エネルギーである推力に換える場合以外の用途として、運動エネルギーを電気エネルギーに換える用途を想定する場合、すなわち、本発明の磁石構造体を発電に利用する場合にも、この最大電力量に寄与する効果は、重要な効果要素となる。
 加えて、円柱状ボンド磁石と円筒状ボンド磁石とを組み合わせることにより、推力の方向軸と直行する方向に放射状形成される磁場のプロファイルバランスを平滑化できる。これによって、推力の方向安定性を向上させる効果が期待できる。ここで、有限要素法による磁場シミュレーションにより得られた、円柱状ボンド磁石と円筒状ボンド磁石との組み合わせによる磁束密度の分布を、図20のグラフに示す。このグラフにおいて、横軸で示す角度位置[deg]は、図19に示す円柱状及び円筒状ボンド磁石の水平断面図における角度位置である。すなわち図20に示す角度位置は、図19における円柱状ボンド磁石101の中心を通る任意の中心線を0°とした場合に、反時計回りの90°分を表したものである。この例では、円柱状ボンド磁石101の半径を10mm、円筒状ボンド磁石102の内径と外径の差を5mm、円柱状ボンド磁石101の外径と円筒状ボンド磁石102の内径との距離を5mm、各ボンド磁石のN極とS極のピッチを7mmとした。また各ボンド磁石の透磁率は、1.05H/mとした。さらに残留磁束密度の設定は、円柱状ボンド磁石101では0°を最大値1Tとし、90°を最小値0.5Tとして連続変化させている。一方の円筒状ボンド磁石102では、0°を最小値0.5Tとし、90°を最大値1Tとして連続変化させている。図20に示すシミュレーションによる磁束密度の分布の観測点は、円柱状ボンド磁石101の外径と円筒状ボンド磁石102の内径との中間点である。
 なお、本明細書で示した磁石構造体は、円柱状ボンド磁石の軸を中心に、円柱状ボンド磁石を囲むよう円筒状磁石を配置し、前記円柱状ボンド磁石の軸に直交する方向に位置する前記円柱状ボンド磁石の磁極と前記円筒状ボンド磁石の内周の磁極が互いに異極となるような構造としているが、本発明はこれに限定されるものではない。すなわち、長手方向に沿ってN極とS極が交互に1組以上出現するように形成された円柱状ボンド磁石と、前記円柱状ボンド磁石の軸を中心に前記円柱状ボンド磁石を囲むよう配置された磁気回路を構成するための円筒状のヨーク材料との組み合わせで構成させても構わない。円筒状のヨーク材料は、円柱状磁石の磁極から発生する磁力線を引き込む作用を持つので、推力の方向に直交する有効な直線状の磁場を効果的に形成できる。ここでヨーク材料に用いる材質は、比透磁率が1000以上、最大磁束密度が1T以上のものが好ましい。比透磁率かつ最大透磁率が大きいほど、円筒状ヨーク部分での磁気抵抗を低減でき、効率よく円柱状磁石の磁極から発生する磁力線を引き込むことが可能となる。
 本発明の円柱状ボンド磁石は、リニアモータやリニアアクチュエータとして好適に利用できる。
101…円柱状ボンド磁石
102…円筒状ボンド磁石
102a、102b…分割片
103a、103b…コイル部
104…コイル支持部
105…支持部(可動子)
106…支持部(固定子)
10…円柱状ボンド磁石表面磁束プロファイル
20…円筒状ボンド磁石表面磁束プロファイル
30…金型
32…配向用の棒状磁石
34、36…金型
50…第三表面磁束プロファイル
601…磁石

Claims (8)

  1.  長手方向に沿ってN極とS極とが交互に1組以上出現するように形成された円柱状ボンド磁石と、
     前記円柱状ボンド磁石の軸を中心に、該円柱状ボンド磁石の外周を囲むように配置される円筒形状を有し、該円柱状ボンド磁石の長手方向に沿ってその内周にN極とS極とが交互に1組以上出現するように形成された円筒状ボンド磁石と、
    を備える磁石構造体であって、
     前記円柱状ボンド磁石の軸と直交する方向において、該円柱状ボンド磁石の磁極と前記円筒状ボンド磁石の内周の磁極とが、互いに異極となるよう配置してなることを特徴とする磁石構造体。
  2.  請求項1に記載の磁石構造体であって、
     前記円柱状ボンド磁石の円周の磁極から出る磁力線を、該円柱状ボンド磁石の軸方向と直交する方向に位置する前記円筒状ボンド磁石の内周の磁極に向かって、前記円柱状ボンド磁石の軸を中心に放射状に進行させており、
     前記円筒状ボンド磁石の内周の磁極から出る磁力線を、前記円柱状ボンド磁石の軸方向と直交する方向に位置する前記円柱状ボンド磁石の円周の磁極に向かって進行させてなることを特徴とする磁石構造体。
  3.  請求項1又は2に記載の磁石構造体であって、
     前記円柱状ボンド磁石の円周に沿って表面磁束密度を測定した第一表面磁束密度プロファイルが、該円柱状ボンド磁石の円状断面において中心を通る第一方向に長く、前記第一方向と直交する第二方向が前記第一方向より短く、
     前記円筒状ボンド磁石の内周に沿って表面磁束密度を測定した第二表面磁束密度プロファイルが、前記円筒状ボンド磁石の円状断面において中心を通る第一方向に長く、前記第一方向と直交する第二方向が前記第一方向より短い場合に、前記円柱状ボンド磁石の第一方向と前記円筒状ボンド磁石の第一方向とを互いに直交する方向になるように、前記円柱状ボンド磁石と前記円筒状ボンド磁石を配置してなることを特徴とする磁石構造体。
  4.  請求項3に記載の磁石構造体であって、
     前記円筒状ボンド磁石が、円筒の中空部分を軸方向に沿って分割するように構成されてなることを特徴とする磁石構造体。
  5.  請求項1から4のいずれか一に記載の磁石構造体であって、
     前記円柱状ボンド磁石と円筒状ボンド磁石とを一体成形してなることを特徴とする磁石構造体。
  6.  長手方向に沿ってN極とS極が交互に1組以上出現するように形成された円柱状ボンド磁石と、
     前記円柱状ボンド磁石の軸を中心に、前記円柱状ボンド磁石の外周を囲むよう配置された磁気回路を構成するヨーク材料と、
    の組み合わせからなることを特徴とする磁石構造体。
  7.  長手方向に沿って交互多極磁化された円柱状ボンド磁石と、
     前記円柱状ボンド磁石の軸を中心に、該円柱状ボンド磁石の外周を囲むように配置され、
     該円柱状ボンド磁石の長手方向に沿って内周が交互多極磁化された円筒状ボンド磁石と、を備えており、
     前記円柱状ボンド磁石の磁極と前記円筒状ボンド磁石の内周の磁極とが、互いに異極となるよう配置されてなることを特徴とする磁石構造体。
  8.  請求項7に記載の磁石構造体であって、
     前記円柱状ボンド磁石の円周に沿って表面磁束密度を測定した表面磁束密度プロファイルの凹状部分と、
     前記円筒状ボンド磁石の内周に沿って表面磁束密度を測定した表面磁束密度プロファイルの凸状部分が、
     略一致するように、前記円柱状ボンド磁石と前記円筒状ボンド磁石を配置してなることを特徴とする磁石構造体。
PCT/JP2011/071984 2010-09-29 2011-09-27 円柱状ボンド磁石 WO2012043525A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/822,636 US8830019B2 (en) 2010-09-29 2011-09-27 Cylindrical bonded magnet structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010218276 2010-09-29
JP2010-218276 2010-09-29
JP2011188040A JP5926017B2 (ja) 2010-09-29 2011-08-30 円柱状ボンド磁石
JP2011-188040 2011-08-30

Publications (1)

Publication Number Publication Date
WO2012043525A1 true WO2012043525A1 (ja) 2012-04-05

Family

ID=45892966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071984 WO2012043525A1 (ja) 2010-09-29 2011-09-27 円柱状ボンド磁石

Country Status (3)

Country Link
US (1) US8830019B2 (ja)
JP (1) JP5926017B2 (ja)
WO (1) WO2012043525A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095388A (zh) * 2017-08-16 2020-05-01 达科电子股份有限公司 用于显示模块的磁闩锁
WO2021134313A1 (zh) * 2019-12-30 2021-07-08 瑞声声学科技(深圳)有限公司 一种线性电机
WO2021134314A1 (zh) * 2019-12-30 2021-07-08 瑞声声学科技(深圳)有限公司 一种线性电机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140109427A (ko) 2012-01-30 2014-09-15 미쓰비시덴키 가부시키가이샤 자기회로
JP2013229247A (ja) * 2012-04-26 2013-11-07 Toshiba Corp 電力用開閉装置、及びその操作機構
JP2016134984A (ja) * 2015-01-19 2016-07-25 修二 小畑 ソレノイド駆動装置
KR102551883B1 (ko) * 2021-08-27 2023-07-04 서울대학교산학협력단 쌍안정 소프트 전자기 액추에이터

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370462A (ja) * 1989-08-04 1991-03-26 Showa Electric Wire & Cable Co Ltd コイルモータ
JPH0453072A (ja) * 1990-06-19 1992-02-20 Hitachi Ltd ロータリー型ヘッド位置決め装置
JP2004514393A (ja) * 2000-11-14 2004-05-13 ラウシユ,ヘルムート 可動コイル装置により動作するアクチュエータ
JP2008237004A (ja) * 2007-02-23 2008-10-02 Toshiba Corp リニアアクチュエータおよびリニアアクチュエータを利用した装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306701A (en) * 1991-02-28 1994-04-26 California Institute Of Technology Superconducting magnet and fabrication method
JP2001231245A (ja) * 2000-02-10 2001-08-24 Bridgestone Corp リニアモータ用ガイドシャフトの製造方法及びガイドシャフト成形金型
JP4388203B2 (ja) * 2000-05-23 2009-12-24 ミネベア株式会社 複合型電磁アクチュエータ装置
JP2002027590A (ja) * 2000-07-11 2002-01-25 Foster Electric Co Ltd ダイナミックスピーカの磁気回路
JP2003303714A (ja) 2002-04-09 2003-10-24 Sumitomo Special Metals Co Ltd 棒磁石および磁性体除去装置
JP3952190B2 (ja) 2003-02-19 2007-08-01 株式会社 ジイエムシーヒルストン リニアモータ及び該リニアモータを使用した工作機械
JP2005073466A (ja) 2003-08-27 2005-03-17 Koyo Seiko Co Ltd リニアモータ
EP2437518B1 (en) * 2005-01-28 2014-06-11 Panasonic Corporation Electrodynamic electroacoustic transducer and electronic device
JP2006333606A (ja) * 2005-05-25 2006-12-07 Nisca Corp 電磁駆動装置及びこれを用いた光量調整装置
JP2007189270A (ja) * 2005-12-22 2007-07-26 Matsushita Electric Works Ltd スピーカ装置
KR100899468B1 (ko) 2007-02-23 2009-05-27 가부시끼가이샤 도시바 리니어 액츄에이터 및 리니어 액츄에이터를 이용한 부품보유 지지 장치, 다이 본더 장치
JP5363994B2 (ja) * 2007-12-28 2013-12-11 Thk株式会社 リニアステッピングモータ
JP2010130728A (ja) 2008-11-25 2010-06-10 Mitsumi Electric Co Ltd リニアアクチュエータ
JP5525408B2 (ja) * 2009-11-09 2014-06-18 山洋電気株式会社 電気機械装置
US8546964B2 (en) * 2011-03-25 2013-10-01 Tai-Her Yang Reciprocal vibration type power generator equipped with a moving inner columnar magnetic block surrounded by at least one coil set, and a moving outer annular magnetic block that surrounds the at least one coil set
US8736086B2 (en) * 2011-03-25 2014-05-27 Tai-Her Yang Reciprocal vibration type power generator equipped with inner columnar and outer annular magnetic members, a power storage device, a rectifying circuit, and a charging circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370462A (ja) * 1989-08-04 1991-03-26 Showa Electric Wire & Cable Co Ltd コイルモータ
JPH0453072A (ja) * 1990-06-19 1992-02-20 Hitachi Ltd ロータリー型ヘッド位置決め装置
JP2004514393A (ja) * 2000-11-14 2004-05-13 ラウシユ,ヘルムート 可動コイル装置により動作するアクチュエータ
JP2008237004A (ja) * 2007-02-23 2008-10-02 Toshiba Corp リニアアクチュエータおよびリニアアクチュエータを利用した装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095388A (zh) * 2017-08-16 2020-05-01 达科电子股份有限公司 用于显示模块的磁闩锁
WO2021134313A1 (zh) * 2019-12-30 2021-07-08 瑞声声学科技(深圳)有限公司 一种线性电机
WO2021134314A1 (zh) * 2019-12-30 2021-07-08 瑞声声学科技(深圳)有限公司 一种线性电机

Also Published As

Publication number Publication date
US8830019B2 (en) 2014-09-09
JP2012094825A (ja) 2012-05-17
JP5926017B2 (ja) 2016-05-25
US20130169395A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5926017B2 (ja) 円柱状ボンド磁石
US7963741B2 (en) Motor and fan device using the same
US8569916B2 (en) Electrical machine apparatus
US10141800B2 (en) Magnet-embedded rotor, method for manufacturing magnet-embedded rotor, and orientation and magnetization device
JP2013537397A (ja) 磁極変調機械用ロータ
JP5726386B1 (ja) 永久磁石型電動機の回転子
EP2690753B1 (en) Electric motor
CN109643939A (zh) 用于磁性部件的芯元件及其制造方法
JP5082241B2 (ja) リニアモータ及びこれに含まれる固定子の製造方法
JP2010158140A (ja) リニアモータ
JP6083640B2 (ja) 永久磁石埋込型モータ
US20170250584A1 (en) Internal permanent magnet motor with an outer rotor
JP2012244874A (ja) 回転電機
JP5738609B2 (ja) 可変界磁型回転電機
JP5637458B2 (ja) リニアモータ
JP2017055491A (ja) 埋込磁石型ロータユニットの製造方法、および埋込磁石型ロータの製造装置
JP2012151954A (ja) リニアモータ
JP2011030411A (ja) リニアモータ
CN114465385A (zh) 轴向间隙电机以及径向间隙电机
JP2004248363A (ja) クローポールモータ
JP7391783B2 (ja) 磁極子、電動機、磁極子の組立方法
JP6110165B2 (ja) リニアモータ
JP2015023662A (ja) リニアモータ
JP2006101678A (ja) リニアモータ及びその製造方法
KR20020009030A (ko) 회전 및 직선운동형 선형전동기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13822636

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829078

Country of ref document: EP

Kind code of ref document: A1