WO2012039377A1 - タンパク質結晶の観測方法 - Google Patents

タンパク質結晶の観測方法 Download PDF

Info

Publication number
WO2012039377A1
WO2012039377A1 PCT/JP2011/071332 JP2011071332W WO2012039377A1 WO 2012039377 A1 WO2012039377 A1 WO 2012039377A1 JP 2011071332 W JP2011071332 W JP 2011071332W WO 2012039377 A1 WO2012039377 A1 WO 2012039377A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
ultra
crystal
light source
light
Prior art date
Application number
PCT/JP2011/071332
Other languages
English (en)
French (fr)
Inventor
西澤 典彦
浩由 松村
森 勇介
周太郎 石田
伊東 一良
成 杉山
安達 宏昭
井上 豪
和文 高野
村上 聡
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2012535029A priority Critical patent/JP5545580B2/ja
Priority to US13/825,280 priority patent/US9182216B2/en
Publication of WO2012039377A1 publication Critical patent/WO2012039377A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/30Extraction; Separation; Purification by precipitation
    • C07K1/306Extraction; Separation; Purification by precipitation by crystallization
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • G01N2021/1785Three dimensional
    • G01N2021/1787Tomographic, i.e. computerised reconstruction from projective measurements

Definitions

  • the present invention relates to a protein crystal observation method for producing a high-quality single crystal of protein.
  • Patent Document 1 Non-Patent Document 1
  • microcrystals and crystals in high turbidity solutions were observed using a digital microscope or high-resolution optical microscope, but it was difficult to observe the shape in the depth direction (three-dimensional observation). . Moreover, it was more difficult to observe crystals in a highly turbid solution.
  • the invention described in claim 1 A protein crystal observation method characterized by observing a protein crystal produced by a crystallization method using a gel by OCT measurement using light emitted from an ultra-wideband light source.
  • the present inventor is an OCT measurement that obtains a tomographic image of a living body without cutting a measurement target such as a living tissue as a technique for non-destructive and three-dimensional observation by in-situ measurement in real time in a non-destructive manner.
  • a measurement target such as a living tissue
  • the present inventor uses an ultra-wideband light source, so that an ultra-high resolution image can be obtained even for a minute and highly transparent protein crystal. I thought it would be possible.
  • the growth process of the protein crystal can be non-destructively observed in three dimensions in real time, and based on the observed information. Since the crystal growth process can be controlled with high accuracy, a high-quality single crystal can be manufactured.
  • the scattered light signal can be enhanced by the gel, so that ultra-high resolution and high sensitivity OCT measurement can be performed. It is possible to realize a single crystal with higher quality by controlling the crystal growth with higher accuracy.
  • a transparent protein crystal is preferable.
  • transparent protein crystals have little backscattered light, it is difficult to observe the growth process.
  • it was found that visualization is possible by enhancing the scattered light signal and extracting a phase difference caused by a difference in refractive index of the crystal.
  • the scattered light signal is enhanced by placing the gel in or around the crystal. Therefore, the phase difference caused by the refractive index difference of the crystal can be easily extracted. It can be easily visualized and the growth of transparent protein crystals can be controlled easily and with high precision.
  • ultra-wide band light source refers to a light source that emits light having a spectral bandwidth of 50 to 1000 nm.
  • an ultra-wide band light emitting diode or an ultra-wide band super continuum (SC) light source in which a single or a plurality of SLDs (super luminescent diodes) are connected can be used.
  • the invention described in claim 2 2.
  • an ultra-high resolution image can be obtained by using an ultra-wideband light source.
  • the present inventor has disclosed Japanese Patent Application Laid-Open No. 2008-2815. It is preferable to use a super continuum light source (SC light source) that spreads over an ultra-wide band due to non-linear effects, and among them, it is low noise, high coherence, gaussian, etc., unimodal and smooth It has been found that a highly accurate ultra-wideband SC light source having a spectral shape is preferred.
  • SC light source super continuum light source
  • Such a high-accuracy ultra-wideband SC light source is too wide as it is and cannot be used for a normal fiber type OCT in which the bandwidth is limited by an optical fiber.
  • a light source that emits light having a spectral bandwidth of 100 to 200 nm is used.
  • the invention according to claim 3 3.
  • ultra-wideband SC light having a center wavelength of 0.8 ⁇ m is preferable.
  • depth resolution is 2 ⁇ m or less and sensitivity is 110 dB.
  • the invention according to claim 4 The protein crystal observation method according to any one of claims 1 to 3, wherein the protein crystal is observed by in-situ measurement.
  • the use of ultra-wideband light enables non-destructive, real-time three-dimensional measurement of protein crystal growth processes, enabling high-precision observation by in-situ measurement and in-situ measurement.
  • an evaluation system for crystallization ability can be formed based on the measurement result, or screening can be automated.
  • a high-quality single crystal can be manufactured automatically. Since the crystal shape can be evaluated in the depth direction, the crystal mounting operation can be automated, and it is hoped that the entire process from crystal production to X-ray crystal analysis can be automated.
  • the invention described in claim 5 A protein crystal evaluation method, wherein the protein crystal is evaluated using the protein crystal observation method according to any one of claims 1 to 4.
  • protein crystals can be observed with high accuracy by using an ultra-wideband light source.
  • the crystallization method using gel can enhance the scattered light signal and more easily observe protein crystals.
  • the invention according to claim 8 provides: 8. The method according to claim 7, wherein the ultra-wide band light source is an ultra-wide band super continuum light source.
  • the invention according to claim 9 is: 9. The method according to claim 8, wherein a center wavelength of light emitted from the ultra-wideband super continuum light source is a 0.8 ⁇ m band.
  • the OCT measurement apparatus used in the protein crystal observation method is: An ultra-wideband light source, Light branching means for branching light emitted from the ultra-wideband light source into signal light and reference light; Signal light irradiation means for irradiating the protein crystal with the signal light branched by the light branching means; Optical path length adjusting means for adjusting the optical path length of the reference light branched by the light branching means; Based on the interference signal between the reference light whose optical path length has been changed by the optical path length adjusting means and the scattered light irradiated by the signal light irradiating means and reflected by the protein crystal, the tomographic information inside the protein crystal It is preferable to include a measuring means for measuring
  • FIG. 2 schematically shows the main part of the OCT measurement apparatus and is a diagram for explaining the measurement principle in OCT measurement.
  • 10a is a light source
  • 34a is a reference light mirror
  • 35a is an optical splitter (beam splitter)
  • 40a is a photodetector
  • 50a is a sample.
  • the reference light mirror 34a moves in the vertical direction (movement amount ⁇ m) so that the optical path length of the reference light can be changed.
  • the light emitted from the light source 10a is split into signal light directed to the sample 50a and reference light directed to the reference light mirror 34a by the optical splitter 35a.
  • the signal light directed toward the sample 50a is incident on the sample 50a and then reflected to generate scattered light.
  • the reference light directed toward the reference light mirror 34a is reflected by the reference light mirror 34a.
  • the reference light mirror 34a is moved in accordance with the measurement depth in the sample 50a to adjust the optical path length of the reference light.
  • the generated scattered light and the reference light whose optical path length is adjusted are spatially overlapped by the combining means to cause interference.
  • This interference light is detected and measured by the photodetector 40a. As a result, it is possible to measure information according to the internal fault of the protein crystal.
  • is the center wavelength of the Gaussian spectrum
  • is the spectrum width at this time.
  • an ultra-wideband SC light source having a spectrum as shown in FIG. 3 is used as an example of the light source.
  • the upper diagram is a linear display of the ultra-wideband SC light
  • the lower diagram is a logarithmic display.
  • the horizontal axis represents wavelength (nm)
  • the vertical axis represents intensity (au and dB).
  • bandwidth wide band
  • 580 nm
  • the ultra-wideband light source is an ultra-wideband supercontinuum light source.
  • ultra-wideband light source As described above, by using an ultra-wideband light source, it is possible to obtain a high-resolution image.
  • these ultra-wideband light sources a low-noise, high-coherence, gaussian, etc. single-peak smooth spectrum shape
  • High-accuracy ultra-wideband SC light source with high sensitivity makes it possible to measure with high sensitivity and ultra-high resolution, as well as measurement of polarization dependence using linearly polarized light and spectroscopic analysis with a very wide band. Since high-performance measurements such as measurement and phase difference measurement utilizing coherence are possible, not only the observation of crystals but also information on the composition and physical properties of the surrounding environment can be observed.
  • the protein crystal observation device used in the protein crystal observation method according to the present invention includes the OCT measurement device described above.
  • Equipped with an ultra-high resolution and high-sensitivity OCT measurement device it can perform ultra-high resolution and high-sensitivity OCT measurement even for protein crystals with a size of several tens of ⁇ m. Dimensional observation is possible. As a result, the crystal growth can be controlled with higher accuracy, and a higher quality single crystal can be produced. This greatly contributes to the rapid and accurate analysis of the three-dimensional structure of the protein using X-ray crystallography. it can.
  • ultra-high resolution and high-sensitivity OCT measurement can be performed by using an ultra-high resolution and high-sensitivity OCT measurement device, so that protein crystal growth can be observed non-destructively and three-dimensionally in real time. can do. Since the crystal growth process can be controlled with high accuracy based on the observed information, a high-quality single crystal can be manufactured.
  • protein crystals and salts can be distinguished. Therefore, protein crystals can be clearly separated without destruction, and high-quality single crystals can be produced.
  • the growth process of a protein crystal can be non-destructively observed in three dimensions in real time, the crystal growth can be controlled with high accuracy, and a high-quality single crystal can be produced.
  • FIG. 1 shows an example of an OCT apparatus used in an embodiment of the present invention, which is an ultra-wideband SC light generation unit having an average wavelength of 1.5 ⁇ m. It is a figure which shows the structure of the principal part of the provided OCT apparatus. This OCT apparatus is roughly classified into an ultra-wideband SC light generation unit indicated by a thick solid line and an observation unit indicated by a thin solid line.
  • FIG. 1 10 is a semiconductor laser, 11 is a polarization beam coupler (PBC), and 12 is a wavelength division multiplex coupler (WDM).
  • Reference numeral 13 denotes a high-concentration erbium-doped fiber (HC-EDF) (100 cm), and 14 denotes a connection part (Monitor out) with an external monitor.
  • HC-EDF high-concentration erbium-doped fiber
  • Monitoring out connection part with an external monitor.
  • 15 is a single mode fiber (SMF28), and 16 is a normal dispersion nonlinear fiber (NDHNF).
  • SMF28 single mode fiber
  • NDHNF normal dispersion nonlinear fiber
  • ⁇ / 2 represents a half-wave plate
  • ⁇ / 4 represents a quarter-wave plate
  • PBS represents a polarizing beam splitter
  • FR represents a Faraday rotator
  • BT represents a birefringent plate.
  • the semiconductor lasers 10 are ultrashort pulse lasers that generate laser light having a wavelength of 976 nm.
  • two semiconductor lasers 10 are arranged from the viewpoint of high output.
  • the reason why light having a wavelength of 976 nm is employed is that it is suitable for exciting an erbium-doped fiber.
  • Each laser beam generated by the two semiconductor lasers 10 is polarized by the PBC 11.
  • the two polarized laser beams are multiplexed by the WDM 12.
  • the combined laser light is sent to the lens system 20 with the intensity increased by the high-concentration erbium-doped fiber 13.
  • the laser light that has passed through the lens system 20 and reached the single mode fiber 15 is then ultra-wideband SC light having a Gaussian spectrum (average wavelength 1.5 ⁇ m) shown in FIG. 4 by the high-concentration erbium-doped fiber 16. Is generated.
  • 32 is an OCT probe (OCT probe) as a scanning irradiation light receiving means
  • 34 is a high speed scanning part (High speed scanning delay line) as an optical path length adjusting means
  • 33a and 33b are respective polarization controllers (Polarization controllers). ).
  • 35 is an optical branching / multiplexing unit
  • 36 is an optical branching unit.
  • Reference numeral 40 denotes a photodetector
  • reference numeral 41 denotes an electronic device section (Detection electronic), which is connected to a computer 42.
  • Reference numeral 50 denotes an observed sample.
  • (B) Function The ultra-wideband SC light generated in the above is sent to the optical branching / multiplexing unit 35 via the circulator 30 and is split equally into 50/50, that is, the signal light and the reference light. Is done.
  • the signal light is sent to the OCT probe 32 via the polarization adjuster 33a, and the reference light is sent to the high speed scanning unit 34 via the polarization adjuster 33b.
  • the signal light sent to the OCT probe 32 is irradiated to the sample 50.
  • Scattered light is generated from the sample 50 by the irradiation of the signal light.
  • the focal position in the sample 50 can be changed by adjusting the interval between the two lenses shown in the figure.
  • the reference light sent to the high-speed scanning unit 34 is reflected while changing the optical path length.
  • Scattered light is received by the OCT probe 32 and sent to the optical branching / combining device 35 via the polarization adjuster 33a.
  • the reference light whose optical path length has been adjusted is sent to the optical splitter / multiplexer 35 via the polarization adjuster 33b.
  • the scattered light and the reference light are combined by the optical branching / combining device 35 to generate interference light.
  • the generated interference light is combined with the light from the aiming light irradiator 31 at a ratio of 10:90 and sent to the photodetector 40.
  • the light detector 40 that has detected the interference light outputs an interference signal corresponding thereto.
  • the interference signal is sent to the computer 42 via the electronic device unit 41 and then processed to output the position information of the sample 50.
  • FIG. 5 shows another example of the OCT apparatus used in the embodiment of the present invention. It is a figure which shows the ultra wideband SC light generation part of the OCT apparatus provided with the part.
  • FIG. 6 shows this OCT apparatus.
  • 71 is an ultra-wideband SC light generator
  • 72 is a Ti: sapphire laser
  • 73 is a polarizer
  • 74 is a polarization maintaining fiber (PMF)
  • 75 is a single mode fiber ( SMF).
  • the ultra-wideband SC light generation unit 71 generates ultra-wideband SC light having an average wavelength of 0.8 ⁇ m shown in FIG.
  • the ultra-wideband SC light generation unit 71 By using a high-intensity ultrashort pulse laser (Ti: sapphire laser) 72 and a polarization maintaining fiber (PMF) 74 exhibiting normal dispersion characteristics, unlike ordinary SC light with very large noise, the ultra-wideband SC light generation unit 71 generates low-noise, Gaussian and broadband high-precision SC light.
  • Ti sapphire laser
  • PMF polarization maintaining fiber
  • 81 is an OCT apparatus
  • 82 is the ultra-wideband SC light generation unit shown in FIG. 5
  • 83 is a balance detector
  • 84 is a computer (PC)
  • 85 is An aiming light irradiator
  • 86 and 87 are PCs for adjusting the optical path length
  • 88 is a galvanometer mirror (XY Galvo)
  • 89 is a fiber coupler.
  • the fiber coupler 89 a 1: 1 fiber coupler having a wide wavelength band is used, and a lens that compensates for chromatic dispersion in the measurement system and has a short focal length and corrected chromatic dispersion is used.
  • the interference waveform shown in FIG. 8 can be obtained by using the ultra-wideband SC light having the spectrum shown in FIG. 7 as the light source of the OCT apparatus shown in FIG. That is, a beautiful interference waveform having no side component is obtained, and ultra-high resolution measurement of 2.9 ⁇ m in air and 2.1 ⁇ m in a sample becomes possible.
  • a red reference beam is superimposed on the SC light, the sample is irradiated with laser, and the laser irradiation position is observed with a CCD camera, and the protein crystal is measured by 3D measurement. Observe the structure and arrangement of At this time, different samples on the same plate can be observed by moving the stage on which the sample is placed by automatic control.
  • a protein crystal as a sample will be described.
  • a protein crystal that is crystal-grown in a gel is preferably used. Specifically, it is preferable to grow a crystal by impregnating a protein in a gel such as agar, or by mixing the gel and the protein and allowing them to stand.
  • Example 1 protein crystals grown in a gel were observed using an optical microscope and an OCT apparatus using ultra-wideband SC light as a light source, and the observation results of both were compared.
  • Agar Solution (Gel) An agar solution was prepared using 3 mg of agar and 50 ml of ultrapure water, and then 100 ⁇ l of ultrapure water was added to 400 ⁇ l of the agar solution to obtain a gel solution.
  • FIG. 9 (a) is a microscope image and (b) is an OCT image. Although protein crystals are present during precipitation (locations indicated by ⁇ ), it is difficult to confirm the presence of crystals in the microscopic image as shown in FIG. On the other hand, in the OCT image, as shown in FIG. 9B, the lysozyme crystals can be clearly confirmed.
  • Example 2 In this example, a sample in which a protein crystal and a low molecular salt coexist was prepared, and the observation results with an optical microscope and an OCT apparatus were compared.
  • FIG. 10 shows the observation result of the optical microscope
  • FIG. 11 shows the result of the OCT observation. 10 and 11
  • the low molecular salt crystals on the left side indicate calcium phosphate
  • the protein crystals on the right side indicate lysozyme crystals.
  • the microscopic images are all transparent crystals, and it is difficult to separate them.
  • the OCT image as shown in FIG. 11, there is a clear difference in shape and signal intensity, and both can be separated.
  • Example 3 when a crystal of egg white lysozyme as a protein is grown in a gel, the state when the crystal growth is performed while changing the gel concentration is observed.
  • Agar Solution (Gel) An agar solution was prepared using 3 mg of agar and 50 ml of ultrapure water, and then 50 ⁇ l of ultrapure water was added to 450 ⁇ l of the agar solution to obtain a gel solution.
  • the growth state of the crystal in the gel was observed using the CCD camera while monitoring the position of the crystal and the irradiation light.
  • Example 4 when a crystal of lysozyme as a protein is grown in a gel, the state when the crystal is grown by changing the gel material is observed.
  • 2 ⁇ l of the obtained gel was added to the drop portion of the crystallization plate and solidified, and then a mixed solution of 2 ⁇ l of the protein solution and 2 ⁇ l of the reservoir solution was laminated on the solidified gel. Next, 100 ⁇ l of the reservoir solution was added to the reservoir portion, and allowed to stand at 20 ° C. to form protein crystals by the sitting drop vapor diffusion method.
  • the observation result (OCT image) is shown in FIG.
  • A1, C1, and E1 represent plate drop numbers, and 1%, 2%, and 6% represent final gel concentrations.
  • FIG. 14 when protein crystals are present in the solution, the occurrence of a phase difference can be confirmed in the OCT image, and the presence of protein crystals can be confirmed. And since this phase difference is visible when scattering occurs in the shape of the crystal, it can be seen that the protein crystal has a flat shape.
  • Example 5 when a crystal of Synechococcus-derived phosphophosphokinase (PRK) as a protein is grown in a gel, the state when the crystal growth is performed by changing the gel material is observed.
  • PRK Synechococcus-derived phosphophosphokinase
  • a protein crystal was formed by the same method as in Example 4 except that the above gel solution was used.
  • the presence of two protein crystals can be confirmed, but due to the difference in the scattering intensity, one (left side) has good crystallinity and the other (right side) has poor crystallinity. I understand. Thus, according to the present Example, the quality of crystallinity can be observed by the difference in scattering intensity.
  • Example 6 In this example, when a crystal of PRK as a protein is grown in a gel, the state when the crystal growth is performed using a gel material different from those in Examples 4 and 5 is observed. Further, this comparative example is observed with an optical microscope.
  • protein crystals can be observed in situ in real time with high resolution and non-destructiveness.
  • protein crystals in high turbidity samples can be observed.
  • 3D structure of crystal, 3D distribution, positional relationship between crystal and gel phase and liquid phase, salt and protein crystal, separation of incomplete crystal (amorphous) and complete crystal, identification of 3D arrangement, precipitation, aggregation, etc. Can be observed, and the distribution of the gel entering the inside of the crystal can also be observed.
  • SYMBOLS 10 Semiconductor laser 10a Light source 11 Polarization beam coupler (PBC) 12 Wavelength division multiplexing coupler (WDM) 13 High-concentration erbium-doped fiber (HC-EDF) 14 Connection with external monitor 15, 75 Single mode fiber (SMF28) 16 Normal dispersion nonlinear fiber (NDHNF) 20 Lens system 30 Circulator 31, 85 Aiming light irradiator 32 OCT probes 33a, 33b Polarization adjuster 34 High-speed scanning unit 34a Reference light mirror 35 Optical splitter / multiplexer 35a Optical splitter (beam splitter) 36 Optical branching device 40, 40a Optical detector 41 Electronic device unit 42, 84 Computer 50, 50a Sample 71, 82 Ultra-wideband SC light generating unit 72 Ti: sapphire laser 73 Polarizer 74 Polarization maintaining fiber (PMF) 83 Balance detector 86, 87 Optical path length adjustment PC 88 Galvano mirror (XY Galvo) 89 Fiber couple
  • PBC

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 タンパク質結晶の成長過程を、非破壊でリアルタイムに3次元観測して、結晶の成長を高精度に制御することにより、良質な単結晶の作製を可能とするタンパク質結晶の観測技術を提供する。 超広帯域光源から発する光を用いたOCT計測により、ゲルを用いた結晶化法により作製されるタンパク質結晶の観測を行うタンパク質結晶の観測方法。超広帯域光源が、超広帯域スーパーコンティニューム光源であるタンパク質結晶の観測方法。超広帯域スーパーコンティニューム光源から発する光の中心波長が、0.8μm帯であるタンパク質結晶の観測方法。タンパク質結晶の観測が、その場計測による観測であるタンパク質結晶の観測方法。

Description

タンパク質結晶の観測方法
 本発明は、タンパク質の良質な単結晶を作製するためのタンパク質結晶の観測方法に関する。
 ヒトゲノムの解読が終了した今日、プロテオーム研究により創薬ターゲットとなる疾患関連タンパク質の立体構造が次々と同定されている。これら疾患関連タンパク質の立体構造を解析することにより、タンパク質の働きを制御する化合物を設計することが可能となるため、創薬プロセスを大幅に短縮することができる。
 このため、X線結晶解析を用いたタンパク質の立体構造の解析を迅速かつ精度高く行う競争が激化している。
 それに伴い、自動X線回折測定装置などが開発され、さらにシンクロトロン放射光の利用や大型計算機の発達などもあり、解析装置面での環境は整いつつある(例えば、特許文献1、非特許文献1)。
 しかしながら、その一方で、このX線結晶解析に供されるタンパク質結晶の提供に関しては、充分に環境が整っているとは言い難いのが実状である。
 即ち、精度の高いX線結晶解析を行うためには、良質な単結晶を提供する必要があるが、従来は、タンパク質結晶と塩とを非破壊で分別することができず、迅速な結晶解析を妨げていた。現状では、タンパク質結晶のみを染色する試薬を用いて、塩との分別を行う方法はあるが、染色しないタンパク質結晶があること、染色には数時間を要すること、また、一度染色された結晶は解析に使用することができないなどの問題が残されている。
 また、従来は、微小結晶や高濁度溶液中の結晶を、デジタルマイクロスコープや高解像度光学顕微鏡を用いて観測しているが、深さ方向の形状観測(3次元観測)が困難であった。また、高濁度溶液中での結晶観測はより困難であった。
 また、結晶の成長をリアルタイムに非破壊で高精度に観察する方法がないため、結晶の成長を高精度に制御することができず、良質な単結晶を提供することが困難であった。さらに、結晶化能の具体的な評価系が定まっていないため、結晶化の成功率は20%以下に留まり、良質な単結晶を作製する手段を規定することが困難であるという問題もあった。
 さらに、前記したように、深さ方向の形状観測が困難であったために、解析に供する結晶の成形などのマウント操作について、人の手に委ねざるを得ないという問題もあった。
 このように、従来は、結晶の成長について、非破壊で、リアルタイムに3次元観測して、結晶の成長を高精度に制御することができないという問題があったため、良質な単結晶を提供することが困難で、前記した装置面での環境の整備を充分に活用することができていなかった。
 このため、タンパク質結晶の成長過程を、非破壊で、リアルタイムにその場計測によって3次元観測して、結晶の成長を高精度に制御することにより、良質な単結晶の作製を可能とするタンパク質結晶の観測技術が望まれていた。
 また、このような観測技術を用いたタンパク質結晶の評価技術や、タンパク質と塩との分別技術が望まれていた。
 本発明者は、上記課題に鑑み、鋭意検討の結果、以下に記載する発明により、上記課題が解決できることを見出し、本発明を完成させるに至った。以下、各請求項の発明を説明する。
 請求項1に記載の発明は、
 超広帯域光源から発する光を用いたOCT計測により、ゲルを用いた結晶化法により作製されるタンパク質結晶の観測を行うことを特徴とするタンパク質結晶の観測方法である。
 本発明者は、タンパク質結晶の成長過程を、非破壊で、リアルタイムにその場計測によって3次元観測する技術として、生体組織等の測定対象を切断せずに生体などの断層画像を取得するOCT計測(Optical Coherence Tomography:光断層計測)に着目した。
 本発明者は、このOCTの理論分解能が、光源の中心波長とスペクトルの帯域幅によって決まるものであるため、超広帯域光源を用いることにより、微小で透明度の高いタンパク質結晶でも超高分解能なイメージが得られると考えた。
 そして、実験の結果、超広帯域光源を用いることにより、超高分解能のOCT計測が実現でき、大きさ数10μmのタンパク質結晶であっても充分に観測可能であることが分かった。
 このように、本請求項の発明においては、超広帯域光源から発する光を用いることにより、タンパク質結晶の成長過程を、非破壊で、リアルタイムに3次元観測することができ、観測された情報に基づき、結晶の成長過程を高精度に制御することができるため、良質な単結晶を作製することが可能となる。
 そして、光信号による情報を適宜抽出することにより、タンパク質結晶と塩、さらには各種反応生成物を識別することができるため、タンパク質結晶を非破壊で、明確に分別することができる。
 また、光信号による情報を適宜抽出することにより、微小結晶や高濁度溶液中の結晶であっても、充分3次元観測することができる。
 さらに、計測結果に基づき結晶化能の評価系を確立することができるため、スクリーニングの自動化を図ることが可能となる。そして、結晶の深さ方向の形状評価が可能となることにより、結晶のマウント操作を自動化することも可能となる。
 また、ゲルを用いた結晶化法においては、結晶中やその周囲にゲルを配置させた場合、ゲルにより、散乱光信号を増強することができるため、より超高分解能、高感度のOCT計測を実現することができ、結晶の成長をより高精度に制御して、より良質な単結晶を作製することができる。
 即ち、X線を用いてタンパク質結晶を正確に解析するためには、透明なタンパク質結晶であることが好ましい。しかし、透明なタンパク質結晶は、後方散乱光が少ないため、その成長過程を観測することが難しい。本発明者が検討を行ったところ、散乱光信号の増強を図り、結晶の屈折率差によって生じる位相差を抽出することにより、可視化が可能となることが分かった。
 そして、ゲルを用いた結晶化法の場合、結晶中やその周囲にゲルが配置されることにより、散乱光信号が増強されるため、結晶の屈折率差によって生じる位相差を容易に抽出して、容易に可視化することができ、透明なタンパク質結晶の成長を、容易かつ高精度に制御することができる。
 なお、「超広帯域光源」とは、スペクトルの帯域幅が50~1000nmの光を発する光源を指す。具体的には、単一、または複数のSLD(スーパールミネッセントダイオード)を連結した超広帯域発光ダイオードや超広帯域スーパーコンティニューム(SC)光源などを挙げることができる。
 請求項2に記載の発明は、
 前記超広帯域光源が、超広帯域スーパーコンティニューム光源であることを特徴とする請求項1に記載のタンパク質結晶の観測方法である。
 前記したように、超広帯域光源を用いることにより、超高分解能なイメージを得ることができるが、より高感度で超高分解能なOCT計測を行うためには、本発明者が特開2008-2815号公報において示している、非線形効果によって超広帯域に広がるスーパーコンティニューム光源(SC光源)を採用することが好ましく、その内でも、低雑音、高コヒーレンスで、かつガウス型などの単峰で滑らかなスペクトル形状を有する高精度な超広帯域SC光源が好ましいことが分かった。
 なお、このような高精度な超広帯域SC光源は、そのままでは帯域が広すぎ、帯域が光ファイバで制限されてしまう通常のファイバ型OCTには用いることができないため、ファイバを用いるOCTに合わせて、例えば、スペクトルの帯域幅が100~200nmの光を発する光源が使用される。
 そして、このような超広帯域SC光源を用いた場合、高感度で超高分解能な計測が可能となると共に、直線偏光を活用した偏光依存性の計測や、非常に広く帯域を広げたときの分光計測、コヒーレンスを生かした位相差計測など高機能な計測が可能となるため、結晶の観測のみならず、その周囲環境の組成や物性などの情報も観測することができる。
 請求項3に記載の発明は、
 前記超広帯域スーパーコンティニューム光源から発する光の中心波長が、0.8μm帯であることを特徴とする請求項2に記載のタンパク質結晶の観測方法である。
 超高分解能、高感度のOCT計測を行うためには、中心波長が0.8μm帯の超広帯域SC光が好ましく、この波長の超広帯域SC光を用いることにより、深さ分解能2μm以下、感度110dB以上の超高分解能、高感度のOCT計測が現実的なものとなる。
 請求項4に記載の発明は、
 前記タンパク質結晶の観測が、その場計測による観測であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のタンパク質結晶の観測方法である。
 前記したように、超広帯域光を用いることにより、タンパク質結晶の成長過程を、非破壊で、リアルタイムに3次元計測することができるため、その場計測による高精度の観測が可能となり、その場計測された情報を適宜フィードバックすることにより、計測結果に基づき結晶化能の評価系を形成したり、スクリーニングを自動化したりすることができる。さらには、このフィードバックに基づいて、結晶の成長過程を適切に制御することにより、良質な単結晶を自動化により作製することも可能となる。そして、結晶の深さ方向の形状評価が可能となることにより、結晶のマウント操作を自動化することも可能となり、結晶の作製からX線結晶解析までの全ての過程を自動化することが望める。
 請求項5に記載の発明は、
 請求項1ないし請求項4のいずれか1項に記載のタンパク質結晶の観測方法を用いて、タンパク質結晶の評価を行うことを特徴とするタンパク質結晶の評価方法である。
 上記のタンパク質結晶の観測方法を用いることにより、高感度で超高分解能な計測が可能となると共に、直線偏光を活用した偏光依存性の計測や、非常に広く帯域を広げたときの分光計測、コヒーレンスを生かした位相差計測など高機能な計測が可能となるため、結晶の周囲環境の組成や物性などの情報も観測することができ、結晶化能の評価系を確立することができる。
 請求項6に記載の発明は、
 請求項1ないし請求項4のいずれか1項に記載のタンパク質結晶の観測方法を用いて、タンパク質結晶と塩との分別を行うことを特徴とするタンパク質結晶と塩との分別方法である。
 上記のタンパク質結晶の観測方法を用いて、光信号による情報を適宜抽出することにより、タンパク質結晶と塩とを識別することができるため、タンパク質結晶を非破壊で、明確に分別して、良質な単結晶を作製することができる。
 請求項7に記載の発明は、
 タンパク質と塩とを含有する被測定材料をゲル化してゲル液を作製するゲル液作製工程と、
 前記ゲル液から前記タンパク質を結晶化させるタンパク質結晶化工程と、
 前記タンパク質結晶化工程後の前記ゲル液を、超広帯域光源から発する光を用いてOCT計測するOCT計測工程と、
 前記OCT計測における光信号による情報を抽出することにより、前記タンパク質結晶と前記塩とを分別する分別工程と
を備えていることを特徴とするタンパク質結晶と塩との分別方法である。
 前記したように、超広帯域光源を用いることにより、タンパク質結晶を高精度に観測することが可能となる。また、ゲルを用いた結晶化法により、散乱光信号を増強して、タンパク質結晶をより容易に観測することが可能となる。
 一方、ゲルを用いた結晶化法においては、タンパク質と共に塩を用いてゲル液を作製するため、タンパク質結晶の成長と共に塩の結晶も生成される恐れがある。このため、ゲル液から成長した結晶が、タンパク質結晶か塩の結晶であるかを分別する必要がある。
 しかし、上記したように、超広帯域光源を用い、さらにゲルにより散乱光信号の増強がなされるため、OCT計測によりタンパク質結晶と塩とを容易に分別することができる。
 請求項8に記載の発明は、
 前記超広帯域光源が、超広帯域スーパーコンティニューム光源であることを特徴とする請求項7に記載のタンパク質結晶と塩との分別方法である。
 前記した通り、超広帯域SC光源を用いた場合、高感度で超高分解能な計測が可能となると共に、コヒーレンスを生かした位相差計測など高機能な計測が可能となるため、タンパク質結晶と塩とをより精度高く分別することができる。
 請求項9に記載の発明は、
 前記超広帯域スーパーコンティニューム光源から発する光の中心波長が、0.8μm帯であることを特徴とする請求項8に記載のタンパク質結晶と塩との分別方法である。
 前記した通り、中心波長が0.8μm帯の超広帯域SC光を用いることにより、深さ分解能2μm以下、感度110dB以上の超高分解能、高感度のOCT計測が可能となるため、タンパク質結晶と塩とをさらに精度高く分別することができる。
 上記したタンパク質結晶の観測は、以下に示す装置を用いて行うことが好ましい。
 即ち、本発明に係るタンパク質結晶の観測方法に用いられるOCT計測装置は、
 超広帯域光源と、
 前記超広帯域光源から発した光を、信号光と参照光とに分岐する光分岐手段と、
 前記光分岐手段により分岐された信号光を、前記タンパク質結晶に照射する信号光照射手段と、
 前記光分岐手段により分岐された参照光の光路長を調節する光路長調節手段と、
 前記光路長調節手段により光路長が変更された参照光と、前記信号光照射手段により照射され、前記タンパク質結晶により反射された散乱光との干渉信号に基づいて、前記タンパク質結晶の内部の断層情報を計測する計測手段と
を備えていることが好ましい。
 上記は、本発明に係るタンパク質結晶の観測方法に用いられる好ましいOCT計測装置を具体的に規定するものであり、以下、図2に基づいて説明する。図2は、OCT計測装置の主要部を模式的に示したものであり、OCT計測における測定原理を説明する図である。図2において、10aは光源、34aは参照光用鏡、35aは光分岐器(ビームスプリッタ)、40aは光検知器、50aは試料である。なお、参照光用鏡34aは、上下方向に移動して(移動量Δm)、参照光の光路長を変更できるようになっている。
 図2に示すように、光源10aより発せられた光は、光分岐器35aにより、試料50aに向かう信号光と参照光用鏡34aに向かう参照光とに分割される。試料50aに向かった信号光は試料50aに入射された後、反射されて散乱光を発生する。一方、参照光用鏡34aに向かった参照光は参照光用鏡34aにより反射される。このとき、試料50a内の測定深さに応じて、参照光用鏡34aを移動させ、参照光の光路長を調節する。その後、発生した散乱光と、光路長が調節された参照光とは、合波手段により、空間的に重ね合わされて、干渉を引き起こす。この干渉光が光検出器40aにより検出され、測定される。この結果、タンパク質結晶の内部の断層に応じた情報を計測することができる。
 なお、上記光検出器40による分解能ΔZは、以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
 但し、λはガウス型のスペクトルの中心波長、Δλはこのときのスペクトル幅である。
 上記の式より、Δλが大きい(帯域が広い)ほどΔZが小さくなり、高分解能となることが分かる。
 このため、本発明に係るタンパク質結晶の観測方法においては、光源の一例としてとして、図3に示すようなスペクトルを有する超広帯域SC光源を用いている。図3において、上図はこの超広帯域SC光を線形表示したものであり、下図は対数表示したものである。なお、両図において横軸は波長(nm)であり、縦軸は強度(a.u.およびdB)である。図3に示すように、この超広帯域SC光は、20dB程度の強度を示す波長1300~2000nmの広い帯域(バンド幅)において(Δλ=580nm)、強度としては2dBという平坦性を示している。このため、低雑音、高コヒーレンス、高強度の測定が可能となり、大きさ数10μmのタンパク質結晶であっても、超高分解能OCT計測を行うことができ、非破壊で、リアルタイムに3次元観測することができる。
 そして、上記OCT計測装置においては、前記超広帯域光源が、超広帯域スーパーコンティニューム光源であることが好ましい。
 前記したように、超広帯域光源を用いることにより、高分解能なイメージを得ることができ、その超広帯域光源の内でも、低雑音、高コヒーレンスで、かつガウス型などの単峰で滑らかなスペクトル形状を有する高精度な超広帯域SC光源を用いた場合、高感度で超高分解能な計測が可能となると共に、直線偏光を活用した偏光依存性の計測や、非常に広く帯域を広げたときの分光計測、コヒーレンスを生かした位相差計測など高機能な計測が可能となるため、結晶の観測のみならず、その周囲環境の組成や物性などの情報も観測することができる。
 また、本発明に係るタンパク質結晶の観測方法に用いられるタンパク質結晶の観測装置としては、上記のOCT計測装置を備えていることが好ましい。
 超高分解能、高感度のOCT計測装置を備えているため、大きさ数10μmのタンパク質結晶であっても、超高分解能、高感度のOCT計測を行うことができ、非破壊で、リアルタイムに3次元観測することができる。この結果、結晶の成長をより高精度に制御して、より良質な単結晶を作製することができ、X線結晶解析を用いたタンパク質の立体構造の迅速かつ精度高い解析に大きく寄与することができる。
 このように、超高分解能、高感度のOCT計測装置を用いることにより、超高分解能、高感度のOCT計測を行うことができるため、タンパク質結晶の成長を、非破壊で、リアルタイムに3次元観測することができる。そして、観測された情報に基づき、結晶の成長過程を高精度に制御することができるため、良質な単結晶を作製することができる。
 また、このようなタンパク質結晶の観測装置を用いることにより、前記したように、高感度で超高分解能な計測が可能となると共に、直線偏光を活用した偏光依存性の計測や、非常に広く帯域を広げたときの分光計測、コヒーレンスを生かした位相差計測など高機能な計測が可能となるため、結晶の周囲環境の組成や物性などの情報も観測することができ、結晶化能の評価系を確立することができる。
 そして、光信号による情報を適宜抽出することにより、タンパク質結晶と塩を識別することができるため、タンパク質結晶を非破壊で、明確に分別して、良質な単結晶を作製することができる。
 本発明によれば、タンパク質結晶の成長過程を、非破壊でリアルタイムに3次元観測して、結晶の成長を高精度に制御することができ、良質な単結晶の作製が可能となる。
本発明の実施の形態において用いられるOCT装置の要部の構成の一例を示す図である。 OCT計測における測定原理を示す図である。 本発明の実施の形態において用いられるOCT装置の超広帯域SC光の波長と強度の関係の一例を示す図である。 本発明の実施の形態において用いられるOCT装置の超広帯域SC光の波長と強度の関係の一例を示す図である。 本発明の実施の形態において用いられるOCT装置の別の一例における超広帯域SC光生成部を示す図である。 本発明の実施の形態において用いられるOCT装置の別の一例を示す図である。 本発明の実施の形態において用いられるOCT装置の超広帯域SC光の波長と強度の関係の一例を示す図である。 本発明の実施の形態における干渉波形の一例を示す図である。 本発明の実施例1の結晶観測における顕微鏡画像およびOCTイメージである。 本発明の実施例2の結晶観測における顕微鏡画像である。 本発明の実施例2の結晶観測におけるOCTイメージを示す図である。 本発明の実施例3におけるタンパク質の結晶のOCTイメージを示す図である。 本発明の実施例3におけるタンパク質の結晶のOCTイメージを示す図である。 本発明の実施例4におけるタンパク質の結晶のOCTイメージを示す図である。 本発明の実施例5におけるタンパク質の結晶のOCTイメージを示す図である。 本発明の実施例6におけるタンパク質の結晶のOCTイメージを示す図である。
 以下、本発明を実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。
[1]OCT装置
 最初に、OCT装置について説明する。なお、以下では、平均波長1.5μmの超広帯域SC光生成部が設けられたOCT装置と、平均波長0.8μmの超広帯域SC光生成部が設けられたOCT装置とを例に挙げて説明する。
1.平均波長1.5μmの超広帯域SC光生成部が設けられたOCT装置
 図1は、本発明の実施の形態において用いられるOCT装置の一例である平均波長1.5μmの超広帯域SC光生成部が設けられたOCT装置の要部の構成を示す図である。このOCT装置は、太い実線で示される超広帯域SC光生成部と細い実線で示される観測部に大別される。
(1)超広帯域SC光生成部
(イ)構成
 図1において、10は半導体レーザであり、11は偏光ビームカプラ(PBC)であり、12は波長分割多重カプラ(WDM)である。13は高濃度エルビウム添加ファイバ(HC-EDF)(100cm)であり、14は外部モニタとの接続部(Monitor out)である。
 15は単一モードファイバ(SMF28)であり、16は正常分散型非線形ファイバ(NDHNF)である。
 20はレンズ系であり、λ/2は半波長板を、λ/4は1/4波長板を示し、PBSは偏光ビームスプリッタを示す。また、FRはファラデー回転子を、BTは複屈折板を示す。
(ロ)機能
 半導体レーザ10は、波長976nmのレーザ光を生成する超短パルスレーザであり、図1においては、高出力化の観点より2台配置されている。また、波長976nmの光を採用しているのは、エルビウム添加ファイバの励起に適しているためである。
 2つの半導体レーザ10により生成された各レーザ光は、PBC11により偏光される。偏光された2つのレーザ光は、WDM12にて合波される。合波されたレーザ光は、高濃度エルビウム添加ファイバ13により、強度が増加されてレンズ系20に送られる。
 レンズ系20を経由し、単一モードファイバ15に至ったレーザ光は、その後、高濃度エルビウム添加ファイバ16により、図4に示すガウス型のスペクトル(平均波長1.5μm)を有する超広帯域SC光が生成される。
(2)観測部
(イ)構成
 図1において、30はサーキュレータ(Circulator)、31は照準光照射器(Aiming beam)である。
 32はスキャンニング照射受光手段としてのOCTプローブ(OCT probe)、34は光路長調整手段としての高速度走査部(High speed scanning delay line)であり、33aおよび33bはそれぞれの偏光調整器(Polarization controller)である。
 35は光分岐器兼合波器、36は光分岐器である。40は光検知器(Detector)であり、41はその電子機器部(Detection electronic)であり、コンピュータ42に接続されている。そして、50は観測される試料(Sample)である。
(ロ)機能
 上記において生成された超広帯域SC光は、サーキュレータ30を経由して、光分岐器兼合波器35に送られ、50/50、即ち、信号光と参照光とに均等に分岐される。
 信号光は、偏光調整器33aを経由して、OCTプローブ32に送られ、参照光は、偏光調整器33bを経由して、高速度走査部34に送られる。
 OCTプローブ32に送られた信号光は、試料50に照射される。この信号光の照射により、試料50から散乱光が発生する。なお、照射に際しては、図示してある2個のレンズの間隔を調節して、試料50中での焦点位置を変更することが出来る。一方、高速度走査部34に送られた参照光は、光路長を変化させて反射される。
 散乱光は、OCTプローブ32で受光され、偏光調整器33aを経由して光分岐器兼合波器35に送られる。一方、光路長が調整された参照光は偏光調整器33bを経由して光分岐器兼合波器35に送られる。
 散乱光と参照光とは、光分岐器兼合波器35において合波され、干渉光を生成する。生成された干渉光は、照準光照射器31からの光と、10:90の比率で合波されて、光検知器40へと送られる。
 干渉光を検知した光検知器40は、それに対応した干渉信号を出力する。干渉信号は、電子機器部41を経由してコンピュータ42に送られた後、処理されて試料50の位置情報を出力する。
2.平均波長0.8μmの超広帯域SC光生成部が設けられたOCT装置
 図5は、本発明の実施の形態において用いられるOCT装置の別の一例である平均波長0.8μmの超広帯域SC光生成部が設けられたOCT装置の超広帯域SC光生成部を示す図である。そして、図6は、このOCT装置を示す図である。
 図5において、71は超広帯域SC光生成部であり、72はTi:サファイアレーザであり、73は偏光器であり、74は偏波保持ファイバ(PMF)であり、75は単一モードファイバ(SMF)である。超広帯域SC光生成部71では図7に示した平均波長0.8μmの超広帯域SC光が生成される。
 高強度の超短パルスレーザー(Ti:サファイアレーザ)72と正常分散の特性を示す偏波保持ファイバ(PMF)74を用いることにより、雑音が非常に大きな一般的なSC光と異なり、高強度・低雑音・ガウス型で広帯域な高精度SC光が超広帯域SC光生成部71で生成される。
 なお、図5において、PMF74の出力に偏光子を用いた場合、直線偏光な、より高精度のSC光とすることができるため、メインの偏光成分に直交する他の小さな成分によるゴースト(余分な干渉信号)が発生する偏光度が悪い場合と異なり、より高精度な検出が可能となる。
 図6において、81はOCT装置であり、82は図5で示した超広帯域SC光生成部であり、83はバランス検出器(Balanced detector)であり、84はコンピュータ(PC)であり、85は照準光照射器であり、86、87は光路長調整用のPCであり、88はガルバノミラー(XY Galvo)であり、89はファイバカプラである。ファイバカプラ89としては波長帯域の広い1:1のファイバカプラを用い、測定系の波長分散を補償すると共に、焦点距離が短く色分散を補正したレンズを用いる。図6に示したOCT装置の光源として、図7のスペクトルを有する超広帯域SC光を用いることにより、例えば図8に示した干渉波形が得られる。即ち、サイドの成分がない綺麗な干渉波形が得られ、空気中で2.9μm、サンプル中で2.1μmの超高分解能計測が可能となる。
 なお、図6に示したOCT装置を用いた測定においては、赤色の参照ビームをSC光に重ねてサンプルにレーザを照射し、CCDカメラによりレーザの照射位置を観察しつつ、3D計測でタンパク質結晶の構造や配置を観測する。このとき、サンプルを載せた台を自動制御で動かすことにより、同じプレート上の異なるサンプルを観測することもできる。
[2]タンパク質結晶
 次に、試料であるタンパク質結晶について説明する。本実施の形態においては、ゲル中で結晶成長させたタンパク質結晶が好ましく用いられる。具体的には、寒天のようなゲル中にタンパク質を染込ませたり、ゲルとタンパク質とを混合して静置しておくことにより、結晶成長させることが好ましい。
 ゲル中で結晶成長させることにより、300nm程度の大きさのゲルの網目の中に、3~5nmの大きさのタンパク質の結晶が多数存在するため、強い散乱を得ることができ、透明で見えにくい結晶の可視化が可能となる。
 以下に、実施例を挙げ、本発明をより具体的に説明する。なお、以下の実施例においては、前記した平均波長0.8μmの超広帯域SC光生成部が設けられたOCT装置を使用した。
(実施例1)
 本実施例においては、ゲル中で結晶成長させたタンパク質結晶を、光学顕微鏡および超広帯域SC光を光源とするOCT装置を用いて観測し、両者の観測結果を比較した。
1.結晶化条件
(1)タンパク質溶液の調製
 60mgの卵白リゾチームを、1.0mlの0.1M酢酸ナトリウムに溶解させ、60mg/mlのタンパク質溶液を調製した。
(2)リザーバー溶液の調製
 0.1M濃度の酢酸ナトリウム溶液(溶媒:超純水)を調製し(pH:4.5)、さらに、5.12M濃度の塩化ナトリウムを溶かし込み、リザーバー溶液を調製した。
(3)寒天液(ゲル)の調製
 3mgの寒天と50mlの超純水を用いて寒天液を調製し、その後、寒天液400μlに超純水100μlを加え、ゲル液とした。
(4)クエン酸ナトリウム溶液の調製
 0.6M濃度のクエン酸ナトリウム溶液(溶媒:超純水)を調製した。
(5)塩化カルシウム溶液の調製
 132mgの塩化カルシウム二水和物を1mlの超純水に溶解して、1.5M濃度の塩化カルシウム溶液を調製した。
(6)タンパク質結晶の作製
 1μlのタンパク質溶液、1μlのリザーバー溶液、1μlのクエン酸ナトリウム溶液、1μlの塩化カルシウム溶液、2μlのゲル液を混和し、以下に記載する最終濃度の結晶作製溶液とした。
 タンパク質      :10mg/ml
 塩化ナトリウム    :0.85M
 酢酸ナトリウム    :0.066M、pH4.5
 クエン酸ナトリウム  :0.1M
 塩化カルシウム    :0.25M
 アガロースゲル    :1.6%
 その後、20℃で静置し、バッチ法にてタンパク質結晶を形成させた。
2.結晶化の観測
 72時間経過後、以下に示す観測条件の下、光学顕微鏡およびOCT装置を用いて、結晶の成長状況を観測した。
(1)観測条件
イ.顕微鏡観測
 光学顕微鏡:Nikon SMZ1000
 光源   :白色光
ロ.OCT観測
 ・光源   :810nm中心SC光、帯域幅134nm
 ・測定感度 :100dB
 ・光強度  :SC出力350mW、干渉計入力30mW
 ・分解能  :空気中2.9μm、サンプル中2.0μm
 ・観測領域 :横2mm×縦2mm×高さ1mm(3次元)
 ・ピクセル数:横250×縦250×高さ1000(3次元)
(2)観測結果
 観測結果を図9に示す。図9において、(a)は顕微鏡画像であり、(b)はOCTイメージである。沈殿中にタンパク質結晶が存在する(○印で示した箇所)が、図9(a)に示すように、顕微鏡画像では結晶の存在の確認が困難である。これに対して、OCTイメージでは、図9(b)に示すように、リゾチームの結晶を明確に確認することができる。
(実施例2)
 本実施例においては、タンパク質結晶と低分子塩が共存する試料を調製し、光学顕微鏡およびOCT装置による観測結果を比較した。
1.結晶化条件
(1)タンパク質溶液の調製
 72mgの卵白リゾチームを、1.0mlの0.1M酢酸ナトリウムに溶解させ、72mg/mlのタンパク質溶液を調製した。
(2)リザーバー溶液の調製
 0.1M濃度の酢酸ナトリウム溶液(溶媒:超純水)を調製し(pH:4.5)、さらに、5.12M濃度の塩化ナトリウムを溶かし込み、リザーバー溶液を調製した。
(3)寒天液(ゲル)の調製
 3mgの寒天と50mlの超純水を用いて寒天液を調製し、ゲル液とした。
(4)リン酸カリウム溶液の調製
 0.6M濃度のリン酸カリウム溶液(溶媒:超純水)を調製した(pH7.5)。
(5)塩化カルシウム溶液の調製
 22mgの塩化カルシウム二水和物を1mlの超純水に溶解して、0.15M濃度の塩化カルシウム溶液を調製した。
(6)タンパク質結晶の作製
 1μlのタンパク質溶液、1μlのリザーバー溶液、1μlのリン酸カリウム溶液、1μlの塩化カルシウム溶液、2μlのゲル溶液を混和し、以下に記載する最終濃度の結晶作製溶液とした。
 タンパク質    :12mg/ml
 塩化ナトリウム  :0.85M
 酢酸ナトリウム  :0.066M、pH4.5
 リン酸カリウム  :0.1M、pH7.5
 塩化カルシウム  :0.05M
 アガロースゲル  :2%
 その後、20℃で静置し、バッチ法にてタンパク質結晶を形成させた。
2.結晶化の観測
(1)観測条件
 72時間経過後、実施例1と同じ観測条件で顕微鏡観測およびOCT観測を行った。なお、OCT観測の観測領域(断面)は横2mm×高さ0.5mm、ピクセル数は横250×高さ500で行った。
(2)観測結果
 光学顕微鏡の観測結果を図10に示し、OCT観測の結果を図11に示す。図10、11において、左側にある低分子塩の結晶はリン酸カルシウムを示し、右側にあるタンパク質結晶はリゾチームの結晶を示している。図10に示すように、顕微鏡画像ではいずれも透明な結晶であり、両者を分別することは困難である。これに対して、OCTイメージでは、図11に示すように、形状や信号強度に明らかに差異があり、両者を分別することができる。
(実施例3)
 本実施例は、タンパク質として卵白リゾチームの結晶をゲル中で成長させるにあたって、ゲル濃度を変えて結晶成長を行ったときの様子を観測したものである。
1.結晶化条件
(1)タンパク質溶液の調製
 150mgの卵白リゾチームを、1.0mlの0.1M酢酸ナトリウムに溶解させ、150mg/mlのタンパク質溶液を調製した。
(2)リザーバー溶液の調製
 0.1M濃度の酢酸ナトリウム溶液(溶媒:超純水)を調製し(pH:4.5)、さらに、1.53M濃度の塩化ナトリウムを溶かし込み、リザーバー溶液を調製した。
(3)寒天液(ゲル)の調製
 3mgの寒天と50mlの超純水を用いて寒天液を調製し、その後、寒天液450μlに超純水50μlを加え、ゲル液とした。
(4)タンパク質結晶の作製
 2μlのゲル液、2μlのタンパク質溶液と2μlのリザーバー溶液を混和し、最終濃度50mg/mlタンパク質、0.51M塩化ナトリウム、1.8%アガロースゲルの結晶作製溶液とし、20℃で静置し、バッチ法にてタンパク質結晶を形成させた。
2.結晶化の観測
 72時間経過後、OCT観測を行った。
(1)観測条件
 ・光源  :中心波長810nmの超広帯域SC光源、帯域幅134nm
 ・測定強度:100db
 ・光強度 :SC出力350mW、干渉計入力:30mW
 上記の観測条件の下、CCDカメラを用いて、結晶と照射光との位置をモニタしながら、ゲル中における結晶の成長状況を観測した。
(2)観測結果
 観測結果(OCTイメージ)を、図12および図13に示す。図12、13において、横軸は横方向の位置を示し、縦軸は縦方向の位置を示している。なお、図12における(a)、(b)および図13における(a)~(d)は、1.8%アガロースゲル中で育成したリゾチームの結晶を示しており、それぞれは、同一サンプルの異なる測定点での測定結果である。なお、これらの2次元のイメージを組み合わせることにより、3次元イメージを作成することが可能となる。
 図12、13より、OCT計測を用いることにより、タンパク質の結晶を、ゲルや空気と鮮明に分別できることが分かる。
(実施例4)
 本実施例は、タンパク質としてリゾチームの結晶をゲル中で成長させるにあたって、ゲル材料を変えて結晶成長を行ったときの様子を観測したものである。
1.結晶化条件
 ・タンパク質溶液:リゾチーム(Lysozyme) 50mg/ml
 ・リザーバー溶液:0.1M 酢酸ナトリウム(Sodium acet
          ate)
            (pH:4.5)
          0.51M 塩化ナトリウム(Sodium chr
          olide)
 ・ゲル液:Agarose IX-A(SIGMA社製)3gを50ml      の超純水で調製し、6%ゲル液とした。この液を一度ゲル化さ      せた後、再び融解し、超純水で6倍および3倍に希釈し、1%      ゲル液および2%ゲル液とした。
 得られたゲルの2μlを、結晶化用プレートのドロップ部分に添加し、固化した後、上記タンパク質溶液2μlとリザーバー溶液2μlとの混合溶液を、固化したゲルの上に積層した。次に、リザーバー部分に、リザーバー溶液100μlを加え、20℃にて静置し、シッティングドロップ蒸気拡散法にてタンパク質結晶を形成させた。
2.結晶化の観測
 120時間経過後、各混合液を用いて、OCT観測を行った。
(1)観測条件
 実施例3と同じ観測条件で行った。
(2)観測結果
 観測結果(OCTイメージ)を、図14に示す。なお、図14において、A1、C1、E1はプレートのドロップ番号を表し、1%、2%、6%は最終ゲル濃度を表している。図14に示すように、溶液中にタンパク質結晶が存在する場合、OCTイメージにおいて位相差の発生を確認することができ、タンパク質結晶の存在を確認することができる。そして、この位相差は、結晶の形に散乱が生じることにより見えるものであるため、タンパク質結晶が扁平な形状であることが分かる。
 また、ゲル中にタンパク質結晶が存在する場合や、ゲル上にタンパク質結晶が存在する場合、OCTイメージにおいて偏光の変化を確認することができ、タンパク質結晶の存在を確認することができる。
 以上より、ゲル材料を選択することによって、溶液中、ゲル上、ゲル中の何れに形成された結晶であっても、その成長を観測することができ、結晶周囲の状況も確認できることが検証された。そして、本実施例においては、ゲル液が濁っているにも拘わらず、上記の観測を行えることが確認できた。
(実施例5)
 本実施例は、タンパク質としてSynechococcus由来phosphoribulokinase(PRK)の結晶をゲル中で成長させるにあたって、ゲル材料を変えて結晶成長を行ったときの様子を観測したものである。
1.結晶化条件
 ・タンパク質溶液:PRK 20mg/ml
 ・リザーバー溶液:0.1M MES-KOH(pH6.5)
          10%(w/v)Isopropanol
          0.2M 酢酸カリウム(Potassium ac
          etate)
 ・ゲル液:Agarose SeaKem(Lonza社製)3gを50      mlの超純水で調製し、6%ゲル液とした。この液を一度ゲル      化させた後、再び融解し、超純水で6倍、3倍および1.5倍      に希釈し、1%ゲル液、2%ゲル液、および4%ゲル液とした      。
 上記したゲル液を用いたこと以外は、実施例4と同じ方法によりタンパク質結晶を形成させた。
2.結晶化の観測
 120時間経過後、各混合液を用いて、OCT観測を行った。
(1)観測条件
 実施例3と同じ観測条件で行った。
(2)観測結果
 観測結果(OCTイメージ)を、図15に示す。なお、図15において、C1、E1、G1はプレートのドロップ番号を表し、1%、2%、4%は最終ゲル濃度を表している。また、「4μl(2μl+2μl)」は、混合溶液の量でタンパク質溶液2μlにリザーバー溶液2μlを加え総量4μlになっていることを示す。図15に示すように、本実施例においても、実施例4と同様に、溶液中、ゲル上、ゲル中の何れに形成された結晶であっても、その成長を観測することができる。そして、本実施例においても、ゲル液が濁っているにも拘わらず、上記の観測を行うことができた。
 また、図15中央図では、2つのタンパク質結晶の存在を確認することができるが、その散乱強度の違いにより、一方(左側)は結晶性が良く、他方(右側)は結晶性が悪いことが分かる。このように、本実施例によれば、散乱強度の違いにより、結晶性の良否を観測することができる。
(実施例6および比較例)
 本実施例は、タンパク質としてPRKの結晶をゲル中で成長させるにあたって、実施例4、5とは異なるゲル材料を用いて結晶成長を行ったときの様子を観測したものである。また、本比較例は、光学顕微鏡により観測したものである。
1.結晶化条件
 タンパク質溶液、およびリザーバー溶液は、実施例5と同じものを用いた。ゲル液としては、Agarose SeaPlaque(lonza社製)3gを50mlの超純水で調製したものを用いた。
 上記タンパク質溶液2μlとリザーバー溶液2μlを混合し、得られた混合溶液を結晶化用プレートのドロップ部分に添加して結晶育成溶液とした。次に、リザーバー部分に、リザーバー溶液100μlを加え、20℃にて静置し、シッティングドロップ蒸気拡散法にてタンパク質結晶を形成させた。
2.結晶化の観測
 120時間経過後、OCT観測を行った。
(1)観測条件
 実施例3と同じ観測条件で行った。
 また、比較例として、同じ試料につき、光学顕微鏡を用いて観測を行った。
(2)観測結果
 観測結果(OCTイメージ)を、図16に示す。なお、図16において、A1はプレートのドロップ番号を表し、0%はゲル濃度を表している。図16に示すように、OCTによる観測では溶液中のタンパク質結晶が確認できることが分かる。一方、光学顕微鏡では、散乱光が弱いため、表面が観測されるだけであり、結晶の成長を確認することができなかった。
 以上説明したように、本発明によれば、タンパク質結晶を高分解能、非破壊でリアルタイムにその場観測することができる。また、高濁度の試料中のタンパク質結晶を観測することができる。そして、結晶の3次元構造、3次元分布、結晶とゲル相および液相の位置関係、塩とタンパク質結晶、不完全結晶(アモルファス)と完全結晶の分離、3次元配置の特定、沈殿、凝集などを観測することができ、結晶の内部に入り込んでいるゲルの分布をも観測することができる。
10       半導体レーザ
10a      光源
11       偏光ビームカプラ(PBC)
12       波長分割多重カプラ(WDM)
13       高濃度エルビウム添加ファイバ(HC-EDF)
14       外部モニタとの接続部
15、75    単一モードファイバ(SMF28)
16       正常分散型非線形ファイバ(NDHNF)
20       レンズ系
30       サーキュレータ
31、85    照準光照射器
32       OCTプローブ
33a、33b  偏光調整器
34       高速度走査部
34a      参照光用鏡
35       光分岐器兼合波器
35a      光分岐器(ビームスプリッター)
36       光分岐器
40、40a   光検知器
41       電子機器部
42、84    コンピュータ
50、50a   試料
71、82    超広帯域SC光生成部
72       Ti:サファイアレーザ
73       偏光器
74       偏波保持ファイバ(PMF)
83       バランス検出器
86、87    光路長調整用のPC
88       ガルバノミラー(XY Galvo)
89       ファイバカプラ

Claims (9)

  1.  超広帯域光源から発する光を用いたOCT計測により、ゲルを用いた結晶化法により作製されるタンパク質結晶の観測を行うことを特徴とするタンパク質結晶の観測方法。
  2.  前記超広帯域光源が、超広帯域スーパーコンティニューム光源であることを特徴とする請求項1に記載のタンパク質結晶の観測方法。
  3.  前記超広帯域スーパーコンティニューム光源から発する光の中心波長が、0.8μm帯であることを特徴とする請求項2に記載のタンパク質結晶の観測方法。
  4.  前記タンパク質結晶の観測が、その場計測による観測であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のタンパク質結晶の観測方法。
  5.  請求項1ないし請求項4のいずれか1項に記載のタンパク質結晶の観測方法を用いて、タンパク質結晶の評価を行うことを特徴とするタンパク質結晶の評価方法。
  6.  請求項1ないし請求項4のいずれか1項に記載のタンパク質結晶の観測方法を用いて、タンパク質結晶と塩との分別を行うことを特徴とするタンパク質結晶と塩との分別方法。
  7.  タンパク質と塩とを含有する被測定材料をゲル化してゲル液を作製するゲル液作製工程と、
     前記ゲル液から前記タンパク質を結晶化させるタンパク質結晶化工程と、
     前記タンパク質結晶化工程後の前記ゲル液を、超広帯域光源から発する光を用いてOCT計測するOCT計測工程と、
     前記OCT計測における光信号による情報を抽出することにより、前記タンパク質結晶と前記塩とを分別する分別工程と
    を備えていることを特徴とするタンパク質結晶と塩との分別方法。
  8.  前記超広帯域光源が、超広帯域スーパーコンティニューム光源であることを特徴とする請求項7に記載のタンパク質結晶と塩との分別方法。
  9.  前記超広帯域スーパーコンティニューム光源から発する光の中心波長が、0.8μm帯であることを特徴とする請求項8に記載のタンパク質結晶と塩との分別方法。
PCT/JP2011/071332 2010-09-22 2011-09-20 タンパク質結晶の観測方法 WO2012039377A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012535029A JP5545580B2 (ja) 2010-09-22 2011-09-20 タンパク質結晶の観測方法
US13/825,280 US9182216B2 (en) 2010-09-22 2011-09-20 Method for observing protein crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-212316 2010-09-22
JP2010212316 2010-09-22

Publications (1)

Publication Number Publication Date
WO2012039377A1 true WO2012039377A1 (ja) 2012-03-29

Family

ID=45873864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071332 WO2012039377A1 (ja) 2010-09-22 2011-09-20 タンパク質結晶の観測方法

Country Status (3)

Country Link
US (1) US9182216B2 (ja)
JP (1) JP5545580B2 (ja)
WO (1) WO2012039377A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003917A (ja) * 2002-03-22 2004-01-08 Ishikawajima Inspection & Instrumentation Co 結晶観察方法及び装置
JP2004323336A (ja) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd 蛋白質結晶観察装置
JP2005009949A (ja) * 2003-06-18 2005-01-13 Institute Of Physical & Chemical Research タンパク質結晶化状態判定方法およびそのシステム
JP2007528500A (ja) * 2004-03-11 2007-10-11 ザ・ゼネラル・ホスピタル・コーポレーション 蛍光タンパク質を使用する断層撮影イメージングのための方法およびシステム
JP2007285884A (ja) * 2006-04-17 2007-11-01 Tsubakimoto Chain Co 蛋白質結晶化観察方法及び蛋白質結晶化観察装置
JP2008002815A (ja) * 2006-06-20 2008-01-10 Univ Nagoya 波長変化パルス光発生装置およびこれを用いた光断層計測装置
WO2009015209A1 (en) * 2007-07-23 2009-01-29 Rigaku Automation Inc. Computer controllable led light source for device for inspecting microscopic objects

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090080611A1 (en) 2001-10-18 2009-03-26 Ganz Brian L Computer Controllable LED Light Source for Device for Inspecting Microscopic Objects
US7416708B2 (en) * 2003-04-01 2008-08-26 Nihon University Method of measuring protein solubility, process for producing crystal and apparatus therefor
EP1630263A4 (en) 2003-05-27 2009-06-03 Japan Aerospace Exploration DEVICE AND METHOD FOR PRODUCING BIOPOLYMER CRYSTALS
GB0525559D0 (en) * 2005-12-15 2006-01-25 Oxford Diffraction Ltd In-situ crystalline material screening apparatus and method
JP5099499B2 (ja) 2007-11-07 2012-12-19 独立行政法人理化学研究所 サンプルピン保持アタッチメント
JP5351771B2 (ja) 2008-01-17 2013-11-27 株式会社創晶 結晶製造方法、凍結結晶製造方法、結晶、結晶構造解析方法、結晶化スクリーニング方法、結晶化スクリーニング装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003917A (ja) * 2002-03-22 2004-01-08 Ishikawajima Inspection & Instrumentation Co 結晶観察方法及び装置
JP2004323336A (ja) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd 蛋白質結晶観察装置
JP2005009949A (ja) * 2003-06-18 2005-01-13 Institute Of Physical & Chemical Research タンパク質結晶化状態判定方法およびそのシステム
JP2007528500A (ja) * 2004-03-11 2007-10-11 ザ・ゼネラル・ホスピタル・コーポレーション 蛍光タンパク質を使用する断層撮影イメージングのための方法およびシステム
JP2007285884A (ja) * 2006-04-17 2007-11-01 Tsubakimoto Chain Co 蛋白質結晶化観察方法及び蛋白質結晶化観察装置
JP2008002815A (ja) * 2006-06-20 2008-01-10 Univ Nagoya 波長変化パルス光発生装置およびこれを用いた光断層計測装置
WO2009015209A1 (en) * 2007-07-23 2009-01-29 Rigaku Automation Inc. Computer controllable led light source for device for inspecting microscopic objects

Also Published As

Publication number Publication date
US20130184445A1 (en) 2013-07-18
JPWO2012039377A1 (ja) 2014-02-03
US9182216B2 (en) 2015-11-10
JP5545580B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
JP2006195240A (ja) 断層画像化装置
JP2017512989A (ja) 遠隔偏光測定装置および方法
JP2007510963A (ja) デジタル画像化組立品、及びその方法
EP4194923A1 (en) Observation device and observation method
US9170411B2 (en) Scanning optical microscope
CN108287059A (zh) 高精度近红外激光光束质量测量分析装置
US20140009826A1 (en) Non-linear microscopy and non-linear observation method
JP5002604B2 (ja) 偏光位相顕微鏡
JP2005309415A (ja) 光学顕微鏡と光学的観察方法
JP5545580B2 (ja) タンパク質結晶の観測方法
US11880027B2 (en) High-speed stereo 3D multimodal imaging system and method
JP2010142570A (ja) 内視鏡光学系
US20240142370A1 (en) Circularly polarized light illuminator, analysis device, and microscope
JP2019045431A (ja) 光画像計測装置
JP7174604B2 (ja) 光画像計測装置、光画像計測方法
JP3365474B2 (ja) 偏光性イメージング装置
WO2016126250A1 (en) Particle tracking using spatiotemporal offset light beams
JP5827507B2 (ja) 偏光解析システム
CN108507985B (zh) 四维荧光共振能量转移效率可视显微分析系统及方法
JP5970824B2 (ja) 光干渉観察装置
Schaub et al. Polarimetric contrast microscopy by orthogonality breaking
JP6784396B2 (ja) 円偏光照射器、分析装置及び顕微鏡
JP2012202777A (ja) 観察装置および観察方法
KR20220012989A (ko) 광학 현미경
De Angelis et al. Analysis of bovine sperm cells by a combined holographic and Raman microscopy approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826822

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012535029

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13825280

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826822

Country of ref document: EP

Kind code of ref document: A1