WO2012041556A2 - Geteilter wankstabilisator - Google Patents
Geteilter wankstabilisator Download PDFInfo
- Publication number
- WO2012041556A2 WO2012041556A2 PCT/EP2011/062593 EP2011062593W WO2012041556A2 WO 2012041556 A2 WO2012041556 A2 WO 2012041556A2 EP 2011062593 W EP2011062593 W EP 2011062593W WO 2012041556 A2 WO2012041556 A2 WO 2012041556A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stabilizer
- sensor
- actuator
- primary sensor
- split roll
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G21/00—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
- B60G21/02—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
- B60G21/04—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
- B60G21/05—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
- B60G21/055—Stabiliser bars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G21/00—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
- B60G21/02—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
- B60G21/04—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
- B60G21/05—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
- B60G21/055—Stabiliser bars
- B60G21/0551—Mounting means therefor
- B60G21/0553—Mounting means therefor adjustable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G21/00—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
- B60G21/10—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces not permanently interconnected, e.g. operative only on acceleration, only on deceleration or only at off-straight position of steering
- B60G21/106—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces not permanently interconnected, e.g. operative only on acceleration, only on deceleration or only at off-straight position of steering transversally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G21/00—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
- B60G21/02—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
- B60G21/04—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
- B60G21/05—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
- B60G21/055—Stabiliser bars
- B60G21/0551—Mounting means therefor
- B60G21/0553—Mounting means therefor adjustable
- B60G21/0555—Mounting means therefor adjustable including an actuator inducing vehicle roll
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/90—Other conditions or factors
- B60G2400/98—Stabiliser movement
Definitions
- the present invention relates to a split roll stabilizer.
- Roll stabilizers are used to avoid rolling movements of the vehicle body relative to the roadway.
- an actuator can be effectively arranged between two stabilizer parts of the roll stabilizer.
- the actuator can act on both stabilizer parts with a torsional moment.
- the actuator may for example have a hydraulic or an electric drive.
- the stabilizer parts may be designed as torsion bar springs.
- the vehicle body tends to roll, which can be compensated by means of an active roll stabilizer.
- the actuator can be used selectively, parameters such as a rolling motion of the vehicle body or a lateral acceleration of the vehicle are detected. With these parameters, the actuator can be selectively actuated to counteract a wobble.
- a control device is used, which allows the input-side parameters actuation of the actuator for a desired compensation of the rolling motion.
- the object of the present invention was to provide an alternative split roll stabilizer.
- this object has been solved by the split roll stabilizer according to claim 1.
- the inventively provided sensor for determining the applied torsional moment in the stabilizer parts the applied torsional moment can be provided as a parameter; a targeted operation of the connectable actuator is thus possible.
- the actuator can be effectively arranged between the two stabilizer parts in order to introduce a generated torsion moment on the one hand into the one stabilizer part and on the other hand into the other stabilizer part.
- a determination of the acting torsional moment is understood to mean the measurement of the torsional moment acting in the stabilizer parts.
- the sensor detects a change in the stabilizer part, which is the result of the action of the torsional moment. This change may be a twist of the stabilizer part.
- the stabilizer parts may be formed in torsion stabilizers according to the invention as torsion bar springs, which are loaded on torsion and can twist in itself.
- the torque measurement can be done, for example, in a known manner by means of strain gauges as a sensor, which are applied to the stabilizer part and detect a rotation of the stabilizer part. This rotation can also be measured indirectly, whereby different sensor types can be used, for example Hall sensors.
- magnetostrictive effect When a ferromagnetic crystal is magnetized, a change in shape of the magnetized crystal, which is called a magnetostrictive effect, occurs with increasing field strength.
- the most important part of the magnetostriction is the Joule effect. It is based on the fact that the so-called Weiss districts turn in the direction of magnetization and shift their boundaries. This results in a change in shape of the ferromagnetic body, wherein its volume remains constant.
- magnetostrictive effect describes this effect since the effect of the change in volume of conventional magnetostrictive materials can be neglected.
- a permanent storage of a "self-contained" magnetic field structure in ferromagnetic materials is possible, with the help of magnetically encoded measuring waves mechanical forces can be measured and determined in real time.
- Pulsed Current Magnetic Encoding is a magnetic coding technique that involves driving several different signal frequencies at different pulsed currents across a predetermined area of a wave, programming "self-contained” magnetic field structures into the wave. This process must be carried out only once, since the structures formed in this case are self-contained and thus represent a stable state.
- this magnetic coding method can be used to measure non-contact torques, bending forces, axial forces, radial forces and shearing forces.
- Several physical parameters can be measured simultaneously at one and the same coded measuring point.
- the operating temperature range of -50 ° C to over + 250 ° C is guaranteed.
- the sensor is resistant to dirt, oil, water and mechanical shocks and has a very high accuracy and an output signal linearity of up to 0.05%
- the signal bandwidth can be up to 30kHz and no regular maintenance or recalibration of the sensor is required.
- the primary sensor may be a region of the shaft that is magnetically encoded. It is sufficient to carry out the coding process only once, preferably before the shaft is installed at its intended installation location. The mechanical properties of the shaft are not affected by the coding process.
- the shaft should be made of ferromagnetic material. In general, industrial steel containing between 1.5% and 8% Ni is a good basis for a primary sensor.
- the primary sensor converts the applied forces into a magnetic signal that can be detected on the surface of the shaft.
- the shaft can be designed as a solid or hollow shaft.
- the secondary sensor is an array of magnetic field sensors placed in close proximity to the magnetically encoded region of the shaft.
- the secondary sensor converts changes in the magnetic field - caused by forces in the primary sensor - into electrical information.
- the secondary sensor module can be placed both outside and inside the shaft as the sensor signal can be detected on the outside as well as inside.
- the secondary sensor can be formed by very small coils to measure the magnetic changes of the primary sensor under high-torque torque.
- the coils may be arranged in pairs to allow common-mode rejection by differential measurements, thus compensating for the effects of external magnetic fields.
- the common mode rejection is based mainly on a proper arrangement and good coordination of the coils to each other.
- the secondary sensor can be arranged parallel to the axis of the shaft and symmetrically to the center of the magnetically coded region-that is, the primary sensor.
- the coils of the secondary sensor are usually arranged in pairs; the so-called coil pair.
- the coil pairs are distributed symmetrically over the circumference of the shaft depending on the number. By using more than one coil pair, radial tolerances of the shaft can be compensated.
- the present invention has recognized that a sensor operating according to this magnetostrictive principle-as described, for example, above-is outstandingly suitable for an active roll stabilizer.
- the sensor comprises the magnetically coded primary sensor and the secondary sensor, which can convert changes in the magnetic properties of the primary sensor into an electrical signal.
- the primary sensor may for example be formed by a shaft or by a sleeve which is magnetically coded; This coding can be done in the manner described above or in other ways.
- the secondary sensor may be formed as a passive element and comprise a coil that can detect magnetic changes in the primary sensor and convert it into an electrical signal. This signal can for example be supplied to a control device which is provided for actuation of the actuator.
- the secondary sensor can also be designed as an active element.
- the invention makes it possible to integrate the sensors for controlling the actuator directly into the torsion bar in order to be able to be installed as a self-sufficient system. This can be done parallel to the torsion bar or directly in the power flow or load path of the torsion bar.
- the primary sensor transmits only part of the applied torsional or torsional moment; in the case of the second alternative, the primary sensor transmits the full applied torsional or torsional moment.
- the primary sensor may be formed by magnetically encoded material.
- a magnetically encoded primary sensor may be mounted on or in the torsion bar or connected thereto.
- the primary sensor is used to place a secondary sensor that measures the direction of the field lines. When torsion bar springs are loaded for torsion, the slope of the field lines changes, with the change being measured by the secondary sensor.
- the measurement of the slope change - in the positive and in the negative load direction - can be used to control the actuator torque.
- the primary sensor transmits the full torsional moment of the roll stabilizer.
- a part of the stabilizer part may be magnetic be encoded and form the primary sensor.
- the number of components for measuring the torsional moment is limited to a minimum.
- the adaptation of the primary sensor can take place parallel to the load path on the stabilizer part.
- the primary sensor transmits only a small part of the torsional moment, which can also be referred to as a measuring torsional moment or as a measuring torque; the stabilizer part per se transmits most of the torsional moment.
- the diameter of the sleeve can be increased in order to achieve an improvement in the measurement results. The larger the diameter, the larger the twisting path measured in the circumferential direction.
- the torsional rigidity of the stabilizer part and the sleeve are in this case matched to one another such that a torsion of the sleeve corresponds to a certain associated effective torque in the stabilizer part.
- the sleeve can be arranged with its two axial ends respectively on the stabilizer part rotatably, wherein the sleeve twisted or twisted under load of the roll stabilizer, so that the secondary sensor, the applied torsional moment can capture.
- the adaptation of the magnetically coded primary sensor may be provided parallel to the load path between a flange and a stabilizer bearing.
- the flange may be attached to the end of the stabilizer member facing the actuator.
- the flange can be connected to the actuator to transmit the torque.
- the stabilizer bearing supports the stabilizer part on the vehicle body and allows rotational movements of the stabilizer part about the torsion axis.
- connection of the magnetically encoded primary sensor to the stabilizer part can be frictionally by means of press fit, cohesively or positively;
- the primary sensor can be sprayed, glued or welded.
- the length of the magnetically encoded primary sensor between flange and bearing can be extended to maximum length in order to obtain the largest possible angle of rotation, so that the sensor resolution is improved.
- the adaptation of the magnetically coded primary sensor can take place parallel to the load path in the inner region of the tubular torsion bar spring.
- FIG. 1 shows a split roll stabilizer according to the invention
- FIG. 2 shows an enlarged detail from FIG. 1,
- FIG. 3 shows a variant according to the invention in a representation as in FIG. 2,
- Figure 4 shows a further variant of the invention in a representation
- Figure 5 shows another variant of the invention in a representation
- Figure 6 shows a further variant of the invention in a representation
- Figure 1 shows a split roll stabilizer according to the invention with a connected actuator 1.
- the actuator 1 is effectively arranged between two each formed as a torsion bar spring 2 stabilizer parts 2a. Both stabilizer parts 2a are each rotatably mounted via a stabilizer bearing 3 on a vehicle body, not shown here.
- the actuator may comprise a motor with a connected gear, wherein an actuator housing to which a stabilizer part 2a and an output shaft can be connected to the other stabilizer part.
- the connected stabilizer parts 2a Upon actuation of the actuator, the connected stabilizer parts 2a are subjected to torsion.
- FIG. 2 shows an enlarged detail from FIG. 1.
- a sensor 11 for determining the actuator torque is integrated in the torsion bar spring 2.
- the actuator torque is the torsional moment acting in the stabilizer parts 2a.
- a non-contact Torsionsmomenttik can be done directly in the load path of the torsion bar spring 2, wherein at least a portion of the torsion bar spring 2 is made of magnetostrictive, magnetically coded steel.
- This portion forms a primary sensor 5.
- This portion may be formed from a piece of pipe, which is on the one hand firmly bonded to the stabilizer part 2a and on the other hand firmly connected to a flange 4.
- This primary sensor 5 transmits the full torsional moment of the roll stabilizer.
- the flange 4 may also be referred to as a connecting part or as a connecting part, on the one hand rotatably connected to the stabilizer part 2a and the other on the other hand rotatably connected to the actuator 1.
- the flange 4 can be screwed to the actuator 1 with screws; the flange 4 can also be materially connected to the actuator 1.
- the flange 4 may be cohesively, frictionally or non-positively connected to the stabilizer part.
- the connecting part may have a form adapted to the stabilizer part 2 a and the connection point of the actuator 1.
- the flange 4 may be connected to the actuator 1 depicted in FIG. 1 in order to transmit torsional moments between the actuator 1 and the connected stabilizer parts 2 a.
- a secondary sensor 6 is disposed outside the torsion spring in the vicinity of the primary sensor 5 formed by the pipe section and measures the change in the slope of the field lines caused by torsion of the primary sensor 5.
- the secondary sensor 6 forms a magnetic field sensor 6a.
- the adaptation of the magnetically coded primary sensor 5 to the torsion bar spring can be done as shown in Figures 3 to 6 also parallel to the load path.
- the primary sensor does not transmit the full effective torsional moment, but only a measuring torsional moment, which is dependent on the torsional moment acting in the torsion bar spring.
- the split roll stabilizer according to the invention according to Figure 3 differs from that of Figure 2 by a modified primary sensor 5.
- the primary sensor 5 is formed by a sleeve 5a, which is fastened by means of a fastening element formed by a retaining clip 7 or by material connection 8 directly to the torsion bar back 9.
- the torsion bar back 9 is formed by the stabilizer part 2a.
- the retaining clip 7 is arranged at both axial ends of the sleeve 5 a, so that the axial ends are arranged non-rotatably on the torsion bar back 9.
- FIG. 2 shows two variants of how the sleeve 5a can be rotationally fixedly arranged on the torsion bar spring: Above the longitudinal axis of the tubular stabilizer part 2a, a cohesive connection of the axial ends of the sleeve 5a to the torsion bar back 9 is provided. Below the longitudinal axis of the tubular stabilizer part 2a, the described clamp connection of the axial ends of the sleeve 5a with the torsion bar back 9 is provided.
- the split roll stabilizer according to the invention according to FIG. 4 differs from that of FIG. 3 only in that the axial end of the sleeve 5b facing away from the stabilizer bearing 3 is fastened to the cylindrical part of the flange 4 by means of the retaining clip 7 or by integral connection 8. This has the advantage of generating a maximum possible measuring length in a small space.
- the sleeve 5b according to FIG. 4 is longer with respect to the sleeve 5a according to FIG. 3, so that a larger angle of rotation is generated in the sleeve 5b.
- the split roll stabilizer according to the invention according to Figure 5 differs from that of Figure 4 only in that the facing away from the stabilizer bearing 3 axial end of the sleeve 5b by means of the retaining clip 7 or by material connection 8 on the outer diameter of the flange 4 or on the flat surface or end face is attached. This has the advantage of generating the greatest possible measuring length between the stabilizer bearing 3 and the flange 4.
- the adaptation is achieved in that a forming the primary sensor 5 sleeve 5c by means of cohesive connection 8 is mounted inside the torsion bar spring 2 between the flange 4 and the torsion bar spring 2 inside.
- the secondary sensor 6 is disposed radially inside the sleeve 5c.
- the internal arrangement protects both the primary sensor 5 and the secondary sensor 6 against unwanted external influence.
- the sleeves 5a, 5b, 5c are in other words arranged in a rotationally fixed manner with their axial ends, so that the ends of the sleeves are twisted while the stabilizer parts 2a are twisting.
- the sensors 11 may be arranged on only one of the two stabilizer parts 2 a in the case of split roll stabilizers according to the invention; However, it is possible to provide both stabilizer parts, each with a sensor 1 1.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/877,062 US8967643B2 (en) | 2010-09-30 | 2011-07-22 | Split roll stabilizer |
KR1020137010988A KR101870465B1 (ko) | 2010-09-30 | 2011-07-22 | 분할형 롤 안정화기 |
CN201180047351.2A CN103402794B (zh) | 2010-09-30 | 2011-07-22 | 分开的摆动稳定器 |
EP11734140.4A EP2621743B1 (de) | 2010-09-30 | 2011-07-22 | Geteilter wankstabilisator |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010046995 | 2010-09-30 | ||
DE102010046995.5 | 2010-09-30 | ||
DE102011078819.0 | 2011-07-07 | ||
DE102011078819A DE102011078819A1 (de) | 2010-09-30 | 2011-07-07 | Geteilter Wankstabilisator |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012041556A2 true WO2012041556A2 (de) | 2012-04-05 |
WO2012041556A3 WO2012041556A3 (de) | 2013-09-19 |
Family
ID=44628814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/062593 WO2012041556A2 (de) | 2010-09-30 | 2011-07-22 | Geteilter wankstabilisator |
Country Status (6)
Country | Link |
---|---|
US (1) | US8967643B2 (de) |
EP (1) | EP2621743B1 (de) |
KR (1) | KR101870465B1 (de) |
CN (1) | CN103402794B (de) |
DE (1) | DE102011078819A1 (de) |
WO (1) | WO2012041556A2 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140300066A1 (en) * | 2013-04-04 | 2014-10-09 | Schaeffler Technologies Gmbh & Co., Kg | Chassis actuator device for a vehicle |
WO2015007280A1 (de) * | 2013-07-17 | 2015-01-22 | Schaeffler Technologies Gmbh & Co. Kg | Verfahren für den betrieb eines kraftfahrzeugs zur erkennung einer überbeanspruchung eines wankstabilisators |
DE102013223073A1 (de) | 2013-11-13 | 2015-05-13 | Schaeffler Technologies Gmbh & Co. Kg | Wankstabilisator |
WO2018206209A1 (de) * | 2017-05-12 | 2018-11-15 | Zf Friedrichshafen Ag | Wankstabilisator mit sensoren zur zustandsermittlung |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013219761B3 (de) * | 2013-09-30 | 2015-01-15 | Schaeffler Technologies Gmbh & Co. Kg | Anordnung und Verfahren zum Messen eines Drehmomentes an einem Maschinenelement sowie Wankstabilisator |
CN103625238B (zh) * | 2013-12-02 | 2015-08-26 | 江苏大学 | 电控刚度可调式主动横向稳定装置 |
DE102015206664B3 (de) | 2015-04-14 | 2016-07-28 | Schaeffler Technologies AG & Co. KG | Hohles Maschinenelement und Anordnung zum Messen einer Kraft oder eines Momentes |
KR102343224B1 (ko) * | 2015-09-10 | 2021-12-27 | 주식회사 만도 | Tas센서를 이용한 전동식 능동 롤 스태빌라이저 장치 |
KR102445023B1 (ko) * | 2015-11-20 | 2022-09-21 | 주식회사 만도 | 액티브 롤 스테빌라이저 |
DE102016213589B3 (de) * | 2016-07-25 | 2017-12-21 | Schaeffler Technologies AG & Co. KG | Maschinenelementanordnung und Lageranordnung mit Messanordnung zum Messen einer Kraft oder eines Momentes |
DE102016213591B3 (de) * | 2016-07-25 | 2017-05-18 | Schaeffler Technologies AG & Co. KG | Lageranordnung mit Messanordnung zum Messen einer Kraft und/oder eines Momentes |
KR102536588B1 (ko) * | 2016-10-07 | 2023-05-25 | 에이치엘만도 주식회사 | 액티브 롤 스태빌라이저 |
KR102312802B1 (ko) * | 2017-03-27 | 2021-10-14 | 주식회사 만도 | 액티브 롤 스태빌라이저 |
DE102017106877A1 (de) | 2017-03-30 | 2018-10-04 | Schaeffler Technologies AG & Co. KG | Geteilter Wankstabilisator und Flansch hierfür |
DE102017118790B4 (de) | 2017-08-17 | 2019-03-07 | Schaeffler Technologies AG & Co. KG | Wankstabilisator für ein Kraftfahrzeug |
DE102017118789B4 (de) | 2017-08-17 | 2019-03-07 | Schaeffler Technologies AG & Co. KG | Wankstabilisator für ein Kraftfahrzeug |
KR101971532B1 (ko) | 2017-09-04 | 2019-04-23 | 주식회사 만도 | 전자식 능동형 롤 스테빌라이저 |
KR101971528B1 (ko) | 2017-09-11 | 2019-04-23 | 주식회사 만도 | 전자식 능동형 롤 스테빌라이저 |
DE102018110553A1 (de) | 2018-05-03 | 2019-11-07 | Schaeffler Technologies AG & Co. KG | Drehmomentsensoranordnung und Wankstabilisator mit Drehmomentsensoranordnung |
DE102018118175A1 (de) | 2018-07-27 | 2020-01-30 | Schaeffler Technologies AG & Co. KG | Verfahren zum Messen eines Torsionsmomentes an einem sich in einer Achse erstreckenden Maschinenelement |
DE102018218598A1 (de) | 2018-08-24 | 2020-02-27 | Zf Friedrichshafen Ag | Wankstabilisator und Sensoreinrichtung für einen Wankstabilisator |
DE102021200750A1 (de) | 2021-01-28 | 2022-07-28 | Zf Friedrichshafen Ag | Hohlwelle für ein Wankstabilisierungssystem für ein Fahrzeug, Wankstabilisierungssystem und Verfahren zum Herstellen einer Hohlwelle |
DE102021200751B4 (de) | 2021-01-28 | 2023-10-26 | Zf Friedrichshafen Ag | Nebenschlusselement zum Aufnehmen einer Sensoreinheit für eine Hohlwelle für ein Fahrzeug, Hohlwelle, Wankstabilisator und Verfahren zum Herstellen einer Hohlwelle |
DE102022209475B3 (de) | 2022-09-12 | 2024-02-22 | Zf Friedrichshafen Ag | Aktuator für eine Fahrwerkseinrichtung |
DE102022209472B3 (de) | 2022-09-12 | 2024-02-22 | Zf Friedrichshafen Ag | Aktuator für eine Fahrwerkseinrichtung |
DE102022209478B3 (de) | 2022-09-12 | 2024-03-07 | Zf Friedrichshafen Ag | Aktuator für eine Fahrwerkseinrichtung |
DE102022209480A1 (de) | 2022-09-12 | 2024-03-14 | Zf Friedrichshafen Ag | Aktuator für eine Fahrwerkseinrichtung |
DE102022209473B3 (de) | 2022-09-12 | 2024-02-22 | Zf Friedrichshafen Ag | Verfahren zum Kalibrieren einer Sensoreinrichtung |
DE102022209474B3 (de) | 2022-09-12 | 2024-02-22 | Zf Friedrichshafen Ag | Aktuator für eine Fahrwerkseinrichtung |
DE102022211416A1 (de) | 2022-10-27 | 2024-05-02 | Zf Friedrichshafen Ag | Aktives Fahrwerksystem |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006013093A2 (en) | 2004-08-02 | 2006-02-09 | Nctengineering Gmbh | Sensor electronic |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6060024A (ja) | 1983-09-09 | 1985-04-06 | Nissan Motor Co Ltd | 車両におけるロ−ル剛性制御装置 |
JP2965628B2 (ja) * | 1989-06-30 | 1999-10-18 | 株式会社東芝 | 磁性体を構成要素とするセンサの製造方法 |
EP1030790B1 (de) * | 1998-06-25 | 2004-06-02 | Robert Bosch Gmbh | System und verfahren zur wankstabilisierung von fahrzeugen |
JP2002228526A (ja) * | 2001-01-31 | 2002-08-14 | Hitachi Metals Ltd | トルクセンサー |
DE10126928B4 (de) | 2001-06-01 | 2006-06-29 | ZF Lemförder Metallwaren AG | Stabilisator für ein Kraftfahrzeug |
DE602005014201D1 (de) * | 2004-02-12 | 2009-06-10 | Aisin Seiki | Stabilisatorsteuerung |
JP4534642B2 (ja) * | 2004-07-20 | 2010-09-01 | アイシン精機株式会社 | スタビライザ制御装置 |
US20070247224A1 (en) | 2004-08-02 | 2007-10-25 | Lutz May | Sensor Electronic |
JP2006151262A (ja) * | 2004-11-30 | 2006-06-15 | Toyota Motor Corp | 車両用サスペンションシステム |
JP4240010B2 (ja) * | 2005-06-16 | 2009-03-18 | トヨタ自動車株式会社 | 車両用スタビライザシステム |
DE102005031037A1 (de) * | 2005-07-02 | 2007-01-25 | Bayerische Motoren Werke Ag | Aktiver, geteilter Kraftfahrzeugstabilisator mit eingebautem elektrischem Schwenkmotor |
JP2007045197A (ja) * | 2005-08-08 | 2007-02-22 | Nissan Motor Co Ltd | 車両のロール剛性配分制御装置 |
DE102005053608A1 (de) * | 2005-11-10 | 2007-05-16 | Schaeffler Kg | Wankstabilisator |
JP4244999B2 (ja) * | 2006-02-09 | 2009-03-25 | トヨタ自動車株式会社 | 車両用スタビライザシステム |
JP4127298B2 (ja) * | 2006-06-14 | 2008-07-30 | トヨタ自動車株式会社 | 車輪車体間距離調整装置および車輪車体間距離調整システム |
DE102006040109A1 (de) * | 2006-08-26 | 2008-02-28 | Bayerische Motoren Werke Ag | Aktiver, geteilter Kraftfahrzeugstabilisator mit eingebauten Schwenkmotor |
JP4258538B2 (ja) * | 2006-08-29 | 2009-04-30 | トヨタ自動車株式会社 | 車両用サスペンションシステム |
US7832739B2 (en) | 2006-11-06 | 2010-11-16 | American Axle & Manufacturing, Inc. | Apparatus and method for coupling a disconnectable stabilizer bar |
JP4958066B2 (ja) | 2006-11-09 | 2012-06-20 | アイシン精機株式会社 | スタビライザ制御装置 |
DE102008001006A1 (de) * | 2008-04-04 | 2009-11-12 | Zf Friedrichshafen Ag | Radaufhängung für ein Fahrzeug |
DE102009028386A1 (de) * | 2009-08-10 | 2011-02-17 | Zf Friedrichshafen Ag | Vorrichtung zum Variieren eines Wankwinkels einer Fahrzeugkarosserie im Bereich wenigstens einer Fahrzeugachse |
DE102009047222A1 (de) | 2009-11-27 | 2011-06-01 | Robert Bosch Gmbh | Sensoranordnung zum Ermitteln eines Drehmoments und zur Indexerkennung |
DE102010037555B4 (de) * | 2010-09-15 | 2019-01-17 | Ovalo Gmbh | Aktiver Fahrwerksstabilisator, Aktuator, Fahrzeug und Verfahren zur Steuerung und/oder Regelungeines Fahrwerkstabilisators |
DE102011078821A1 (de) * | 2011-07-07 | 2013-01-10 | Schaeffler Technologies AG & Co. KG | Geteilter Wankstabilisator |
-
2011
- 2011-07-07 DE DE102011078819A patent/DE102011078819A1/de not_active Withdrawn
- 2011-07-22 EP EP11734140.4A patent/EP2621743B1/de active Active
- 2011-07-22 US US13/877,062 patent/US8967643B2/en active Active
- 2011-07-22 KR KR1020137010988A patent/KR101870465B1/ko active IP Right Grant
- 2011-07-22 WO PCT/EP2011/062593 patent/WO2012041556A2/de active Application Filing
- 2011-07-22 CN CN201180047351.2A patent/CN103402794B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006013093A2 (en) | 2004-08-02 | 2006-02-09 | Nctengineering Gmbh | Sensor electronic |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140300066A1 (en) * | 2013-04-04 | 2014-10-09 | Schaeffler Technologies Gmbh & Co., Kg | Chassis actuator device for a vehicle |
CN104097484A (zh) * | 2013-04-04 | 2014-10-15 | 舍弗勒技术有限两合公司 | 用于汽车的底盘执行器设备 |
US9221316B2 (en) * | 2013-04-04 | 2015-12-29 | Schaeffler Technologies AG & Co. KG | Chassis actuator device for a vehicle |
CN104097484B (zh) * | 2013-04-04 | 2018-09-18 | 舍弗勒技术股份两合公司 | 用于汽车的底盘执行器设备 |
WO2015007280A1 (de) * | 2013-07-17 | 2015-01-22 | Schaeffler Technologies Gmbh & Co. Kg | Verfahren für den betrieb eines kraftfahrzeugs zur erkennung einer überbeanspruchung eines wankstabilisators |
DE102013223424A1 (de) | 2013-07-17 | 2015-01-22 | Schaeffler Technologies Gmbh & Co. Kg | Verfahren für den Betrieb eines Kraftfahrzeugs zur Erkennung einer Überbeanspruchung eines Wankstabilisators |
CN105358348A (zh) * | 2013-07-17 | 2016-02-24 | 舍弗勒技术股份两合公司 | 在机动车运行中识别防倾稳定器超负荷的方法 |
US20160159190A1 (en) * | 2013-07-17 | 2016-06-09 | Schaeffler Technlologies AG & Co. KG | Method for operating a motor vehicle in order to detect an overload on a roll stabilizer |
US9707818B2 (en) | 2013-07-17 | 2017-07-18 | Schaeffler Technologies AG & Co. KG | Method for operating a motor vehicle in order to detect an overload on a roll stabilizer |
DE102013223424B4 (de) * | 2013-07-17 | 2021-03-04 | Schaeffler Technologies AG & Co. KG | Verfahren für den Betrieb eines Kraftfahrzeugs zur Erkennung einer Überbeanspruchung eines Wankstabilisators |
DE102013223073A1 (de) | 2013-11-13 | 2015-05-13 | Schaeffler Technologies Gmbh & Co. Kg | Wankstabilisator |
WO2018206209A1 (de) * | 2017-05-12 | 2018-11-15 | Zf Friedrichshafen Ag | Wankstabilisator mit sensoren zur zustandsermittlung |
Also Published As
Publication number | Publication date |
---|---|
KR101870465B1 (ko) | 2018-06-22 |
US20130270786A1 (en) | 2013-10-17 |
CN103402794A (zh) | 2013-11-20 |
CN103402794B (zh) | 2016-03-09 |
EP2621743B1 (de) | 2017-03-01 |
WO2012041556A3 (de) | 2013-09-19 |
US8967643B2 (en) | 2015-03-03 |
EP2621743A2 (de) | 2013-08-07 |
KR20130120472A (ko) | 2013-11-04 |
DE102011078819A1 (de) | 2012-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2621743B1 (de) | Geteilter wankstabilisator | |
EP2543528B1 (de) | Geteilter Wankstabilisator | |
DE102010037555B4 (de) | Aktiver Fahrwerksstabilisator, Aktuator, Fahrzeug und Verfahren zur Steuerung und/oder Regelungeines Fahrwerkstabilisators | |
EP3840968B1 (de) | Wankstabilisator | |
EP2054248B1 (de) | Aktiver, geteilter kraftfahrzeugstabilisator mit eingebautem schwenkmotor | |
EP2090497B1 (de) | Vorrichtung zum ermitteln eines Verdrehwinkels | |
EP3250896B1 (de) | Sensoranordnung zur indirekten erfassung eines drehmoments einer rotierbar gelagerten welle | |
DE10206702B4 (de) | Drehmomenterfassungsvorrichtung und deren Verwendung in einer elektrischen Servolenkung | |
EP3114449A1 (de) | Bauteil mit einem wenigstens einen sensor aufweisenden messelement | |
DE102011075890A1 (de) | Wankstabilisator eines Kraftfahrzeuges | |
EP2615439A1 (de) | Magnetoelastischer Kraftsensor und Verfahren zum Kompensieren einer Abstandsabhängigkeit in einem Messsignal eines derartigen Sensors | |
DE102011053278A1 (de) | Entkoppelbarer Aktuator, insbesondere mit elektromechanischem Antrieb | |
EP2878938B1 (de) | Magnetostriktiver Sensor für Aktuatoren in Flugzeugen | |
DE102005055995B4 (de) | Verfahren zur Einstellung der Vorspannung in einer Lageranordnung | |
DE102006054179A1 (de) | Vorrichtung zur Messung des Drehmomentes an einer Welle | |
WO2016120093A2 (de) | Sensoranordnung zur indirekten erfassung eines drehmoments einer rotierbar gelagerten welle | |
DE102011053277A1 (de) | Stabilisator mit einem integrierten Aktuator | |
DE102014208334A1 (de) | Wankstabilisator | |
WO2020211891A1 (de) | Handkraftaktuator mit einem sensorsystem zur drehmomentdetektion | |
DE102010027959A1 (de) | Vorrichtung zur Erfassung des über eine Hohlwelle, insbesondere einen Abschnitt eines Querstabilisators eines Fahrzeugs, übertragenen Drehmoments | |
DE102022102604A1 (de) | Relativverdrehung-Erfassungsvorrichtung und Tretkurbelanordnung | |
DE10210148A1 (de) | Drehmomentmeßvorrichtung und Hilfskraftlenkung für ein Kraftfahrzeug | |
DE102014216374A1 (de) | Wankstabilisator für ein Kraftfahrzeug | |
DE102020120672A1 (de) | Magnetoelastischer Drehmomentsensor mit einer magnetisierten Hülse als Primärsensor | |
DE102012022122A1 (de) | Drehmomentsensoranordnung für eine Lenksäule |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180047351.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11734140 Country of ref document: EP Kind code of ref document: A2 |
|
REEP | Request for entry into the european phase |
Ref document number: 2011734140 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011734140 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137010988 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13877062 Country of ref document: US |