WO2012041556A2 - Geteilter wankstabilisator - Google Patents

Geteilter wankstabilisator Download PDF

Info

Publication number
WO2012041556A2
WO2012041556A2 PCT/EP2011/062593 EP2011062593W WO2012041556A2 WO 2012041556 A2 WO2012041556 A2 WO 2012041556A2 EP 2011062593 W EP2011062593 W EP 2011062593W WO 2012041556 A2 WO2012041556 A2 WO 2012041556A2
Authority
WO
WIPO (PCT)
Prior art keywords
stabilizer
sensor
actuator
primary sensor
split roll
Prior art date
Application number
PCT/EP2011/062593
Other languages
English (en)
French (fr)
Other versions
WO2012041556A3 (de
Inventor
Ralf Mayer
Manfred Kraus
Ulrich Wittmann
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to US13/877,062 priority Critical patent/US8967643B2/en
Priority to KR1020137010988A priority patent/KR101870465B1/ko
Priority to CN201180047351.2A priority patent/CN103402794B/zh
Priority to EP11734140.4A priority patent/EP2621743B1/de
Publication of WO2012041556A2 publication Critical patent/WO2012041556A2/de
Publication of WO2012041556A3 publication Critical patent/WO2012041556A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/10Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces not permanently interconnected, e.g. operative only on acceleration, only on deceleration or only at off-straight position of steering
    • B60G21/106Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces not permanently interconnected, e.g. operative only on acceleration, only on deceleration or only at off-straight position of steering transversally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • B60G21/0555Mounting means therefor adjustable including an actuator inducing vehicle roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • B60G2400/98Stabiliser movement

Definitions

  • the present invention relates to a split roll stabilizer.
  • Roll stabilizers are used to avoid rolling movements of the vehicle body relative to the roadway.
  • an actuator can be effectively arranged between two stabilizer parts of the roll stabilizer.
  • the actuator can act on both stabilizer parts with a torsional moment.
  • the actuator may for example have a hydraulic or an electric drive.
  • the stabilizer parts may be designed as torsion bar springs.
  • the vehicle body tends to roll, which can be compensated by means of an active roll stabilizer.
  • the actuator can be used selectively, parameters such as a rolling motion of the vehicle body or a lateral acceleration of the vehicle are detected. With these parameters, the actuator can be selectively actuated to counteract a wobble.
  • a control device is used, which allows the input-side parameters actuation of the actuator for a desired compensation of the rolling motion.
  • the object of the present invention was to provide an alternative split roll stabilizer.
  • this object has been solved by the split roll stabilizer according to claim 1.
  • the inventively provided sensor for determining the applied torsional moment in the stabilizer parts the applied torsional moment can be provided as a parameter; a targeted operation of the connectable actuator is thus possible.
  • the actuator can be effectively arranged between the two stabilizer parts in order to introduce a generated torsion moment on the one hand into the one stabilizer part and on the other hand into the other stabilizer part.
  • a determination of the acting torsional moment is understood to mean the measurement of the torsional moment acting in the stabilizer parts.
  • the sensor detects a change in the stabilizer part, which is the result of the action of the torsional moment. This change may be a twist of the stabilizer part.
  • the stabilizer parts may be formed in torsion stabilizers according to the invention as torsion bar springs, which are loaded on torsion and can twist in itself.
  • the torque measurement can be done, for example, in a known manner by means of strain gauges as a sensor, which are applied to the stabilizer part and detect a rotation of the stabilizer part. This rotation can also be measured indirectly, whereby different sensor types can be used, for example Hall sensors.
  • magnetostrictive effect When a ferromagnetic crystal is magnetized, a change in shape of the magnetized crystal, which is called a magnetostrictive effect, occurs with increasing field strength.
  • the most important part of the magnetostriction is the Joule effect. It is based on the fact that the so-called Weiss districts turn in the direction of magnetization and shift their boundaries. This results in a change in shape of the ferromagnetic body, wherein its volume remains constant.
  • magnetostrictive effect describes this effect since the effect of the change in volume of conventional magnetostrictive materials can be neglected.
  • a permanent storage of a "self-contained" magnetic field structure in ferromagnetic materials is possible, with the help of magnetically encoded measuring waves mechanical forces can be measured and determined in real time.
  • Pulsed Current Magnetic Encoding is a magnetic coding technique that involves driving several different signal frequencies at different pulsed currents across a predetermined area of a wave, programming "self-contained” magnetic field structures into the wave. This process must be carried out only once, since the structures formed in this case are self-contained and thus represent a stable state.
  • this magnetic coding method can be used to measure non-contact torques, bending forces, axial forces, radial forces and shearing forces.
  • Several physical parameters can be measured simultaneously at one and the same coded measuring point.
  • the operating temperature range of -50 ° C to over + 250 ° C is guaranteed.
  • the sensor is resistant to dirt, oil, water and mechanical shocks and has a very high accuracy and an output signal linearity of up to 0.05%
  • the signal bandwidth can be up to 30kHz and no regular maintenance or recalibration of the sensor is required.
  • the primary sensor may be a region of the shaft that is magnetically encoded. It is sufficient to carry out the coding process only once, preferably before the shaft is installed at its intended installation location. The mechanical properties of the shaft are not affected by the coding process.
  • the shaft should be made of ferromagnetic material. In general, industrial steel containing between 1.5% and 8% Ni is a good basis for a primary sensor.
  • the primary sensor converts the applied forces into a magnetic signal that can be detected on the surface of the shaft.
  • the shaft can be designed as a solid or hollow shaft.
  • the secondary sensor is an array of magnetic field sensors placed in close proximity to the magnetically encoded region of the shaft.
  • the secondary sensor converts changes in the magnetic field - caused by forces in the primary sensor - into electrical information.
  • the secondary sensor module can be placed both outside and inside the shaft as the sensor signal can be detected on the outside as well as inside.
  • the secondary sensor can be formed by very small coils to measure the magnetic changes of the primary sensor under high-torque torque.
  • the coils may be arranged in pairs to allow common-mode rejection by differential measurements, thus compensating for the effects of external magnetic fields.
  • the common mode rejection is based mainly on a proper arrangement and good coordination of the coils to each other.
  • the secondary sensor can be arranged parallel to the axis of the shaft and symmetrically to the center of the magnetically coded region-that is, the primary sensor.
  • the coils of the secondary sensor are usually arranged in pairs; the so-called coil pair.
  • the coil pairs are distributed symmetrically over the circumference of the shaft depending on the number. By using more than one coil pair, radial tolerances of the shaft can be compensated.
  • the present invention has recognized that a sensor operating according to this magnetostrictive principle-as described, for example, above-is outstandingly suitable for an active roll stabilizer.
  • the sensor comprises the magnetically coded primary sensor and the secondary sensor, which can convert changes in the magnetic properties of the primary sensor into an electrical signal.
  • the primary sensor may for example be formed by a shaft or by a sleeve which is magnetically coded; This coding can be done in the manner described above or in other ways.
  • the secondary sensor may be formed as a passive element and comprise a coil that can detect magnetic changes in the primary sensor and convert it into an electrical signal. This signal can for example be supplied to a control device which is provided for actuation of the actuator.
  • the secondary sensor can also be designed as an active element.
  • the invention makes it possible to integrate the sensors for controlling the actuator directly into the torsion bar in order to be able to be installed as a self-sufficient system. This can be done parallel to the torsion bar or directly in the power flow or load path of the torsion bar.
  • the primary sensor transmits only part of the applied torsional or torsional moment; in the case of the second alternative, the primary sensor transmits the full applied torsional or torsional moment.
  • the primary sensor may be formed by magnetically encoded material.
  • a magnetically encoded primary sensor may be mounted on or in the torsion bar or connected thereto.
  • the primary sensor is used to place a secondary sensor that measures the direction of the field lines. When torsion bar springs are loaded for torsion, the slope of the field lines changes, with the change being measured by the secondary sensor.
  • the measurement of the slope change - in the positive and in the negative load direction - can be used to control the actuator torque.
  • the primary sensor transmits the full torsional moment of the roll stabilizer.
  • a part of the stabilizer part may be magnetic be encoded and form the primary sensor.
  • the number of components for measuring the torsional moment is limited to a minimum.
  • the adaptation of the primary sensor can take place parallel to the load path on the stabilizer part.
  • the primary sensor transmits only a small part of the torsional moment, which can also be referred to as a measuring torsional moment or as a measuring torque; the stabilizer part per se transmits most of the torsional moment.
  • the diameter of the sleeve can be increased in order to achieve an improvement in the measurement results. The larger the diameter, the larger the twisting path measured in the circumferential direction.
  • the torsional rigidity of the stabilizer part and the sleeve are in this case matched to one another such that a torsion of the sleeve corresponds to a certain associated effective torque in the stabilizer part.
  • the sleeve can be arranged with its two axial ends respectively on the stabilizer part rotatably, wherein the sleeve twisted or twisted under load of the roll stabilizer, so that the secondary sensor, the applied torsional moment can capture.
  • the adaptation of the magnetically coded primary sensor may be provided parallel to the load path between a flange and a stabilizer bearing.
  • the flange may be attached to the end of the stabilizer member facing the actuator.
  • the flange can be connected to the actuator to transmit the torque.
  • the stabilizer bearing supports the stabilizer part on the vehicle body and allows rotational movements of the stabilizer part about the torsion axis.
  • connection of the magnetically encoded primary sensor to the stabilizer part can be frictionally by means of press fit, cohesively or positively;
  • the primary sensor can be sprayed, glued or welded.
  • the length of the magnetically encoded primary sensor between flange and bearing can be extended to maximum length in order to obtain the largest possible angle of rotation, so that the sensor resolution is improved.
  • the adaptation of the magnetically coded primary sensor can take place parallel to the load path in the inner region of the tubular torsion bar spring.
  • FIG. 1 shows a split roll stabilizer according to the invention
  • FIG. 2 shows an enlarged detail from FIG. 1,
  • FIG. 3 shows a variant according to the invention in a representation as in FIG. 2,
  • Figure 4 shows a further variant of the invention in a representation
  • Figure 5 shows another variant of the invention in a representation
  • Figure 6 shows a further variant of the invention in a representation
  • Figure 1 shows a split roll stabilizer according to the invention with a connected actuator 1.
  • the actuator 1 is effectively arranged between two each formed as a torsion bar spring 2 stabilizer parts 2a. Both stabilizer parts 2a are each rotatably mounted via a stabilizer bearing 3 on a vehicle body, not shown here.
  • the actuator may comprise a motor with a connected gear, wherein an actuator housing to which a stabilizer part 2a and an output shaft can be connected to the other stabilizer part.
  • the connected stabilizer parts 2a Upon actuation of the actuator, the connected stabilizer parts 2a are subjected to torsion.
  • FIG. 2 shows an enlarged detail from FIG. 1.
  • a sensor 11 for determining the actuator torque is integrated in the torsion bar spring 2.
  • the actuator torque is the torsional moment acting in the stabilizer parts 2a.
  • a non-contact Torsionsmomenttik can be done directly in the load path of the torsion bar spring 2, wherein at least a portion of the torsion bar spring 2 is made of magnetostrictive, magnetically coded steel.
  • This portion forms a primary sensor 5.
  • This portion may be formed from a piece of pipe, which is on the one hand firmly bonded to the stabilizer part 2a and on the other hand firmly connected to a flange 4.
  • This primary sensor 5 transmits the full torsional moment of the roll stabilizer.
  • the flange 4 may also be referred to as a connecting part or as a connecting part, on the one hand rotatably connected to the stabilizer part 2a and the other on the other hand rotatably connected to the actuator 1.
  • the flange 4 can be screwed to the actuator 1 with screws; the flange 4 can also be materially connected to the actuator 1.
  • the flange 4 may be cohesively, frictionally or non-positively connected to the stabilizer part.
  • the connecting part may have a form adapted to the stabilizer part 2 a and the connection point of the actuator 1.
  • the flange 4 may be connected to the actuator 1 depicted in FIG. 1 in order to transmit torsional moments between the actuator 1 and the connected stabilizer parts 2 a.
  • a secondary sensor 6 is disposed outside the torsion spring in the vicinity of the primary sensor 5 formed by the pipe section and measures the change in the slope of the field lines caused by torsion of the primary sensor 5.
  • the secondary sensor 6 forms a magnetic field sensor 6a.
  • the adaptation of the magnetically coded primary sensor 5 to the torsion bar spring can be done as shown in Figures 3 to 6 also parallel to the load path.
  • the primary sensor does not transmit the full effective torsional moment, but only a measuring torsional moment, which is dependent on the torsional moment acting in the torsion bar spring.
  • the split roll stabilizer according to the invention according to Figure 3 differs from that of Figure 2 by a modified primary sensor 5.
  • the primary sensor 5 is formed by a sleeve 5a, which is fastened by means of a fastening element formed by a retaining clip 7 or by material connection 8 directly to the torsion bar back 9.
  • the torsion bar back 9 is formed by the stabilizer part 2a.
  • the retaining clip 7 is arranged at both axial ends of the sleeve 5 a, so that the axial ends are arranged non-rotatably on the torsion bar back 9.
  • FIG. 2 shows two variants of how the sleeve 5a can be rotationally fixedly arranged on the torsion bar spring: Above the longitudinal axis of the tubular stabilizer part 2a, a cohesive connection of the axial ends of the sleeve 5a to the torsion bar back 9 is provided. Below the longitudinal axis of the tubular stabilizer part 2a, the described clamp connection of the axial ends of the sleeve 5a with the torsion bar back 9 is provided.
  • the split roll stabilizer according to the invention according to FIG. 4 differs from that of FIG. 3 only in that the axial end of the sleeve 5b facing away from the stabilizer bearing 3 is fastened to the cylindrical part of the flange 4 by means of the retaining clip 7 or by integral connection 8. This has the advantage of generating a maximum possible measuring length in a small space.
  • the sleeve 5b according to FIG. 4 is longer with respect to the sleeve 5a according to FIG. 3, so that a larger angle of rotation is generated in the sleeve 5b.
  • the split roll stabilizer according to the invention according to Figure 5 differs from that of Figure 4 only in that the facing away from the stabilizer bearing 3 axial end of the sleeve 5b by means of the retaining clip 7 or by material connection 8 on the outer diameter of the flange 4 or on the flat surface or end face is attached. This has the advantage of generating the greatest possible measuring length between the stabilizer bearing 3 and the flange 4.
  • the adaptation is achieved in that a forming the primary sensor 5 sleeve 5c by means of cohesive connection 8 is mounted inside the torsion bar spring 2 between the flange 4 and the torsion bar spring 2 inside.
  • the secondary sensor 6 is disposed radially inside the sleeve 5c.
  • the internal arrangement protects both the primary sensor 5 and the secondary sensor 6 against unwanted external influence.
  • the sleeves 5a, 5b, 5c are in other words arranged in a rotationally fixed manner with their axial ends, so that the ends of the sleeves are twisted while the stabilizer parts 2a are twisting.
  • the sensors 11 may be arranged on only one of the two stabilizer parts 2 a in the case of split roll stabilizers according to the invention; However, it is possible to provide both stabilizer parts, each with a sensor 1 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Geteilter Wankstabilisator eines Kraftfahrzeuges, zwischen dessen beiden Stabilisatorteilen (2a) ein Aktuator (1 ) für eine Torsion der Stabilisatorteile (2a) wirksam angeordnet werden kann, wobei ein Sensor (11) zur Ermittlung eines in den Stabilisatorteilen (2a) wirkenden Torsionsmomentes vorgesehen ist.

Description

Geteilter Wankstabilisator
Die vorliegende Erfindung betrifft einen geteilten Wankstabilisator. Wankstabilisatoren werden zum Vermeiden von Wankbewegungen des Fahrzeugaufbaus gegenüber der Fahrbahn eingesetzt.
Bei aktiven Wankstabilisatoren kann zwischen zwei Stabilisatorteilen des Wankstabilisators ein Aktuator wirksam angeordnet sein. Der Aktuator kann beide Stabilisatorteile mit einem Torsionsmoment beaufschlagen. Der Aktuator kann beispielsweise einen hydraulischen oder einen elektrischen Antrieb aufweisen. Unter Betätigung des Aktua- tors werden die beiden Stabilisatorteile zueinander verdreht und auf Torsion belastet, so dass ein Torsionsmoment in den Stabilisatorteilen anliegt. Die Stabilisatorteile können als Drehstabfedern ausgebildet sein.
Bei schnellen Fahrtrichtungswechseln neigt der Fahrzeugaufbau zu Wankbewegungen, die mithilfe eines aktiven Wankstabilisators kompensiert werden können.
Damit der Aktuator gezielt eingesetzt werden kann, werden Parameter wie eine Wankbewegung des Fahrzeugaufbaus oder eine Querbeschleunigung des Fahrzeugs erfasst. Mit diesen Parametern kann der Aktuator gezielt betätigt werden, um einem Wanken entgegen zu wirken. Für die gezielte Betätigung des Aktuators wird üblicherweise eine Regeleinrichtung eingesetzt, die mit den eingangsseitigen Parametern eine Betätigung des Aktuators für eine angestrebte Kompensation der Wankbewegung ermöglicht.
Aufgabe der vorliegenden Erfindung war es, einen alternativen geteilten Wankstabilisator anzugeben.
Erfindungsgemäß wurde diese Aufgabe durch den geteilten Wankstabilisator gemäß Anspruch 1 gelöst. Mit dem erfindungsgemäß vorgesehenen Sensor zur Ermittlung des anliegenden Torsionsmomentes in den Stabilisatorteilen kann das anliegende Torsionsmoment als Parameter bereit gestellt werden; eine gezielte Betätigung des anschließbaren Aktuators ist somit ermöglicht. Der Aktuator kann wirksam zwischen den beiden Stabilisatorteilen angeordnet sein, um ein erzeugtes Torsionsmoment einerseits in das eine Stabilisatorteil und andererseits in das andere Stabilisatorteil einzuleiten.
Unter einer Ermittlung des wirkenden Torsionsmomentes wird das Messen des in den Stabilisatorteilen wirkenden Torsionsmomentes verstanden.
Der Sensor erfasst eine Veränderung an dem Stabilisatorteil, die Folge der Einwirkung des Torsionsmomentes ist. Diese Veränderung kann eine Verdrehung des Stabilisatorteiles sein.
Die Stabilisatorteile können bei erfindungsgemäßen Wankstabilisatoren als Drehstabfedern ausgebildet sein, die auf Torsion belastet werden und in sich verdrehen können. Die Drehmomentmessung kann beispielsweise in bekannter Weise mithilfe von Dehnmessstreifen als Sensor erfolgen, die auf das Stabilisatorteil aufgebracht werden und die eine Verdrehung des Stabilisatorteils erfassen. Diese Verdrehung kann auch indirekt gemessen werden, wobei unterschiedliche Sensortypen zum Einsatz kommen können, beispielsweise Hallsensoren.
Ein berührungsloses Messen des Drehmomentes vermeidet einen direkten Kontakt eines Sensors mit dem Stabilisatorteils.
Für ein berührungsloses Messen dieses Drehmomentes ist bei einer erfindungsgemäßen Weiterbildung ein an sich bekanntes magnetostriktives Messprinzip vorgesehen, wie es in der Druckschrift WO 2006/013093 A2 offenbart ist.
Bei diesem Messprinzip wird eine Veränderung der magnetischen Eigenschaft erfasst. In dem Internetauftritt der Firma NCTE werden hierzu Ausführungen gemacht, die nachstehend auszugsweise und teilweise geändert wiedergegeben sind:
Wird ein ferromagnetischer Kristall magnetisiert, so tritt mit wachsender Feldstärke eine Formänderung des magnetisierten Kristalls auf, die als magnetostriktiver Effekt bezeichnet wird. Der wichtigste Anteil der Magnetostriktion ist der Joule-Effekt. Er basiert darauf, dass sich die so genannten Weiss'schen Bezirke in die Magnetisierungsrichtung drehen und ihre Grenzen verschieben. Hierdurch erfolgt eine Formänderung des ferromagne- tischen Körpers, wobei sein Volumen konstant bleibt. Mit der Bezeichnung magne- tostriktiver Effekt wird dieser Effekt beschrieben, da die Volumenänderung der gängigen magnetostriktiven Werkstoffe in ihrer Wirkung vernachlässigt werden kann.
Eine dauerhafte Speicherung einer„in-sich-geschlossenen" Magnetfeldstruktur in fer- romagnetischen Materialien ist ermöglicht. Mit Hilfe von magnetisch kodierten Messwellen können mechanische Kräfte in Echt-Zeit gemessen und bestimmt werden.
Das„Pulsed Current Magnetic Enkoding" bezeichnet ein magnetisches Kodierungsverfahren. Hierbei werden mehrere verschiedene Signalfrequenzen mit unterschiedlich gepulster Stromstärke über einen zuvor festgelegten Bereich einer Welle geleitet, und dabei„in-sich-geschlossene" Magnetfeldstrukturen in die Messwelle einprogrammiert. Dieser Vorgang muss nur einmal durchgeführt werden, da die hierbei gebildeten Strukturen in sich geschlossen sind und somit einen stabilen Zustand darstellen.
Im Unterschied zu anderen bekannten Verfahren zur Messung von Kräften können mit diesem magnetischen Kodierungsverfahren berührungslos Drehmomente, Biegekräfte, axiale Kräfte, radiale Kräfte und Scherkräfte gemessen werden. Es können an ein und derselben kodierten Messstelle mehrere physikalische Parameter gleichzeitig gemessen werden. Darüber hinaus ist der Betriebstemperaturbereich von -50°C bis über +250°C gewährleistet. Der Sensor ist unempfindlich gegen Schmutz, Öl, Wasser sowie mechanische Schockbelastungen und verfügt über eine sehr hohe Messgenauigkeit und eine Ausgangssignallinearität von bis zu 0.05% Die Signalbandbreite kann bis zu 30kHz betragen und es ist keine regelmäßige Wartung oder Nachkalibrierung des Sensors erforderlich.
Der Primärsensor kann eine Region der Welle sein, die magnetisch kodiert wird. Es ist ausreichend, den Kodierungsprozess lediglich einmal durchzuführen, vorzugsweise bevor die Welle an ihrem vorgesehenen Einbauort eingebaut wird. Die mechanischen Eigenschaften der Welle werden durch den Kodierungsprozess nicht beeinflusst. Die Welle sollte aus ferromagnetischem Material bestehen. Im Allgemeinen ist industrieller Stahl, der zwischen 1.5% und 8% Ni enthält, eine gute Basis für einen Primärsensor. Der Primärsensor wandelt die anliegenden Kräfte in ein magnetisches Signal um, das auf der Oberfläche der Welle erfasst werden kann. Die Welle kann als Voll- oder Hohlwelle ausgeführt sein.
Der Sekundärsensor ist eine Anordnung von Magnetfeld-Sensoren, die in unmittelbarer Nähe der magnetisch kodierten Region der Welle platziert werden.
Da die Sekundärsensoren die Welle nicht berühren, kann die Welle frei rotieren. Der Sekundärsensor setzt Änderungen des magnetischen Feldes - verursacht durch Kräfte im Primär-Sensor - in elektrische Information um.
Das sekundäre Sensormodul kann sowohl außen als auch innerhalb der Welle platziert werden, da das Sensorsignal auf der Außen- wie auch auf der Innenseite ermittelt werden kann.
Der Sekundärsensor kann durch sehr kleine Spulen gebildet sein, um die magnetischen Veränderungen des Primärsensors unter Drehmoment hoch auflösend zu messen. Die Spulen können paarweise angeordnet sein, um eine Gleichtaktunterdrückung durch Differentialmessungen zu ermöglichen, und somit die Effekte von externen Magnetfeldern zu kompensieren. Die Gleichtaktunterdrückung beruht hauptsächlich auf einer einwandfreien Anordnung und guten Abstimmung der Spulen zueinander.
Zum Messen von Drehmomenten kann der Sekundärsensor parallel zur Achse der Welle und symmetrisch zum Zentrum des magnetisch kodierten Bereich - also des Primärsensors - angeordnet werden. Die Spulen des Sekundärsensors werden in der Regel paarweise angeordnet; das so genannte Spulenpaar. Die Spulenpaare werden je nach Anzahl symmetrisch über den Umfang der Welle verteilt. Durch das Verwenden von mehr als einem Spulenpaar können radiale Toleranzen der Welle kompensiert werden.
Die vorliegende Erfindung hat erkannt, dass ein nach diesem magnetostriktiven Prinzip arbeitender Sensor - wie er beispielsweise vorstehend beschrieben ist - hervorragend für einen aktiven Wankstabilisator geeignet ist. Bei dieser erfindungsgemäßen Weiterbildung umfasst der Sensor den magnetisch kodierten Primärsensor sowie den Sekundärsensor, der Veränderungen der magnetischen Eigenschaften des Primärsensors in ein elektrisches Signal umwandeln kann.
Der Primärsensor kann beispielsweise durch eine Welle oder durch eine Hülse gebildet sein, die magnetisch kodiert ist; diese Kodierung kann in der oben beschriebenen Weise erfolgen oder auch auf andere Art und Weise.
Der Sekundärsensor kann als passives Element ausgebildet sein und eine Spule umfassen, die magnetische Veränderungen des Primärsensors erfassen und in ein elektrisches Signal umsetzen kann. Dieses Signal kann beispielsweise einer Regeleinrichtung zugeführt werden, die für eine Betätigung des Aktuators vorgesehen ist. Der Sekundärsensor kann auch als aktives Element ausgeführt sein.
Die Erfindung ermöglicht, die Sensorik zur Regelung des Aktuators direkt in den Drehstab zu integrieren, um als autarkes System verbaut werden zu können. Dies kann parallel zum Drehstab oder direkt im Kraftfluss oder Lastpfad der Drehstabfeder geschehen. Im Fall der ersten Alternative überträgt der Primärsensor lediglich einen Teil des anliegenden Dreh- oder Torsionsmomentes; im Fall der zweiten Alternative überträgt der der Primärsensor das volle anliegende Dreh- oder Torsionsmoment.
Der Primärsensor kann durch magnetisch kodiertes Material gebildet sein. Ein magnetisch kodierter Primärsensor kann am oder im Drehstab angebracht oder mit diesem verbunden sein. Über den Primärsensor wird ein Sekundärsensor platziert, der die Richtung der Feldlinien misst. Werden die Drehstabfedern auf Torsion belastet, so ändert sich die Steigung der Feldlinien, wobei die Änderung durch den Sekundärsensor gemessen wird.
Die Messung der Steigungsänderung - in positiver und in negativer Lastrichtung - kann für eine Regelung des Aktuatormomentes zugrunde gelegt werden.
Ein Ausführungsbeispiel sieht die direkte Integration des Primärsensors in den Lastpfad vor. In diesem Fall überträgt der Primärsensor das volle Torsionsmoment des Wankstabilisators. Beispielsweise kann ein Teil des Stabilisatorteiles magnetisch kodiert werden und den Primärsensor bilden. Somit beschränkt sich die Anzahl der Bauteile zur Messung des Torsionmomentes auf ein Minimum.
Die Adaption des Primärsensors kann parallel zum Lastpfad am Stabilisatorteil erfolgen. In diesem Fall überträgt der Primärsensor lediglich einen kleinen Teil des Torsionsmomentes, das auch als Mess-Torsionsmoment oder als Mess-Drehmoment bezeichnet werden kann; das Stabilisatorteil an sich überträgt den größten Teil des Torsionsmomentes. Ebenso kann der Durchmesser der Hülse vergrößert werden, um eine Verbesserung der Messergebnisse zu erzielen. Je größer der Durchmesser, desto größer ist der in Umfangsrichtung gemessene Verdrehweg. Die Drehsteifigkeit des Stabilisatorteils und die Hülse sind in diesem Fall derart aufeinander abgestimmt, dass eine Torsion der Hülse einem bestimmten zugeordneten wirksamen Drehmoment in dem Stabilisatorteil entspricht. Wenn der Primärsensor durch eine Hülse gebildet ist, die auf das Stabilisatorteil aufgesetzt ist, kann die Hülse mit ihren beiden axialen Enden jeweils an dem Stabilisatorteil drehfest angeordnet werden, wobei die Hülse unter Belastung des Wankstabilisators verdreht oder tordiert, so dass der Sekundärsensor das anliegende Torsionsmoment erfassen kann. Je größer der axiale Abstand der beiden Enden zueinander ist, desto größer ist der Verdrehwinkel, und desto genauer kann die Messung erfolgen.
Die Adaption des magnetisch kodierten Primärsensors kann parallel zum Lastpfad zwischen einem Flansch und einem Stabilisatorlager vorgesehen sein. Der Flansch kann an dem Ende des Stabilisatorteiles angebracht sein, das dem Aktuator zugewandt ist. Der Flansch kann an den Aktuator angeschlossen werden, um das Drehmoment zu übertragen. Das Stabilisatorlager lagert das Stabilisatorteil am Fahrzeugaufbau und ermöglicht Drehbewegungen des Stabilisatorteiles um die Torsionsachse.
Die Anbindung des magnetisch kodierten Primärsensors an das Stabilisatorteil kann reibschlüssig mittels Pressverband, stoffschlüssig oder formschlüssig erfolgen; der Primärsensor kann aufgespritzt, aufgebklebt oder angeschweißt werden. Die Länge des magnetisch kodierten Primärsensors zwischen Flansch und Lagerstelle kann auf maximale Länge erstreckt werden, um einen möglichst großen Verdrehwinkel zu erhalten, so dass die Sensorauflösung verbessert ist.
Die Adaption des magnetisch kodierten Primärsensors kann parallel zum Lastpfad im Innenbereich der rohrförmigen Drehstabfeder erfolgen.
Nachstehend wird die Erfindung anhand von sechs Figuren näher erläutert. Es zeigen: Figur 1 einen erfindungsgemäßen geteilten Wankstabilisator, Figur 2 einen vergrößerten Ausschnitt aus Figur 1 ,
Figur 3 eine erfindungsgemäße Variante in einer Darstellung wie in Figur 2,
Figur 4 eine weitere erfindungsgemäße Variante in einer Darstellung
wie in Figur 2,
Figur 5 eine weitere erfindungsgemäße Variante in einer Darstellung
wie in Figur 2, und
Figur 6 eine weitere erfindungsgemäße Variante in einer Darstellung
wie in Figur 2.
Figur 1 zeigt einen erfindungsgemäßen geteilten Wankstabilisator mit einem angeschlossenen Aktuator 1. Der Aktuator 1 ist wirksam zwischen zwei jeweils als Drehstabfeder 2 ausgebildeten Stabilisatorteilen 2a angeordnet. Beide Stabilisatorteile 2a sind jeweils über ein Stabilisatorlager 3 an einem hier nicht dargestellten Fahrzeugaufbau drehbar gelagert. Der Aktuator kann einen Motor mit einem angeschlossenen Getriebe aufweisen, wobei ein Aktuatorgehäuse an das eine Stabilisatorteil 2a und eine Ausgangswelle an das andere Stabilisatorteil angeschlossen werden kann. Unter Betätigung des Aktuators werden die angeschlossenen Stabilisatorteile 2a auf Torsion beansprucht. Figur 2 zeigt einen vergrößerten Ausschnitt aus Figur 1 . Ein Sensor 11 zur Bestimmung des Aktuatormomentes ist in die Drehstabfeder 2 integriert. Das Aktuatormoment ist das in den Stabilisatorteilen 2a wirkende Torsionsmoment. Eine berührungslose Torsionsmomentmessung kann direkt im Lastpfad der Drehstabfeder 2 erfolgen, wobei zumindest ein Teilstück der Drehstabfeder 2 aus magnetostriktivem, magnetisch kodiertem Stahl hergestellt ist. Dieses Teilstück bildet einen Primärsensor 5. Dieses Teilstück kann aus einem Rohrstück gebildet sein, das einerseits stoffschlüssig mit dem Stabilisatorteil 2a und andererseits fest mit einem Flansch 4 verbunden ist. Dieser Primärsensor 5 überträgt das volle Torsionsmoment des Wankstabilisators.
Der Flansch 4 kann auch als Anschlussteil oder als Verbindungsteil bezeichnet werden, das einerseits drehfest an das Stabilisatorteil 2a und das andererseits drehfest an den Aktuator 1 angeschlossen werden kann. Der Flansch 4 kann an den Aktuator 1 mit Schrauben angeschraubt werden; der Flansch 4 kann auch stoffschlüssig mit dem Aktuator 1 verbunden werden. Der Flansch 4 kann stoffschlüssig, reibschlüssig oder kraftschlüssig mit dem Stabilisatorteil verbunden sein. Das Anschlussteil kann eine an das Stabilisatorteil 2a und die Anschlussstelle des Aktuators 1 angepasste Form aufweisen. Der Flansch 4 kann an den in Figur 1 abgebildeten Aktuator 1 angeschlossen sein, um Torsionsmomente zwischen dem Aktuator 1 und den angeschlossenen Stabilisatorteilen 2a zu übertragen.
Ein Sekundärsensor 6 ist außerhalb der Drehstabfeder in der Nähe des durch das Rohrstück gebildeten Primärsensors 5 angeordnet und misst die durch Torsion des Primärsensors 5 verursachte Änderung der Steigung der Feldlinien. Der Sekundärsensor 6 bildet einen Magnetfeldsensor 6a.
Die Adaption des magnetisch kodierten Primärsensors 5 an die Drehstabfeder kann wie in Figuren 3 bis 6 ersichtlich auch parallel zum Lastpfad erfolgen. Bei diesen erfindungsgemäßen Weiterbildungen überträgt der Primärsensor nicht das volle wirksame Torsionsmoment, sondern lediglich ein Mess-Torsionsmoment, das abhängig ist von dem in der Drehstabfeder wirkenden Torsionsmoment.
Der erfindungsgemäße geteilte Wankstabilisator gemäß Figur 3 unterscheidet sich von dem aus der Figur 2 durch einen modifizierten Primärsensor 5. Gemäß Figur 3 ist der Primärsensor 5 durch eine Hülse 5a gebildet, die mittels eines durch eine Halteklammer 7 gebildeten Befestigungselementes oder durch stoffschlüssige Verbindung 8 direkt am Drehstabfederrücken 9 befestigt ist. Der Drehstabfederrücken 9 ist durch das Stabilisatorteil 2a gebildet. Der Figur 3 ist zu entnehmen, dass die Halteklammer 7 an beiden axialen Enden der Hülse 5a angeordnet ist, so dass die axialen Enden drehfest an dem Drehstabfederrücken 9 angeordnet sind. Figur 2 zeigt zwei Varianten, wie die Hülse 5a am Drehstabfederrücken drehfest angeordnet werden kann: o- berhalb der Längsachse des rohrförmigen Stabilisatorteiles 2a ist eine stoffschlüssige Verbindung der axialen Enden der Hülse 5a mit dem Drehstabfederrücken 9 vorgesehen. Unterhalb der Längsachse des rohrförmigen Stabilisatorteiles 2a ist die beschriebene Klammerverbindung der axialen Enden der Hülse 5a mit dem Drehstabfederrücken 9 vorgesehen.
Der erfindungsgemäße geteilte Wankstabilisator gemäß Figur 4 unterscheidet sich von dem aus der Figur 3 lediglich dadurch, dass das von dem Stabilisatorlager 3 abgewandte axiale Ende der Hülse 5b mittels der Halteklammer 7 oder durch stoffschlüssige Verbindung 8 am zylindrischen Teil des Flansches 4 befestigt ist. Dies hat den Vorteil, auf geringem Bauraum eine maximal mögliche Messlänge zu generieren. Die Hülse 5b gemäß Figur 4 ist gegenüber der Hülse 5a gemäß Figur 3 länger, so dass ein größerer Verdrehwinkel in der Hülse 5b generiert wird.
Der erfindungsgemäße geteilte Wankstabilisator gemäß Figur 5 unterscheidet sich von dem aus der Figur 4 lediglich dadurch, dass das von dem Stabilisatorlager 3 abgewandte axiale Ende der Hülse 5b mittels der Halteklammer 7 oder durch stoffschlüssige Verbindung 8 am Außendurchmesser des Flansches 4 oder an dessen Planfläche oder Stirnfläche befestigt ist. Dies hat den Vorteil, die größtmögliche Messlänge zwischen dem Stabilisatorlager 3 und dem Flansch 4 zu generieren.
Gemäß Figur 6 ist die Adaption dadurch gelöst, dass eine den Primärsensor 5 bildende Hülse 5c mittels stoffschlüssiger Verbindung 8 innen liegend in der Drehstabfeder 2 zwischen dem Flansch 4 und der Drehstabfeder 2 angebracht ist. Der Sekundärsensor 6 ist radial innerhalb der Hülse 5c angeordnet. Die innen liegende Anordnung schützt sowohl den Primärsensor 5 als auch den Sekundärsensor 6 vor unerwünschter Fremdeinwirkung. Bei den hier beschriebenen Varianten sind die Hülsen 5a, 5b, 5c in anderen Worten ausgedrückt mit ihren axialen Enden drehfest angeordnet, so dass unter Torsion der Stabilisatorteile 2a die Enden der Hülsen verdreht werden.
Die Sensoren 11 können bei erfindungsgemäßen geteilten Wankstabilisatoren an lediglich einem der beiden Stabilisatorteile 2a angeordnet sein; es ist jedoch möglich, beide Stabilisatorteile mit je einem Sensor 1 1 zu versehen.
Bezugszahlenliste
Aktuator
Drehstabfeder
a Stabilisatorteil
Stabilisatorlager
Flansch
magnetisch kodierter Primärsensora Hülse
b Hülse
c Hülse
Sekundärsensor
a Magnetfeldsensor
Halteklammer
stoffschlüssige Verbindung
Drehstabfederrücken
0
1 Sensor

Claims

Patentansprüche
1. Geteilter Wankstabilisator eines Kraftfahrzeuges, zwischen dessen beiden Stabilisatorteilen (2a) ein Aktuator (1 ) für eine Torsion der Stabilisatorteile (2a) wirksam angeordnet werden kann, wobei ein Sensor (1 1) zur Ermittlung eines in den Stabilisatorteilen (2a) wirkenden Torsionsmomentes vorgesehen ist. Geteilter Wankstabilisator nach Anspruch 1 , bei dem ein magnetisch kodierter Primärsensor (5) an dem Stabilisatorteil (2a) angeordnet ist, wobei ein Magnetfeldsensor (6a) als Sekundärsensor (6) vorgesehen ist, der Änderungen des magnetischen Feldes des Primärsensors (5) in ein elektrisches Signal umwandelt. Geteilter Wankstabilisator nach Anspruch 2, bei dem der Primärsensor (5) durch einen Abschnitt des Stabilisatorteiles (2a) gebildet ist, der aus ferro- magnetischem Material gebildet und magnetisch kodiert ist, wobei das wirksame Torsionsmoment in diesen Abschnitt eingeleitet wird. Geteilter Wankstabilisator nach Anspruch 2, bei dem der Primärsensor (5) zur Aufnahme eines Mess-Drehmomentes parallel zu dem Stabilisatorteil (2a) geschaltet ist, wobei das Mess-Drehmoment abhängig von einer Verdrehung des Stabilisatorteiles (2a) Ist. Geteilter Wankstabilisator nach Anspruch 4, bei dem der Primärsensor (5) durch eine an dem Stabilisatorteil (2a) angeordnete Hülse (5a, 5b, 5c) gebildet ist. Geteilter Wankstabilisator nach Anspruch 1 , zwischen dessen beiden Stabilisatorteilen (2a) der Aktuator (1 ) für eine Torsion der Stabilisatorteile (2a) wirksam angeordnet ist. Geteilter Wankstabilisator nach Anspruch 6, bei dem das Stabilisatorteil (2a) über ein Stabilisatorlager (3) drehbar gelagert ist, wobei der Primärsensor (5) zwischen einem dem Aktuator (1) zugewandten Ende und dem Stabilisatorlager (3) angeordnet ist. Geteilter Wankstabilisator nach Anspruch 6, bei dem die Stabilisatorteile (2a) jeweils über ein Stabilisatorlager (3) drehbar gelagert sind, wobei die Primärsensoren (5) jeweils zwischen einem dem Aktuator (1 ) zugewandten Ende und dem Stabilisatorlager (3) angeordnet sind. Geteilter Wankstabilisator nach den Ansprüchen 5 und 7, bei dem das dem Aktuator (1) zugewandte Ende des Stabilisatorteils (2a) drehfest mit einem an den Aktuator (1) angeschlossenen Flansch (4) verbunden ist, wobei die Hülse (5a, 5b, 5c) mit einem Ende drehfest mit dem Flansch (4) und mit dem anderen Ende drehfest mit dem Stabilisatorteil (2a) verbunden ist.
PCT/EP2011/062593 2010-09-30 2011-07-22 Geteilter wankstabilisator WO2012041556A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/877,062 US8967643B2 (en) 2010-09-30 2011-07-22 Split roll stabilizer
KR1020137010988A KR101870465B1 (ko) 2010-09-30 2011-07-22 분할형 롤 안정화기
CN201180047351.2A CN103402794B (zh) 2010-09-30 2011-07-22 分开的摆动稳定器
EP11734140.4A EP2621743B1 (de) 2010-09-30 2011-07-22 Geteilter wankstabilisator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102010046995 2010-09-30
DE102010046995.5 2010-09-30
DE102011078819.0 2011-07-07
DE102011078819A DE102011078819A1 (de) 2010-09-30 2011-07-07 Geteilter Wankstabilisator

Publications (2)

Publication Number Publication Date
WO2012041556A2 true WO2012041556A2 (de) 2012-04-05
WO2012041556A3 WO2012041556A3 (de) 2013-09-19

Family

ID=44628814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/062593 WO2012041556A2 (de) 2010-09-30 2011-07-22 Geteilter wankstabilisator

Country Status (6)

Country Link
US (1) US8967643B2 (de)
EP (1) EP2621743B1 (de)
KR (1) KR101870465B1 (de)
CN (1) CN103402794B (de)
DE (1) DE102011078819A1 (de)
WO (1) WO2012041556A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140300066A1 (en) * 2013-04-04 2014-10-09 Schaeffler Technologies Gmbh & Co., Kg Chassis actuator device for a vehicle
WO2015007280A1 (de) * 2013-07-17 2015-01-22 Schaeffler Technologies Gmbh & Co. Kg Verfahren für den betrieb eines kraftfahrzeugs zur erkennung einer überbeanspruchung eines wankstabilisators
DE102013223073A1 (de) 2013-11-13 2015-05-13 Schaeffler Technologies Gmbh & Co. Kg Wankstabilisator
WO2018206209A1 (de) * 2017-05-12 2018-11-15 Zf Friedrichshafen Ag Wankstabilisator mit sensoren zur zustandsermittlung

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013219761B3 (de) * 2013-09-30 2015-01-15 Schaeffler Technologies Gmbh & Co. Kg Anordnung und Verfahren zum Messen eines Drehmomentes an einem Maschinenelement sowie Wankstabilisator
CN103625238B (zh) * 2013-12-02 2015-08-26 江苏大学 电控刚度可调式主动横向稳定装置
DE102015206664B3 (de) 2015-04-14 2016-07-28 Schaeffler Technologies AG & Co. KG Hohles Maschinenelement und Anordnung zum Messen einer Kraft oder eines Momentes
KR102343224B1 (ko) * 2015-09-10 2021-12-27 주식회사 만도 Tas센서를 이용한 전동식 능동 롤 스태빌라이저 장치
KR102445023B1 (ko) * 2015-11-20 2022-09-21 주식회사 만도 액티브 롤 스테빌라이저
DE102016213589B3 (de) * 2016-07-25 2017-12-21 Schaeffler Technologies AG & Co. KG Maschinenelementanordnung und Lageranordnung mit Messanordnung zum Messen einer Kraft oder eines Momentes
DE102016213591B3 (de) * 2016-07-25 2017-05-18 Schaeffler Technologies AG & Co. KG Lageranordnung mit Messanordnung zum Messen einer Kraft und/oder eines Momentes
KR102536588B1 (ko) * 2016-10-07 2023-05-25 에이치엘만도 주식회사 액티브 롤 스태빌라이저
KR102312802B1 (ko) * 2017-03-27 2021-10-14 주식회사 만도 액티브 롤 스태빌라이저
DE102017106877A1 (de) 2017-03-30 2018-10-04 Schaeffler Technologies AG & Co. KG Geteilter Wankstabilisator und Flansch hierfür
DE102017118790B4 (de) 2017-08-17 2019-03-07 Schaeffler Technologies AG & Co. KG Wankstabilisator für ein Kraftfahrzeug
DE102017118789B4 (de) 2017-08-17 2019-03-07 Schaeffler Technologies AG & Co. KG Wankstabilisator für ein Kraftfahrzeug
KR101971532B1 (ko) 2017-09-04 2019-04-23 주식회사 만도 전자식 능동형 롤 스테빌라이저
KR101971528B1 (ko) 2017-09-11 2019-04-23 주식회사 만도 전자식 능동형 롤 스테빌라이저
DE102018110553A1 (de) 2018-05-03 2019-11-07 Schaeffler Technologies AG & Co. KG Drehmomentsensoranordnung und Wankstabilisator mit Drehmomentsensoranordnung
DE102018118175A1 (de) 2018-07-27 2020-01-30 Schaeffler Technologies AG & Co. KG Verfahren zum Messen eines Torsionsmomentes an einem sich in einer Achse erstreckenden Maschinenelement
DE102018218598A1 (de) 2018-08-24 2020-02-27 Zf Friedrichshafen Ag Wankstabilisator und Sensoreinrichtung für einen Wankstabilisator
DE102021200750A1 (de) 2021-01-28 2022-07-28 Zf Friedrichshafen Ag Hohlwelle für ein Wankstabilisierungssystem für ein Fahrzeug, Wankstabilisierungssystem und Verfahren zum Herstellen einer Hohlwelle
DE102021200751B4 (de) 2021-01-28 2023-10-26 Zf Friedrichshafen Ag Nebenschlusselement zum Aufnehmen einer Sensoreinheit für eine Hohlwelle für ein Fahrzeug, Hohlwelle, Wankstabilisator und Verfahren zum Herstellen einer Hohlwelle
DE102022209475B3 (de) 2022-09-12 2024-02-22 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022209472B3 (de) 2022-09-12 2024-02-22 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022209478B3 (de) 2022-09-12 2024-03-07 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022209480A1 (de) 2022-09-12 2024-03-14 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022209473B3 (de) 2022-09-12 2024-02-22 Zf Friedrichshafen Ag Verfahren zum Kalibrieren einer Sensoreinrichtung
DE102022209474B3 (de) 2022-09-12 2024-02-22 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022211416A1 (de) 2022-10-27 2024-05-02 Zf Friedrichshafen Ag Aktives Fahrwerksystem

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013093A2 (en) 2004-08-02 2006-02-09 Nctengineering Gmbh Sensor electronic

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060024A (ja) 1983-09-09 1985-04-06 Nissan Motor Co Ltd 車両におけるロ−ル剛性制御装置
JP2965628B2 (ja) * 1989-06-30 1999-10-18 株式会社東芝 磁性体を構成要素とするセンサの製造方法
EP1030790B1 (de) * 1998-06-25 2004-06-02 Robert Bosch Gmbh System und verfahren zur wankstabilisierung von fahrzeugen
JP2002228526A (ja) * 2001-01-31 2002-08-14 Hitachi Metals Ltd トルクセンサー
DE10126928B4 (de) 2001-06-01 2006-06-29 ZF Lemförder Metallwaren AG Stabilisator für ein Kraftfahrzeug
DE602005014201D1 (de) * 2004-02-12 2009-06-10 Aisin Seiki Stabilisatorsteuerung
JP4534642B2 (ja) * 2004-07-20 2010-09-01 アイシン精機株式会社 スタビライザ制御装置
US20070247224A1 (en) 2004-08-02 2007-10-25 Lutz May Sensor Electronic
JP2006151262A (ja) * 2004-11-30 2006-06-15 Toyota Motor Corp 車両用サスペンションシステム
JP4240010B2 (ja) * 2005-06-16 2009-03-18 トヨタ自動車株式会社 車両用スタビライザシステム
DE102005031037A1 (de) * 2005-07-02 2007-01-25 Bayerische Motoren Werke Ag Aktiver, geteilter Kraftfahrzeugstabilisator mit eingebautem elektrischem Schwenkmotor
JP2007045197A (ja) * 2005-08-08 2007-02-22 Nissan Motor Co Ltd 車両のロール剛性配分制御装置
DE102005053608A1 (de) * 2005-11-10 2007-05-16 Schaeffler Kg Wankstabilisator
JP4244999B2 (ja) * 2006-02-09 2009-03-25 トヨタ自動車株式会社 車両用スタビライザシステム
JP4127298B2 (ja) * 2006-06-14 2008-07-30 トヨタ自動車株式会社 車輪車体間距離調整装置および車輪車体間距離調整システム
DE102006040109A1 (de) * 2006-08-26 2008-02-28 Bayerische Motoren Werke Ag Aktiver, geteilter Kraftfahrzeugstabilisator mit eingebauten Schwenkmotor
JP4258538B2 (ja) * 2006-08-29 2009-04-30 トヨタ自動車株式会社 車両用サスペンションシステム
US7832739B2 (en) 2006-11-06 2010-11-16 American Axle & Manufacturing, Inc. Apparatus and method for coupling a disconnectable stabilizer bar
JP4958066B2 (ja) 2006-11-09 2012-06-20 アイシン精機株式会社 スタビライザ制御装置
DE102008001006A1 (de) * 2008-04-04 2009-11-12 Zf Friedrichshafen Ag Radaufhängung für ein Fahrzeug
DE102009028386A1 (de) * 2009-08-10 2011-02-17 Zf Friedrichshafen Ag Vorrichtung zum Variieren eines Wankwinkels einer Fahrzeugkarosserie im Bereich wenigstens einer Fahrzeugachse
DE102009047222A1 (de) 2009-11-27 2011-06-01 Robert Bosch Gmbh Sensoranordnung zum Ermitteln eines Drehmoments und zur Indexerkennung
DE102010037555B4 (de) * 2010-09-15 2019-01-17 Ovalo Gmbh Aktiver Fahrwerksstabilisator, Aktuator, Fahrzeug und Verfahren zur Steuerung und/oder Regelungeines Fahrwerkstabilisators
DE102011078821A1 (de) * 2011-07-07 2013-01-10 Schaeffler Technologies AG & Co. KG Geteilter Wankstabilisator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013093A2 (en) 2004-08-02 2006-02-09 Nctengineering Gmbh Sensor electronic

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140300066A1 (en) * 2013-04-04 2014-10-09 Schaeffler Technologies Gmbh & Co., Kg Chassis actuator device for a vehicle
CN104097484A (zh) * 2013-04-04 2014-10-15 舍弗勒技术有限两合公司 用于汽车的底盘执行器设备
US9221316B2 (en) * 2013-04-04 2015-12-29 Schaeffler Technologies AG & Co. KG Chassis actuator device for a vehicle
CN104097484B (zh) * 2013-04-04 2018-09-18 舍弗勒技术股份两合公司 用于汽车的底盘执行器设备
WO2015007280A1 (de) * 2013-07-17 2015-01-22 Schaeffler Technologies Gmbh & Co. Kg Verfahren für den betrieb eines kraftfahrzeugs zur erkennung einer überbeanspruchung eines wankstabilisators
DE102013223424A1 (de) 2013-07-17 2015-01-22 Schaeffler Technologies Gmbh & Co. Kg Verfahren für den Betrieb eines Kraftfahrzeugs zur Erkennung einer Überbeanspruchung eines Wankstabilisators
CN105358348A (zh) * 2013-07-17 2016-02-24 舍弗勒技术股份两合公司 在机动车运行中识别防倾稳定器超负荷的方法
US20160159190A1 (en) * 2013-07-17 2016-06-09 Schaeffler Technlologies AG & Co. KG Method for operating a motor vehicle in order to detect an overload on a roll stabilizer
US9707818B2 (en) 2013-07-17 2017-07-18 Schaeffler Technologies AG & Co. KG Method for operating a motor vehicle in order to detect an overload on a roll stabilizer
DE102013223424B4 (de) * 2013-07-17 2021-03-04 Schaeffler Technologies AG & Co. KG Verfahren für den Betrieb eines Kraftfahrzeugs zur Erkennung einer Überbeanspruchung eines Wankstabilisators
DE102013223073A1 (de) 2013-11-13 2015-05-13 Schaeffler Technologies Gmbh & Co. Kg Wankstabilisator
WO2018206209A1 (de) * 2017-05-12 2018-11-15 Zf Friedrichshafen Ag Wankstabilisator mit sensoren zur zustandsermittlung

Also Published As

Publication number Publication date
KR101870465B1 (ko) 2018-06-22
US20130270786A1 (en) 2013-10-17
CN103402794A (zh) 2013-11-20
CN103402794B (zh) 2016-03-09
EP2621743B1 (de) 2017-03-01
WO2012041556A3 (de) 2013-09-19
US8967643B2 (en) 2015-03-03
EP2621743A2 (de) 2013-08-07
KR20130120472A (ko) 2013-11-04
DE102011078819A1 (de) 2012-04-05

Similar Documents

Publication Publication Date Title
EP2621743B1 (de) Geteilter wankstabilisator
EP2543528B1 (de) Geteilter Wankstabilisator
DE102010037555B4 (de) Aktiver Fahrwerksstabilisator, Aktuator, Fahrzeug und Verfahren zur Steuerung und/oder Regelungeines Fahrwerkstabilisators
EP3840968B1 (de) Wankstabilisator
EP2054248B1 (de) Aktiver, geteilter kraftfahrzeugstabilisator mit eingebautem schwenkmotor
EP2090497B1 (de) Vorrichtung zum ermitteln eines Verdrehwinkels
EP3250896B1 (de) Sensoranordnung zur indirekten erfassung eines drehmoments einer rotierbar gelagerten welle
DE10206702B4 (de) Drehmomenterfassungsvorrichtung und deren Verwendung in einer elektrischen Servolenkung
EP3114449A1 (de) Bauteil mit einem wenigstens einen sensor aufweisenden messelement
DE102011075890A1 (de) Wankstabilisator eines Kraftfahrzeuges
EP2615439A1 (de) Magnetoelastischer Kraftsensor und Verfahren zum Kompensieren einer Abstandsabhängigkeit in einem Messsignal eines derartigen Sensors
DE102011053278A1 (de) Entkoppelbarer Aktuator, insbesondere mit elektromechanischem Antrieb
EP2878938B1 (de) Magnetostriktiver Sensor für Aktuatoren in Flugzeugen
DE102005055995B4 (de) Verfahren zur Einstellung der Vorspannung in einer Lageranordnung
DE102006054179A1 (de) Vorrichtung zur Messung des Drehmomentes an einer Welle
WO2016120093A2 (de) Sensoranordnung zur indirekten erfassung eines drehmoments einer rotierbar gelagerten welle
DE102011053277A1 (de) Stabilisator mit einem integrierten Aktuator
DE102014208334A1 (de) Wankstabilisator
WO2020211891A1 (de) Handkraftaktuator mit einem sensorsystem zur drehmomentdetektion
DE102010027959A1 (de) Vorrichtung zur Erfassung des über eine Hohlwelle, insbesondere einen Abschnitt eines Querstabilisators eines Fahrzeugs, übertragenen Drehmoments
DE102022102604A1 (de) Relativverdrehung-Erfassungsvorrichtung und Tretkurbelanordnung
DE10210148A1 (de) Drehmomentmeßvorrichtung und Hilfskraftlenkung für ein Kraftfahrzeug
DE102014216374A1 (de) Wankstabilisator für ein Kraftfahrzeug
DE102020120672A1 (de) Magnetoelastischer Drehmomentsensor mit einer magnetisierten Hülse als Primärsensor
DE102012022122A1 (de) Drehmomentsensoranordnung für eine Lenksäule

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047351.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734140

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2011734140

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011734140

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137010988

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13877062

Country of ref document: US