WO2012043333A1 - 活性エネルギー線硬化型樹脂組成物、偏光板用接着剤及び偏光板 - Google Patents

活性エネルギー線硬化型樹脂組成物、偏光板用接着剤及び偏光板 Download PDF

Info

Publication number
WO2012043333A1
WO2012043333A1 PCT/JP2011/071467 JP2011071467W WO2012043333A1 WO 2012043333 A1 WO2012043333 A1 WO 2012043333A1 JP 2011071467 W JP2011071467 W JP 2011071467W WO 2012043333 A1 WO2012043333 A1 WO 2012043333A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
energy ray
meth
adhesive
acrylate
Prior art date
Application number
PCT/JP2011/071467
Other languages
English (en)
French (fr)
Inventor
将志 杉山
川島 康成
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2012043333A1 publication Critical patent/WO2012043333A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09J175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state

Definitions

  • the present invention relates to an active energy ray-curable resin composition, an adhesive for a polarizing plate obtained using the resin composition, and a polarizing plate obtained using the adhesive.
  • a polarizing plate used for a liquid crystal display device or the like is manufactured by bonding a polarizer obtained by impregnating a polyvinyl alcohol film with iodine and uniaxially stretching, and a transparent protective film using an adhesive.
  • the performance required for adhesives that bond polarizers and protective films is solvent-free, which does not require solvent drying time in the production process, and has a low viscosity suitable for coating while being solvent-free.
  • a polarizing plate adhesive that is solvent-free but has low viscosity and excellent initial adhesion
  • a hydroxyl group-containing (meth) acrylate monomer such as 2-hydroxybutyl acrylate and isophorone diisocyanate
  • a photocurable adhesive composition containing a polyisocyanate such as isocyanurate (see Cited Document 1), or a polarizing plate adhesive containing a polyester skeleton-containing urethane acrylate having a molecular weight of about 1300 and tolylene diisocyanate (Patent Document) 2) is known.
  • Such an adhesive has a low viscosity even without a solvent and is excellent in initial adhesion.
  • all of the components have a relatively low molecular weight, the curling resistance during curing is not sufficient.
  • the adhesiveness decreased under the wet heat condition, and peeling occurred.
  • the problem to be solved by the present invention is that even if it is a solvent-free system, it has a low viscosity suitable for coating, has excellent curling resistance at the time of curing, the adhesive layer after curing has flexibility, and even under wet heat conditions
  • the object is to provide an active energy ray-curable resin composition that exhibits high adhesiveness, an adhesive containing the resin composition, and a polarizing plate obtained using the adhesive.
  • the active energy ray-curable resin composition has a polyester skeleton having a number average molecular weight (Mn) in the range of 2,000 to 30,000.
  • Mn number average molecular weight
  • the adhesive layer after curing has excellent flexibility and has flexibility and exhibits high adhesiveness even under wet heat conditions.
  • the present invention provides a urethane acrylate (A) having a polyester skeleton in the molecular structure and a number average molecular weight (Mn) in the range of 2,000 to 30,000, a polyisocyanate compound (B), (
  • the present invention relates to an active energy ray-curable resin composition containing a polymerizable monomer (C) having a (meth) acryloyl group and a photopolymerization initiator (D) as essential components.
  • the present invention further relates to an adhesive comprising the active energy ray-curable resin composition.
  • the present invention further relates to a polarizing plate obtained using the adhesive.
  • the adhesive layer after curing has flexibility, and high adhesiveness even under wet heat conditions.
  • An active energy ray-curable resin composition that develops, an adhesive containing the resin composition, and a polarizing plate obtained using the adhesive can be provided.
  • the urethane acrylate (A) having the polyester skeleton as a component contained in the active energy curable resin composition, the curl resistance at the time of curing is excellent, and the adhesive layer after curing is flexible. It is possible to obtain an adhesive having high adhesion to various substrate films.
  • the urethane acrylate (A) having the polyester skeleton includes, for example, a polyester polyol (a1) obtained by reacting a polyol and a polycarboxylic acid, and a polyisocyanate (a2) with a hydroxyl group in the polyester polyol (a1). On the other hand, the reaction is performed under the condition that the isocyanate group in the polyisocyanate (a2) is excessive, and the obtained reaction product is reacted with the hydroxyl group-containing (meth) acrylate compound (a3).
  • polyester polyol (a1) examples include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,2,2-trimethyl-1,3-propanediol, and 2,2-dimethyl.
  • lactone-based polyester polyols obtained by polycondensation reaction between the aliphatic polyols and various lactones such as ⁇ -caprolactone. These may be used alone or in combination of two or more. Among these, an aliphatic diol having a branched chain is preferable, and 3-methyl 1,5-pentanediol is particularly preferable in that an adhesive layer excellent in curling resistance and flexibility during curing can be obtained.
  • the polycarboxylic acid used as the raw material of the polyester polyol (a1) is, for example, an aliphatic dicarboxylic acid such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc .;
  • Aromatic dicarboxylic acids such as phthalic acid, phthalic anhydride, terephthalic acid, isophthalic acid, orthophthalic acid;
  • Alicyclic dicarboxylic acids such as hexahydrophthalic acid and 1,4-cyclohexanedicarboxylic acid;
  • urethane acrylate (A) becomes a urethane acrylate (A) excellent in compatibility with the polymerizable monomer (C) described later, and an adhesive layer excellent in curling resistance and flexibility at the time of curing is obtained.
  • aliphatic dicarboxylic acids are preferred, aliphatic dicarboxylic acids having 4 to 8 carbon atoms are more preferred, and adipic acid is particularly preferred.
  • the number average molecular weight (Mn) of the polyester polyol (a1) is 1,500 in that the resulting resin composition can be reduced in viscosity, and further, an adhesive layer excellent in curling resistance and flexibility during curing can be obtained.
  • the range is preferably from 20,000 to 20,000, more preferably from 2,000 to 10,000, and particularly preferably from 3,000 to 6,000.
  • the number average molecular weight (Mn) is a value measured by gel permeation chromatography (GPC) under the following conditions.
  • Measuring device HLC-8220GPC manufactured by Tosoh Corporation
  • Detector RI (differential refractometer)
  • Data processing Multi-station GPC-8020model II manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Solvent Tetrahydrofuran Flow rate 0.35 ml / min Standard; Monodisperse polystyrene Sample; Filtered 0.2% by mass tetrahydrofuran solution in terms of resin solids with a microfilter (100 ⁇ l)
  • the polyester polyol (a1) has a hydroxyl value in the range of 6 to 120 mgKOH / g, and is preferably in the range of 12 to 60 mgKOH / g in that an adhesive layer excellent in curling resistance and flexibility upon curing can be obtained.
  • the range is preferably 20 to 40 mg KOH / g.
  • the isocyanate compound (a2) that is a raw material of the urethane acrylate (A) having the polyester skeleton has various diisocyanate monomers, adduct-type polyisocyanate compounds having a urethane bond site in the molecule, and an isocyanurate ring structure in the molecule. Examples thereof include a nurate type polyisocyanate compound.
  • Diisocyanate monomers include, for example, butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, xylylene diisocyanate, m-tetramethylxylylene diene Aliphatic diisocyanates such as isocyanate;
  • 1,5-naphthylene diisocyanate 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3-phenylene diisocyanate
  • aromatic diisocyanates such as 1,4-phenylene diisocyanate and tolylene diisocyanate.
  • the adduct type polyisocyanate compound having a urethane bond site in the molecule can be obtained, for example, by reacting a diisocyanate monomer with a polyol.
  • the diisocyanate monomer used in the reaction include the various diisocyanate monomers described above, and each may be used alone or in combination of two or more.
  • the polyol used in the reaction include various polyols exemplified as the raw material of the polyester polyol (a1), various polyester polyols exemplified as the polyester polyol (a1), and the like. Or two or more types may be used in combination.
  • the nurate type polyisocyanate compound having an isocyanurate ring structure in the molecule is obtained, for example, by reacting a diisocyanate monomer with a monoalcohol and / or a diol.
  • Examples of the diisocyanate monomer used in the reaction include the various diisocyanate monomers described above, and each may be used alone or in combination of two or more.
  • Monoalcohols used in the reaction include hexanol, 2-ethylhexanol, octanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol, n-tetradecanol, n-pentadecanol, n- Heptadecanol, n-octadecanol, n-nonadecanol, eicosanol, 5-ethyl-2-nonanol, trimethylnonyl alcohol, 2-hexyldecanol, 3,9-diethyl-6-tridecanol, 2-isoheptylisoundecanol 2-octyldodecanol, 2-decyltetradecanol and the like, and examples of the diol include various diols exemplified as the raw material of the polyester polyol (a1). These
  • a diisocyanate monomer is preferable because it makes it easy to adjust the molecular weight of the urethane acrylate (A) to be obtained within a suitable range. Furthermore, alicyclic diisocyanate is preferable and isophorone diisocyanate is particularly preferable in that a resin composition having excellent adhesion to a substrate can be obtained.
  • the hydroxyl group-containing (meth) acrylate compound (a3) used as a raw material for the urethane acrylate (A) having the polyester skeleton includes, for example, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, glycerin diacrylate, Examples include trimethylolpropane diacrylate, pentaerythritol triacrylate, and dipentaerythritol pentaacrylate. These may be used alone or in combination of two or more.
  • the method for producing the urethane acrylate (A) having a polyester skeleton is, for example, step 1: a process of obtaining a polyester polyol (a1) by reacting a polyol with a polycarboxylic acid, step 2: a polyester polyol obtained in step 1 ( Examples include a process of reacting a1) with an isocyanate compound (a2), a process of undergoing a process of reacting the product obtained in Step 3: the process 2 with a hydroxyl group-containing (meth) acrylate compound (a3).
  • Step 1 The reaction between the polyol and the polycarboxylic acid is performed within a temperature range of 150 to 250 ° C. while sequentially removing generated water. You may use a well-known and usual esterification catalyst as needed. At this time, the reaction ratio between the polyol and the polycarboxylic acid is preferably adjusted so that the hydroxyl value of the resulting polyester polyol is the above-described preferable value.
  • Step 2 The reaction between the polyester polyol (a1) obtained in Step 1 and the isocyanate compound (a2) is carried out within a temperature range of 20 to 120 ° C. using a known and usual urethanization catalyst as necessary.
  • the value is preferably in the range of 1 / 1.5 to 1 / 2.2.
  • Step 3 The reaction between the product obtained in Step 2 and the hydroxyl group-containing (meth) acrylate compound (a3) is performed within a temperature range of 20 to 120 ° C. using a known and usual urethanization catalyst as necessary. Do it. At this time, the ratio of the number of moles of isocyanate groups (NCO) of the product obtained in Step 2 to the number of moles (OH) of the hydroxyl group-containing (meth) acrylate compound (a3) [(NCO) / ( The value of (OH)] is preferably in the range of 1 / 1.01 to 1 / 1.2.
  • the production method other than the above is a method in which the steps 2 and 3 are simultaneously performed, that is, the polyester polyol (a1), the isocyanate compound (a2), and the hydroxyl group-containing (meth) acrylate compound (a3) are charged and reacted together.
  • the urethane acrylate (A) having the polyester skeleton has a low viscosity suitable for coating because the number average molecular weight (Mn) is in the range of 2,000 to 30,000. Furthermore, an adhesive layer excellent in curling resistance and flexibility during curing can be obtained. Furthermore, it is preferably in the range of 2,000 to 10,000, and preferably in the range of 2,500 to 8,000, from the viewpoint that the low viscosity of the resin composition and the curl resistance at the time of curing can be combined at a higher level. More preferably, it is the range.
  • the adhesiveness to the base film is very high, and the adhesiveness is maintained even under wet heat conditions. It will be excellent.
  • the polyisocyanate compound (B) various diisocyanate monomers, adduct type polyisocyanate compounds having a urethane bond site in the molecule, and nurate type polyisocyanate compounds having an isocyanurate ring structure in the molecule can be used. Specific examples include various polyisocyanates exemplified as the polyisocyanate (a2). These may be used alone or in combination of two or more.
  • an adduct type polyisocyanate compound having a urethane bond site in the molecular structure or an isocyanurate ring structure in the molecular structure in that an adhesive layer having excellent adhesion to the base film and excellent flexibility is obtained.
  • a nurate-type polyisocyanate compound having an N is preferable, and an adduct-type polyisocyanate compound having a urethane bond site in the molecular structure is more preferable.
  • an adduct-type polyisocyanate compound obtained using 1,6-hexamethylene diisocyanate or isophorone diisocyanate is particularly preferable.
  • the polymerizable monomer (C) is used for the purpose of realizing higher substrate adhesion.
  • the polymerizable monomer (C) include a monofunctional acrylate monomer and a polyfunctional acrylate monomer, and a monofunctional acrylate monomer is preferable in that an adhesive layer having excellent curling resistance during curing can be obtained. .
  • Examples of the monofunctional acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (meth) acrylate-n-butyl, and (meth) acrylate-t-butyl.
  • (Meth) acrylic acid esters having an alicyclic alkyl group such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate ;
  • Styrene derivatives such as styrene, ⁇ -methylstyrene, chlorostyrene;
  • Diene compounds such as butadiene, isoprene, piperylene, dimethylbutadiene;
  • Unsaturated ketones such as methyl vinyl ketone and butyl vinyl ketone;
  • Vinyl esters such as vinyl acetate and vinyl butyrate
  • Examples include vinyl ethers such as methyl vinyl ether and butyl vinyl ether. These may be used alone or in combination of two or more.
  • the (meth) acrylic acid ester having the aromatic ring is preferable, and phenoxyethyl (meth) acrylate is particularly preferable in that the obtained active energy ray-curable resin composition has excellent adhesion to the substrate.
  • the (meth) acrylic acid ester which has the said alicyclic alkyl group is preferable at the point from which the resin composition excellent in the curl resistance at the time of hardening is obtained, and (meth) acrylic-acid isobornyl is especially preferable.
  • Examples of the photopolymerization initiator (D) used in the present invention include benzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 4,4′-bisdimethylaminobenzophenone, 4,4′-bisdiethylaminobenzophenone, 4, Benzophenones such as 4'-dichlorobenzophenone, Michler's ketone, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone;
  • thioxanthones such as xanthone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone; acyloin ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether;
  • ⁇ -diketones such as benzyl and diacetyl
  • sulfides such as tetramethylthiuram disulfide and p-tolyl disulfide
  • benzoic acids such as 4-dimethylaminobenzoic acid and ethyl 4-dimethylaminobenzoate
  • 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and 1- [4- (2-hydroxyethoxy) are high in performance as a polymerization initiator.
  • photopolymerization initiators include, for example, “Irgacure-184”, “Irgacure-149”, “Irgacure-261”, “Irgacure-369”, “Irgacure-500”, “Irgacure-651”, “Irgacure-651”.
  • the active energy ray-curable resin composition of the present invention includes a urethane acrylate (A) having the polyester skeleton, the polyisoisocyanate compound (B), the polymerizable monomer (C), and the photopolymerization initiator (D). Is an essential component.
  • Mass ratio of urethane acrylate (A) having the polyester skeleton and the polymerizable monomer (C) in the active energy ray-curable resin composition of the present invention [urethane acrylate (A) having a polyester skeleton] / [polymerization] Monomer (C)] is a resin composition obtained in that the resin composition is excellent in various properties such as adhesiveness, low curling property, and secondary processability, and can realize a low viscosity suitable for coating.
  • the range is preferably 80 to 80/20, and more preferably 35/65 to 65/35.
  • the resulting resin composition has adhesiveness, low curl property, and secondary It is preferably in the range of 99/1 to 50/50, and in the range of 97/3 to 85/15, in that it is excellent in various performances such as workability and can realize a low viscosity suitable for coating. It is more preferable.
  • the content of the photopolymerization initiator (D) in the energy curable resin composition of the present invention maintains good light sensitivity and does not cause crystal precipitation or deterioration of physical properties of the coating film.
  • the active energy ray-curable resin composition of the present invention may contain various photosensitizers in addition to the photopolymerization initiator.
  • the photosensitizer include amines, ureas, sulfur-containing compounds, phosphorus-containing compounds, chlorine-containing compounds, nitriles or other nitrogen-containing compounds, and these can be used alone or in two types. You may use the above together.
  • the content is the urethane acrylate (A) having the polyester skeleton, the polyisoisocyanate compound (B), and the polymerizable property.
  • the amount is preferably in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass in total of the monomers (C).
  • the active energy ray-curable resin composition of the present invention exhibits a low viscosity suitable for coating even without a solvent, but an organic solvent may be added as necessary.
  • an organic solvent may be added as necessary.
  • acetone Ketones such as methyl ethyl ketone (MEK) and methyl isobutyl ketone
  • cyclic ethers such as tetrahydrofuran (THF) and dioxolane
  • esters such as methyl acetate, ethyl acetate and butyl acetate
  • aromatics such as toluene and xylene
  • carbitol examples thereof include alcohols such as cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether.
  • the active energy ray-curable resin composition of the present invention contains these organic solvents, the content of the urethane acrylate (A) having the polyester skeleton, the polyisoisocyanate compound (B), and the polymerizable monomer ( The total content of C) is preferably in the range of 10 to 90 parts by mass.
  • the active energy ray-curable resin composition of the present invention may contain various other additives.
  • the various additives include ultraviolet absorbers, antioxidants, silicon-based additives, fluorine-based additives, rheology control agents, defoaming agents, antistatic agents, and antifogging agents.
  • the active energy ray-curable resin composition of the present invention contains these additives, the urethane acrylate having the polyester skeleton (in the range where the effects of the additives are sufficiently exhibited and ultraviolet curing is not inhibited)
  • the amount is preferably in the range of 0.01 to 40 parts by mass with respect to 100 parts by mass in total of A), the polyisoisocyanate compound (B), and the polymerizable monomer (C).
  • the active energy ray-curable resin composition of the present invention can be used in combination with other resins for the purpose of improving adhesion to a film substrate.
  • other resins include acrylic resins such as methyl methacrylate resin and methyl methacrylate copolymer; polystyrene, methyl methacrylate-styrene copolymer; polyester resin; polyurethane resin; polybutadiene and butadiene-acrylonitrile copolymer.
  • polybutadiene resins such as bisphenol type epoxy resins, epoxy resins such as phenoxy resins and novolac type epoxy resins.
  • the active energy ray-curable resin composition of the present invention contains these resins, the content of the urethane acrylate (A ), The polyisoisocyanate compound (B), and the polymerizable monomer (C) in a total amount of 100 parts by mass.
  • the active energy ray-curable resin composition of the present invention is excellent in curling resistance at the time of curing, has a flexible adhesive tank after curing, and can obtain an adhesive having high adhesion to various substrate films.
  • the urethane acrylate (A) is preferably contained in the range of 25 to 70% by mass and more preferably in the range of 35 to 60% by mass in the solid content of the resin composition.
  • the polyisocyanate compound (B) is contained in the solid content of the resin composition in that the adhesive with the base film is very high and an adhesive having high adhesiveness can be obtained even under wet heat conditions. It is preferably contained in the range of 1 to 15% by mass, and more preferably in the range of 3 to 10% by mass.
  • the polymerizable monomer (C) is contained in the range of 25 to 70% by mass in the solid content of the resin composition in that an adhesive excellent in curling resistance at the time of curing and substrate adhesion can be obtained.
  • the content is preferably 35 to 60% by mass.
  • the viscosity of the active energy ray-curable resin composition of the present invention is preferably in the range of 100 mPa ⁇ s to 10,000 mPa ⁇ s, and more preferably in the range of 100 mPa ⁇ s to 3,000 mPa ⁇ s. When the viscosity is within this range, the active energy ray-curable resin composition can be applied with a uniform thickness even under high-speed coating conditions.
  • the adhesive for polarizing plates of the present invention is obtained by using the active energy ray-curable resin composition, and can be suitably used for adhesion between a polarizer made of a polyvinyl alcohol film and various protective films.
  • Examples of the polarizer made of polyvinyl alcohol include those obtained by uniaxially stretching a polyvinyl alcohol resin film dyed with a dichroic substance such as iodine or an organic dye. As long as what is used by this invention consists of polyvinyl alcohol, a manufacturing method will not be specifically limited.
  • Examples of the various protective films include polycarbonate, polyethylene terephthalate, polymethyl methacrylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetyl cellulose resin, polyvinyl alcohol, ABS resin, AS resin, norbornene resin, and cyclic olefin resin.
  • Examples thereof include a film made of a resin, a polyimide resin or the like. Among these, a film made of a polycarbonate resin or a triacetyl cellulose resin is preferable.
  • the polarizing plate adhesive is preferably applied in a thickness range of 0.5 to 100 ⁇ m. Is more preferable.
  • Examples of the method for applying the adhesive for polarizing plate include bar coater coating, roll coater coating, spray coating, gravure coating, reverse gravure coating, offset printing, flexographic printing, and screen printing. The method may be used.
  • Examples of the active energy ray used for curing the active energy ray-curable resin of the present invention or the polarizing plate adhesive containing the resin include ultraviolet rays and electron beams.
  • an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, and a metal halide lamp is used as a light source, and the amount of light and the arrangement of the light source are adjusted as necessary. It is preferable to cure at a conveyance speed of 5 to 50 m / min with respect to one lamp having a light quantity in the range of ⁇ 160 W / cm.
  • an electron beam it is preferably cured with an electron beam accelerator having an accelerating voltage that is usually in the range of 10 to 300 kV at a conveyance speed of 5 to 50 m / min.
  • the polarizing plate of the present invention can be suitably used for various liquid crystal display devices such as televisions, personal computers, mobile phones, watches, and the like.
  • the number average molecular weight (Mn) was measured by gel permeation chromatography (GPC) under the following conditions.
  • Measuring device HLC-8220GPC manufactured by Tosoh Corporation
  • Detector RI (differential refractometer)
  • Data processing Multi-station GPC-8020model II manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Solvent Tetrahydrofuran Flow rate 0.35 ml / min Standard; Monodisperse polystyrene Sample; Filtered 0.2% by mass tetrahydrofuran solution in terms of resin solids with a microfilter (100 ⁇ l)
  • Synthesis example 1 Synthesis of urethane acrylate a Polyester polyol obtained by reacting 3-methyl-1,5-pentanediol and adipic acid in a flask equipped with a thermometer, a stirrer and a condenser (number average molecular weight (Mn): 4,000, hydroxyl value: 28.5 mgKOH / g) 315 g, zinc octenoate 0.1 g, and methoquinone 0.1 g were charged, the temperature was raised to 80 ° C. with stirring, and 35.5 g of isophorone diisocyanate was taken care of heat generation. Added over 30 minutes.
  • the reaction was carried out for 5 hours, after which 19 g of hydroxyethyl acrylate was added, and the reaction was further carried out for 7 hours. It was confirmed by the infrared absorption spectrum that the isocyanate group had disappeared, and urethane acrylate a was obtained.
  • the number average molecular weight (Mn) of the urethane acrylate a was 4,500.
  • Synthesis example 2 Synthesis of Urethane Acrylate b Polyester polyol obtained by reacting 3-methyl-1,5-pentanediol and adipic acid in a flask equipped with a thermometer, a stirrer, and a condenser (number average molecular weight (Mn): 1,000, hydroxyl value: 113 mg KOH / g) 331 g, zinc octenoate 0.1 g and methoquinone 0.1 g were charged, the temperature was raised to 80 ° C. with stirring, and 148 g of isophorone diisocyanate was added over 30 minutes while paying attention to heat generation. Added.
  • the reaction was carried out for 5 hours, and then 90 g of 2-hydroxyethyl acrylate was added, and the reaction was further carried out for 7 hours. It was confirmed by the infrared absorption spectrum that the isocyanate group had disappeared, and urethane acrylate b was obtained.
  • the number average molecular weight (Mn) of the urethane acrylate b was 1,500.
  • Synthesis example 3 Synthesis of Urethane Acrylate c Polyester polyol (number average molecular weight (Mn) 40) obtained by reacting 3-methyl-1,5-pentanediol and adipic acid in a flask equipped with a thermometer, a stirrer, and a condenser , 387, hydroxyl value: 2.9 mg KOH / g) 387 g, zinc octenoate 0.1 g and methoquinone 0.1 g were charged, the temperature was raised to 80 ° C. with stirring, and 4.44 g of isophorone diisocyanate was charged with attention to heat generation. Added over minutes.
  • the reaction was carried out for 5 hours, after which 2.7 g of hydroxyethyl acrylate was added, and the reaction was further carried out for 7 hours. It was confirmed by the infrared absorption spectrum that the isocyanate group had disappeared, and urethane acrylate c was obtained.
  • the number average molecular weight (Mn) of the urethane acrylate c was 40,500.
  • Synthesis example 4 Synthesis of urethane acrylate d
  • 325 g of 2,2-bis (4-polyoxyethylene-oxyphenyl) propane (hydroxyl value: 345.0 mgKOH / g) and diacetic acid 0.27 g of dibutyltin was charged, the temperature was raised to 80 ° C. while stirring, and 445 g of isophorone diisocyanate was added over 30 minutes while paying attention to heat generation. After the addition, the reaction was carried out for 2 hours, after which 270 g of hydroxyethyl acrylate was added, and the reaction was further carried out for 5 hours. It was confirmed by the infrared absorption spectrum that the isocyanate group had disappeared, and urethane acrylate d was obtained. The number average molecular weight (Mn) of urethane acrylate d was 1,500.
  • Synthesis example 5 Synthesis of urethane acrylate e
  • a flask equipped with a thermometer, a stirrer, and a condenser was charged with 100 g of 2-acryloyloxyethyl isocyanate (“Karenz AOI” manufactured by Showa Denko KK) and 0.27 g of dibutyltin diacetate and stirred. Then, the temperature was raised to 80 ° C., and 354.3 g of a polyol (“Kuraray polyol 1011 [number average molecular weight (Mw) 1,000]” manufactured by Kuraray Co., Ltd.) was added over 30 minutes while paying attention to heat generation.
  • Kuraray polyol 1011 [number average molecular weight (Mw) 1,000] manufactured by Kuraray Co., Ltd.
  • urethane acrylate e The number average molecular weight (Mn) of urethane acrylate e was 1,300.
  • Polyisocyanates a to e used in Examples and Comparative Examples of the present invention are shown below.
  • Polyisocyanate a Adduct type of 1,6-hexamethylene diisocyanate (“Bernock 20-484S” manufactured by DIC)
  • Polyisocyanate b Isocyanurate type of 1,6-hexamethylene diisocyanate (“Bernock DN-980S” manufactured by DIC)
  • Polyisocyanate c Adduct type of 1,6-hexamethylene diisocyanate (“Bernock DN-950S” manufactured by DIC)
  • Polyisocyanate d isocyanurate type of isophorone diisocyanate (“Vestanat T” manufactured by Evonik Degussa)
  • -Polyisocyanate e Toluene diisocyanate
  • polymerizable monomers a to c used in Examples and Comparative Examples of the present invention are shown below.
  • Polymerizable monomer a Isobornyl acrylate
  • Polymerizable monomer b Phenoxyethyl acrylate
  • Polymerizable monomer c Hydroxypropyl acrylate
  • Example 1 40 parts by mass of urethane acrylate a obtained in the above synthesis example, 30 parts by mass of polymerizable monomer a, 30 parts by mass of polymerizable monomer b, 5 parts by mass of polyisocyanate a, and Irgacure # 184 (Ciba An active energy ray-curable resin composition was obtained by adding 1 part by mass of Specialty Chemicals Co., Ltd., a polarizing plate was prepared in the following manner, and various evaluations shown below were performed. The results are shown in Table 1.
  • polarizing plate Preparation of polarizing plate
  • the active energy ray-curable resin composition obtained in the above example was applied on a polycarbonate film having a thickness of 120 ⁇ m with a bar coater so as to have a film thickness of 10 ⁇ m, and laminated with a polyvinyl alcohol film having a thickness of 50 ⁇ m. Then, light irradiation was performed from the polycarbonate film surface side using a high-pressure mercury lamp under the condition of 1000 mJ / cm 2 to cure the resin composition to obtain a polarizing plate.
  • Evaluation 1 Measurement of Viscosity Using an E-type rotational viscometer (“RE80U” manufactured by Toki Sangyo Co., Ltd.), the viscosity of the active energy ray-curable resin composition obtained in the above Examples was measured.
  • E-type rotational viscometer (“RE80U” manufactured by Toki Sangyo Co., Ltd.)
  • Evaluation 2 Curling property The four-sided float of the polarizing plate (sample size 100 mm ⁇ 100 mm) prepared by the above method was averaged and evaluated according to the following criteria. A: Curling is 5 mm or less, and no peeling of the adhesive is observed. ⁇ : Curling is 5 mm or less, and there is little peeling of the adhesive. (Triangle
  • Evaluation 3 Adhesiveness The adhesive surface of the polarizing plate polycarbonate film and polyvinyl alcohol film prepared by the above method was peeled by hand, and the adhesion level was evaluated according to the following criteria. (Double-circle): It cannot peel easily. When it peels off forcibly, the adhesive cohesively breaks down. ⁇ : Cannot be easily peeled off. When forcibly peeled, the adhesive remains on either side of the polycarbonate film or polyvinyl alcohol film. X: It can peel easily by hand. Or it has already peeled off at the time of hardening.
  • Evaluation 4 Adhesiveness after heat and humidity resistance After allowing the polarizing plate prepared by the above method to stand at 70 ° C. and 90 RH% for 48 hours, the adhesive surface between the polycarbonate film and the polyvinyl alcohol film was peeled off by hand, The adhesion level was evaluated according to the following criteria. (Double-circle): It cannot peel easily. When it peels off forcibly, the adhesive cohesively breaks down. ⁇ : Cannot be easily peeled off. When forcibly peeled, the adhesive remains on either side of the polycarbonate film or polyvinyl alcohol film. X: It can peel easily by hand. Or it has already peeled off at the time of hardening.
  • Examples 2 to 6 An active energy ray-curable resin composition and a polarizing plate were obtained in the same manner as in Example 1 except that the composition shown in Table 1 was used. The evaluation results are shown in Table 1.
  • Comparative Examples 1-5 An active energy ray-curable resin composition and a polarizing plate were obtained in the same manner as in Example 1 except that the formulation shown in Table 2 was used, and various evaluations were performed. The evaluation results are shown in Table 2.
  • Comparative Example 2 The active energy ray-curable resin composition obtained in Comparative Example 2 was not sufficiently cured by light irradiation, and the obtained polarizing plate could not be evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

無溶剤系でありながら塗工に適した低粘度であり、更に硬化時の耐カールに優れる活性エネルギー線硬化型樹脂組成物、該樹脂組成物を含む接着剤、及び該接着剤を用いて得られる偏光板を提供する。分子構造中にポリエステル骨格を有し、数平均分子量(Mn)が2,000~30,000の範囲であるウレタンアクリレート(A)と、ポリイソシアネート化合物(B)と、(メタ)アクリロイル基を有する重合性モノマー(C)と、光重合開始剤(D)とを必須成分として含有することを特徴とする。

Description

活性エネルギー線硬化型樹脂組成物、偏光板用接着剤及び偏光板
 本発明は活性エネルギー線硬化型樹脂組成物、該樹脂組成物を用いて得られる偏光板用接着剤、及び該接着剤を用いて得られる偏光板に関する。
 一般に、液晶表示装置等に用いられる偏光板は、ポリビニルアルコールフィルムにヨウ素を含浸させ一軸延伸して得られる偏光子と、透明保護フィルムとを接着剤を用いて貼合して製造される。偏光子と保護フィルムとを貼合する接着剤に求められる性能として、生産工程に溶剤乾燥時間を含まなくて良い無溶剤系であること、無溶剤系でありながら塗工に適した低粘度であること、硬化時の耐カール性に優れること、硬化後の接着層が柔軟性を有し加工性に優れること、各種の保護フィルムとの接着性が良好であること、液晶表示装置のモバイル化に対応し、耐湿熱、耐水等の環境試験に耐え得る接着性能を有することなどが挙げられ、これらの要求特性をすべて高レベルで兼備する偏光板用接着剤が求められている。
 上記の要求特性の中でも、特に、無溶剤でありながら低粘度であり、初期接着性にも優れる偏光板用接着剤として、2-ヒドロキシブチルアクリレート等の水酸基含有(メタ)アクリレートモノマーと、イソホロンジイソシアネートのイソシアヌレート等のポリイソシアネートとを含む光硬化型接着剤組成物(引用文献1参照)や、分子量が1300程度のポリエステル骨格含有ウレタンアクリレートとトリレンジイソシアネートとを含む偏光板用接着剤(特許文献2参照)が知られている。このような接着剤は、無溶剤でも低粘度であり、初期接着に優れるものであるが、しかしながら、成分のいずれもが比較的低分子量であることから、硬化時の耐カール性が十分でなく、また、湿熱条件下では接着性が低下し、剥がれが生じるものであった。
特開2010-008928 特開2010-054720
 本発明が解決する課題は、無溶剤系であっても塗工に適した低粘度を有し、硬化時の耐カールに優れ、硬化後の接着層が柔軟性を有し、湿熱条件下でも高い接着性を発現する活性エネルギー線硬化型樹脂組成物、該樹脂組成物を含む接着剤、及び該接着剤を用いて得られる偏光板を提供することにある。
 本発明者らは、上記の課題を解決するため鋭意検討した結果、活性エネルギー線硬化型樹脂組成物が、数平均分子量(Mn)が2,000~30,000の範囲であるポリエステル骨格を有するウレタン(メタ)アクリレートと、ポリイソシアネート化合物と、(メタ)アクリロイル基を有する重合性モノマーとを必須の成分とすることにより、無溶剤系であっても低粘度を有し、硬化時の耐カール性に優れ、硬化後の接着層が柔軟性を有し、湿熱条件下でも高い接着性を発現することを見出し、本発明を完成するに至った。
 即ち、本発明は、分子構造中にポリエステル骨格を有し、数平均分子量(Mn)が2,000~30,000の範囲であるウレタンアクリレート(A)と、ポリイソシアネート化合物(B)と、(メタ)アクリロイル基を有する重合性モノマー(C)と、光重合開始剤(D)とを必須成分として含有する活性エネルギー線硬化型樹脂組成物に関する。
 本発明は更に前記活性エネルギー線硬化型樹脂組成物を含む接着剤に関する。
 本発明は更に前記接着剤を用いて得られる偏光版に関する。
 本発明によれば無溶剤系であっても塗工に適した低粘度であり、硬化時の耐カールに優れ、硬化後の接着層が柔軟性を有し、湿熱条件下でも高い接着性を発現する活性エネルギー線硬化型樹脂組成物、該樹脂組成物を含む接着剤、及び該接着剤を用いて得られる偏光版を提供することができる。
 本発明では、活性エネルギー硬化型樹脂組成物が含有する成分として、前記ポリエステル骨格を有するウレタンアクリレート(A)を用いることにより、硬化時の耐カール性に優れ、硬化後の接着層が柔軟性を有し、各種基材フィルムに対する接着性の高い接着剤を得ることが出来る。該ポリエステル骨格を有するウレタンアクリレート(A)は、例えば、ポリオールとポリカルボン酸とを反応させて得られるポリエステルポリオール(a1)と、ポリイソシアネート(a2)とを、ポリエステルポリオール(a1)中の水酸基に対しポリイソシアネート(a2)中のイソシアネート基が過剰となる条件で反応させ、得られた反応生成物と水酸基含有(メタ)アクリレート化合物(a3)とを反応させて得られる。
 前記ポリエステルポリオール(a1)の原料となるポリオールは、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2,2-トリメチル-1,3-プロパンジオール、2,2-ジメチル-3-イソプロピル-1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、3-メチル-1,3-ブタンジオール、1,5-ペンタンジオール、3-メチル1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,4-ビス(ヒドロキシメチル)シクロヘサン、トリメチロールエタン、トリメチロールプロパン、2,2,4-トリメチル-1,3-ペンタンジオール、グリセリン、ヘキサントリオール、ペンタエリスリトール等の脂肪族ポリオール;
 ポリオキシエチレングリコール、ポリオキシプロピレングリコール等のエーテルグリコール;
 前記脂肪族ポリオールと、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル等の種々の環状エーテル結合含有化合物との開環重合によって得られる変性ポリエーテルポリオール;
 前記脂肪族ポリオールと、ε-カプロラクトン等の種々のラクトンとの重縮合反応によって得られるラクトン系ポリエステルポリオールなどが挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。これらの中でも、硬化時の耐カール性及び柔軟性に優れる接着層が得られる点で、分岐鎖を有する脂肪族ジオールが好ましく、3-メチル1,5-ペンタンジオールが特に好ましい。
 前記ポリエステルポリオール(a1)の原料となるポリカルボン酸は、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸;
 フタル酸、無水フタル酸、テレフタル酸、イソフタル酸、オルソフタル酸等の芳香族ジカルボン酸;
 ヘキサヒドロフタル酸、1,4-シクロヘキサンジカルボン酸等の脂環族ジカルボン酸;
 テトラヒドロフタル酸、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸等の脂肪族不飽和ジカルボン酸;
 1,2,5-ヘキサントリカルボン酸、トリメリット酸、1,2,5-ベンゼントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸、2,5,7-ナフタレントリカルボン酸等の各種トリカルボン酸などが挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。これらの中でも、得られるウレタンアクリレート(A)が、後述する重合性モノマー(C)との相溶性に優れるウレタンアクリレート(A)となり、硬化時の耐カール性及び柔軟性に優れる接着層が得られる点で、脂肪族ジカルボン酸が好ましく、炭素原子数が4~8の脂肪族ジカルボン酸がより好ましく、アジピン酸が特に好ましい。
 前記ポリエステルポリオール(a1)の数平均分子量(Mn)は、得られる樹脂組成物を低粘度化でき、更に、硬化時の耐カール性及び柔軟性に優れる接着層が得られる点で、1,500~20,000の範囲であることが好ましく、2,000~10,000の範囲であることがより好ましく、3,000~6,000の範囲であることが特に好ましい。
尚、本発明において、数平均分子量(Mn)は下記条件のゲルパーミアーションクロマトグラフィー(GPC)により測定される値である。
 測定装置 ;東ソー株式会社製 HLC-8220GPC
 カラム  ;東ソー株式会社製 TSK-GUARDCOLUMN SuperHZ-L
       +東ソー株式会社製 TSK-GEL SuperHZM-M×4
 検出器  ;RI(示差屈折計)
 データ処理;東ソー株式会社製 マルチステーションGPC-8020modelII
 測定条件 ;カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    0.35ml/分
 標準   ;単分散ポリスチレン
 試料   ;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 前記ポリエステルポリオール(a1)の水酸基価は6~120mgKOH/gの範囲であり、硬化時の耐カール性及び柔軟性に優れる接着層が得られる点で、好ましくは12~60mgKOH/gの範囲、更に好ましくは20~40mgKOH/gの範囲である。
 前記ポリエステル骨格を有するウレタンアクリレート(A)の原料となるイソシアネート化合物(a2)は、各種のジイソシアネートモノマーや、分子内にウレタン結合部位を有するアダクト型ポリイソシアネート化合物、分子内にイソシアヌレート環構造を有するヌレート型ポリイソシアネート化合物などが挙げられる。
 ジイソシアネートモノマーは、例えば、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、キシリレンジイソシアネート、m-テトラメチルキシリレンジイソシアネート等の脂肪族ジイソシアネート;
 シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、ジシクロヘキシルメタン-4,4′-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート等の脂環式ジイソシアネート;
 1,5-ナフチレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、4,4′-ジフェニルジメチルメタンジイソシアネート、4,4′-ジベンジルジイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、トリレンジイソシアネート等の芳香族ジイソシアネートなどが挙げられる。
 前記分子内にウレタン結合部位を有するアダクト型ポリイソシアネート化合物は、例えば、ジイソシアネートモノマーとポリオールとを反応させて得られる。該反応で用いるジイソシアネートモノマーとしては前記した各種のジイソシアネートモノマーが挙げられ、それぞれ単独で使用しても良いし、二種類以上を併用しても良い。また、該反応で用いるポリオールとしては、前記ポリエステルポリオール(a1)の原料として例示した各種のポリオールや、前記ポリエステルポリオール(a1)として例示した各種のポリエステルポリオール等が挙げられ、それぞれ単独で使用しても良いし、二種類以上を併用しても良い。
 前記分子内に分子内にイソシアヌレート環構造を有するヌレート型ポリイソシアネート化合物は、例えば、ジイソシアネートモノマーとモノアルコールおよび/又はジオールとを反応させて得られる。該反応で用いるジイソシアネートモノマーとしては前記した各種のジイソシアネートモノマーが挙げられ、それぞれ単独で使用しても良いし、二種類以上を併用しても良い。また、該反応で用いるモノアルコールとしては、ヘキサノール、2-エチルヘキサノール、オクタノール、n-デカノール、n-ウンデカノール、n-ドデカノール、n-トリデカノール、n-テトラデカノール、n-ペンタデカノール、n-ヘプタデカノール、n-オクタデカノール、n-ノナデカノール、エイコサノール、5-エチル-2-ノナノール、トリメチルノニルアルコール、2-ヘキシルデカノール、3,9-ジエチル-6-トリデカノール、2-イソヘプチルイソウンデカノール、2-オクチルドデカノール、2-デシルテトラデカノール等が挙げられ、ジオールとしては前記ポリエステルポリオール(a1)の原料として例示した各種のジオールが挙げられる。これらモノアルコールやジオールはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。
 上記各種のイソシアネート化合物の中でも、得られるウレタンアクリレート(A)の分子量を好適な範囲に調整することが容易となる点で、ジイソシアネートモノマーが好ましい。更に、基材への接着性に優れる樹脂組成物が得られる点で、脂環式ジイソシアネートが好ましく、イソホロンジイソシアネートが特に好ましい。
 前記ポリエステル骨格を有するウレタンアクリレート(A)の原料となる水酸基含有(メタ)アクリレート化合物(a3)は、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、グリセリンジアクリレート、トリメチロールプロパンジアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレートなどが挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。これらの中でも、基材フィルムへの接着性に優れ、効果時の耐カール性に優れる樹脂組成物が得られる点で、単官能の(メタ)アクリレート化合物が好ましく、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、又は4-ヒドロキシブチルアクリレートが特に好ましい。
 ポリエステル骨格を有するウレタンアクリレート(A)を製造する方法は、例えば、工程1:ポリオールとポリカルボン酸とを反応させてポリエステルポリオール(a1)を得る過程、工程2:工程1で得たポリエステルポリオール(a1)とイソシアネート化合物(a2)とを反応させる過程、工程3:工程2で得られた生成物と水酸基含有(メタ)アクリレート化合物(a3)とを反応させる過程を経る方法等が挙げられる。
 前記工程1:ポリオールとポリカルボン酸との反応は、150~250℃の温度範囲内で、生成する水を逐次除去しながら行う。必要に応じて公知慣用のエステル化触媒を用いても良い。このとき、前記ポリオールと前記ポリカルボン酸との反応比率は、得られるポリエステルポリオールの水酸基価が、前記した好ましい値となるように調整することが好ましい。
 前記工程2:工程1で得たポリエステルポリオール(a1)とイソシアネート化合物(a2)との反応は、20~120℃の温度範囲内で、必要に応じて公知慣用のウレタン化触媒を用いて行う。このとき、前記ポリエステルポリール(a1)が有する水酸基のモル数(OH)と、前記イソシアネート化合物(a2)が有するイソシアネート基のモル数(NCO)との比[(OH)/(NCO)]の値は1/1.5~1/2.2の範囲であることが好ましい。
 前記工程3:工程2で得られた生成物と水酸基含有(メタ)アクリレート化合物(a3)との反応は、20~120℃の温度範囲内で、必要に応じて公知慣用のウレタン化触媒を用いて行う。このとき、前記工程2で得られた生成物が有するイソシアネート基のモル数(NCO)と、前記水酸基含有(メタ)アクリレート化合物(a3)のモル数(OH)との比[(NCO)/(OH)]の値は1/1.01~1/1.2の範囲であることが好ましい。
 上記以外の製造方法は、前記工程2と3とを同時に行う方法、即ち、ポリエステルポリオール(a1)、イソシアネート化合物(a2)、及び水酸基含有(メタ)アクリレート化合物(a3)を一括に仕込んで反応させる方法や、前記工程2と3との順序を入れ替えた方法、即ち、イソシアネート化合物(a2)と、水酸基含有(メタ)アクリレート化合物(a3)とを反応させた後に、ポリエステルポリオール(a1)を反応させる方法等が挙げられる。
 前記ポリエステル骨格を有するウレタンアクリレート(A)は、その数平均分子量(Mn)が2,000~30,000の範囲であることにより、得られる樹脂組成物が塗工に適した低い粘度を有し、更に、硬化時の耐カール性及び柔軟性に優れる接着層が得られる。更に、樹脂組成物の低粘度性と、硬化時の耐カール性とをより高いレベルで兼備できる点で、2,000~10,000の範囲であることが好ましく、2,500~8,000の範囲であることがより好ましい。
 本発明では、活性エネルギー線硬化型樹脂組成物が含有する成分として、ポリイソシアネート化合物(B)を用いることにより、基材フィルムとの接着性が非常に高く、湿熱条件下あっても接着性に優れるものとなる。該ポリイソイソシアネート化合物(B)は、各種のジイソシアネートモノマーや、分子内にウレタン結合部位を有するアダクト型ポリイソシアネート化合物、分子内にイソシアヌレート環構造を有するヌレート型ポリイソシアネート化合物などを用いることができ、具体的には、前記ポリイソシアネート(a2)として例示した各種のポリイソシアネート挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。これらの中でも、基材フィルムに対する接着性に優れ、かつ、柔軟性に優れる接着層が得られる点で、分子構造内にウレタン結合部位を有するアダクト型ポリイソシアネート化合物又は分子構造内にイソシアヌレート環構造を有するヌレート型ポリイソシアネート化合物が好ましく、とりわけ、分子構造内にウレタン結合部位を有するアダクト型ポリイソシアネート化合物が更に好ましい。具体的には、1,6-へキサメチレンジイソシアネート又はイソホロンジイソシアネートを用いて得られるアダクト型ポリイソシアネート化合物が特に好ましい。
 本発明では、更に高い基材接着性を実現する目的で、前記重合性モノマー(C)を用いる。該重合性モノマー(C)は、例えば、単官能のアクリレートモノマーや多官能のアクリレートモノマーが挙げられるが、硬化時の耐カール性に優れる接着層が得られる点で、単官能のアクリレートモノマーが好ましい。
 前記単官能のアクリレートモノマーは、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸-t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ドコシル等の炭素数1~22のアルキル基を持つ(メタ)アクリル酸エステル;
 (メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル等の脂環式のアルキル基を有する(メタ)アクリル酸エステル;
 (メタ)アクリル酸ベンゾイルオキシエチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニルエチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸フェノキシジエチレングリコール、(メタ)アクリル酸2-ヒドロキシ-3-フェノキシプロピル等の芳香環を有する(メタ)アクリル酸エステル;
 スチレン、α-メチルスチレン、クロロスチレンなどのスチレン誘導体;
 ブタジエン、イソプレン、ピペリレン、ジメチルブタジエンなどのジエン系化合物;
 メチルビニルケトン、ブチルビニルケトンなどの不飽和ケトン;
 酢酸ビニル、酪酸ビニルなどのビニルエステル;
 メチルビニルエーテル、ブチルビニルエーテルなどのビニルエーテル等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。これらの中でも、得られる活性エネルギー線硬化型樹脂組成物の基材への接着性が優れる点で、前記芳香環を有する(メタ)アクリル酸エステルが好ましく、(メタ)アクリル酸フェノキシエチルが特に好ましい。また、硬化時の耐カール性に優れる樹脂組成物が得られる点で、前記脂環式のアルキル基を有する(メタ)アクリル酸エステル類が好ましく、(メタ)アクリル酸イソボルニルが特に好ましい。
 本発明で用いる光重合開始剤(D)は、例えば、ベンゾフェノン、3,3′-ジメチル-4-メトキシベンゾフェノン、4,4′-ビスジメチルアミノベンゾフェノン、4,4′-ビスジエチルアミノベンゾフェノン、4,4′-ジクロロベンゾフェノン、ミヒラーズケトン、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなどのベンゾフェノン;
キサントン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2,4-ジエチルチオキサントンなどのキサントン、チオキサントン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのアシロインエーテル;
ベンジル、ジアセチルなどのα-ジケトン;テトラメチルチウラムジスルフィド、p-トリルジスルフィドなどのスルフィド;4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸エチルなどの安息香酸;
3,3′-カルボニル-ビス(7-ジエチルアミノ)クマリン、1-ヒドロキシシクロへキシルフェニルケトン、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-ベンゾイル-4′-メチルジメチルスルフィド、2,2′-ジエトキシアセトフェノン、ベンジルジメチルケタ-ル、ベンジル-β-メトキシエチルアセタール、o-ベンゾイル安息香酸メチル、ビス(4-ジメチルアミノフェニル)ケトン、p-ジメチルアミノアセトフェノン、α,α-ジクロロ-4-フェノキシアセトフェノン、ペンチル-4-ジメチルアミノベンゾエート、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾリルニ量体、2,4-ビス-トリクロロメチル-6-[ジ-(エトキシカルボニルメチル)アミノ]フェニル-S-トリアジン、2,4-ビス-トリクロロメチル-6-(4-エトキシ)フェニル-S-トリアジン、2,4-ビス-トリクロロメチル-6-(3-ブロモ-4-エトキシ)フェニル-S-トリアジンアントラキノン、2-t-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン等が挙げられる。
 これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。これらの中でも、重合開始剤として高い性能を発揮する点で、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オンの群から選ばれる1種または2種類以上の混合系が好ましい。
 前記光重合開始剤の市販品は、例えば、「イルガキュア-184」、「イルガキュア-149」、「イルガキュア-261」、「イルガキュア-369」、「イルガキュア-500」、「イルガキュア-651」、「イルガキュア-754」、「イルガキュア-784」、「イルガキュア-819」、「イルガキュア-907」、「イルガキュア-1116」、「イルガキュア-1664」、「イルガキュア-1700」、「イルガキュア-1800」、「イルガキュア-1850」、「イルガキュア-2959」、「イルガキュア-4043」、「ダロキュア-1173」(チバスペシャルティーケミカルズ社製)、「ルシリンTPO」(ビーエーエスエフ社製)、「カヤキュア-DETX」、「カヤキュア-MBP」、「カヤキュア-DMBI」、「カヤキュア-EPA」、「カヤキュア-OA」(日本化薬株式会社製)、「バイキュア-10」、「バイキュア-55」(ストウファ・ケミカル社製)、「トリゴナルP1」(アクゾ社製)、「サンドレイ1000」(サンドズ社製)、「ディープ」(アプジョン社製)、「クオンタキュア-PDO」、「クオンタキュア-ITX」、「クオンタキュア-EPD」(ワードブレンキンソップ社製)等が挙げられる。
本発明の活性エネルギー線硬化型樹脂組成物は、前記ポリエステル骨格を有するウレタンアクリレート(A)、前記ポリイソイソシアネート化合物(B)、前記重合性モノマー(C)、及び前記光重合開始剤(D)を必須成分とする。本発明の活性エネルギー線硬化型樹脂組成物中の、前記ポリエステル骨格を有するウレタンアクリレート(A)と前記重合性モノマー(C)との質量比[ポリエステル骨格を有するウレタンアクリレート(A)]/[重合性モノマー(C)]は、得られる樹脂組成物が接着性、低カール性、及び二次加工性等の各種性能に優れ、かつ、塗工に適した低粘度を実現できる点で、20/80~80/20の範囲であることが好ましく、35/65~65/35の範囲であることがより好ましい。
 また、本発明の活性エネルギー線硬化型樹脂組成物中の、前記ポリエステル骨格を有するウレタンアクリレート(A)と前記重合性モノマー(C)との質量の和と、前記ポリイソイソシアネート化合物(B)の質量との比[ポリエステル骨格を有するウレタンアクリレート(A)+重合性モノマー(C)]/[ポリイソイソシアネート化合物(B)]は、得られる樹脂組成物が接着性、低カール性、及び二次加工性等の各種性能に優れ、かつ、塗工に適した低粘度を実現できる点で、99/1~50/50の範囲であることが好ましく、97/3~85/15の範囲であることがより好ましい。
 また、本発明のエネルギー硬化型樹脂組成物中の前記光重合開始剤(D)の含有量は、光の感度を良好に保ち、かつ、結晶の析出や塗膜物性の劣化等を生じない点で、前記ポリエステル骨格を有するウレタンアクリレート(A)、前記ポリイソイソシアネート化合物(B)、及び前記重合性モノマー(C)の合計100質量部に対し、0.05~20質量部の範囲であることが好ましく、0.1~10質量部の範囲であることがより好ましい。
 本発明の活性エネルギー線硬化型樹脂組成物は、前記光重合開始剤に併せて種々の光増感剤を含有しても良い。前記光増感剤は、例えば、アミン類、尿素類、含硫黄化合物、含燐化合物、含塩素化合物またはニトリル類もしくはその他の含窒素化合物等が挙げられ、これらは単独で使用しても二種類以上を併用しても良い。本発明の活性エネルギー線硬化型樹脂組成物がこれら光増感剤を含有する場合の含有量は、前記ポリエステル骨格を有するウレタンアクリレート(A)、前記ポリイソイソシアネート化合物(B)、及び前記重合性モノマー(C)の合計100質量部に対し、0.01~10質量部の範囲であることが好ましい。
 本発明の活性エネルギー線硬化型樹脂組成物は、無溶剤であっても塗工に適した低粘度を示すものであるが、必要に応じて有機溶剤を添加してもよく、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン等のケトン類、テトラヒドロフラン(THF)、ジオキソラン等の環状エーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の芳香族類、カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール類が挙げられる。これらは単独で使用しても二種類以上を併用しても良い。本発明の活性エネルギー線硬化型樹脂組成物がこれら有機溶剤を含有する場合の含有量は、前記ポリエステル骨格を有するウレタンアクリレート(A)、前記ポリイソイソシアネート化合物(B)、及び前記重合性モノマー(C)の合計100質量部に対し、10~90質量部の範囲であることが好ましい。
 本発明の活性エネルギー線硬化型樹脂組成物はその他各種の添加剤を含有しても良い。各種の添加剤としては、紫外線吸収剤、酸化防止剤、シリコン系添加剤、フッ素系添加剤、レオロジーコントロール剤、脱泡剤、帯電防止剤、防曇剤等が挙げられる。本発明の活性エネルギー線硬化型樹脂組成物がこれら添加剤を含有する場合の含有量は、添加剤の効果を十分発揮し、また紫外線硬化を阻害しない範囲で、前記ポリエステル骨格を有するウレタンアクリレート(A)、前記ポリイソイソシアネート化合物(B)、及び前記重合性モノマー(C)の合計100質量部に対し、0.01~40質量部の範囲であることが好ましい。
 本発明の活性エネルギー線硬化型樹脂組成物は、フィルム基材への接着性改良等を目的としてその他の樹脂を併用することができる。その他の樹脂としては、例えば、メチルメタクリレート樹脂、メチルメタクリレート系共重合物等のアクリル樹脂;ポリスチレン、メチルメタクリレート-スチレン系共重合物;ポリエステル樹脂;ポリウレタン樹脂;ポリブタジエンやブタジエン-アクリロニトリル系共重合物などのポリブタジエン樹脂;ビスフェノール型エポキシ樹脂、フェノキシ樹脂やノボラック型エポキシ樹脂などのエポキシ樹脂等が挙げられる。本発明の活性エネルギー線硬化型樹脂組成物がこれらの樹脂を含有する場合の含有量は、本発明が奏する効果が阻害されず十分に発揮される範囲で、前記ポリエステル骨格を有するウレタンアクリレート(A)、前記ポリイソイソシアネート化合物(B)、及び前記重合性モノマー(C)の合計100質量部に対し、1~50質量部の範囲であることが好ましい。
 本発明の活性エネルギー線硬化型樹脂組成物は、硬化時の耐カール性に優れ、硬化後の接着槽が柔軟性を有し、各種基材フィルムへの接着性の高い接着剤を得ることが出来る点で、該樹脂組成物の固形分中に前記ウレタンアクリレート(A)を25~70質量%の範囲で含有することが好ましく、35~60質量%の範囲で含有することがより好ましい。
 また、基材フィルムとの接着性が非常に高く、湿熱条件下であっても接着性の高い接着剤が得られる点で、該樹脂組成物の固形分中に前記ポリイソシアネート化合物(B)を1~15質量%の範囲で含有することが好ましく、3~10質量%の範囲で含有することがより好ましい。
 また、硬化時の耐カール性と基材接着性とにより優れる接着剤が得られる点で、該樹脂組成物の固形分中に前記重合性モノマー(C)を25~70質量%の範囲で含有することが好ましく、35~60質量%の範囲で含有することがより好ましい。
 本発明の活性エネルギー線硬化型樹脂組成物の粘度は、100mPa・s~10,000mPa・sの範囲であることが好ましく、100mPa・s~3,000mPa・sの範囲であることがより好ましい。粘度がこの範囲であれば、高速塗工条件下であっても該活性エネルギー線硬化型樹脂組成物を均一な厚みで塗布することができる。
 本発明の偏光板用接着剤は前記活性エネルギー線硬化型樹脂組成物用いて得られ、ポリビニルアルコールフィルムからなる偏光子と各種保護フィルムとの接着用途に好適に用いることができる。
 上記ポリビニルアルコールからなる偏光子は、例えば、ポリビニルアルコール系樹脂フィルムにヨウ素や有機染料等の二色性物質で染色したものを、一軸延伸したものなどが挙げられる。本発明で用いるものは、ポリビニルアルコールからなるものであれば、製法は特に限定されない。
 上記各種保護フィルムは、例えば、ポリカーボネート、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ樹脂、メラミン樹脂、トリアセチルセルロース樹脂、ポリビニルアルコール、ABS樹脂、AS樹脂、ノルボルネン系樹脂、環状オレフィン系樹脂、ポリイミド樹脂等からなるフィルムが挙げられる。これらの中でも、ポリカーボネート樹脂又はトリアセチルセルロース樹脂からなるフィルムが好ましい。
 前記偏光板用接着剤を用いて前記偏光子と前記フィルム基材を接着する際、該偏光板用接着剤を厚さ0.5~100μmの範囲で塗布することが好ましく、2~50μmの範囲がより好ましい。
 前記偏光板用接着剤の塗布方法は、例えば、バーコーター塗工、ロールコーター塗装、スプレー塗工、グラビア塗工、リバースグラビア塗工、オフセット印刷、フレキソ印刷、スクリーン印刷法等が挙げられ、いずれの方法を用いても良い。
 本発明の活性エネルギー線硬化型樹脂又はこれを含有する偏光板用接着剤を硬化させる際の活性エネルギー線は、例えば、紫外線や電子線が挙げられる。紫外線により硬化させる場合、光源としてキセノンランプ、高圧水銀灯、メタルハライドランプを有する紫外線照射装置が使用され、必要に応じて光量、光源の配置などが調整されるが、高圧水銀灯を使用する場合、通常80~160W/cmの範囲である光量を有したランプ1灯に対して搬送速度5~50m/分の範囲で硬化させるのが好ましい。一方、電子線により硬化させる場合、通常10~300kVの範囲である加速電圧を有する電子線加速装置にて、搬送速度5~50m/分の範囲で硬化させるのが好ましい。
 本発明の偏光板は、テレビ、パソコン、携帯電話、時計等、各種の液晶表示装置用として好適に用いることができる。
 以下に実施例及び比較例を挙げて、本発明をより具体的に説明する。
 尚、本発明では、数平均分子量(Mn)を下記条件のゲルパーミアーションクロマトグラフィー(GPC)により測定した。
 測定装置 ;東ソー株式会社製 HLC-8220GPC
 カラム  ;東ソー株式会社製 TSK-GUARDCOLUMN SuperHZ-L
       +東ソー株式会社製 TSK-GEL SuperHZM-M×4
 検出器  ;RI(示差屈折計)
 データ処理;東ソー株式会社製 マルチステーションGPC-8020modelII
 測定条件 ;カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    0.35ml/分
 標準   ;単分散ポリスチレン
 試料   ;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 本発明の実施例・比較例で用いたウレタンアクリレートa~dを以下に示す。
合成例1
ウレタンアクリレートaの合成
 温度計、攪拌器、及びコンデンサ-を備えたフラスコに、3-メチル-1,5-ペンタンジオールとアジピン酸とを反応させて得られるポリエステルポリオール(数平均分子量(Mn):4,000、水酸基価:28.5mgKOH/g)315gとオクテン酸亜鉛0.1gとメトキノン0.1gを仕込み、攪拌しながら80℃に昇温し、イソホロンジイソシアネート35.5gを発熱に注意しながら30分かけて添加した。添加後、反応を5時間行い、その後、ヒドロキシエチルアクリレート19gを添加し、更に7時間反応を行った。赤外吸収スペクトルによりイソシアネート基の吸収が消滅したことを確認し、ウレタンアクリレートaを得た。ウレタンアクリレートaの数平均分子量(Mn)は4,500であった。
合成例2
ウレタンアクリレートbの合成
 温度計、攪拌器、及びコンデンサ-を備えたフラスコに、3-メチル-1,5-ペンタンジオールとアジピン酸とを反応させて得られるポリエステルポリオール(数平均分子量(Mn):1,000、水酸基価:113mgKOH/g)331gとオクテン酸亜鉛0.1gとメトキノン0.1gを仕込み、攪拌しながら80℃に昇温し、イソホロンジイソシアネート148gを発熱に注意しながら30分かけて添加した。添加後、反応を5時間行い、その後、2-ヒドロキシエチルアクリレート90gを添加し、更に7時間反応を行った。赤外吸収スペクトルによりイソシアネート基の吸収が消滅したことを確認し、ウレタンアクリレートbを得た。ウレタンアクリレートbの数平均分子量(Mn)は1,500であった。
合成例3
ウレタンアクリレートcの合成
 温度計、攪拌器、及びコンデンサ-を備えたフラスコに、3-メチル-1,5-ペンタンジオールとアジピン酸とを反応させて得られるポリエステルポリオール(数平均分子量(Mn)40,000、水酸基価:2.9mgKOH/g)387gとオクテン酸亜鉛0.1gとメトキノン0.1gを仕込み、攪拌しながら80℃に昇温し、イソホロンジイソシアネート4.44gを発熱に注意しながら30分かけて添加した。添加後、反応を5時間行い、その後、ヒドロキシエチルアクリレート2.7gを添加し、更に7時間反応を行った。赤外吸収スペクトルによりイソシアネート基の吸収が消滅したことを確認し、ウレタンアクリレートcを得た。ウレタンアクリレートcの数平均分子量(Mn)は40,500であった。
合成例4
ウレタンアクリレートdの合成
 温度計、攪拌器、及びコンデンサ-を備えたフラスコに、2,2-ビス(4-ポリオキシエチレン-オキシフェニル)プロパン(水酸基価:345.0mgKOH/g)325gとジ酢酸ジブチル錫0.27gを仕込み、攪拌しながら80℃に昇温し、イソホロンジイソシアネート445gを発熱に注意しながら30分かけて添加した。添加後、反応を2時間行い、その後、ヒドロキシエチルアクリレート270gを添加し、更に5時間反応を行った。赤外吸収スペクトルによりイソシアネート基の吸収が消滅したことを確認し、ウレタンアクリレートdを得た。ウレタンアクリレートdの数平均分子量(Mn)は1,500であった。
合成例5
ウレタンアクリレートeの合成
 温度計、攪拌器、及びコンデンサ-を備えたフラスコに、2-アクリロイルオキシエチルイソシアネート(昭和電工株式会社製「カレンズAOI」)100gとジ酢酸ジブチル錫0.27gを仕込み、攪拌しながら80℃に昇温し、ポリオール(クラレ株式会社製「クラレポリオール1011〔数平均分子量(Mw)1,000〕」354.3gを発熱に注意しながら30分かけて添加した。添加後、反応を2時間行い、赤外吸収スペクトルによりイソシアネート基の吸収が消滅したことを確認し、ウレタンアクリレートeを得た。ウレタンアクリレートeの数平均分子量(Mn)は1,300であった。
 本発明の実施例・比較例で用いたポリイソシアネートa~eを以下に示す。
・ポリイソシアネートa:1,6-へキサメチレンジイソシアネートのアダクト型(DIC社製「バーノック 20-484S」)
・ポリイソシアネートb:1,6-へキサメチレンジイソシアネートのイソシアヌレート型(DIC社製「バーノック DN-980S」)
・ポリイソシアネートc:1,6-へキサメチレンジイソシアネートのアダクト型(DIC社製「バーノック DN-950S」)
・ポリイソシアネートd:イソホロンジイソシアネートのイソシアヌレート型(エボニックデグザ社製「ベスタネートT」)
・ポリイソシアネートe:トルエンジイソシアネート
 本発明の実施例・比較例で用いた重合性モノマーa~cを以下に示す。
・重合性モノマーa:イソボロニルアクリレート
・重合性モノマーb:フェノキシエチルアクリレート
・重合性モノマーc:ヒドロキシプロピルアクリレート
実施例1
 上記合成例で得たウレタンアクリレートaを40質量部、重合性モノマーaを30質量部、重合性モノマーbを30質量部、ポリイソシアネートaを5質量部、及び光開始剤としてイルガキュア#184(チバスペシャルティーケミカルズ社製)を1質量部加えて、活性エネルギー線硬化型樹脂組成物を得、下記の要領で偏光板を作成し、以下に示す各種の評価を行った。結果を表1に示す。
偏光版の作成
 上記実施例で得た活性エネルギー線硬化型樹脂組成物を厚さ120μmのポリカーボネートフィルム上にバーコーターで膜厚が10μmとなるように塗布し、厚さ50μmのポリビニルアルコールフィルムでラミネートした後、ポリカーボネートフィルム面側から高圧水銀ランプを用いて1000mJ/cmとなる条件で光照射し、樹脂組成物を硬化させて偏光版を得た。
評価1:粘度の測定
 E型回転粘度計(東機産業株式会社製「RE80U」)を用い、上記実施例で得た活性エネルギー線硬化型樹脂組成物の粘度を測定した。
評価2:カール性
 上記方法で作成した偏光版(サンプルサイズ100mm×100mm)の4角の浮きを平均測定し、以下の基準で評価した。
◎:カールが5mm以下で、接着剤の剥がれが見られない。
○:カールが5mm以下で、接着剤の剥がれが少ない。
△:カールが5mm以上で、接着剤の剥がれが少ない。
×:カールが5mm以上で、接着剤の剥がれが著しい。
評価3:接着性
 上記方法で作成した偏光版のポリカーボネートフィルムとポリビニルアルコールフィルムとの接着面を手で剥離し、接着レベルを以下の基準で評価した。
◎:簡単に剥離できない。無理に剥離した時に、接着剤が凝集破壊する。
○:簡単に剥離できない。無理に剥離した時に、接着剤がポリカーボネートフィルム又はポリビニルアルコールフィルムのどちらかの面に残る。
×:手で簡単に剥離できる。又は硬化時に既に剥がれている。
評価4:耐湿熱後接着性
 上記方法で作成した偏光版を、70℃、90RH%の条件下で48時間静置させた後、ポリカーボネートフィルムとポリビニルアルコールフィルムとの接着面を手で剥離し、接着レベルを以下の基準で評価した。
◎:簡単に剥離できない。無理に剥離した時に、接着剤が凝集破壊する。
○:簡単に剥離できない。無理に剥離した時に、接着剤がポリカーボネートフィルム又はポリビニルアルコールフィルムのどちらかの面に残る。
×:手で簡単に剥離できる。又は硬化時に既に剥がれている。
評価5:耐折曲げ性
 上記方法で作成した偏光版から5cm×2cmの大きさの試験片を作成し、長辺に沿って短辺同士が触れるまで折り曲げ、割れを評価した。
○:割れ、ヒビ等が生じない
×:割れ、ヒビ等が生じる
実施例2~6
 表1に示す配合とした以外は実施例1と同様にして活性エネルギー線硬化型樹脂組成物及び偏光板を得た。評価結果を表1に示す。
比較例1~5
 表2に示す配合とした以外は実施例1と同様にして活性エネルギー線硬化型樹脂組成物及び偏光板を得、各種評価を行った。評価結果を表2に示す。

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 ※比較例2の評価について。
 比較例2で得た活性エネルギー線硬化型樹脂組成物は、光照射による硬化性が十分ではなく、得られた偏光板について評価ができなかった。

Claims (8)

  1. 分子構造中にポリエステル骨格を有し、数平均分子量(Mn)が2,000~30,000の範囲であるウレタンアクリレート(A)と、ポリイソシアネート化合物(B)と、(メタ)アクリロイル基を有する重合性モノマー(C)と、光重合開始剤(D)とを必須成分として含有するエネルギー線硬化型樹脂組成物。
  2. 前記ポリイソシアネート化合物(B)が、分子構造内にウレタン結合部位を有するアダクト型ポリイソシアネート化合物又は分子構造内にイソシアヌレート環構造を有するヌレート型ポリイソシアネート化合物である請求項1記載のエネルギー線硬化型樹脂組成物。
  3. 前記(メタ)アクリロイル基を有する重合性モノマー(C)が、芳香環を有する(メタ)アクリル酸エステルである請求項1記載のエネルギー線硬化型樹脂組成物。
  4. 前記(メタ)アクリロイル基を有する重合性モノマー(C)が、脂環式のアルキル基を有する(メタ)アクリル酸エステルである請求項1記載のエネルギー線硬化型樹脂組成物。
  5. 前記ポリエステル骨格を有するウレタンアクリレート(A)と前記重合性モノマー(C)との質量の割合[ポリエステル骨格を有するウレタンアクリレート(A)]:[重合性モノマー(C)]が、20/80~80/20の範囲である請求項1記載のエネルギー線硬化型樹脂組成物。
  6. 前記ポリエステル骨格を有するウレタンアクリレート(A)と前記重合性モノマー(C)との和と、前記ポリイソイソシアネート化合物(B)との質量の割合[ポリエステル骨格を有するウレタンアクリレート(A)+重合性モノマー(C)]:[ポリイソイソシアネート化合物(B)]が、99/1~50/50の範囲である請求項1記載のエネルギー線硬化型樹脂組成物。
  7. 請求項1~6のいずれか一つに記載のエネルギー線硬化型樹脂組成物を含有することを特徴とする接着剤。
  8. 請求項7記載の接着剤を用い、偏光子と保護フィルムとを貼合して得られることを特徴とする偏光板。
PCT/JP2011/071467 2010-09-29 2011-09-21 活性エネルギー線硬化型樹脂組成物、偏光板用接着剤及び偏光板 WO2012043333A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010218774 2010-09-29
JP2010-218774 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012043333A1 true WO2012043333A1 (ja) 2012-04-05

Family

ID=45892791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071467 WO2012043333A1 (ja) 2010-09-29 2011-09-21 活性エネルギー線硬化型樹脂組成物、偏光板用接着剤及び偏光板

Country Status (2)

Country Link
TW (1) TW201219493A (ja)
WO (1) WO2012043333A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241508A (ja) * 2012-05-18 2013-12-05 Toagosei Co Ltd プラスチック製フィルム又はシート用活性エネルギー線硬化型接着剤組成物
WO2014192502A1 (ja) * 2013-05-31 2014-12-04 昭和電工株式会社 重合性組成物、重合物、光学用粘着シート、画像表示装置およびその製造方法
JP2017197650A (ja) * 2016-04-27 2017-11-02 Dic株式会社 ウレタン(メタ)アクリレート樹脂及び積層フィルム
KR102668471B1 (ko) * 2015-06-04 2024-05-24 디아이씨 가부시끼가이샤 우레탄(메타)아크릴레이트 수지 및 적층 필름

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113693A (en) * 1978-02-24 1979-09-05 Mitsubishi Rayon Co Ltd Ultraviolet-curing resin composition
JP2008031246A (ja) * 2006-07-27 2008-02-14 Dainippon Ink & Chem Inc 接着剤用硬化型樹脂組成物
JP2008063527A (ja) * 2006-09-11 2008-03-21 Dainippon Printing Co Ltd Pva偏光板用接着剤
JP2008133457A (ja) * 2006-10-24 2008-06-12 Mitsubishi Plastics Ind Ltd 光硬化性組成物
JP2008169319A (ja) * 2007-01-12 2008-07-24 Dic Corp 接着剤用硬化型樹脂組成物
WO2008140018A1 (ja) * 2007-05-11 2008-11-20 Sekisui Chemical Co., Ltd. カラムスペーサ用硬化性樹脂組成物、カラムスペーサ、及び、液晶表示素子
WO2009059157A1 (en) * 2007-11-02 2009-05-07 Seiko Epson Corporation Optical element having optical adhesive layer and polarizer
WO2009077222A1 (de) * 2007-12-18 2009-06-25 Evonik Degussa Gmbh Dual cure formulierungen mit uretdiongruppen haltigen komponenten
WO2009131321A2 (en) * 2008-04-21 2009-10-29 Lg Chem, Ltd. Pressure-sensitive adhesive compositions, polarizers and liquid crystal displays comprising the same
WO2010001855A1 (ja) * 2008-06-30 2010-01-07 東亞合成株式会社 活性エネルギー線硬化型接着剤組成物
JP2010008928A (ja) * 2008-06-30 2010-01-14 Fujicopian Co Ltd 光硬化型接着剤組成物及びそれを用いた偏光板

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113693A (en) * 1978-02-24 1979-09-05 Mitsubishi Rayon Co Ltd Ultraviolet-curing resin composition
JP2008031246A (ja) * 2006-07-27 2008-02-14 Dainippon Ink & Chem Inc 接着剤用硬化型樹脂組成物
JP2008063527A (ja) * 2006-09-11 2008-03-21 Dainippon Printing Co Ltd Pva偏光板用接着剤
JP2008133457A (ja) * 2006-10-24 2008-06-12 Mitsubishi Plastics Ind Ltd 光硬化性組成物
JP2008169319A (ja) * 2007-01-12 2008-07-24 Dic Corp 接着剤用硬化型樹脂組成物
WO2008140018A1 (ja) * 2007-05-11 2008-11-20 Sekisui Chemical Co., Ltd. カラムスペーサ用硬化性樹脂組成物、カラムスペーサ、及び、液晶表示素子
WO2009059157A1 (en) * 2007-11-02 2009-05-07 Seiko Epson Corporation Optical element having optical adhesive layer and polarizer
WO2009077222A1 (de) * 2007-12-18 2009-06-25 Evonik Degussa Gmbh Dual cure formulierungen mit uretdiongruppen haltigen komponenten
WO2009131321A2 (en) * 2008-04-21 2009-10-29 Lg Chem, Ltd. Pressure-sensitive adhesive compositions, polarizers and liquid crystal displays comprising the same
WO2010001855A1 (ja) * 2008-06-30 2010-01-07 東亞合成株式会社 活性エネルギー線硬化型接着剤組成物
JP2010008928A (ja) * 2008-06-30 2010-01-14 Fujicopian Co Ltd 光硬化型接着剤組成物及びそれを用いた偏光板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241508A (ja) * 2012-05-18 2013-12-05 Toagosei Co Ltd プラスチック製フィルム又はシート用活性エネルギー線硬化型接着剤組成物
WO2014192502A1 (ja) * 2013-05-31 2014-12-04 昭和電工株式会社 重合性組成物、重合物、光学用粘着シート、画像表示装置およびその製造方法
KR102668471B1 (ko) * 2015-06-04 2024-05-24 디아이씨 가부시끼가이샤 우레탄(메타)아크릴레이트 수지 및 적층 필름
JP2017197650A (ja) * 2016-04-27 2017-11-02 Dic株式会社 ウレタン(メタ)アクリレート樹脂及び積層フィルム

Also Published As

Publication number Publication date
TW201219493A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5382277B2 (ja) 活性エネルギー線硬化型樹脂組成物、接着剤及び積層フィルム
JP4936111B2 (ja) 接着剤用硬化型樹脂組成物
WO2010038366A1 (ja) 光硬化性接着剤組成物
JP2008169319A (ja) 接着剤用硬化型樹脂組成物
JP2018024785A (ja) Uv硬化型樹脂組成物
WO2017047613A1 (ja) ポリウレタン化合物及びそれを含有する樹脂組成物
WO2016121706A1 (ja) 感光性樹脂組成物及びその硬化物
JPWO2015198787A1 (ja) 活性エネルギー線硬化型樹脂組成物、塗料、塗膜、及び積層フィルム
JP5978776B2 (ja) 硬化性組成物、接着剤、積層フィルム及び太陽電池のバックシート
WO2017047612A1 (ja) ポリウレタン化合物及びそれを含有する樹脂組成物
JP6147130B2 (ja) 耐指紋性を有する硬化被膜を形成可能な光硬化性組成物、その被膜およびその被覆基材
JP6816348B2 (ja) ウレタン(メタ)アクリレート樹脂及び積層フィルム
JP5812328B2 (ja) 活性エネルギー線硬化型樹脂組成物及びこれを用いたフィルム
WO2012043333A1 (ja) 活性エネルギー線硬化型樹脂組成物、偏光板用接着剤及び偏光板
TWI702240B (zh) 胺基甲酸酯(甲基)丙烯酸酯樹脂及積層薄膜
JP6705276B2 (ja) ウレタン(メタ)アクリレート樹脂及び積層フィルム
JP5817295B2 (ja) 活性エネルギー線硬化型樹脂組成物、その硬化物、及びフィルム
JPWO2016002399A1 (ja) 活性エネルギー線硬化型樹脂組成物、塗料、塗膜、及び積層フィルム
JP7109153B2 (ja) ウレタン(メタ)アクリレート樹脂及び積層フィルム
TWI663471B (zh) Active energy ray-curable resin composition, cured product, adhesive, and laminated film
JPWO2019069621A1 (ja) 光硬化性樹脂組成物及び接着シート
CN109312047A (zh) 氨基甲酸酯(甲基)丙烯酸酯树脂和层叠薄膜
JP6721854B2 (ja) ウレタン(メタ)アクリレート樹脂及び積層フィルム
JP6718131B2 (ja) ウレタン(メタ)アクリレート樹脂及び積層フィルム
JP6728577B2 (ja) 積層フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP