WO2012043433A1 - 濾過膜の洗浄方法及び膜濾過装置 - Google Patents

濾過膜の洗浄方法及び膜濾過装置 Download PDF

Info

Publication number
WO2012043433A1
WO2012043433A1 PCT/JP2011/071798 JP2011071798W WO2012043433A1 WO 2012043433 A1 WO2012043433 A1 WO 2012043433A1 JP 2011071798 W JP2011071798 W JP 2011071798W WO 2012043433 A1 WO2012043433 A1 WO 2012043433A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
filtration
cleaning
water
filtration membrane
Prior art date
Application number
PCT/JP2011/071798
Other languages
English (en)
French (fr)
Inventor
修司 母倉
柏原 秀樹
聡 矢萩
龍資 中井
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201180046314.XA priority Critical patent/CN103118770B/zh
Priority to JP2012536424A priority patent/JPWO2012043433A1/ja
Priority to KR1020137008394A priority patent/KR20140009133A/ko
Priority to EP11828987.5A priority patent/EP2623186A4/en
Publication of WO2012043433A1 publication Critical patent/WO2012043433A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/12Specific discharge elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/282Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling by spray flush or jet flush
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a filtration membrane cleaning method in membrane filtration. That is, during membrane filtration, the pores of the filtration membrane are clogged with turbidity in the water to be treated, and the treatment flow rate decreases (or the filtration pressure increases).
  • the present invention relates to a method for cleaning a filtration membrane carried out for recovering the above.
  • the present invention also relates to a membrane filtration apparatus that can efficiently carry out the cleaning method.
  • TEP transparent exopolymer particles
  • the main component of TEP is a saccharide, which is a deformable particle having a particle size of about 1 to 200 ⁇ m. Since organic particles such as TEP, that is, jelly-like turbid components, are deformed, membrane filtration of the water to be treated containing the particles causes the jelly-like turbid components to adhere to the membrane surface and pores and spread the pores. Easy to ring (clog).
  • a filtration membrane made of a hydrophobic material such as fluororesin or polyethylene and having a pore diameter of about 1 ⁇ m or more is used.
  • a hydrophobic filter membrane having a large pore diameter is considered to be less clogged because a jelly-like turbid component is less likely to stick to it than a hydrophilic filter membrane.
  • a hydrophobic filtration membrane having a relatively large pore diameter is suitably used for membrane filtration of seawater, drainage, ballast water and the like.
  • liquid backwashing As a method for washing the filtration membrane, a method of passing water in the direction opposite to the flow of liquid during filtration (hereinafter referred to as “liquid backwashing” or “backwashing”) is widely performed. Also, a method of cleaning the membrane by injecting a chemical solution (chemical solution cleaning), a method of cleaning the filter membrane by hand, and a method of cleaning by passing gas through the filter membrane in the direction opposite to the flow of the liquid during filtration Physical cleaning such as (air backwashing), a method of washing by applying ultrasonic waves to the film (ultrasonic cleaning), and the like are also employed. In order to further increase the cleaning efficiency, cleaning methods combining these are also known.
  • Patent Document 1 states, “While applying mechanical vibration to a filter module using a hollow fiber membrane, backwash water is passed through the filter module to oscillate the water in the module and adhere to the filtration surface.
  • the method for regenerating the filter module is characterized by changing the water level in the module along the hollow fiber bundle by appropriately switching the backwash water supply and drainage when the deposited deposits are peeled off and flowed out of the system.
  • hydrochloric acid, citric acid, oxalic acid, hypochlorous acid, synthetic detergents are added to the backwash water to enhance the cleaning effect.
  • the aqueous solution may be used alone or in combination, and as a pretreatment, the above method may be carried out after being immersed in an aqueous solution of these alone or in combination ”(paragraph 0005).
  • the recovery rate of the filtration capacity (large treatment flow rate, low filtration pressure) was not sufficient.
  • the recovery rate of the filtration capacity is not sufficient, and it is necessary to increase the number of washings, and the membrane filtration efficiency is reduced.
  • the present invention can efficiently wash a hydrophobic filtration membrane in which clogging of pores occurs in membrane filtration of water to be treated containing jelly-like turbid components such as seawater, drainage, ballast water, etc. It is an object of the present invention to provide a method for cleaning a hydrophobic filtration membrane that is excellent in recovery and does not cause an increase in filtration pressure even when liquid passing and washing are repeated.
  • the present inventor has found that the water quality of the filtered water may be lowered when the method for washing the hydrophobic filtration membrane is performed.
  • the present invention reduces the water quality of the filtered water in this case. It is also an object to provide a method for preventing this.
  • the present inventor As a result of diligent investigations on the above problems, the present inventor, as a result of washing the clogged hydrophobic filtration membrane with water added with limonene (orange detergent) instead of water or a conventionally used drug, The present inventors have found that clogging can be efficiently eliminated and excellent cleaning efficiency (recovery of filtration capacity) can be achieved.
  • limonene range detergent
  • the water flow especially the method of flowing the air inhaled air on the surface of the hydrophobic filtration membrane, and the eductor that creates a powerful water flow by drawing in the surrounding water ( It was found that even when a method of blowing off the turbidity of the hydrophobic filtration membrane with a powerful water flow from the nozzle using an ejector), excellent recovery of the filtration ability can be achieved.
  • the present inventor has found that the deterioration of the quality of filtrate water that may occur in the washing of the hydrophobic filtration membrane performed using water to which the above-mentioned limonene (orange detergent) is added is due to the washing of the hydrophobic filtration membrane with limonene. It was found that further washing with an acid or alcohol can be suppressed. That is, the said subject is achieved by the structure shown below.
  • the invention of claim 1 is a method for cleaning a hydrophobic filtration membrane used for membrane filtration and clogged with turbidity in the water to be treated, wherein the filtration membrane is brought into contact with limonene-containing water. It is a cleaning method.
  • the hydrophobic filtration membrane is a membrane made of a hydrophobic polymer material and not subjected to hydrophilization processing (introduction of a hydrophilic group into the polymer, etc.) so that it can be used as a filtration membrane.
  • the pore size of the filtration membrane is not particularly limited, but when the pore size is about 1 ⁇ m or more, the removal efficiency of jelly-like turbid components such as TEP is good, clogging is small, and the reduction in filtration capacity is small (thus cleaning) The frequency can be reduced), so it is suitable when used for the treatment of seawater, drainage, ballast water and the like.
  • the previous treatment is performed with an apparatus (module) using a hydrophobic filtration membrane having a pore diameter of about 1 ⁇ m or more.
  • an apparatus (module) using a filtration membrane having a smaller pore diameter clogging of the subsequent filtration membrane can be efficiently suppressed.
  • the form of the hydrophobic filtration membrane is not particularly limited, and examples thereof include a hollow fiber membrane and a membrane.
  • a hollow fiber membrane can be mentioned as a preferred form.
  • the filtration membrane cleaning liquid (liquid used for cleaning.
  • cleaning liquid is used to include water.
  • an aqueous liquid such as water or limonene-containing water
  • limonene-containing water is used.
  • Limonene-containing water is an aqueous solution of limonene.
  • Limonene is a component contained in citrus fruits such as lemons and is used as a natural detergent (for example, orange detergent).
  • the concentration of limonene in the limonene-containing water is preferably 10 ppm or more. If it is less than 10 ppm, the cleaning efficiency may be insufficient.
  • the limonene-containing water may contain other chemicals as long as the gist of the present invention is not impaired, and a combination of cleaning with limonene-containing water and other chemical liquid cleaning may be combined.
  • the water to be treated to which the cleaning method of the present invention is applied is not particularly limited as long as it can be subjected to membrane filtration, but contains jelly-like turbid components such as TEP such as seawater, drainage, ballast water and the like.
  • TEP jelly-like turbid components
  • the effect of the present invention is particularly exerted. Therefore, it is suitable as water to be treated.
  • the invention of claim 2 is the filtration membrane cleaning method according to claim 1, wherein the contact between the limonene-containing water and the filtration membrane is performed by backwashing the filtration membrane.
  • the method of bringing the limonene-containing water into contact with the filtration membrane is not particularly limited.
  • a method of immersing a clogged filter membrane in limonene-containing water and a method of passing and washing limonene-containing water in the same direction as the flow of water to be treated during filtration (forward cleaning) can also be mentioned.
  • backwashing flowing backwashing
  • limonene-containing water is passed in the direction opposite to the flow of the water to be treated during filtration. preferable.
  • the invention of claim 3 is the filtration membrane cleaning method according to claim 1 or 2, wherein the material of the filtration membrane is fluororesin or polyethylene.
  • Examples of the material constituting the hydrophobic filtration membrane include fluororesins and polyolefins.
  • the fluororesin include PTFE and polyvinylidene fluoride (PVdF).
  • the polyolefin include polyethylene and other poly- ⁇ -olefins.
  • membrane which consists of a fluororesin or polyethylene is excellent in chemical resistance and mechanical strength, it is used suitably as a hydrophobic filtration membrane in this invention.
  • the invention according to claim 4 is the filtration membrane cleaning method according to any one of claims 1 to 3, wherein physical cleaning is performed when the limonene-containing water and the filtration membrane are brought into contact with each other. is there.
  • washing by contact between limonene-containing water and a filtration membrane is preferable to combine washing by contact between limonene-containing water and a filtration membrane with physical washing because the washing efficiency of the filtration membrane is further improved.
  • physical cleaning a method of cleaning the filter membrane by hand, a method of cleaning gas through the filter membrane (air bubbling), a method of cleaning by applying ultrasonic waves to the membrane (ultrasonic cleaning) , A method of spraying water or cleaning liquid on the membrane, a method of flowing a water stream, particularly a water stream inhaled with air, on a membrane surface, a method of using an eductor to blow away turbidity on the membrane surface with a strong water stream from the nozzle, etc. it can.
  • “At the time of contact between the limonene-containing water and the filtration membrane” means to include both “simultaneous with contact” and “after contact”.
  • Examples of the case of “simultaneously with contact” include a method in which the filtration membrane is back-washed with limonene-containing water while applying ultrasonic waves to the filtration membrane.
  • After contact a method of backwashing a filtration membrane with limonene-containing water and washing it, and then holding the filtration membrane by hand or spraying water or a washing solution on the filtration membrane by a shower or the like Can be mentioned.
  • the contact between the limonene-containing water and the filtration membrane is performed by backwashing the filtration membrane, and the physical washing is performed by a method of spraying a washing liquid onto the surface of the filtration membrane after the backwashing.
  • the method for cleaning a filtration membrane according to claim 4. This method is preferable because the cleaning efficiency of the filtration membrane is further improved among methods combining physical cleaning. As described above, water is also used as the cleaning liquid.
  • a method of spraying the cleaning liquid on the surface of the filtration membrane As a method of spraying the cleaning liquid on the surface of the filtration membrane, a method of spraying the cleaning liquid in a shower-like manner and spraying the cleaning liquid on a relatively wide range of the surface of the filtration membrane, or a narrow jet (jet) of the cleaning liquid on the surface of the filtration membrane is narrow. Examples include a method of spraying on a range, and spraying the entire range of the filtration membrane by moving the sprayed range. Further, in the method of spraying in the form of a shower, one or a plurality of nozzles for spraying a shower over a part of the surface of the filtration membrane are used, and the nozzles are moved to perform showering on the entire surface of the filtration membrane. Or a method using a large number of nozzles so that a shower can be simultaneously sprayed on the entire surface of the filtration membrane. The method of spraying in the form of a shower is preferred because the cleaning efficiency of the filtration membrane is
  • liquid sprayed on the surface of the filtration membrane examples include cleaning liquid such as limonene-containing water in addition to water.
  • cleaning liquid such as limonene-containing water in addition to water.
  • an aqueous solution of another chemical used for normal chemical cleaning can also be used. It is preferable to use limonene-containing water for this physical cleaning because the cleaning efficiency can be further improved.
  • the invention of claim 6 is a method for cleaning a hydrophobic filtration membrane used for membrane filtration and clogged with turbidity in the water to be treated, and after the filtration membrane is backwashed with a cleaning solution, the surface of the filtration membrane
  • a cleaning method for a filtration membrane is characterized in that a cleaning liquid that has inhaled air is flowed thereon. That is, it is a method of cleaning by back-washing with a water flow (flow of cleaning liquid) and air sucked together, so-called bubbling jet (jet jet).
  • Flowing a water flow that sucks air on the surface of the filtration membrane means that the cleaning liquid is flowed toward the surface of the filtration membrane so that a shearing force is generated between the water flow and the filtration membrane.
  • the invention of claim 7 is a method of cleaning a hydrophobic filtration membrane used for membrane filtration and clogged with turbidity in the water to be treated. After the backwashing of the filtration membrane with a washing liquid, the eductor nozzle This is a method for cleaning a filtration membrane, characterized by spraying a water stream on the filtration membrane.
  • Eductor is a device that creates a powerful water flow by drawing in the water around it. The cleaning effect can be drastically improved by spraying a strong water flow from the nozzle onto the surface of the filtration membrane.
  • a suction port is provided in the throat between the tube supplying the fluid (water) to the nozzle and the nozzle, and the fluid (water) is also passed from the suction port by the flow of the fluid (water) passing through the throat.
  • a device that generates a strong water flow by sucking and discharging a larger amount of fluid (water) than the amount supplied from the pipe can be mentioned.
  • the invention of claim 8 is the filtration membrane cleaning method according to claim 6 or 7, wherein the cleaning liquid is limonene-containing water. That is, a method using limonene-containing water as a cleaning liquid used for backwashing, a cleaning liquid used for a bubbling jet (jet jet), or a cleaning liquid used for an eductor. This method further improves the cleaning effect of the filtration membrane.
  • the limonene-containing water the same limonene-containing water can be used. In addition, it is good also considering only the washing
  • the invention of claim 8 is the invention of claim 4, wherein the contact between the limonene-containing water and the filtration membrane is the reverse of the filtration membrane. This corresponds to a case where the cleaning is performed and the physical cleaning is performed by flowing a cleaning liquid that sucks air on the surface of the filtration membrane or by blowing a water flow from an eductor nozzle onto the filtration membrane.
  • limonene has better wettability with resins constituting hydrophobic filtration membranes than jelly-like turbid components such as TEP, particularly fluororesins such as PTFE, and the surface of the hydrophobic filtration membrane is covered with limonene. This is probably because the hydrophobicity of the hydrophobic filtration membrane is partially lost.
  • the present inventor after washing with limonene-containing water (such as backwashing), rinses (washes) the hydrophobic filtration membrane with an acid or alcohol to remove the limonene from the hydrophobic filtration membrane, thereby removing filtered water. It has been found that the problem of increasing the SDI is solved and the quality of the permeated water is improved.
  • the invention according to claim 9 is the filtration membrane according to any one of claims 1 to 5, wherein the filtration membrane is washed with an acid after contacting the filtration membrane with limonene-containing water. It is a cleaning method.
  • the invention of claim 10 is the method for cleaning a filtration membrane according to claim 9, wherein the acid is selected from mono-, di- or tricarboxylic acids having 6 or less carbon atoms.
  • the invention according to claim 11 is the filtration membrane according to any one of claims 1 to 5, wherein the filtration membrane is washed with alcohol after contacting the filtration membrane with limonene-containing water. It is a cleaning method.
  • the invention of claim 12 is the method for cleaning a filtration membrane according to claim 11, wherein the alcohol is selected from monohydric alcohols having 4 or less carbon atoms.
  • the SDI may increase at that time.
  • rinsing the filtration membrane with acid or alcohol rinsing
  • the invention of claim 9 and the invention of claim 11 correspond to this preferable mode.
  • the acid or alcohol used for rinsing is a water-soluble acid or alcohol.
  • the acid mono-, di- or tricarboxylic acid having 6 or less carbon atoms is preferable because it has a large effect of reducing SDI.
  • Examples of the mono-, di-, or tricarboxylic acid having 6 or less carbon atoms include acetic acid and citric acid.
  • a monohydric alcohol having 4 or less carbon atoms is preferable because it has a large effect of reducing SDI.
  • Examples of the monohydric alcohol having 4 or less carbon atoms include ethanol and isopropyl alcohol.
  • Membrane filtration of seawater, drainage, ballast water, and the like can be performed by a membrane filtration device using a module equipped with a hydrophobic filtration membrane, but this filtration device comprises limonene-containing water supply means, thereby A cleaning method can be performed. Accordingly, the present invention provides, as claim 13, a filtration device using a module having a hydrophobic filtration membrane, and comprising a limonene-containing water supply means.
  • the limonene-containing water supply means is a means for supplying the limonene-containing water so that it contacts the hydrophobic filtration membrane in the membrane filtration device, for example, backwashing for backwashing the hydrophobic filtration membrane.
  • a combination of a means and a means for supplying limonene-containing water can be given as a cleaning liquid used in the backwashing means.
  • the invention of claim 14 further comprises a backwashing means for limonene-containing water, and a shower device for spraying the cleaning liquid on the surface of the hydrophobic filter membrane in the form of a shower. It is. As described above, after the hydrophobic filtration membrane is backwashed with limonene-containing water, the washing solution is sprayed on the hydrophobic filtration membrane in the form of a shower.
  • the invention of claim 14 is an apparatus for performing this method.
  • examples of the liquid sprayed in a shower form include water or limonene-containing water as described above, and further increase the cleaning efficiency by using both water spray and limonene-containing water spray.
  • the membrane filtration device of the present invention may include both a shower device for water and a shower device for limonene-containing water.
  • an ultrasonic application means may be further provided.
  • a fifteenth aspect of the present invention is a filtration apparatus using a module having a hydrophobic filtration membrane, wherein the backwashing means by the washing liquid and the flow of the washing liquid that sucks air on the surface of the hydrophobic filtration membrane are directed in the surface direction.
  • It is a membrane filtration apparatus provided with the means to apply.
  • It is a membrane filtration apparatus provided with the means for performing the washing
  • a so-called bubbling jet can be used as means for applying the flow of the cleaning liquid that has sucked air.
  • the invention of claim 16 is a filtration device using a module comprising a hydrophobic filtration membrane, and is a membrane filtration device comprising a backwashing means using a washing liquid and an eductor. It is a membrane filtration apparatus provided with the means for performing the washing
  • a plurality of eductor nozzles are preferably provided in the filtration device so that a strong water flow is sufficiently sprayed over the entire membrane surface.
  • the membrane filtration device according to claim 15 and the membrane filtration device according to claim 16 preferably include limonene-containing water supply means. Then, the limonene-containing water supply means is combined with the backwashing means, the means for applying the flow of the cleaning liquid inhaled with air, the eductor, etc. to wash the filtration membrane with the limonene-containing water, for example, the filtration of claim 8 A method for cleaning the membrane can be performed.
  • the invention according to claim 17 is the membrane filtration device according to claim 13, further comprising means for washing the filtration membrane with an acid or alcohol.
  • the membrane cleaning effect (cleaning efficiency) is dramatically improved as compared with conventional cleaning with water and cleaning with a cleaning liquid containing a surfactant, hypochlorous acid or the like. Is obtained.
  • This cleaning method can be easily performed by the membrane filtration apparatus of the present invention.
  • the problem that the quality of treated water that may occur when limonene-containing water is used is caused by the method of the present invention characterized in that the filtration membrane is washed with an acid or alcohol. Improved.
  • FIG. 6 is a graph showing a change over time in differential pressure in membrane filtration of Example 2.
  • 6 is a graph showing a time change of differential pressure in membrane filtration of Example 3.
  • 6 is a graph showing a change over time in differential pressure in membrane filtration of Example 4.
  • 6 is a graph showing a change over time in differential pressure in membrane filtration of Example 5.
  • FIG. 6 is a cross-sectional view schematically showing an example of the membrane filtration device of the present invention.
  • FIG. 7 is a diagram schematically showing the internal structure of an example of the membrane filtration device of the present invention.
  • this membrane filtration device includes a module at the center of a cylindrical case and further includes three shower devices.
  • cleaning liquid which consists of limonene containing water from the direction opposite to the flow of to-be-processed water are provided.
  • a means for applying ultrasonic waves to the film and a means for performing air bubbling are also provided.
  • the module is a hollow fiber bundle composed of a plurality of hollow fiber membranes, but the illustration of each hollow fiber is omitted in the figure.
  • Each shower device has a plurality of nozzles (four in the figure), and a shower is sprayed from the nozzles onto the surface of the module, that is, the hollow fiber bundle. It is preferable to set the position and shape of the nozzle so that the cleaning liquid can be sprayed uniformly over the entire surface of the hollow fiber bundle.
  • water to be treated such as seawater is supplied between the cylindrical case and the module, passes through the hollow fiber membrane, and is discharged from the inside of the module (inside the hollow fiber) as processing liquid to the outside of the apparatus.
  • The When passing through the hollow fiber membrane, turbid components are removed. At this time, the hollow fiber membrane is clogged with turbid components, the treatment flow rate is lowered, and the filtration pressure (differential pressure) is increased.
  • the hollow fiber membrane is washed by backwashing limonene-containing water.
  • limonene-containing water is supplied into the module, passes through the hollow fiber membrane, is discharged from between the cylindrical case and the module to the outside of the apparatus, and the hollow fiber membrane is cleaned.
  • the supply of limonene-containing water into the module is stopped, the liquid is removed from between the cylindrical case and the module, and then a shower of cleaning liquid is sprayed from the nozzle of each shower device onto the surface of the hollow fiber bundle.
  • the cleaning liquid water or limonene-containing water is used, and these may be combined.
  • FIG. 9 is a diagram schematically showing the internal structure of another example of the membrane filtration device of the present invention.
  • this membrane filtration device is provided with a module at the center of the cylindrical case and further with a plurality of nozzles (four in the example of FIG. 9) for applying a bubbling jet.
  • means for supplying the water to be treated and means for supplying the cleaning liquid made of limonene-containing water in the direction opposite to the flow of the water to be treated and backwashing.
  • the module is a hollow fiber bundle composed of a plurality of hollow fiber membranes as in the example of FIG. 6, but the illustration of each hollow fiber is omitted in the figure.
  • a bubbling jet (a water stream sucked in air) is caused to flow on the surface of the hollow fiber bundle in the module so that shearing occurs between the surface of the water stream and the hollow fiber. It is preferable to set the position and shape of the nozzle so that the water flow is uniformly applied over the entire surface of the hollow fiber bundle.
  • the flow of water to be treated such as seawater when performing membrane filtration is the same as in the example of FIG.
  • the filtration pressure differential pressure
  • the hollow fiber membrane is washed back-washed with limonene-containing water to recover the treatment flow rate (or filtration pressure). Is done.
  • limonene-containing water is supplied into the module, passes through the hollow fiber membrane, is discharged from between the cylindrical case and the module to the outside of the apparatus, and the hollow fiber membrane is cleaned.
  • Limonene-containing water may be used as water in the water stream.
  • the washing efficiency is significantly improved by flowing a water stream that sucks air, that is, a bubbling jet.
  • the water supply pressure of the water flow is preferably 0.2 MPa or more.
  • the flux of the water flow at the nozzle outlet is 20 m / d or more.
  • the air suction amount is larger than the water amount.
  • a bubbling jet containing 2 to 5 times as much air as water and having a bubble size of about 1 to 4 mm is preferably used.
  • FIG. 11 is a diagram schematically showing the internal structure of another example of the membrane filtration device of the present invention.
  • this membrane filtration device includes a module at the center of the cylindrical case, and further includes a plurality of eductors (four in the example of FIG. 11).
  • the means to supply to-be-processed water and the means to supply and back-wash water (liquid used for backwashing) from the direction opposite to the flow of to-be-processed water are provided.
  • the module is a hollow fiber bundle composed of a plurality of hollow fiber membranes as in the example of FIG. 6, but the illustration of each hollow fiber is omitted in the figure.
  • Each eductor is attached to a cylindrical case, but the eductor nozzle is opened inside the cylindrical case, and is provided so that a powerful water stream discharged from the nozzle can be sprayed onto the surface of the hollow fiber membrane. It has been.
  • a flow of filtered water water after filtration
  • other fluids water
  • the flow of water to be treated such as seawater when performing membrane filtration is the same as in the example of FIG.
  • the treatment flow rate (or filtration pressure) is recovered by the following procedures (1), (2), and (3). be able to.
  • Example 1 Using the membrane filtration apparatus having the following specifications and the structure that can be represented in FIGS. 6 and 7, filtration was performed by passing agar water in which 1 ppm of agar was dissolved at a constant flux of 10 m / day. .
  • the change of the filtration pressure (differential pressure) at that time is shown in FIG. Since the filtration pressure (differential pressure) increased due to the operation, after 30 minutes of operation, backwashing using limonene-containing water containing 1000 ppm of limonene was performed, and as shown in FIG. 1, the differential pressure recovered to almost zero. .
  • Module diameter 40mm Hollow fiber membrane in module: 10 modules Length: 40cm Hollow fiber membrane: ⁇ Porefuron (PTFE) manufactured by Sumitomo Electric Fine Polymer ⁇ Diameter: 2.3mm ⁇ Pore diameter: 2 ⁇ m
  • Example 2 A membrane filtration device having the same specifications as the membrane filtration device used in Example 1, except that a pore membrane (PTFE) manufactured by Sumitomo Electric Fine Polymer Co., Ltd. and having a pore size of 1.5 ⁇ m (diameter: 2.3 mm) was used. Used, filtration was performed to pass seawater having a turbidity of 1.18 NTU (Shimizu Port Seawater, Shizuoka Prefecture) at a constant flux of 10 m / day. The change of the filtration pressure (differential pressure) at that time is shown in FIG.
  • washing was performed for 1 minute by spraying water onto the module at a flow rate of 6 liters / minute with a shower device ((c) in FIG. 2). After that, every time the operation is performed for 30 minutes, water is used for backwashing, and ultrasonic waves with a frequency of 40 kHz and an output of 300 W are applied for 30 seconds, and then air bubbling is performed for 1 minute (in FIG. 2 ( d)).
  • Example 3 Using a membrane filtration device having the same specifications as the membrane filtration device used in Example 1 (membrane pore diameter 2.0 ⁇ m), agar-added water (agar 1 ppm) with a turbidity of 0.24 NTU was passed at a constant flux of 10 m / day. Filtration was performed. The change of the filtration pressure (differential pressure) at that time is shown in FIG.
  • Example 4 Using a membrane filtration device having the same specifications as the membrane filtration device used in Example 1 (membrane pore size: 2.0 ⁇ m), seawater with a turbidity of 1.40 NTU (Shimizu port seawater, Shizuoka Prefecture) was supplied at a constant flux of 10 m / day. Filtration through which the liquid passed was performed. The change in filtration pressure (differential pressure) at that time is shown in FIG.
  • the same cleaning effect is obtained regardless of whether the limonene concentration in the limonene-containing water is 30 ppm or 1000 ppm.
  • Example 5 A membrane filtration device having the same specifications as the membrane filtration device used in Example 1 except that a pore membrane (PTFE) manufactured by Sumitomo Electric Fine Polymer Co., Ltd. and a filtration membrane (diameter: 2.3 mm) having a pore size of 0.45 ⁇ m was used. Used, filtration was performed to pass seawater having a turbidity of 1.40 NTU (Shimizu Port Shizuoka Seawater) at a constant flux of 10 m / day. The change in filtration pressure (differential pressure) at that time is shown in FIG.
  • PTFE pore membrane
  • a filtration membrane (diameter: 2.3 mm) having a pore size of 0.45 ⁇ m was used. Used, filtration was performed to pass seawater having a turbidity of 1.40 NTU (Shimizu Port Shizuoka Seawater) at a constant flux of 10 m / day.
  • the change in filtration pressure (differential pressure) at that time is shown
  • Example 6 Sea water with a turbidity of 1.40 NTU (Shimizu, Shizuoka Prefecture) using a membrane filtration device having the same specifications as the membrane filtration device used in Example 1 and a structure that can be represented in FIG. (Port seawater) was filtered at a constant flux of 10 m / day. The change of the filtration pressure (differential pressure) at that time is shown in FIG.
  • Example 7 Sea water (2010) with the same specifications as the membrane filtration device used in Example 1, using a membrane filtration device (membrane pore size 1.5 ⁇ m) equipped with an eductor, shower device and bubbling jet device. (Igari Seawater, Saga Prefecture, collected on November 26) was filtered at a constant flux of 5 m / day. The change in filtration pressure (differential pressure) at that time is shown in FIG.
  • the differential pressure after washing becomes 0 and sufficient washing is obtained.
  • the rate of increase of the differential pressure after cleaning is small, and the cleaning efficiency is particularly excellent.
  • Example 8 Using a membrane filtration device having the same specifications as the membrane filtration device used in Example 1 (membrane pore diameter 1.5 ⁇ m), backwashing was performed for 30 seconds using limonene-containing water containing 1000 ppm of limonene, and then Table 1 Backwashing was performed with the indicated rinsing liquid for 30 seconds. Then, filtration was performed by passing seawater with a turbidity of 1.40 NTU (Imari Seawater, Saga Prefecture, collected on November 26, 2010) at a constant flow rate of 5 m / day for 30 minutes, and filtrate (membrane-treated treatment liquid). ) was collected. SDI 15 was measured as described below for the filtrate thus obtained. The results are shown in Table 1. In Experiment No. 8-1, seawater was passed without rinsing.
  • SDI 15 measurement method The filtrate collected as described above was filtered through a filter having a pore diameter of 0.45 ⁇ m at a constant pressure, and the flow rate was measured.
  • F 0 the flow rate at the start of filtration
  • F 15 the flow rate for 15 minutes after the start of filtration
  • SDI 15 exceeds 3.5 in Experiment No. 8-1, which was only rinsed with limonene-containing water and not rinsed.
  • SDI 15 improves to about 3 or less. To do. Therefore, after backwashing with limonene-containing water for washing clogging, it is preferable to rinse with a citric acid aqueous solution, acetic acid aqueous solution, isopropyl alcohol, ethanol aqueous solution or the like in order to improve the water quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

 海水、排水、バラスト水等のゼリー状の濁質成分を含む被処理水の膜濾過に用いられ、被処理水中の濁質により目詰まりした疎水性濾過膜の洗浄方法であって、リモネン含有水を濾過膜と接触させること、又は洗浄液による濾過膜の逆洗を行った後、濾過膜表面に空気を吸入した流れを印加する、もしくはエダクターノズルよりの水流を前記濾過膜に吹き付けることを特徴とし、処理流量(又は濾過圧)の回復に優れ、通液・洗浄の繰り返しによっても濾過圧の増大傾向を生じない疎水性濾過膜の洗浄方法、及びその洗浄方法を効率よく実施することができる膜濾過装置を提供する。

Description

濾過膜の洗浄方法及び膜濾過装置
 本発明は、膜濾過における濾過膜の洗浄方法に関する。すなわち、膜濾過中には、被処理水中の濁質により濾過膜の孔が目詰まりし、処理流量が低下する(又は濾過圧が上昇する)が、本発明は、この処理流量(又は濾過圧)を回復させるために行われる濾過膜の洗浄方法に関する。本発明は、又、前記洗浄方法を効率よく実施することができる膜濾過装置に関する。
 海水、排水、バラスト水等に含まれる濁質成分を除去するため、中空糸膜やメンブレンなどの疎水性の濾過膜を用いた膜濾過が広く行われている。しかし、海水中にはプランクトンや微生物が細胞外に分泌するTEP(transparent exopolymer particles:透明細胞外高分子粒子)と呼ばれる粘着性物質が1~数ppm程度存在する。TEPの主成分は糖類であり、1~200μm程度の粒径の変形する粒子である。TEP等の有機性粒子、すなわちゼリー状の濁質成分は変形するため、これを含む被処理水の膜濾過では、ゼリー状の濁質成分が膜表面や孔内に粘着して広がり孔をファウリング(目詰まり)させやすい。
 このようなゼリー状の濁質成分を含む被処理水の膜濾過では、フッ素樹脂やポリエチレンなどの疎水性の材質からなり、1μm程度以上の孔径を有する濾過膜を用いた場合、目詰まりが生じにくく処理流量の経時的低下(又は濾過圧の経時的増大)が小さい傾向が見られる。大きい孔径を有する疎水性濾過膜は、親水性の濾過膜よりはゼリー状の濁質成分が粘着しにくいので、目詰まりが抑制されると考えられる。そこで、比較的大きい孔径を有する疎水性濾過膜が、海水、排水、バラスト水等の膜濾過に好適に用いられている。
 しかし、このような濾過膜を用いても、濾過膜の目詰まり、処理流量の低下や濾過圧の増大を充分に防ぐことはできない。そこで、膜濾過中に適時、処理流量(又は濾過圧)を回復するための濾過膜の洗浄を行う必要があり、孔を目詰させている濁質を洗浄、除去する必要がある。
 濾過膜の洗浄方法としては、濾過時の液体の流れとは逆方向に通水する方法(以下「通液逆洗」又は「逆洗」と言う。)が広く行われている。又、薬液を注入して膜を洗浄する方法(薬液洗浄)や、濾過膜を手もみして洗浄する方法、濾過時の液体の流れとは逆方向に気体を濾過膜に通して洗浄する方法(エアー逆洗)、膜に超音波を印加して洗浄する方法(超音波洗浄)等の物理的洗浄等も採用される。洗浄効率をさらに高めるためにこれらを組合せた洗浄方法も知られている。
 例えば、特許文献1には、「中空糸膜利用の濾過器モジュールに機械的な振動を与えつつ、該濾過器モジュールに逆洗水を流してモジュール内の水を揺動し、濾過面に付着した堆積物を剥離させ、系外に流出させるに際し、逆洗水の給排水を適宜切り換えて、モジュール内の水位を中空糸束に沿って変化させることを特徴とする濾過器モジュールの再生方法」(請求項1)が開示されており、さらに「付着した堆積物が容易に剥離し難いときには、洗浄効果を高めるために、逆洗水に塩酸、クエン酸、蓚酸、次亜塩素酸、合成洗剤の水溶液を単独または混合して使用してもよく、また前処理としてそれらの単独または混合した水溶液に浸漬した後上記方法を行ってもよい。」(段落0005)と、記載されている。
特開平8-332357号公報
 しかしながら、前記のような濾過膜の洗浄では、濾過能力(大きな処理流量、低い濾過圧)の回復率が充分ではなかった。特に、ゼリー状の濁質成分を含む海水、排水、バラスト水等の膜濾過では、濾過能力の回復率が充分ではなく、洗浄回数を増やす必要があり、膜濾過の効率を低下させていた。さらに、洗浄しても目詰まりを全て除去できず、通液・洗浄の繰り返し毎に、洗浄直後の濾過圧が増大していくとの問題があった。
 本発明は、海水、排水、バラスト水等のゼリー状の濁質成分を含む被処理水の膜濾過において孔の目詰まりが生じた疎水性濾過膜を効率よく洗浄することができ、濾過能力の回復に優れ、通液・洗浄の繰り返しによっても濾過圧の増大傾向を生じない疎水性濾過膜の洗浄方法を提供することを課題とする。
 なお、本発明者は、この疎水性濾過膜の洗浄方法を行った場合、濾過水の水質が低下する場合もあることを見出したが、本発明は、この場合の濾過水の水質の低下を防ぐ方法を提供することも課題とする。
 本発明は、さらに、前記の疎水性濾過膜の洗浄方法を、効率よく実施することができる膜濾過装置を提供することを課題とする。
 本発明者は、上記課題について鋭意検討した結果、目詰まりを生じた疎水性濾過膜を、水や従来用いられていた薬剤ではなく、リモネン(オレンジ洗剤)を添加した水を用いて洗浄すれば、目詰まりを効率よく解消し、優れた洗浄効率(濾過能力の回復)が達成できることを見出した。
 又、目詰まりを生じた疎水性濾過膜を逆洗した後、水流特に空気を吸入した水流を疎水性濾過膜表面上に流す方法や、周囲の水を引き込むことで強力な水流を生み出すエダクター(エゼクター)を使用しそのノズルよりの強力な水流で疎水性濾過膜の濁質を吹き飛ばす方法を行っても、優れた濾過能力の回復が達成できることを見出した。
 本発明者は、さらに、前記のリモネン(オレンジ洗剤)を添加した水を用いて行う疎水性濾過膜の洗浄において生じる場合がある濾過水の水質の低下は、リモネンによる疎水性濾過膜の洗浄の後さらに酸又はアルコールによる洗浄を行えば抑制できることを見出した。すなわち、前記の課題は、以下に示す構成により達成される。
 請求項1の発明は、膜濾過に用いられ被処理水中の濁質により目詰まりした疎水性濾過膜の洗浄方法であって、濾過膜をリモネン含有水と接触させることを特徴とする濾過膜の洗浄方法である。
 ここで疎水性濾過膜とは、疎水性の高分子材料からなり、親水化加工(高分子中への親水基の導入等)が施されていない膜であって、濾過膜として使用できるように均一な径の孔を有する膜を言う。濾過膜の孔径は、特に限定されないが、孔径が1μm程度以上の場合は、TEP等のゼリー状の濁質成分の除去効率がよく、又目詰まりが小さく濾過能力の低下が小さい(従って、洗浄頻度を小さくすることができる)ので、海水、排水、バラスト水等の処理に用いるときは好適である。又、海水、排水、バラスト水等、ゼリー状の濁質成分を含む被処理水の膜濾過において、前段の処理を1μm程度以上の孔径を有する疎水性濾過膜を使用した装置(モジュール)で行い、後段の処理をより小さい孔径を有する濾過膜を使用した装置(モジュール)で行うと、後段の濾過膜の目詰まりを効率よく抑制することが可能となる。
 疎水性濾過膜の形態は特に限定されないが、中空糸膜やメンブレン等の形態を挙げることができる。より広い膜面積により処理量を増大させるためには、中空糸膜を好ましい形態として挙げることができる。
 本発明の洗浄方法は、濾過膜の洗浄液(洗浄に使用される液体。なお、「洗浄液」との用語は、水も含まれる意味で用いられる。水やリモネン含有水等の水系の液体の場合は、洗浄水とも言う。)として、リモネン含有水を用いることを特徴とする。リモネン含有水を用いることにより、従来の、水による洗浄や、界面活性剤、次亜塩素酸等の薬剤を含有する洗浄液による洗浄と比較して、膜洗浄効果(洗浄効率)が飛躍的に向上する。これは、リモネンが、TEP等のゼリー状の濁質成分よりも疎水性濾過膜を構成する樹脂、特にポリテトラフルオロエチレン(PTFE)等のフッ素樹脂との濡れ性が良いためと考えられる。さらに、従来技術では、処理液中に界面活性剤が混入することによる処理液の発泡の問題や、毒性のある薬剤が処理液中へ混入する問題があったが、リモネンには、発泡性や毒性がないので、従来技術での前記のような問題が生じることもない。
 リモネン含有水とは、リモネンの水溶液である。リモネンとは、レモンなど柑橘系全般の果実に含まれる成分で天然由来の洗剤(例えば、オレンジ洗剤)として用いられているものである。
 リモネン含有水中のリモネンの濃度としては、10ppm以上が好ましい。10ppm未満の場合は洗浄効率が不十分となる場合がある。
 リモネン含有水には、本発明の趣旨を損ねない範囲で、他の薬剤が含まれてもよくリモネン含有水による洗浄と他の薬液洗浄等とを組合せてもよい。
 本発明の洗浄方法が適用される被処理水は、膜濾過に供せられるものであれば特に限定されないが、海水、排水、バラスト水等のようなTEP等のゼリー状の濁質成分を含む被処理水の場合、本発明の効果が特に発揮される。従って、被処理水として好適である。
 請求項2の発明は、リモネン含有水と濾過膜との接触が、前記濾過膜の逆洗により行われることを特徴とする請求項1に記載の濾過膜の洗浄方法である。
 リモネン含有水と濾過膜との接触させる方法は特に限定されない。例えば、目詰まりした濾過膜をリモネン含有水中に浸漬する方法、濾過中の被処理水の流れと同じ方向にリモネン含有水を通水し洗浄する方法(順方向洗浄)も挙げることができる。しかし、洗浄の操作の容易さ及びより高い洗浄効率が得られることから、濾過中の被処理水の流れとは逆方向にリモネン含有水を通水する逆洗(通液逆洗)による方法が好ましい。
 請求項3の発明は、前記濾過膜の材質が、フッ素樹脂又はポリエチレンであることを特徴とする請求項1又は請求項2に記載の濾過膜の洗浄方法である。
 疎水性の濾過膜を構成する材質としては、フッ素樹脂やポリオレフィンを挙げることができる。フッ素樹脂としては、PTFE、ポリフッ化ビニリデン(PVdF)等を挙げることができ、ポリオレフィンとしては、ポリエチレンや他のポリ-α-オレフィンを挙げることができる。これらの中でも、フッ素樹脂又はポリエチレンからなる膜が、耐薬品性や機械的強度に優れているので、本発明において疎水性濾過膜として好適に用いられる。
 請求項4の発明は、リモネン含有水と濾過膜との接触の際に、物理洗浄を行うことを特徴とする請求項1ないし請求項3のいずれか1項に記載の濾過膜の洗浄方法である。
 リモネン含有水と濾過膜との接触による洗浄と、物理洗浄を組み合わせると濾過膜の洗浄効率がさらに向上するので好ましい。ここで、物理洗浄としては、濾過膜を手もみして洗浄する方法、気体を濾過膜に通して洗浄する方法(エアーバブリング)、膜に超音波を印加して洗浄する方法(超音波洗浄)、膜に水や洗浄液を吹き付ける方法、水流特に空気を吸入した水流を膜表面上に流す方法、エダクターを使用しそのノズルよりの強力な水流で膜表面の濁質を吹き飛ばす方法等を挙げることができる。
 「リモネン含有水と濾過膜との接触の際に」とは、「接触と同時」及び「接触後」のいずれをも含む意味である。「接触と同時」の場合としては、例えば、リモネン含有水による濾過膜の通液逆洗を、濾過膜に超音波を印加しながら行う方法を挙げることができる。又、「接触後」の場合の例としては、リモネン含有水により濾過膜を通液逆洗して洗浄した後、濾過膜を手もみする方法や濾過膜に水や洗浄液をシャワー等により吹き付ける方法を挙げることができる。
 請求項5の発明は、リモネン含有水と濾過膜との接触が、前記濾過膜の逆洗により行われ、かつ前記物理洗浄が、前記逆洗後に洗浄液を前記濾過膜の表面に吹き付ける方法によることを特徴とする請求項4に記載の濾過膜の洗浄方法である。この方法によれば、物理洗浄を組合せる方法の中でも濾過膜の洗浄効率がさらに向上するので好ましい。なお、前記のように、洗浄液としては水も用いられる。
 洗浄液を前記濾過膜の表面に吹き付ける方法としては、洗浄液をシャワー状にして前記濾過膜の表面の比較的広い範囲に吹き付ける方法や、洗浄液を細い噴流(ジェット噴流)として前記濾過膜の表面の狭い範囲に吹き付け、その吹き付ける範囲を移動させて前記濾過膜の全表面に吹き付ける方法などを挙げることができる。又、シャワー状にして吹き付ける方法には、前記濾過膜の表面の一部の範囲にシャワーを吹き付けるノズルを、1又は複数個用いるとともに、そのノズルを移動させることにより前記濾過膜の全表面にシャワーを吹き付ける方法、又は、前記濾過膜の全表面に同時にシャワーが吹き付けられるように多数のノズルを用いる方法等を挙げることができる。シャワー状にして吹き付ける方法によれば、濾過膜の洗浄効率が特に向上するので好ましい。
 前記濾過膜の表面に吹き付けられる液としては、水の他にリモネン含有水等の洗浄液を挙げることができる。本発明の趣旨を損ねない範囲で、通常の薬液洗浄に用いられる他の薬剤の水溶液を用いることもできる。この物理洗浄にもリモネン含有水を用いることにより、洗浄効率をさらに向上できるので好ましい。
 請求項6の発明は、膜濾過に用いられ被処理水中の濁質により目詰まりした疎水性濾過膜の洗浄方法であって、洗浄液による前記濾過膜の逆洗を行った後、前記濾過膜表面上に、空気を吸入した洗浄液を流すことを特徴とする濾過膜の洗浄方法である。すなわち、逆洗後に水流(洗浄液の流れ)とともに吸入したエア、いわゆるバブリングジェット(ジェット噴流)により洗浄する方法である。濾過膜表面上に、空気を吸入した水流を流すとは、水流と濾過膜間に剪断力が生じるように、洗浄液を濾過膜表面方向に流すことを意味する。この方法により濾過膜の洗浄効果が飛躍的に向上する。
 請求項7の発明は、膜濾過に用いられ被処理水中の濁質により目詰まりした疎水性濾過膜の洗浄方法であって、洗浄液による前記濾過膜の逆洗を行った後、エダクターノズルよりの水流を前記濾過膜に吹き付けることを特徴とする濾過膜の洗浄方法である。
 エダクターとは、その周囲の水を引き込むことで強力な水流を生み出す装置である。そのノズルからの強力な水流を、濾過膜表面に吹き付けることにより洗浄効果を飛躍的に向上させることができる。エダクターとして、好ましくは、流体(水)をノズルに供給する管とノズルの間の咽部に吸引口を設け、咽部を通過する流体(水)の流れにより吸引口からも流体(水)を吸引し、前記管より供給される量より多量の流体(水)を吐出して強力な水流を生み出す装置を挙げることができる。エダクターによる洗浄を行う場合は、濾過膜表面の全体にわたりエダクターノズルより吐出される強力な水流が十分吹き付けられるように、エダクターノズルを濾過装置内に複数設けることが好ましい。
 請求項8の発明は、前記洗浄液がリモネン含有水であることを特徴とする請求項6又は請求項7に記載の濾過膜の洗浄方法である。すなわち、逆洗に使用する洗浄液、及びバブリングジェット(ジェット噴流)に使用される洗浄液又はエダクターに使用される洗浄液としてリモネン含有水を用いる方法である。この方法により濾過膜の洗浄効果がさらに向上する。リモネン含有水としては、前記のリモネン含有水と同様なものを用いることができる。なお、逆洗に使用する洗浄液のみ、又は、バブリングジェット(ジェット噴流)に使用される洗浄液もしくはエダクターに使用される洗浄液のみをリモネン含有水としてもよい。なお、逆洗に使用する洗浄液にリモネン含有水を用いた場合、この請求項8の発明は、請求項4の発明であって、リモネン含有水と濾過膜との接触が、前記濾過膜の逆洗により行われ、物理洗浄が、前記濾過膜表面上に、空気を吸入した洗浄液を流すこと、又はエダクターノズルよりの水流を前記濾過膜に吹き付けることにより行われる場合に該当する。
 リモネン含有水を洗浄液として使用する請求項1~5及び請求項8の濾過膜の洗浄方法では、前記のように、TEP等のゼリー状の濁質成分の除去効率が良い等の優れた効果が得られるが、一方、リモネン含有水を洗浄液として使用した場合(特に逆洗水として使用した場合)、濾過水の水質が低下すること、具体的には、濾過水のSDI(Silt Density Index)が大きくなる場合があることが、本発明者により見出された。これは、リモネンが、TEP等のゼリー状の濁質成分よりも疎水性濾過膜を構成する樹脂、特にPTFE等のフッ素樹脂との濡れ性が良く、疎水性濾過膜の表面がリモネンで覆われてしまい、疎水性濾過膜の疎水性が一部失われてしまうためと考えられる。本発明者は検討の結果、リモネン含有水による洗浄(逆洗等)後、疎水性濾過膜を、酸又はアルコールによりすすぎ(リンスして)リモネンを疎水性濾過膜より除去することにより、濾過水のSDIが大きくなる問題が解決され、透過水の水質が向上することを見出した。
 請求項9の発明は、濾過膜をリモネン含有水と接触させた後、前記濾過膜を酸で洗浄することを特徴とする請求項1ないし請求項5のいずれか1項に記載の濾過膜の洗浄方法である。
 請求項10の発明は、前記の酸が、炭素数6以下のモノ、ジ又はトリカルボン酸から選ばれることを特徴とする請求項9に記載の濾過膜の洗浄方法である。
 請求項11の発明は、濾過膜をリモネン含有水と接触させた後、前記濾過膜をアルコールで洗浄することを特徴とする請求項1ないし請求項5のいずれか1項に記載の濾過膜の洗浄方法である。
 請求項12の発明は、前記のアルコールが炭素数4以下の一価アルコールから選ばれることを特徴とする請求項11に記載の濾過膜の洗浄方法である。
 請求項1ないし請求項5のいずれか1項に記載の濾過膜の洗浄方法により濾過膜の洗浄効果が飛躍的に向上するが、前記のように、その際にSDIが大きくなる場合がある。しかし、濾過膜をリモネン含有水と接触させた後、濾過膜を酸又はアルコールですすぐ(リンスする)ことにより、処理水のSDIを減少させることができ、水質を向上させることができるので好ましい。請求項9の発明及び請求項11の発明は、この好ましい態様に該当する。
 すすぎに用いられる酸又はアルコールは、水溶性の酸又はアルコールである。酸としては、炭素数6以下のモノ、ジ又はトリカルボン酸が、SDIを減少させる効果が大きいので好ましい。炭素数6以下のモノ、ジ又はトリカルボン酸としては、例えば、酢酸やクエン酸を挙げることができる。
 アルコールとしては、炭素数4以下の一価アルコールが、SDIを減少させる効果が大きいので好ましい。炭素数4以下の一価アルコールとしては、例えば、エタノール、イソプロピルアルコールを挙げることができる。
 海水、排水、バラスト水等の膜濾過は、疎水性濾過膜を備えるモジュールを使用した膜濾過装置により行うことができるが、この濾過装置がリモネン含有水供給手段を備えることにより、前記本発明の洗浄方法を行うことができる。そこで、本発明は、請求項13として、疎水性濾過膜を備えるモジュールを使用した濾過装置であって、リモネン含有水供給手段を備えることを特徴とする膜濾過装置を提供する。
 リモネン含有水供給手段とは、膜濾過装置中の疎水性濾過膜にリモネン含有水が接触するように供給するための手段であって、例えば、前記疎水性濾過膜を逆洗するための逆洗手段と、この逆洗手段に用いる洗浄液としてリモネン含有水を供給する手段との組合せを挙げることができる。
 請求項14の発明は、さらに、リモネン含有水の逆洗手段、及び、疎水性濾過膜表面に洗浄液をシャワー状にして吹き付けるシャワー装置を備えることを特徴とする請求項13に記載の膜濾過装置である。前記のように、疎水性濾過膜をリモネン含有水により逆洗した後、疎水性濾過膜に洗浄液をシャワー状にして吹き付ける方法によれば、濾過膜の、飛躍的に優れた洗浄効率が得られるが、請求項14の発明は、この方法を行うための装置である。
 ここで、シャワー状にして吹き付けられる液としては、前記のように、水又はリモネン含有水等を挙げることができるが、水の吹き付け及びリモネン含有水の吹き付けを併用して、洗浄効率をさらに上げることもできる。そこで、本発明の膜濾過装置は、水用のシャワー装置、リモネン含有水用のシャワー装置をともに備えていてもよい。又、超音波洗浄等の物理洗浄を併用して洗浄効率をさらに上げるため、超音波印加手段等をさらに備えていてもよい。
 請求項15の発明は、疎水性濾過膜を備えるモジュールを使用した濾過装置であって、洗浄液による逆洗手段、及び、前記疎水性濾過膜表面上に空気を吸入した洗浄液の流れを表面方向に印加する手段を備えることを特徴とする膜濾過装置である。前記の請求項6の濾過膜の洗浄方法を行うための手段を備えた膜濾過装置であり、この装置を使用することにより飛躍的に優れた洗浄効率が得られる。空気を吸入した洗浄液の流れを印加する手段としては、いわゆる、バブリングジェットを用いることができる。
 請求項16の発明は、疎水性濾過膜を備えるモジュールを使用した濾過装置であって、洗浄液による逆洗手段、及び、エダクターを備えることを特徴とする膜濾過装置である。前記の請求項7の濾過膜の洗浄方法を行うための手段を備えた膜濾過装置であり、この装置を使用することにより飛躍的に優れた洗浄効率が得られる。エダクターノズルは、好ましくは、濾過膜表面全体にわたり強力な水流が十分吹き付けられるように、濾過装置内に複数設けられる。
 請求項15の膜濾過装置及び請求項16の膜濾過装置は、好ましくは、リモネン含有水供給手段を備える。そして、このリモネン含有水供給手段を、前記逆洗手段、空気を吸入した洗浄液の流れを印加する手段、エダクター等と組み合わすことにより、リモネン含有水による濾過膜の洗浄、例えば請求項8の濾過膜の洗浄方法を行うことができる。
 請求項17の発明は、さらに、前記濾過膜を酸又はアルコールで洗浄する手段を有することを特徴とする請求項13に記載の膜濾過装置である。この膜濾過装置を使用することにより、請求項9~12に記載の濾過膜の洗浄方法を行うことができる。
 本発明の洗浄方法によれば、従来の、水による洗浄や、界面活性剤、次亜塩素酸等の薬剤を含有する洗浄液による洗浄と比較して飛躍的に向上した膜洗浄効果(洗浄効率)が得られる。この洗浄方法は、本発明の膜濾過装置により容易に行うことができる。又、本発明の洗浄方法において、リモネン含有水を使用した場合に生じることがある処理水の水質が低下する問題は、酸又はアルコールにより濾過膜を洗浄することを特徴とする本発明の方法により改良される。
実施例1の膜濾過における差圧の時間変化を示したグラフである。 実施例2の膜濾過における差圧の時間変化を示したグラフである。 実施例3の膜濾過における差圧の時間変化を示したグラフである。 実施例4の膜濾過における差圧の時間変化を示したグラフである。 実施例5の膜濾過における差圧の時間変化を示したグラフである。 本発明の膜濾過装置の一例を示す模式横断面図である。 本発明の膜濾過装置の一例の内部構造を示す模式図である。 実施例6の膜濾過における差圧の時間変化を示したグラフである。 本発明の膜濾過装置の他の一例の内部構造を示す模式図である。 実施例7の膜濾過における差圧の時間変化を示したグラフである。 本発明の膜濾過装置の他の一例の内部構造を示す模式図である。
 次に、本発明を実施するための形態を具体的に説明する。なお、本発明はこの形態に限定されるものではなく、本発明の趣旨を損なわない限り、他の形態へ変更することができる。
 図6は、本発明の膜濾過装置の一例を模式的に示す横断面図である。図7は、本発明の膜濾過装置の一例の内部構造を模式的に示す図である。図より明らかなように、この膜濾過装置は、筒状のケースの中心部にモジュールを備えさらに3本のシャワー装置を備えている。さらに図示されていないが、被処理水を供給する手段及び被処理水の流れとは逆の方向からリモネン含有水からなる洗浄液を供給する手段を備えている。さらに又、図示されていないが、超音波を膜に印加する手段、エアーバブリングを行う手段も備えている。
 モジュールは、複数の中空糸膜からなる中空糸束であるが、図中では各中空糸の図示は省略されている。又、各シャワー装置は、複数(図中では4つ)のノズルを有し、このノズルからモジュール、すなわち、中空糸束の表面にシャワーが吹きつけられる。中空糸束の全表面にわたり、均一に洗浄液が吹きつけられるようにノズルの位置や形状等を設定することが好ましい。
 海水等の膜濾過を行う場合、海水等の被処理水は筒状のケースとモジュール間に供給され、中空糸膜を通って、モジュール内(中空糸内)から処理液として装置外に排出される。中空糸膜を通る際に濁質成分の除去が行われる。この際に、濁質成分による中空糸膜の目詰まりが生じ、処理流量が低下し濾過圧(差圧)が増大する。
 そこで、処理流量(又は濾過圧)を回復するために、中空糸膜の洗浄が、リモネン含有水の逆洗により行われる。このとき、リモネン含有水は、モジュール内に供給され、中空糸膜を通って、筒状のケースとモジュールの間から装置外に排出され、中空糸膜の洗浄が行われる。その後、モジュール内へのリモネン含有水の供給を停止し、筒状のケースとモジュール間から液体を除去した後、各シャワー装置のノズルから、中空糸束の表面に洗浄液のシャワーが吹きつけられる。洗浄液としては、水やリモネン含有水が用いられ、これらを組合せてもよい。その結果、処理流量の回復、差圧の低下が達成され、その後前記と同様にして被処理水の通液が再開される。
 図9は、本発明の膜濾過装置の他の一例の内部構造を模式的に示す図である。図より明らかなように、この膜濾過装置は、筒状のケースの中心部にモジュールを備えさらにバブリングジェットを印加するためのノズルを複数(図9の例では4個)備えている。さらに図示されていないが、被処理水を供給する手段及び被処理水の流れとは逆の方向からリモネン含有水からなる洗浄液を供給し逆洗する手段を備えている。
 モジュールは、図6の例と同様に、複数の中空糸膜からなる中空糸束であるが図中では各中空糸の図示は省略されている。各ノズルからは、バブリングジェット(空気を吸入した水流)が、モジュール中の中空糸束の表面上に、水流と中空糸の表面間に剪断が生じるように流されている。中空糸束の全表面にわたり、均一に水流が印加されるようにノズルの位置や形状等を設定することが好ましい。
 膜濾過を行う場合の海水等の被処理水の流れ等は、前記の図6の例と同様である。濁質成分による中空糸膜の目詰まりによる濾過圧(差圧)の増大が生じたとき、処理流量(又は濾過圧)を回復するために、中空糸膜の洗浄が、リモネン含有水の逆洗により行われる。このとき、リモネン含有水は、モジュール内に供給され、中空糸膜を通って、筒状のケースとモジュールの間から装置外に排出され、中空糸膜の洗浄が行われる。その後、モジュール内へのリモネン含有水の供給を停止し、ノズルからバブリングジェットを、モジュール中の中空糸束の表面上に、水流と中空糸の表面間に剪断が生じるように印加される。水流の水として、リモネン含有水を用いてもよい。その結果、処理流量の回復、差圧の低下が達成され、その後前記と同様にして被処理水の通液が再開される。
 バブリングジェットの代わりに空気を含まない水流を流してもよいが、空気を吸入した水流、すなわちバブリングジェットを流すことにより、洗浄効率が顕著に向上する。水流の送水圧は、0.2MPa以上が好ましい。又ノズルの吐出口での水流の流束が20m/d以上であることが好ましい。バブリングジェットでは、水量よりも空気吸い込み量が多い方が好ましい。例えば、水に対して2~5倍の空気を含み、泡のサイズが1~4mm程度のバブリングジェットが好ましく用いられる。
 図11は、本発明の膜濾過装置の他の一例の内部構造を模式的に示す図である。図より明らかなように、この膜濾過装置は、筒状のケースの中心部にモジュールを備えさらにエダクターを複数(図11の例では4個)備えている。さらに図示されていないが、被処理水を供給する手段及び被処理水の流れとは逆の方向から水(逆洗に使用される液体)を供給し逆洗する手段を備えている。
 モジュールは、図6の例と同様に、複数の中空糸膜からなる中空糸束であるが図中では各中空糸の図示は省略されている。各エダクターは、筒状のケースに取り付けられているが、エダクターノズルは筒状のケース内部に開口しており、ノズルから吐出される強力な水流が中空糸膜の表面に吹き付けられるように設けられている。この例では、ノズルから吐出される強力な水流として、濾過水(濾過された後の水)の水流が用いられているが、リモネン含有水等他の流体(水)を使用することもできる。モジュールの全体にわたって前記の強力な水流が十分吹き付けられるように、エダクターのノズルの位置や形状等を設定することが好ましい。
 膜濾過を行う場合の海水等の被処理水の流れ等は、前記の図6の例と同様である。濁質成分による中空糸膜の目詰まりによる濾過圧(差圧)の増大が生じたときは、次に示す手順(1)(2)(3)により処理流量(又は濾過圧)の回復を行うことができる。
(1)リモネン含有水による逆洗
 中空糸膜の洗浄が、リモネン含有水の逆洗により行われる。このとき、リモネン含有水は、モジュール内に供給され、中空糸膜を通って筒状のケースとモジュールの間から装置外に排出され、中空糸膜の洗浄が行われる。
(2)リモネンを含まない水による逆洗
 (1)の後、筒状ケース内のリモネン含有水を排水する。その後、リモネンを含まない水(例えば被処理水=海水)により再度筒内を満たし、濾過水を使用した逆洗を行う。この逆洗により、中空糸膜内部に残留したリモネンが押し流される。
(3)エダクターによる洗浄
 (2)の後、筒状ケース内を排水する。その後、エダクターノズルより強力な水流を中空糸膜に吹き付け中空糸膜の濁質を吹き飛ばす。
 上記(1)(2)(3)により、処理流量の回復、差圧の低下が達成され、その後前記と同様にして被処理水の通液が再開される。なお、(1)の後、(3)エダクターによる洗浄を行い、その後に(2)リモネンを含まない水による逆洗を行ってもよい。
実施例1
 以下に示す仕様であって、図6及び図7で表わすことができる構造の膜濾過装置を用い、寒天を1ppm溶解した寒天水を、10m/日の定流束で通液する濾過を行った。その時の濾過圧(差圧)の変化を図1に示す。運転により濾過圧(差圧)が増大したので、30分運転後、リモネンを1000ppm含むリモネン含有水を使用した逆洗を行ったところ、図1に示されるように差圧はほとんど0まで回復した。
 同様な運転を30分行った後、次亜塩素酸ナトリウムを20ppm含む洗浄液を使用した逆洗を行ったところ、図1に示されるように差圧の低下は小さかった。この結果より、リモネン含有水を使用すれば、次亜塩素酸ナトリウム水溶液を使用する方法(従来の方法)と比べて飛躍的に優れた洗浄効率が得られることが示されている。
[仕様]
 モジュールの直径:40mm
 モジュール中の中空糸膜:10本
 モジュールの長さ:40cm
 中空糸膜:
 ・住友電工ファインポリマー社製ポアフロン(PTFE)
 ・径:2.3mm
 ・孔径:2μm
実施例2
 住友電工ファインポリマー社製ポアフロン(PTFE)であって孔径1.5μmの濾過膜(径:2.3mm)を用いた以外は、実施例1で使用した膜濾過装置と同じ仕様の膜濾過装置を用い、濁度1.18NTUの海水(静岡県清水港海水)を10m/日の定流束で通液する濾過を行った。その時の濾過圧(差圧)の変化を図2に示す。
 運転開始後30分で、リモネンを1000ppm含むリモネン含有水を使用した逆洗を行うとともに、周波数40kHz、出力300Wの超音波を30秒間印加した後、エアーバブリングを1分間行った(図2中の(a))。その後運転を30分間行う毎に、水を使用した逆洗を行うとともに、周波数40kHz、出力300Wの超音波を30秒間印加した後、エアーバブリングを1分間行う洗浄を3回行った(図2中の(b))。
 その後さらに、運転を30分間行った後(運転開始より150分後)、リモネンを1000ppm含むリモネン含有水を使用した逆洗を行うとともに、周波数40kHz、出力300Wの超音波を30秒間印加した後、シャワー装置により水を、6リットル/分の流量でモジュールにシャワー状に吹き付ける洗浄を1分間行った(図2中の(c))。その後運転を30分間行う毎に、水を使用した逆洗を行うとともに、周波数40kHz、出力300Wの超音波を30秒間印加した後、エアーバブリングを1分間行う洗浄を行った(図2中の(d))。
 図2に示されるように、水逆洗+超音波印加+バブリングによる洗浄では、洗浄を繰り返す毎に差圧が増大する傾向が見られる。しかし、リモネン含有水逆洗+超音波印加+シャワーによる洗浄を行えば、差圧がほとんど0まで回復する洗浄効果を達成できるとともに、その後に水逆洗+超音波印加+バブリングによる洗浄を繰り返しても、差圧が増大する傾向が抑制されており、さらに優れた洗浄効率が達成できることが示されている。
実施例3
 実施例1で使用した膜濾過装置と同じ仕様の膜濾過装置(膜の孔径2.0μm)を用い、濁度0.24NTUの寒天添加水(寒天1ppm)を10m/日の定流束で通液する濾過を行った。その時の濾過圧(差圧)の変化を図3に示す。
 運転開始後30分で、次亜塩素酸ナトリウムを20ppm含む洗浄液を使用した逆洗を30秒間行い、さらに、運転を30分間行った後(運転開始より60分後)、リモネンを1000ppm含むリモネン含有水を使用した逆洗を30秒間行った。図1に示されるように、次亜塩素酸ナトリウム水溶液を用いた洗浄では差圧の低下は小さかったが、リモネン含有水を用いた洗浄では差圧がほとんど0に回復する洗浄効果を達成でき、又その後の差圧の増大も抑制された。この結果より、リモネン含有水を使用すれば、次亜塩素酸ナトリウム水溶液を使用する方法(従来の方法)と比べて飛躍的に優れた洗浄効率が得られることが示されている。
実施例4
 実施例1で使用した膜濾過装置と同じ仕様の膜濾過装置(膜の孔径2.0μm)を用い、濁度1.40NTUの海水(静岡県清水港海水)を10m/日の定流束で通液する濾過を行った。その時の濾過圧(差圧)の変化を図4に示す。
 運転開始後30分及び35分で、リモネンを1000ppm含むリモネン含有水を使用した逆洗を行うとともに、周波数40kHz、出力300Wの超音波を30秒間印加した後、エアーバブリングを1分間行った(図4中の(a))。その後運転を30分間行った後(運転開始より65分後)、リモネンを30ppm含むリモネン含有水を使用した逆洗を行うとともに、周波数40kHz、出力300Wの超音波を30秒間印加した後、エアーバブリングを1分間行った(図4中の(b))。同じ洗浄を運転開始より95分後、110分後及び140分後に行った(図4中の(b))。
 図4に示されるように、リモネン含有水中のリモネン濃度が30ppmの場合でも、1000ppmの場合でも同様な洗浄効果が得られている。
実施例5
 住友電工ファインポリマー社製ポアフロン(PTFE)であって孔径0.45μmの濾過膜(径:2.3mm)を用いた以外は、実施例1で使用した膜濾過装置と同じ仕様の膜濾過装置を用い、濁度1.40NTUの海水(静岡県清水港海水)を10m/日の定流束で通液する濾過を行った。その時の濾過圧(差圧)の変化を図5に示す。
 運転開始後10分、18分、38分で、リモネンを100ppm含むリモネン含有水を使用した逆洗を行うとともに、周波数40kHz、出力300Wの超音波を30秒間印加した後、エアーバブリングを1分間行った。図5の結果より、0.45μmとの小さい孔径を有する疎水性濾過膜の場合でも、リモネン含有水を使用することにより、濾過膜の優れた洗浄効率が達成できることが示されている。
実施例6
 実施例1で使用した膜濾過装置と同じ仕様であって、図9で表わすことができる構造の膜濾過装置(膜の孔径2.0μm)を用い、濁度1.40NTUの海水(静岡県清水港海水)を10m/日の定流束で通液する濾過を行った。その時の濾過圧(差圧)の変化を図8に示す。
 図8中の(c)では濾過水で逆洗を行った後、エアーバブリング(泡のサイズ:約10mm、泡の速度0.2m/秒)を1分間行った。又、(d)では、濾過水で逆洗を行った後、バブリングジェット(泡のサイズ:1~4mm)の印加を、空気量32L/分、水量10L/分(泡の速度0.2m/秒)で1分間行った。
 図8に示されるように、エアーバブリングの場合は、逆洗、超音波印加を行っても、洗浄を繰り返すと充分な洗浄が行えなくなる(差圧が0とならない)が、バブリングジェットの場合は、充分な洗浄が得られる(差圧が0となる)。
実施例7
 実施例1で使用した膜濾過装置と同じ仕様であって、エダクター、シャワー装置及びバブリングジェット装置を備える膜濾過装置(膜の孔径1.5μm)を用い、濁度1.40NTUの海水(2010年11月26日採取の佐賀県伊万里海水)を5m/日の定流束で通液する濾過を行った。その時の濾過圧(差圧)の変化を図10に示す。
 図10中の(a)では濾過水で逆洗を1分間行った。(b)では濾過水で逆洗を1分間行った後、バブリングジェット(泡のサイズ:1~4mm)の印加を、空気量48L/分、水量12L/分(泡の速度0.2m/秒)で1分間行った。(c)では、濾過水で逆洗を1分間行った後、エダクター(スプレーイング システムス ジャパン社製、ミニエダクター)による濾過水の吐出を、12L/分で1分間行った。(d)では、濾過水で逆洗を1分間行った後、シャワー装置により水を、6リットル/分の流量でモジュールにシャワー状に吹き付ける洗浄を1分間行った。
 図10に示されるように、逆洗のみ、又はバブリングジェット、エダクター若しくはシャワー洗浄の併用のいずれの場合でも、洗浄後の差圧が0となり、充分な洗浄が得られているが、中でも、エダクターによる洗浄の場合は、洗浄後の差圧の上昇速度が小さく、洗浄効率が特に優れている。
実施例8
 実施例1で使用した膜濾過装置と同じ仕様の膜濾過装置(膜の孔径1.5μm)を用い、リモネンを1000ppm含むリモネン含有水を使用して逆洗を30秒間行った後、表1に示すすすぎ液により30秒間逆洗した。その後、濁度1.40NTUの海水(2010年11月26日採取の佐賀県伊万里海水)を5m/日の定流束で30分間通液する濾過を行い、濾過液(膜濾過された処理液)を採取した。このようにして得られた濾過液について以下に示すようにしてSDI15を測定した。その結果を表1に示す。なお、実験番号8-1では、すすぎを行わずに海水の通液を行った。
[SDI15測定方法]
 前記のようにして採取された濾過液について、一定の圧力で、孔径0.45μmのフィルターにより濾過を行いその流量を測定した。濾過開始時の流量をFとし、濾過開始後15分の流量をF15としたとき、SDI15は次の式で表される。
 SDI15=(100/15)×{1-(F15/F)}
Figure JPOXMLDOC01-appb-T000001
 SDI値が小さい方が水質は良く、逆浸透法の海水淡水化でRO膜に通す水はSDI15が3.5以下であることが望まれている。しかし、表1に示すように、リモネン含有水による逆洗を行っただけですすぎを行わなかった実験番号8-1では、SDI15は3.5を超えている。
 一方、表1に示すように、リモネン含有水による逆洗を行った後、クエン酸水溶液、酢酸水溶液、イソプロピルアルコール、エタノール水溶液によるリンスを行った場合は、SDI15は3程度又はそれ未満まで改善する。したがって、目詰まりを洗浄するためのリモネン含有水による逆洗を行った後は、水質を向上させるために、クエン酸水溶液、酢酸水溶液、イソプロピルアルコール、エタノール水溶液等でリンスすることが好ましい。

Claims (17)

  1.  膜濾過に用いられ被処理水中の濁質により目詰まりした疎水性濾過膜の洗浄方法であって、濾過膜をリモネン含有水と接触させることを特徴とする濾過膜の洗浄方法。
  2.  リモネン含有水と濾過膜との接触が、前記濾過膜の逆洗により行われることを特徴とする請求項1に記載の濾過膜の洗浄方法。
  3.  前記濾過膜の材質が、フッ素樹脂又はポリエチレンであることを特徴とする請求項1又は請求項2に記載の濾過膜の洗浄方法。
  4.  リモネン含有水と濾過膜との接触の際に、物理洗浄を行うことを特徴とする請求項1ないし請求項3のいずれか1項に記載の濾過膜の洗浄方法。
  5.  リモネン含有水と濾過膜との接触が、前記濾過膜の逆洗により行われ、かつ前記物理洗浄が、前記逆洗後に洗浄液を前記濾過膜の表面に吹き付ける方法によることを特徴とする請求項4に記載の濾過膜の洗浄方法。
  6.  膜濾過に用いられ被処理水中の濁質により目詰まりした疎水性濾過膜の洗浄方法であって、洗浄液による前記濾過膜の逆洗を行った後、前記濾過膜表面上に、空気を吸入した洗浄液を流すことを特徴とする濾過膜の洗浄方法。
  7.  膜濾過に用いられ被処理水中の濁質により目詰まりした疎水性濾過膜の洗浄方法であって、洗浄液による前記濾過膜の逆洗を行った後、エダクターノズルよりの水流を前記濾過膜に吹き付けることを特徴とする濾過膜の洗浄方法。
  8.  前記洗浄液がリモネン含有水であることを特徴とする請求項6又は請求項7に記載の濾過膜の洗浄方法。
  9.  濾過膜をリモネン含有水と接触させた後、前記濾過膜を酸で洗浄することを特徴とする請求項1ないし請求項5のいずれか1項に記載の濾過膜の洗浄方法。
  10.  前記の酸が、炭素数6以下のモノ、ジ又はトリカルボン酸から選ばれることを特徴とする請求項9に記載の濾過膜の洗浄方法。
  11.  濾過膜をリモネン含有水と接触させた後、前記濾過膜をアルコールで洗浄することを特徴とする請求項1ないし請求項5のいずれか1項に記載の濾過膜の洗浄方法。
  12.  前記のアルコールが炭素数4以下の一価アルコールから選ばれることを特徴とする請求項11に記載の濾過膜の洗浄方法。
  13.  疎水性濾過膜を備えるモジュールを使用した濾過装置であって、リモネン含有水供給手段を備えることを特徴とする膜濾過装置。
  14.  さらに、リモネン含有水の逆洗手段、及び、疎水性濾過膜表面に洗浄液をシャワー状にして吹き付けるシャワー装置を備えることを特徴とする請求項13に記載の膜濾過装置。
  15.  疎水性濾過膜を備えるモジュールを使用した濾過装置であって、洗浄液による逆洗手段、及び、前記疎水性濾過膜表面上に空気を吸入した洗浄液の流れを前記表面方向に印加する手段を備えることを特徴とする膜濾過装置。
  16.  疎水性濾過膜を備えるモジュールを使用した濾過装置であって、洗浄液による逆洗手段、及び、エダクターを備えることを特徴とする膜濾過装置。
  17.  さらに、前記濾過膜を酸又はアルコールで洗浄する手段を有することを特徴とする請求項13に記載の膜濾過装置。
PCT/JP2011/071798 2010-09-27 2011-09-26 濾過膜の洗浄方法及び膜濾過装置 WO2012043433A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180046314.XA CN103118770B (zh) 2010-09-27 2011-09-26 过滤膜清洗方法及膜过滤装置
JP2012536424A JPWO2012043433A1 (ja) 2010-09-27 2011-09-26 濾過膜の洗浄方法及び膜濾過装置
KR1020137008394A KR20140009133A (ko) 2010-09-27 2011-09-26 여과막의 세정 방법 및 막 여과 장치
EP11828987.5A EP2623186A4 (en) 2010-09-27 2011-09-26 METHOD FOR CLEANING FILTERING MEMBRANE AND MEMBRANE FILTER

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010215147 2010-09-27
JP2010-215147 2010-09-27
JP2011-041551 2011-02-28
JP2011041551 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012043433A1 true WO2012043433A1 (ja) 2012-04-05

Family

ID=45869573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071798 WO2012043433A1 (ja) 2010-09-27 2011-09-26 濾過膜の洗浄方法及び膜濾過装置

Country Status (7)

Country Link
US (1) US20120074059A1 (ja)
EP (1) EP2623186A4 (ja)
JP (1) JPWO2012043433A1 (ja)
KR (1) KR20140009133A (ja)
CN (1) CN103118770B (ja)
TW (1) TW201217045A (ja)
WO (1) WO2012043433A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148084A1 (ja) * 2013-03-22 2014-09-25 住友電気工業株式会社 濾過装置および濾過モジュールの洗浄方法
JP2014184374A (ja) * 2013-03-22 2014-10-02 Sumitomo Electric Ind Ltd 濾過方法および濾過装置
KR101508852B1 (ko) 2013-11-29 2015-04-07 성균관대학교산학협력단 에어를 이용한 막증류모듈 역세정 장치 및 방법
JP2015226884A (ja) * 2014-06-02 2015-12-17 栗田工業株式会社 中空糸膜モジュール及びその洗浄方法
WO2016039014A1 (ja) * 2014-09-08 2016-03-17 住友電気工業株式会社 濾過装置及び濾過膜の洗浄方法
JP2016087545A (ja) * 2014-11-04 2016-05-23 栗田工業株式会社 膜蒸留装置の洗浄方法
WO2017009966A1 (ja) * 2015-07-15 2017-01-19 栗田工業株式会社 中空糸膜モジュール及びその洗浄方法
KR102387866B1 (ko) * 2020-10-29 2022-04-18 (주)엘에스티에스 설비 간소화 및 역세척 효율 향상이 가능한 분산용수 공급시스템

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132069A2 (en) * 2013-02-28 2014-09-04 Genesys International Limited Reverse osmosis and nanofiltration membrane cleaning
JP2016034607A (ja) * 2014-08-01 2016-03-17 住友電気工業株式会社 水処理システム
CN104548948A (zh) * 2014-12-24 2015-04-29 哈尔滨工业大学 适用于处理采油废水聚四氟乙烯膜的清洗工艺
JP2018103269A (ja) 2016-12-22 2018-07-05 キヤノンファインテックニスカ株式会社 穿孔装置
JP6319493B1 (ja) * 2017-03-29 2018-05-09 栗田工業株式会社 中空糸膜モジュールの洗浄方法
CN110314555B (zh) * 2019-07-26 2022-01-04 东莞东元环境科技股份有限公司 一种显影液过滤器的清洗药剂及清洗方法
CN114082704B (zh) * 2021-11-15 2022-09-02 中复神鹰碳纤维股份有限公司 用于过滤碳纤维原液的高效过滤器滤芯的清洗方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131980A (en) * 1977-04-22 1978-11-17 Nitto Electric Ind Co Ltd Method of cleaning membrane surface of membrane separator
JP2008207158A (ja) * 2007-02-28 2008-09-11 Mrc Home Products Kk 浄水装置
JP2010022935A (ja) * 2008-07-18 2010-02-04 Kurita Water Ind Ltd 濾過膜の洗浄方法及び超純水製造用濾過膜
JP2010189635A (ja) * 2009-01-26 2010-09-02 Kaken Tec Kk 洗浄剤組成物用原液、洗浄剤組成物、および洗浄方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136025A (en) * 1977-08-18 1979-01-23 Ppg Industries, Inc. Method of cleaning membrane filter
US4767538A (en) * 1983-01-14 1988-08-30 Baxter Travenol Laboratories, Inc. Washing of semipermeable membrane
US4533487A (en) * 1983-08-15 1985-08-06 Pitre-Jones Process for producing blended d-Limonene and uses of the blended product
US5801133A (en) * 1995-05-08 1998-09-01 Buckman Laboratories International Inc. Effective alternative filter cleaner for biguanide treated recreational water systems
US5783082A (en) * 1995-11-03 1998-07-21 University Of North Carolina Cleaning process using carbon dioxide as a solvent and employing molecularly engineered surfactants
US20040232076A1 (en) * 1996-12-20 2004-11-25 Fufang Zha Scouring method
US6641733B2 (en) * 1998-09-25 2003-11-04 U. S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules
DE19938886C1 (de) * 1999-08-17 2001-02-01 Dupont Automotive Coatings Gmb Reinigungsmittel und Verfahren zur Reinigung von Ultrafiltrationsmembranen in Elektrotauchlackierungsanlagen
US6299777B1 (en) * 1999-08-17 2001-10-09 Cms Technology Holdings, Inc. Osmotic distillation process
JP2002113484A (ja) * 2000-10-10 2002-04-16 Hitachi Zosen Corp 浄水処理方法および装置
EP1652571A1 (en) * 2004-11-01 2006-05-03 Akzo Nobel Cleaning of filtration membranes using peracids
CN101641147A (zh) * 2007-04-03 2010-02-03 旭化成化学株式会社 分离膜用清洗剂、该清洗剂的制造方法和清洗方法
JP2008259995A (ja) * 2007-04-13 2008-10-30 Toshiba Corp 洗浄方法及びろ過装置
KR100862214B1 (ko) * 2008-05-20 2008-10-09 주식회사 한화건설 침지식 분리막과 막여과조의 세정방법
CN101768530B (zh) * 2010-03-17 2012-02-01 天津鎏虹科技发展有限公司 天然植物清洗剂
AU2011291080B2 (en) * 2010-08-20 2014-01-16 Solenis Technologies Cayman, L.P. Emulsions for removal and prevention of deposits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131980A (en) * 1977-04-22 1978-11-17 Nitto Electric Ind Co Ltd Method of cleaning membrane surface of membrane separator
JP2008207158A (ja) * 2007-02-28 2008-09-11 Mrc Home Products Kk 浄水装置
JP2010022935A (ja) * 2008-07-18 2010-02-04 Kurita Water Ind Ltd 濾過膜の洗浄方法及び超純水製造用濾過膜
JP2010189635A (ja) * 2009-01-26 2010-09-02 Kaken Tec Kk 洗浄剤組成物用原液、洗浄剤組成物、および洗浄方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623186A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148084A1 (ja) * 2013-03-22 2014-09-25 住友電気工業株式会社 濾過装置および濾過モジュールの洗浄方法
JP2014184374A (ja) * 2013-03-22 2014-10-02 Sumitomo Electric Ind Ltd 濾過方法および濾過装置
JP2014184366A (ja) * 2013-03-22 2014-10-02 Sumitomo Electric Ind Ltd 濾過装置および濾過モジュールの洗浄方法
KR101508852B1 (ko) 2013-11-29 2015-04-07 성균관대학교산학협력단 에어를 이용한 막증류모듈 역세정 장치 및 방법
JP2015226884A (ja) * 2014-06-02 2015-12-17 栗田工業株式会社 中空糸膜モジュール及びその洗浄方法
WO2016039014A1 (ja) * 2014-09-08 2016-03-17 住友電気工業株式会社 濾過装置及び濾過膜の洗浄方法
JP2016087545A (ja) * 2014-11-04 2016-05-23 栗田工業株式会社 膜蒸留装置の洗浄方法
WO2017009966A1 (ja) * 2015-07-15 2017-01-19 栗田工業株式会社 中空糸膜モジュール及びその洗浄方法
KR102387866B1 (ko) * 2020-10-29 2022-04-18 (주)엘에스티에스 설비 간소화 및 역세척 효율 향상이 가능한 분산용수 공급시스템

Also Published As

Publication number Publication date
CN103118770A (zh) 2013-05-22
CN103118770B (zh) 2015-12-09
EP2623186A4 (en) 2016-11-30
TW201217045A (en) 2012-05-01
US20120074059A1 (en) 2012-03-29
JPWO2012043433A1 (ja) 2014-02-06
EP2623186A1 (en) 2013-08-07
KR20140009133A (ko) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2012043433A1 (ja) 濾過膜の洗浄方法及び膜濾過装置
WO2011016410A1 (ja) 水処理装置及び水処理方法
KR20140077906A (ko) 수처리 유닛 및 수처리 장치
WO2011158559A1 (ja) 膜モジュールの洗浄方法
KR101928212B1 (ko) 역삼투막 세정 방법
KR20150100667A (ko) 밸러스트수 처리 장치 및 밸러스트수 처리 장치의 역세정 방법
JPH11309351A (ja) 中空糸膜モジュールの洗浄方法
KR20150133213A (ko) 중공사막 모듈의 세정 방법
JP6358878B2 (ja) 膜ろ過装置
JP4525857B1 (ja) 水処理システムの前処理装置及び前処理方法
JPWO2017135162A1 (ja) 水処理装置及び水処理方法
JP2011041907A (ja) 水処理システム
WO2013054675A1 (ja) 分離膜、水処理ユニットおよび水処理装置
KR101711516B1 (ko) 증기를 이용한 막모듈 세정장치 및 방법
JP2011016044A (ja) ろ過膜の洗浄方法及びろ過装置
JP2006007179A (ja) 膜ろ過装置および膜ろ過方法
JP6642606B2 (ja) 膜分離装置の洗浄方法
RU2211723C1 (ru) Способ очистки фильтрующей мембраны, способ очистки жидкостей и устройство для его осуществления
JP2005103510A (ja) 薬液洗浄方法
JP2003251157A (ja) 中空糸膜モジュールの洗浄方法
JP2014184374A (ja) 濾過方法および濾過装置
Kertèsz et al. Mitigation of fouling of submerged hollow fiber membrane in microfiltration of TiO2 photocatalyst particles
JP2019202274A (ja) 膜ろ過装置、膜ろ過装置の洗浄方法および水処理方法
JP5809914B2 (ja) 水処理装置及び水処理方法
JP2015016404A (ja) 逆浸透膜モジュールの洗浄方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046314.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828987

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012536424

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011828987

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011828987

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137008394

Country of ref document: KR

Kind code of ref document: A