WO2012035846A1 - 電極マウント及びそれを用いた高圧放電ランプ並びにその製造方法 - Google Patents

電極マウント及びそれを用いた高圧放電ランプ並びにその製造方法 Download PDF

Info

Publication number
WO2012035846A1
WO2012035846A1 PCT/JP2011/064770 JP2011064770W WO2012035846A1 WO 2012035846 A1 WO2012035846 A1 WO 2012035846A1 JP 2011064770 W JP2011064770 W JP 2011064770W WO 2012035846 A1 WO2012035846 A1 WO 2012035846A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode shaft
shaft portion
mount
pressure discharge
Prior art date
Application number
PCT/JP2011/064770
Other languages
English (en)
French (fr)
Inventor
篤史 大野
和志 冨永
信一 武正
Original Assignee
岩崎電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩崎電気株式会社 filed Critical 岩崎電気株式会社
Priority to CN2011800040677A priority Critical patent/CN102576636A/zh
Priority to EP11824309.6A priority patent/EP2509093A4/en
Priority to CA2772118A priority patent/CA2772118A1/en
Priority to US13/395,733 priority patent/US8795019B2/en
Publication of WO2012035846A1 publication Critical patent/WO2012035846A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/28Manufacture of leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • H01J61/368Pinched seals or analogous seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • H01J61/86Lamps with discharge constricted by high pressure with discharge additionally constricted by close spacing of electrodes, e.g. for optical projection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/32Sealing leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/32Sealing leading-in conductors
    • H01J9/323Sealing leading-in conductors into a discharge lamp or a gas-filled discharge device

Definitions

  • the present invention generally relates to an electrode mount, a high-pressure discharge lamp using the same, and a method of manufacturing the same, and more specifically, an electrode mount that prevents bending of an electrode shaft portion embedded in a sealing portion and a high-pressure using the same. It relates to a discharge lamp.
  • FIG. 7 shows a general high-pressure discharge lamp 11 (for example, an ultra-high pressure mercury lamp) used for a projector light source or the like.
  • the high-pressure discharge lamp 11 includes the arc tube 2 and a pair of electrode mounts included therein.
  • the arc tube 2 includes a discharge space 3 and a pair of sealing portions 4 sandwiching the discharge space 3, and each electrode mount includes an electrode 5, a metal foil 6 and a lead wire 7 welded to each other.
  • the tip side of the electrode 5 is exposed to the discharge space 3 of the arc tube 2, and a part of the electrode shaft part 5 a on the base side of the electrode 5, a part of the metal foil 6 and the lead wire 7 are embedded in the sealing part 4.
  • the discharge space 3 is filled with 0.15 mg / mm 3 or more of mercury, rare gas, and halogen gas, and the mercury vapor pressure during lighting becomes 150 atmospheres or more.
  • the high-pressure discharge lamp (hereinafter referred to as “lamp”) is repeatedly turned on and off, but the difference in thermal expansion coefficient between the electrode shaft portion (tungsten) and the sealing portion (quartz glass) during lighting and extinguishing. Due to this, there has been a problem that the electrode shaft portion is bent.
  • the mechanism of the bending of the electrode shaft is as follows. First, during lighting, the electrode shaft portion expands in the radial direction and expands toward the discharge space, whereas the thermal expansion coefficient of quartz glass in the sealing portion is much smaller than that of the electrode shaft portion. Compared to almost no expansion. With the quartz glass of the sealing portion maintained in its shape, the electrode shaft portion expands, so that the electrode shaft portion closely adheres to a part of the sealing portion.
  • the closely contacted portion of the electrode shaft portion maintains the state, and the other portions are separated (a gap is formed). That is, the electrode shaft portion is bent as a result of the shrinkage of the closely contacting portion of the electrode shaft portion being restricted while the shrinkage of the gap portion is not restricted. This bending of the electrode shaft causes problems such as a shift of the optical axis and a decrease in illuminance.
  • Patent Document 1 In order to solve the above-described problem of bending of the electrode shaft portion, in Patent Document 1, a taper portion that narrows from the root to the tip is provided in the electrode shaft portion, and the contraction of the electrode shaft portion is not easily restricted by the sealing portion quartz glass. It is configured.
  • the inner surface of a sealing part (quartz glass) and the outer surface of an electrode shaft part make the contact part small, and mutually support, and expansion and contraction of an electrode shaft part are sealing parts (quartz). Glass) so that it is not obstructed by the inner surface.
  • the inner surface structure of the sealing portion (quartz glass) is configured such that the cross section thereof becomes a triangle or the like or has a convex portion, thereby reducing the contact portion with the electrode shaft portion. ing.
  • Patent Document 1 the configuration of the electrode shaft portion becomes complicated, resulting in a significant increase in processing cost in electrode production. Moreover, the device which ensures the intensity
  • the processing of the sealing portion becomes complicated, resulting in a significant increase in processing cost in arc tube production.
  • the sealing part needs to take into account the problem of cracks due to thermal stress, and the structure in which the stress of the quartz glass itself or the stress from the electrode shaft part is uniformly distributed in the radial direction. Therefore, it is desirable that the sealing section has a circular cross section.
  • an object of the present invention is to provide an electrode mount that prevents bending of an electrode shaft portion by a method that minimizes an increase in production cost in an electrode for a high-pressure discharge lamp. Furthermore, it aims at finding out a useful structure also in the structure which can input the big current in a high watt lamp.
  • the first aspect of the present invention is a method for manufacturing an electrode mount for a high-pressure discharge lamp.
  • the manufacturing method includes a step of heat-treating an electrode mount made of an electrode and a metal foil that are welded to each other, and an oxidation step of forming an oxidized portion that generates an oxide by laser irradiation on the surface of the electrode shaft portion.
  • the laser irradiation position is determined so that all or part of the oxidation portion is included in the sealing portion.
  • the second aspect of the present invention is a method for manufacturing a high-pressure discharge lamp.
  • the manufacturing method includes a step of heat-treating an electrode mount in which electrodes and lead wires are welded to both ends of a metal foil, a step of forming an oxidized portion that generates an oxide by laser irradiation on the surface of the electrode shaft portion, and an electrode mount. Is embedded in the arc tube of the high-pressure discharge lamp to form a sealing portion. The laser irradiation position is determined so that all or part of the oxidized portion is included in the sealing portion.
  • the third aspect of the present invention is an electrode mount for a high-pressure discharge lamp.
  • the electrode mount includes a metal foil and an electrode welded to one end of the metal foil.
  • An oxidation part that generates oxide by laser irradiation is formed on the surface of the electrode shaft part, and when the electrode mount is embedded in the sealing part of the high-pressure discharge lamp, all or part of the oxidation part is included in the sealing part. Thus, an oxidation part is formed.
  • a high-pressure discharge lamp comprising the electrode mount on the third side further provided with a lead wire connected to the other end of the metal foil, and an arc tube including the electrode mount in the sealing portion. is there.
  • the oxidation step determines the intensity of the laser so that the laser is irradiated on one side of the electrode shaft portion to form an oxidation portion around the entire surface of the electrode shaft portion.
  • the oxidation portion is formed so as to cover at least 30% of the discharge space side of (1) the buried portion of the electrode shaft portion, or (2) the buried electrode shaft portion. It is formed so as to cover at least 65% of the portion.
  • FIG. 1 shows a high-pressure discharge lamp 1 including the electrode mount of the present invention.
  • the high-pressure discharge lamp 1 includes an arc tube 2 and a pair of electrode mounts 8 (see FIG. 3A).
  • the arc tube 2 includes a discharge space 3 and a pair of sealing portions 4 sandwiching the discharge space 3, and the electrode mounts 8 are welded to each other.
  • the electrode 5, the metal foil 6, and the lead wire 7 are formed.
  • the discharge side of the electrode 5 is exposed to the discharge space 3, and a part of the electrode shaft part 5 a, a part of the metal foil 6 and the lead wire 7 are embedded in the sealing part 4.
  • an oxidized portion 5b (hereinafter referred to as “oxidized portion 5b”) in which an oxide is generated is formed in a portion where the electrode shaft portion 5a is buried.
  • the discharge space 3 is filled with 0.15 mg / mm 3 or more of mercury, rare gas, and halogen gas, and the mercury vapor pressure during lighting becomes 150 atmospheres or more.
  • the effect of forming the oxidized portion 5b in the buried portion of the electrode shaft portion 5a is as follows. Since the electrode shaft portion 5a is made of tungsten, the oxidized portion 5b is tungsten oxide. Tungsten has low adhesion to tungsten oxide, while quartz glass has reducibility, and thus has high adhesion to tungsten oxide. Therefore, even when a part of the oxidized portion 5b of the electrode shaft portion 5a is in close contact with the quartz glass of the sealing portion 4 when the lamp is turned off, that is, during cooling, the electrode shaft portion 5a is difficult to adhere to the oxidized portion 5b. The partial contraction between the oxidized portion 5b and the sealing portion 4 does not inhibit the contraction of the electrode shaft portion 5a.
  • the electrode shaft portion 5a is subjected to a uniform mode (substantially uniform stress in the radial direction and the axial direction) when the lamp is turned on. State), and when the lamp is extinguished, it can contract in a uniform manner and return to its original position.
  • the oxidation part 5b functions as a buffer material.
  • the oxidation part 5b is desirably formed over the entire surface of the electrode shaft part 5a in order to obtain a uniform aspect in the radial direction and the axial direction as described above, the function as the buffer material described above As long as this is satisfied, the effects of the present invention can be enjoyed even if the oxidized portion 5b does not necessarily exist over the entire circumference.
  • FIG. 2 shows a flowchart of the electrode mount and lamp manufacturing method of the present invention.
  • step S10 as shown in FIG. 3A, the electrode 5 is welded to one end of the metal foil 6, and the lead wire 7 is welded to the other end to constitute the electrode mount 8. Resistance welding can be used for welding. In addition, you may weld the lead wire 7 to the metal foil 6 after process S12 or S14 mentioned later.
  • step S12 the electrode mount 8 obtained in step S10 is heat-treated.
  • the heat treatment is performed by exposing the electrode mount 8 to a hydrogen atmosphere at 900 to 1000 ° C. for 10 minutes. Thereby, impurities on the electrode mount are removed.
  • an oxidized portion 5b is formed on a predetermined portion of the surface of the electrode shaft portion 5a.
  • the position of the oxidized portion 5b is determined so that all or part (most) of the oxidized portion 5b is included in the sealing portion 4 when the electrode mount 8 is embedded in the sealing portion 4 in step S20 described later. Is done. That is, the oxidized portion 5 b may be completely embedded in the sealing portion 4 or may be slightly exposed in the discharge space 3. Actually, it is desirable to provide the oxidized portion 5b so that the oxidized portion 5b is somewhat exposed to the discharge space 3 in consideration of manufacturing variations. Thereby, the electrode mount 8 of the present invention is completed.
  • the oxidation step of step S14 is performed by irradiating the surface of the electrode shaft portion 5a with a laser.
  • a laser Specifically, SU-LASER MAX-150P (main body), MODEL FOL-30-THM II-F / 100-WD100, emission diameter ⁇ 0.8 mm (exit unit) is used as a laser irradiation device. be able to. Then, the distance from the emitting unit to the electrode shaft portion 5a is set to 90 mm, the laser is irradiated on one side of the electrode shaft portion 5a, and the emission intensity of the laser is determined and set so as to form an oxidized portion on the entire surface. That's fine. As described above, when the oxidation portion is provided on the entire surface, there is no need to rotate the electrode shaft portion 5a or the laser irradiation device with respect to the electrode shaft, so that the oxidation step can be easily performed.
  • step S20 as shown in FIG. 3C, the electrode mount 8 is embedded in the arc tube 2, and the sealing portion 4 is formed. As described above, in this step, all or a part (most part) of the oxidized portion 5 b of the electrode shaft portion 5 a is embedded in the sealing portion 4, and mercury and an enclosed gas are enclosed in the discharge space 3. Thereby, the high-pressure discharge lamp of the present invention is completed.
  • the specifications of the lamp used in Experiment 1 will be described.
  • the arc tube 2 is made of high-purity quartz glass, and the internal capacity of the discharge space 3 is 0.086 cc.
  • the discharge space 3 is filled with about 280 mg / cc of mercury, 20 kPa of rare gas (for example, argon), and halogen gas.
  • the input lamp power is 230W.
  • the electrode shaft portion 5a is made of tungsten and has a shaft portion diameter of 0.45 mm. A coil is wound around the tip end and melted.
  • the buried portion L of the electrode shaft portion 5a is about 2.1 mm, and the oxidized portion 5b is provided with a length of about 1 mm from the end portion on the metal foil 6 side in the electrode tip direction.
  • the oxidation part 5b was provided only on one electrode shaft part.
  • a first oxidized portion having a width of 1 mm is formed in the electrode shaft portion 5a with a distance of 0.5 mm from the end portion on the metal foil 6 side in the electrode tip direction.
  • a second oxidized portion having a width of 1 mm is formed at a position substantially connected to the first oxidized portion. Therefore, the buried portion on the discharge space side from the second oxidation portion is left by 0.4 mm.
  • said substantially connected position means that the 1st oxidation part and the 2nd oxidation part are substantially continuous as a result of performing laser irradiation with respect to two places.
  • the position of the oxidized portion 5b is on the discharge space side where the temperature is higher in the buried portion. This is because the stress acting on each other due to the difference between the expansion coefficient of quartz glass of the sealing part 4 and the thermal expansion coefficient of the electrode shaft part 5a is larger on the discharge side where the temperature is higher than that on the metal foil side. This is because it is effective to take measures against bending. Naturally, it is difficult to obtain the effects of the present invention unless the oxidation portion 5b is provided in a predetermined range or more.
  • Experiment 3 was performed to confirm a suitable position and range of the oxidized portion.
  • the specification of the lamp used in Experiment 3 will be described with reference to FIG. Only the position of the oxidation part 5b is different from the lamp used in Experiment 2.
  • the positions A, B, and C each having a width of 1 mm are defined from the metal foil side end of the electrode shaft portion 5a toward the discharge space, and the oxidized portion is provided at any one or two positions.
  • the electrode shaft portion was not bent in the lamp in which only the position C, the positions A and C, and the positions B and C were provided with the oxidation portion.
  • failure due to causes other than the bending of the electrode shaft portion occurred, and the presence or absence of bending was not confirmed, but the conditions regarding the position and range of the oxidation portion are similar to the lamp used in Experiment 2. It can be estimated that no bending occurs.
  • the oxidation portion is (1) at least about 30% ( ⁇ 0.9 / 2.9) on the discharge space side of the buried portion of the electrode shaft portion. Or (2) covering at least about 65% ( ⁇ (0.9 + 1.0) /2.9) of the embedded portion of the electrode shaft portion in a high watt lamp It was also confirmed that the bending of the electrode shaft portion can be prevented.
  • the ultra high pressure mercury lamp has been described as an example, but the present invention can also be applied to a general high pressure discharge lamp.
  • the oxidized portion is formed on both of the pair of electrode shaft portions, but only one of them may be used.
  • the electrode mount on the high temperature side where the bending of the electrode shaft portion is more likely to occur for example, the electrode mount placed on the reflector neck when the lamp is attached to the reflector, or the lamp has not only the reflector but also a secondary mirror.
  • the oxidation portion When attached, the oxidation portion may be formed only on the electrode mount disposed on the secondary mirror side. Of course, in this case, it is necessary to be able to identify which side of the electrode mount the oxidized portion is formed in the completed lamp. (3) In this embodiment, the position and width of the oxidized portion in the electrode axis direction are constant. For example, the oxidized portion is formed in a spiral shape with respect to the electrode shaft portion or formed in a dot shape. Such forms may be included in the scope of the present invention. However, in this case, it is necessary to rotate the electrode shaft portion or the laser irradiation device with respect to the electrode shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

高圧放電ランプ用の電極マウントにおいて、生産コストの増加を最小限とする方法によって電極軸部の曲がりを防止する。高圧放電ランプ用の電極マウントの製造方法において、相互に溶接された電極及び金属箔からなる電極マウントを加熱処理する工程、及び電極軸部の表面にレーザ照射により酸化物を生成した酸化部を形成する酸化工程を備え、電極マウントが高圧放電ランプの封止部に埋設されるときに酸化部の全部又は一部が封止部に含まれるようにレーザの照射位置が決定される。

Description

電極マウント及びそれを用いた高圧放電ランプ並びにその製造方法
 本発明は概略として電極マウント及びそれを用いた高圧放電ランプ並びにその製造方法に関し、より具体的には、封止部に埋設される電極軸部の曲りを防止した電極マウント及びそれを用いた高圧放電ランプに関する。
 図7にプロジェクタ用光源等に用いられる一般的な高圧放電ランプ11(例えば、超高圧水銀ランプ)を示す。高圧放電ランプ11は発光管2及びそれに含まれる一対の電極マウントからなる。発光管2は放電空間3及びそれを挟んだ一対の封止部4からなり、各電極マウントは互いに溶接された電極5、金属箔6及びリード線7からなる。電極5の先端側が発光管2の放電空間3に露出され、電極5の根元側の電極軸部5aの一部、金属箔6及びリード線7の一部が封止部4に埋設される。放電空間3には0.15mg/mm以上の水銀、希ガスおよびハロゲンガスが封入され、点灯時の水銀蒸気圧は150気圧以上になる。
 ところで、高圧放電ランプ(以下、「ランプ」という)は点灯、消灯を繰り返して使用されるが、点灯時及び消灯時に電極軸部(タングステン)と封止部(石英ガラス)の熱膨張率の差に起因して電極軸部が曲がってしまうという問題があった。電極軸部の曲がり発生のメカニズムは次の通りである。まず、点灯時に電極軸部は径方向に膨張すると共に放電空間側に膨張するのに対し、封止部の石英ガラスの熱膨張率が電極軸部のそれよりもはるかに小さいため、電極軸部に比べてほとんど膨張しない。封止部の石英ガラスがその形状を維持した状態で、電極軸部が膨張することによって電極軸部は封止部の一部に密着する。その後、ランプを消灯すると、電極軸部は元の位置に戻ろうとして収縮する際に、電極軸部の密着した部分はその状態を維持し、他の部分は離隔する(隙間ができる)。即ち、電極軸部の密着した部分は収縮が制限される一方で隙間部の収縮は制限されない結果として、電極軸部が曲がることになる。この電極軸部の曲がりは光軸のずれや照度の低下といった問題をもたらす。
 上記の電極軸部の曲がりの問題を解決するために、特許文献1では、電極軸部に根元から先端にかけて細くなるテーパー部を設け、電極軸部の収縮が封止部石英ガラスによって制限され難い構成としている。
 また、特許文献2では、封止部(石英ガラス)の内面と電極軸部の外面とがその接触部を小さくして互いに支持する構成とし、電極軸部の膨張及び収縮が封止部(石英ガラス)の内面によって阻害されないようにしている。具体的には、封止部(石英ガラス)の内面構造について、その断面が三角形等になるように、或いは凸状部分を有するように構成することによって、電極軸部との接触部分を小さくしている。
特開2009-99338号公報 特開2009-146590号公報
 しかし、特許文献1では、電極軸部の構成が複雑となり、電極の生産における加工コストの大幅な増加がもたらされてしまう。また、テーパー部の細い側の強度を確保する工夫が必要であり、例えば全体を太くすると所望の熱容量範囲を超えてしまう。さらに、電極の加工は高い精度が要求されるので、高い歩留りを達成するためにもその形状はできるだけシンプルなものが望まれる。
 また、特許文献2でも、封止部の加工が複雑となり、発光管生産における加工コストの大幅な増加がもたらされてしまう。特に、封止部は上記の問題以外にも熱的なストレスによるクラックの問題も考慮する必要があり、石英ガラス自体の応力又は電極軸部からの応力が径方向に均一に分散される構成とすることが望ましく、従って封止部断面は円形とすることが望ましい。
 そこで、本発明は、高圧放電ランプ用電極において、生産コストの増加を最小限とする方法によって電極軸部の曲がりを防止する電極マウントを提供することを目的とする。さらに、高ワットランプにおける大電流を投入可能な構成においても有用な構成を見出すことを目的とする。
 本発明の第1の側面は、高圧放電ランプ用の電極マウントの製造方法である。その製造方法は、相互に溶接された電極及び金属箔からなる電極マウントを加熱処理する工程、及び電極軸部の表面にレーザ照射により酸化物を生成した酸化部を形成する酸化工程を備える。電極マウントが高圧放電ランプの封止部に埋設されるときに酸化部の全部又は一部が封止部に含まれるようにレーザ照射位置が決定される。
 本発明の第2の側面は、高圧放電ランプの製造方法である。その製造方法は、金属箔の両端に電極及びリード線が溶接された電極マウントを加熱処理する工程、電極軸部の表面にレーザ照射により酸化物を生成した酸化部を形成する工程、及び電極マウントを高圧放電ランプの発光管に埋設し、封止部を形成する工程を備える。レーザ照射位置は酸化部の全部又は一部が封止部に含まれるように決定される。
 本発明の第3の側面は、高圧放電ランプ用の電極マウントである。その電極マウントは金属箔及び金属箔の一端に溶接された電極を備える。電極軸部の表面にレーザ照射による酸化物を生成した酸化部が形成され、電極マウントが高圧放電ランプの封止部に埋設されるときに酸化部の全部又は一部が封止部に含まれるように酸化部が形成される。
 本発明の第4の側面は、金属箔の他端に接続されたリード線をさらに備えた上記第3の側面の電極マウント、及び封止部に電極マウントを含む発光管からなる高圧放電ランプである。
 上記第1及び第2の側面において、好ましくは、酸化工程が、レーザを電極軸部の片側に照射して電極軸部の表面全周に酸化部を形成するようにレーザの強度を決定することを含む。
 また、上記第1から第4の側面において、好ましくは、酸化部が(1)電極軸部の埋設部の少なくとも放電空間側30%を覆うように形成され、又は(2)電極軸部の埋設部のうちの少なくとも65%を覆うように形成される。
本発明の高圧放電ランプの図である。 本発明の電極マウント及び高圧放電ランプの製造方法のフローチャートである。 本発明の電極マウントの製造方法を説明する図である。 本発明の電極マウントの製造方法を説明する図である。 本発明の封止部を形成する工程を説明する図である。 本発明の酸化部の形成箇所を説明する図である。 本発明の酸化部の形成箇所を説明する図である。 本発明の電極性能を確認する図である。 本発明の電極性能を確認する図である。 従来の高圧放電ランプの図である。
 図1に本発明の電極マウントを含む高圧放電ランプ1を示す。高圧放電ランプ1は発光管2及び一対の電極マウント8(図3A参照)からなり、発光管2は放電空間3及びそれを挟んだ一対の封止部4からなり、各電極マウント8は互いに溶接された電極5、金属箔6及びリード線7からなる。電極5の放電側が放電空間3に露出され、電極軸部5aの一部、金属箔6及びリード線7の一部が封止部4に埋設される。そして、電極軸部5aの埋設される一部に酸化物を生成した酸化部5b(以下、「酸化部5b」という)が形成される。放電空間3には0.15mg/mm以上の水銀、希ガスおよびハロゲンガスが封入され、点灯時の水銀蒸気圧は150気圧以上になる。
 上述のように、電極軸部5aの埋設部に酸化部5bを形成することによる効果は以下の通りである。電極軸部5aはタングステンからなるので、酸化部5bは酸化タングステンである。タングステンは酸化タングステンとの密着性が小さい一方で、石英ガラスは還元性を有するので酸化タングステンとの密着性が高い。そのため、ランプ消灯時、即ち、冷却時に電極軸部5aの酸化部5bの一部が封止部4の石英ガラスに密着されても、電極軸部5aは酸化部5bには密着し難いので、酸化部5bと封止部4の部分的な密着によっては電極軸部5aの収縮は阻害されないことになる。即ち、酸化部5bが電極軸部5aと封止部4の接触部に形成されていれば、ランプ点灯時に電極軸部5aは均一な態様(径方向及び軸方向にほぼ均一な応力がかかった状態)で膨張し、ランプ消灯時には均一な態様で収縮して元の位置に戻ることができる。言い換えると、酸化部5bは緩衝材として機能していることになる。上記構成により、ランプ点灯・消灯の繰り返しによる電極軸部の曲がりを防止できる。
 なお、酸化部5bは、上記のように径方向及び軸方向に均一な態様を得るためにも電極軸部5aの表面全周にわたって形成されていることが望ましいが、上記の緩衝材としての機能を果たす限りは必ずしも全周にわたって酸化部5bが存在していなくても本発明の効果を享受できる。
 図2に本発明の電極マウント及びランプの製造方法のフローチャートを示す。
 工程S10において、図3Aに示すように、金属箔6の一端に電極5を溶接し、他端にリード線7を溶接して電極マウント8を構成する。溶接には抵抗加熱溶接を用いることができる。なお、リード線7は後述する工程S12又はS14の後で金属箔6に溶接してもよい。
 工程S12において、工程S10で得られた電極マウント8を加熱処理する。加熱処理は電極マウント8を900~1000℃の水素雰囲気中に10分間曝すことにより行う。これにより、電極マウント上の不純物を除去する。
 工程S14において、図3Bに示すように、電極軸部5aの表面の所定部分に酸化部5bを形成させる。酸化部5bの位置は、後述する工程S20で電極マウント8が封止部4に埋設されるときに、酸化部5bの全部又は一部(大部分)が封止部4に含まれるように決定される。即ち、酸化部5bが封止部4に完全に埋設されてもよいし、放電空間3に多少露出していてもよい。実際には、製造バラツキを考慮して、酸化部5bが放電空間3に多少露出される程度に酸化部5bを設けることが望ましい。これにより、本発明の電極マウント8が完成する。
 工程S14の酸化工程はレーザを電極軸部5aの表面に照射することにより行う。具体的には、レーザ照射装置としてティー・エイチ・エム製、Supoer-LASER MAX-150P(本体)、MODEL FOL-30-THM II-F/100-WD100 出射径φ0.8mm(出射ユニット)を用いることができる。そして、出射ユニットから電極軸部5aまでの距離を90mmとして、レーザを電極軸部5aの片側に照射して、その表面全周に酸化部を形成するようにレーザの出射強度を決定及び設定すればよい。このように、表面全周に酸化部を設けるに際に、電極軸部5a又はレーザ照射装置を電極軸に関して回転させる必要がないので容易に酸化工程を実行することができる。
 工程S20において、図3Cに示すように、電極マウント8を発光管2に埋設し、封止部4を形成する。上述したように、この工程において、電極軸部5aの酸化部5bの全部又は一部(大部分)が封止部4に埋設されるとともに、水銀及び封入ガスが放電空間3に封入される。これにより、本発明の高圧放電ランプが完成する。
 上記のように、従来の電極マウント又はランプの製造方法にレーザ照射工程を追加するだけで、電極軸部の曲がりを防止する電極マウントを提供することができる。
 次に、本発明の効果等を確認した結果を示す。
<実験1> 
 実験1で使用したランプの仕様を説明する。発光管2は高純度の石英ガラスからなり、放電空間3の内部容量は0.086ccである。放電空間3には約280mg/ccの水銀、20kPaの希ガス(例えば、アルゴン)、及びハロゲンガスが封入されている。投入ランプ電力は230Wである。電極軸部5aはタングステンからなり、軸部径は0.45mmであり、先端側にコイルが巻回されてそれが溶融処理されている。電極軸部5aの埋設部Lは約2.1mmであり、酸化部5bは金属箔6側端部から電極先端方向に約1mmの長さで設けられている。なお、本実験では、一方の電極軸部のみに酸化部5bを設けた。
 本実験では、10分ON-10分OFFの点滅試験を行い、電極軸部の曲がりの発生の有無を調べた。その結果を表1に示す。なお、表において、「従来ランプ」とは、上記構成において酸化部を設けなかったものを意味し、「○」は曲がりが発生しなかったことを、「×」は曲がりが発生したことを示している。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、従来ランプでは点滅150回から電極軸部の曲がりが発生し、270回で全てのサンプルで曲がりが発生した。一方、本発明のランプでは1つのサンプルでは510回で曲がりが発生したが、他の2本は840回点滅しても曲がりは発生しなかった。以上より、電極軸部に酸化部を形成することによる効果が確認された。
<実験2>
 本実験では、投入ランプ電力が420Wのランプを用いて試験を行なった。これは電極軸部にとっては実験1(230W)よりも厳しい試験条件となる。ランプの各部寸法は実験1で用いたランプとは異なり、特に、軸部径は0.53mm、L=2.9(mm)である。
 酸化部5bの位置について、図4に示すように、電極軸部5aにおいて、金属箔6側端部から電極先端方向に0.5mm離隔して1mm幅の第1の酸化部が形成され、さらに、第1の酸化部に実質的に連接する位置に1mm幅の第2の酸化部が形成されている。従って、第2の酸化部から放電空間側の埋設部は0.4mm余っていることになる。なお、上記の実質的に連接する位置とは、レーザ照射を2箇所に対して行なった結果として第1の酸化部と第2の酸化部が実質的に連続していることを意味する。
 本実験でも、10分ON-10分OFFの点滅試験を行い、電極軸部の曲がりの発生の有無を調べた。その結果、従来ランプでは点滅50回で電極軸部の曲がりが確認されたが、本発明のランプでは点滅1000回でも曲がりは発生しなかった。以上より、本実験においても電極軸部に酸化部を形成することによる効果が確認された。
<実験3>
 次に、酸化部5bの好適な位置及び範囲を確認した。ランプ電力が230W程度であれば問題とはならないが、ランプ電力が420W程度となると電極の熱容量の増加、電流値の増大に対し、特に電極軸部の径を太くする必要があり、そのため、電極軸部の膨張収縮がさらに大きくなるため、酸化部5bをより好適な位置又は範囲に特定する必要がある。
 具体的には、420W程度の高ワットランプにおいては、酸化部5bの位置は埋設部において、より高温となる放電空間側にあることが望ましい。それは、封止部4の石英ガラスの膨張率と電極軸部5aの熱膨率の差により相互に作用する応力が、金属箔側よりも高温となる放電側の方が大きいため、その部分に曲がり対策を施すのが効果的であることによる。また当然に、酸化部5bを所定範囲以上に設けないと本発明の効果が得難くなる。
 そこで、酸化部の好適な位置及び範囲を確認するために実験3を行なった。図5を参照して実験3で使用したランプの仕様を説明する。実験2で使用したランプとは酸化部5bの位置のみが異なる。図5に示すように、電極軸部5aの金属箔側端部から放電空間側に向けて各1mm幅の位置A、B、Cを規定し、いずれか1つ又は2つの位置に酸化部を形成したものを用いて実験2と同様の点滅試験を行った。その結果を表2に示す。表1と同様に、「○」は曲がりが発生しなかったことを、「×」は曲がりが発生したことを示している。なお、L=2.9mmであるから、酸化部Cが埋設部に含まれる長さは0.9mmである。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、位置Cのみ、位置A及びC、並びに位置B及びCに酸化部を設けたランプでは、電極軸部の曲がりは発生しなかった。一方、位置Aのみ及び位置Bのみに酸化部を設けたランプでは曲がりが発生した。位置A及びBのものでは電極軸部の曲がり以外の原因による故障が発生し、曲がりの有無は確認されなかったが、酸化部の位置及び範囲に関する条件は実験2で使用したランプと類似するため、曲がりは発生しないものと推定できる。
 上記実験2及び3の結果より、電極軸部の曲がりを防止するには、酸化部が(1)電極軸部の埋設部の少なくとも放電空間側約30%(≒0.9/2.9)を覆うこと、又は(2)電極軸部の埋設部のうちの少なくとも約65%(≒(0.9+1.0)/2.9)を覆うこと、のいずれか一方を満たせば高ワットランプにおいても電極軸部の曲がりを防止できることが確認された。
<実験4>
 次に、電極軸部の酸化部がランプ寿命に影響がないことを確認すべく、従来ランプと本発明のランプのライフテストを行なった。
 本実験では、実験1と同様のランプ(230W)及び実験2におけるCの箇所のみに酸化部を形成したランプ(420W)を用いて、3時間30分ON-30分OFFの点滅試験を行なった。本実験の結果を図6A及び6Bに示す。同図に示すように、2000時間経過後において、照度及びランプ電圧について本発明のランプは従来ランプと同等又は良好な寿命特性を持つことが分かる。これにより、本発明における酸化部がランプ寿命に影響を与えないことが確認された。
 以上より、本発明によって、最小限の追加コストで電極軸部の曲がりを防止する電極マウント及びそれを用いた高圧放電ランプの製造が実現される。
 上記に本発明の実施例を説明したが、本発明はその趣旨を逸脱しない範囲で以下のように変更可能である。
 (1)本実施例においては超高圧水銀ランプを例として説明したが、本発明は一般的な高圧放電ランプにも適用できる。
 (2)本実施例(実験1を除く)においては、酸化部を一対の電極軸部の両方に形成したが、片方のみとしてもよい。例えば、より電極軸部曲がりが発生し易い高温側の電極マウント(例えば、ランプを反射鏡に取り付けた場合に反射鏡ネック側に配置される電極マウント、又はランプに反射鏡だけでなく副鏡が取り付けられる場合に副鏡側に配置される電極マウント)のみに酸化部を形成してもよい。もちろんこの場合は、完成したランプにおいてどちら側の電極マウントに酸化部が形成されたかを識別できるようにしておく必要がある。
 (3)本実施例では、酸化部の電極軸方向の位置及びその幅が一定のものを示したが、例えば、酸化部を電極軸部に対して螺旋状に形成したり、ドット状に形成したりしてもよく、そのような形態のものも本発明の範囲に含まれる。但し、この場合は、電極軸部又はレーザ照射装置を電極軸に対して回転させる必要がある。
1.高圧放電ランプ
2.発光管
3.放電空間
4.封止部
5.電極
5a.電極軸部
5b.酸化部
6.金属箔
7.リード線
8.電極マウント
L.埋設部

Claims (9)

  1.  高圧放電ランプ用の電極マウントの製造方法であって、
     相互に溶接された電極及び金属箔からなる電極マウントを加熱処理する工程、及び
     前記電極の電極軸部の表面にレーザ照射により酸化物を生成した酸化部を形成する酸化工程
    を備え、前記電極マウントが前記高圧放電ランプの封止部に埋設されるときに前記酸化部の全部又は一部が前記封止部に含まれるようにレーザ照射位置が決定される、製造方法。
  2.  請求項1の製造方法において、前記酸化部が(1)前記電極軸部の埋設部の少なくとも放電空間側30%を覆うように形成され、又は(2)前記電極軸部の埋設部のうちの少なくとも65%を覆うように形成される、製造方法。
  3.  請求項1の製造方法において、前記酸化工程が、レーザを前記電極軸部の片側に照射して該電極軸部の表面全周に前記酸化部を形成するように該レーザの強度を決定することを含む製造方法。
  4.  高圧放電ランプの製造方法であって、
     金属箔の両端に電極及びリード線が溶接された電極マウントを加熱処理する工程、
     前記電極の電極軸部の表面にレーザ照射により酸化物を生成した酸化部を形成する工程、及び
     前記電極マウントを前記高圧放電ランプの発光管に埋設し、封止部を形成する工程
    を備え、前記酸化部の全部又は一部が前記封止部に含まれるようにレーザ照射位置が決定される、製造方法。
  5.  請求項4の製造方法において、前記酸化部が(1)前記電極軸部の埋設部の少なくとも放電空間側30%を覆うように形成され、又は(2)前記電極軸部の埋設部のうちの少なくとも65%を覆うように形成される、製造方法。
  6.  請求項4の製造方法において、前記酸化工程が、レーザを前記電極軸部の片側に照射して該電極軸部の表面全周に前記酸化部を形成するように該レーザの強度を決定することを含む製造方法。
  7.  高圧放電ランプ用の電極マウントであって、
     金属箔及び該金属箔の一端に溶接された電極を備え、
     前記電極の電極軸部の表面にレーザ照射による酸化物を生成した酸化部が形成され、前記電極マウントが前記高圧放電ランプの封止部に埋設されるときに該酸化部の全部又は一部が該封止部に含まれるように該酸化部が形成された電極マウント。
  8.  請求項7の電極マウントにおいて、前記酸化部が(1)前記電極軸部の埋設部の少なくとも放電側30%を覆うように形成され、又は(2)前記電極軸部の埋設部のうちの少なくとも65%を覆うように形成された電極マウント。
  9.  前記金属箔の他端に接続されたリード線をさらに備えた請求項7の電極マウント、及び前記封止部に該電極マウントを含む発光管からなる高圧放電ランプ。
PCT/JP2011/064770 2010-09-14 2011-06-28 電極マウント及びそれを用いた高圧放電ランプ並びにその製造方法 WO2012035846A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800040677A CN102576636A (zh) 2010-09-14 2011-06-28 电极座以及采用该电极座的高压放电灯及其制造方法
EP11824309.6A EP2509093A4 (en) 2010-09-14 2011-06-28 ELECTRODE SUPPORT, HIGH PRESSURE DISCHARGE LAMP, AND METHOD FOR PRODUCING THE ELECTRODE SUPPORT AND THE HIGH PRESSURE DISCHARGE LAMP
CA2772118A CA2772118A1 (en) 2010-09-14 2011-06-28 Electrode mount, high pressure discharge lamp using the same, and manufacturing methods of electrode mount and high pressure discharge lamp
US13/395,733 US8795019B2 (en) 2010-09-14 2011-06-28 Electrode mount, high pressure discharge lamp using the same, and manufacturing methods of electrode mount and high pressure discharge lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010205008A JP4853843B1 (ja) 2010-09-14 2010-09-14 電極マウント及びそれを用いた高圧放電ランプ並びにその製造方法
JP2010-205008 2010-09-14

Publications (1)

Publication Number Publication Date
WO2012035846A1 true WO2012035846A1 (ja) 2012-03-22

Family

ID=45540520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064770 WO2012035846A1 (ja) 2010-09-14 2011-06-28 電極マウント及びそれを用いた高圧放電ランプ並びにその製造方法

Country Status (6)

Country Link
US (1) US8795019B2 (ja)
EP (1) EP2509093A4 (ja)
JP (1) JP4853843B1 (ja)
CN (1) CN102576636A (ja)
CA (1) CA2772118A1 (ja)
WO (1) WO2012035846A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084494A (ja) * 2011-10-12 2013-05-09 Iwasaki Electric Co Ltd 電極マウント、それを用いた高圧放電ランプ、及びそれらの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197405A (ja) 2012-03-21 2013-09-30 Hitachi Automotive Systems Ltd 電子制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023571A (ja) * 1999-07-02 2001-01-26 Phoenix Denki Kk ランプ用マウントとランプの封止部構造及び封止方法
JP2009099338A (ja) * 2007-10-16 2009-05-07 Ushio Inc 超高圧放電ランプ
JP2009146590A (ja) * 2007-12-11 2009-07-02 Ushio Inc 放電ランプ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69822058D1 (de) * 1997-09-19 2004-04-08 Matsushita Electric Ind Co Ltd Hochdruckentladungslampe und Verfahren zur Herstellung derselben
EP1065698B1 (en) 1999-07-02 2008-07-30 Phoenix Electric Co., Ltd. Mount for lamp and lamp seal structure employing the mount
US6626725B1 (en) * 2000-05-08 2003-09-30 Welch Allyn, Inc Electrode treatment surface process for reduction of a seal cracks in quartz
JP3425929B2 (ja) * 2000-07-04 2003-07-14 エヌイーシーマイクロ波管株式会社 高圧放電灯およびその製造方法
KR20030019167A (ko) * 2001-08-30 2003-03-06 마쯔시다덴기산교 가부시키가이샤 고압방전 램프 및 그 제조방법
JP2004079323A (ja) * 2002-08-16 2004-03-11 Fuji Photo Film Co Ltd 放電管の製造方法
US7198534B2 (en) * 2003-01-24 2007-04-03 Matsushita Electric Industrial Co., Ltd. Method for manufacturing high-pressure discharge lamp, glass tube for high-pressure discharge lamp, and lamp element for high-pressure discharge lamp
JP2004363014A (ja) * 2003-06-06 2004-12-24 Nec Lighting Ltd 高圧放電ランプの製造方法
JP4509754B2 (ja) * 2004-12-02 2010-07-21 株式会社小糸製作所 放電ランプ装置用アークチューブおよび同アークチューブの製造方法
JP4407820B2 (ja) * 2004-12-27 2010-02-03 ウシオ電機株式会社 高圧放電ランプおよび、この高圧放電ランプにおけるタングステン電極とモリブテン箔の溶接方法
JP5365799B2 (ja) * 2009-10-23 2013-12-11 ウシオ電機株式会社 高圧放電ランプおよび高圧放電ランプの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023571A (ja) * 1999-07-02 2001-01-26 Phoenix Denki Kk ランプ用マウントとランプの封止部構造及び封止方法
JP2009099338A (ja) * 2007-10-16 2009-05-07 Ushio Inc 超高圧放電ランプ
JP2009146590A (ja) * 2007-12-11 2009-07-02 Ushio Inc 放電ランプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2509093A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084494A (ja) * 2011-10-12 2013-05-09 Iwasaki Electric Co Ltd 電極マウント、それを用いた高圧放電ランプ、及びそれらの製造方法

Also Published As

Publication number Publication date
JP4853843B1 (ja) 2012-01-11
JP2012064315A (ja) 2012-03-29
US8795019B2 (en) 2014-08-05
CA2772118A1 (en) 2012-03-14
CN102576636A (zh) 2012-07-11
US20120286656A1 (en) 2012-11-15
EP2509093A4 (en) 2014-04-16
EP2509093A1 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP4400095B2 (ja) ショートアーク型超高圧水銀ランプ
US7489081B2 (en) Light burner and method for manufacturing a light burner
WO2011108288A1 (ja) 放電ランプ用電極、高圧放電ランプ、ランプユニットおよび投射型画像表示装置
JP4853843B1 (ja) 電極マウント及びそれを用いた高圧放電ランプ並びにその製造方法
JP5346428B2 (ja) 超高圧水銀ランプ
JP5733630B2 (ja) 電極マウント、それを用いた高圧放電ランプ、及びそれらの製造方法
US8664856B2 (en) Electrode for a discharge lamp and a discharge lamp and method for producing an electrode
JP5828364B1 (ja) エキシマ放電ランプ
JP7422980B2 (ja) ランプ
JP2007157513A (ja) ショートアーク型放電ランプの封止部構造とその製造方法
JP4509754B2 (ja) 放電ランプ装置用アークチューブおよび同アークチューブの製造方法
JP2008097884A (ja) 高圧水銀ランプ
JP2009105062A (ja) ショートアーク型超高圧水銀ランプ
JP6577884B2 (ja) ショートアーク型放電ランプ
JP6120182B2 (ja) 両端封止型ショートアークフラッシュランプ
JP5799437B2 (ja) 外球保護構造を有する高輝度放電灯
JP2004164996A (ja) 金属蒸気放電灯および高圧水銀蒸気放電灯
JP5218320B2 (ja) 超高圧水銀ランプ
JP5056916B2 (ja) 高圧放電ランプ
JP6885722B2 (ja) ショートアーク型放電ランプ
JP3773023B2 (ja) 高圧放電ランプおよび照明装置
JP2010225420A (ja) 熱陰極蛍光ランプおよび蛍光ランプ用電極
JP6295776B2 (ja) 放電ランプ、および放電ランプの製造方法
JP3125642B2 (ja) 一端封止型白熱電球
JP4922135B2 (ja) 放電ランプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004067.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13395733

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2772118

Country of ref document: CA

Ref document number: 2011824309

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE