WO2012035651A1 - 回路装置、周波数変更回路、回路装置の試験方法、及び周波数変更回路の制御方法 - Google Patents
回路装置、周波数変更回路、回路装置の試験方法、及び周波数変更回路の制御方法 Download PDFInfo
- Publication number
- WO2012035651A1 WO2012035651A1 PCT/JP2010/066184 JP2010066184W WO2012035651A1 WO 2012035651 A1 WO2012035651 A1 WO 2012035651A1 JP 2010066184 W JP2010066184 W JP 2010066184W WO 2012035651 A1 WO2012035651 A1 WO 2012035651A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- clock signal
- frequency
- phase
- output
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 347
- 238000000034 method Methods 0.000 title claims description 32
- 230000008859 change Effects 0.000 claims description 33
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 4
- 238000010998 test method Methods 0.000 claims description 4
- 230000000979 retarding effect Effects 0.000 claims description 2
- 230000003111 delayed effect Effects 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 description 96
- 238000003860 storage Methods 0.000 description 56
- 102100040751 Casein kinase II subunit alpha Human genes 0.000 description 47
- 101000892026 Homo sapiens Casein kinase II subunit alpha Proteins 0.000 description 47
- 238000010586 diagram Methods 0.000 description 28
- 101000597925 Caenorhabditis elegans Numb-related protein 1 Proteins 0.000 description 25
- 230000008569 process Effects 0.000 description 19
- 101100385388 Arabidopsis thaliana CKA3 gene Proteins 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 10
- 230000007704 transition Effects 0.000 description 10
- 101001116369 Gallus gallus Melatonin receptor type 1A Proteins 0.000 description 7
- 238000004904 shortening Methods 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 4
- 238000010924 continuous production Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 101100222065 Arabidopsis thaliana CKA4 gene Proteins 0.000 description 2
- 101100220767 Caenorhabditis elegans cka-2 gene Proteins 0.000 description 2
- 101100517651 Caenorhabditis elegans num-1 gene Proteins 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/16—Networks for phase shifting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31725—Timing aspects, e.g. clock distribution, skew, propagation delay
- G01R31/31726—Synchronization, e.g. of test, clock or strobe signals; Signals in different clock domains; Generation of Vernier signals; Comparison and adjustment of the signals
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/13—Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
Definitions
- the present invention relates to a circuit device, a frequency change circuit, a circuit device test method, and a frequency change circuit control method.
- a pattern generation circuit that generates a predetermined test pattern according to the logic of an LSI circuit, and a determination circuit that determines the quality of an LSI based on the result of operating the circuit by inputting the generated test pattern
- a BIST (Build In Self Test) technique incorporated in an LSI is known. With this BIST technology, the test time in the LSI shipping process in the semiconductor factory can be shortened and the test cost can be reduced.
- a circuit device such as a conventional semiconductor circuit device does not include a circuit for changing the frequency of the BIST clock signal.
- An object of the present invention is to provide a circuit control method.
- a circuit device inputs a clock generation unit that outputs a clock signal of a first frequency, and a clock signal of a first frequency that is output from the clock generation unit, A plurality of phase control units that respectively output a clock signal having a first frequency whose phase is advanced or retarded with respect to the phase of the clock signal, and a plurality of first frequencies that are respectively output by the plurality of phase control units.
- a selection unit that sequentially selects pulses of the clock signal having the first frequency and outputs a clock signal having the second frequency, and a second frequency output by the selection unit.
- a pattern generation unit that generates a test pattern, a clock signal of a second frequency output from the selection unit, and a test pattern generated by the pattern generation unit are input.
- a clock signal of the second frequency Based on the clock signal of the second frequency, characterized by having a circuit section for outputting an operation result obtained by operating the test pattern as input.
- FIG. 1 is a block diagram showing a semiconductor circuit device 10 according to a first embodiment.
- 1 is a diagram showing a cycle sweep circuit 11 of a semiconductor circuit device 10 according to a first embodiment.
- FIG. 3 is a timing chart illustrating a procedure for changing the frequency of a clock signal in the semiconductor circuit device 10 according to the first embodiment;
- FIG. 6 is a diagram showing a state where the semiconductor circuit device of the second embodiment is connected to an LSI tester.
- FIG. 6 is a diagram showing a cycle sweep circuit 211 of the semiconductor circuit device 200 according to the second embodiment.
- FIG. 6 is a diagram illustrating a phase control circuit 20 of a semiconductor circuit device 200 according to a second embodiment.
- FIG. 6 is a timing chart for explaining the operation principle of the phase control circuit 20 of the semiconductor circuit device 200 according to the second embodiment.
- FIG. 6 is a diagram showing a sweep sequencer 40 of the semiconductor circuit device 200 according to the second embodiment.
- FIG. 10 is a diagram illustrating a process performed by a scan system control circuit 16 of the semiconductor circuit device 200 according to the second embodiment.
- FIG. 10 is a diagram illustrating a process performed by a sweep sequencer 40 of the semiconductor circuit device 200 according to the second embodiment.
- FIG. 10 is a state transition diagram showing a state of transition between a Node number and a parameter k when the phase of the clock signal CKB is changed by the phase selection circuit 30 of the semiconductor circuit device 200 according to the second embodiment.
- FIG. 10 is a state transition diagram showing a state of transition between a Node number and a parameter k when the phase of the clock signal CKB is changed by the phase selection circuit 30 of the semiconductor circuit device 200 according to the second embodiment.
- FIG. 10 is a diagram illustrating a timing chart when a signal line from Node 0 to Node n-1 is sequentially selected to generate a clock signal CKB in the phase selection circuit 30 of the semiconductor circuit device 200 according to the second embodiment.
- FIG. 10 is a diagram illustrating a timing chart when a signal line from Node 0 to Node n-1 is sequentially selected to generate a clock signal CKB in the phase selection circuit 30 of the semiconductor circuit device 200 according to the second embodiment.
- 6 is a diagram showing a test result storage circuit 15 of the semiconductor circuit device 200 according to the second embodiment.
- FIG. 1 is a block diagram showing a semiconductor circuit device of a comparative example.
- the semiconductor circuit device 1 of the comparative example includes a PLL (Phase Locked Loop) 2, a test pattern generation circuit 3, a circuit under test 4, and a test result storage circuit 5.
- PLL Phase Locked Loop
- the semiconductor circuit device 1 is an LSI (Large Scale Integration circuit) and includes, for example, an SRAM (Static Random Access Memory).
- test pattern generation circuit 3 and the test result storage circuit 5 are circuits necessary for executing BIST, and the circuit under test 4 is an SRAM.
- the PLL 2 outputs a clock signal obtained by multiplying the frequency of the clock signal input from the outside of the semiconductor circuit device 1.
- the PLL 2 outputs a clock signal for normal operation (system operation) when a clock signal is input from a crystal oscillator outside the semiconductor circuit device 1 during normal operation (system operation) of the semiconductor circuit device 1.
- the PLL 2 outputs a BIST clock signal.
- the PLL 2 is connected to the test pattern generation circuit 3, the circuit under test 4, and the test result storage circuit 5.
- a clock signal for BIST is supplied to the test pattern generation circuit 3, the circuit under test 4 and the test result storage circuit 5. Enter each.
- the normal operation means an operation using the semiconductor circuit device 1 as an SRAM when the semiconductor circuit device 1 is an SRAM (Static Random Access Memory).
- the clock signal for normal operation is a clock signal necessary for the semiconductor circuit device 1 as the SRAM to perform normal operation (system operation).
- the BIST clock signal is a clock signal necessary for executing the BIST of the circuit under test 4.
- the test pattern generation circuit 3 is a circuit for generating test pattern data necessary for the BIST of the device under test 4, and for example, a sequencer including a program register can be used.
- the test pattern includes data (write data) for writing to all bit cells included in the circuit under test 4, data (address data) representing the address of each bit cell, W / E (Write / Enable) signal, expectation Includes data representing values and so on.
- the test pattern is generated by the program register of the test pattern generation circuit 3.
- the output terminal of the test pattern generation circuit 3 is connected to the circuit under test 4 and the test result storage circuit 5.
- the test pattern generation circuit 3 inputs write data, address data, and W / E signals in the test pattern to the device under test 4 and inputs an expected value to the test result storage circuit 5.
- the circuit under test 4 is a circuit to be tested by the BIST and is, for example, an SRAM.
- the output terminal of the circuit under test 4 is connected to the test result storage circuit 5.
- the circuit under test 4 outputs an operation result representing an operation result based on the BIST clock signal and the test pattern.
- the test result storage circuit 5 is a circuit for storing a test result (BIST test result) obtained by comparing the operation result of the circuit under test 4 with an expected value.
- a register can be used.
- the BIST test result is a match / mismatch result (pass / fail result of the circuit under test 4) when the write data is written in the circuit under test 4 and the data read from the circuit under test 4 is compared with the expected value.
- the semiconductor circuit device 1 When BIST of the semiconductor circuit device 1 is performed, the semiconductor circuit device 1 is connected to an LSI tester, and an input signal for BIST is input to the PLL 2.
- the PLL outputs a BIST clock signal, and the BIST clock signal is input to the test pattern generation circuit 3, the circuit under test 4, and the test result storage circuit 5.
- the test pattern generation circuit 3 outputs a test pattern based on the logic of the circuit under test to be tested in accordance with the BIST clock signal input from the PLL 2.
- the test pattern output from the test pattern generation circuit 3 is input to the circuit under test 4.
- the circuit under test 4 writes the write data included in the test pattern based on the BIST clock signal.
- the write data is read from the circuit under test 4, the data read by the test result storage circuit 5 is compared with an expected value, and data representing the test result is stored.
- test results stored in the test result storage circuit 5 are scanned out by the LSI tester and taken out of the test result storage circuit 5.
- the parameters on the vertical axis and the horizontal axis indicate the correlated parameters such as the power supply voltage and the operating frequency of the circuit under test 4 when applying the BIST test pattern.
- the test results obtained by changing the power supply voltage and the operating frequency of the circuit under test 4 are summarized in a matrix.
- the shmoo plot includes a third axis (temperature axis) orthogonal to the vertical axis and the horizontal axis when the temperature of the semiconductor circuit device 1 is a parameter in addition to the power supply voltage and operating frequency of the circuit under test 4. It will be.
- an operation test (an operation test for one type of power supply voltage, one type of operating frequency, and one type of temperature) is performed in one test. ing. In order to change the power supply voltage, the operating frequency, or the temperature of the circuit under test 4, it is necessary to reset the power supply voltage, the operating frequency, or the temperature.
- the time for turning on / off the power to the circuit under test 4 It takes time to set the test circuit 4 and read the test result.
- the semiconductor circuit device 1 of the comparative example has a problem that it takes a lot of time to create a shmoo plot while changing the operating frequency of the circuit under test 4.
- an object is to provide a semiconductor circuit device that solves the above-described problems.
- the semiconductor circuit device according to the first and second embodiments will be described.
- FIG. 2 is a block diagram showing the semiconductor circuit device 10 according to the first embodiment.
- the semiconductor circuit device 10 includes a cycle sweep circuit 11, a PLL 12, a test pattern generation circuit 13, a circuit under test 14, and a test result storage circuit 15.
- the PLL 12, the circuit under test 14 and the test result storage circuit 15 shown in FIG. 2 are different from those in the first embodiment in the input BIST clock signal, but the PLL 2 of the semiconductor circuit device 1 of the comparative example shown in FIG.
- the circuit is basically the same as the circuit under test 4 and the test result storage circuit 5. Therefore, the description of the PLL 12, the circuit under test 14, and the test result storage circuit 15 is referred to the description of the PLL 2, the circuit under test 4 and the test result storage circuit 5 shown in FIG.
- the semiconductor circuit device 10 is an LSI
- the circuit device is not limited to an LSI such as the semiconductor circuit device 10, and at least one of the cycle sweep circuit 11, the PLL 12, the test pattern generation circuit 13, and the test result storage circuit 15 is a discrete component or It may be realized by FPG (Field Programmable Gate Array) or the like.
- FPG Field Programmable Gate Array
- the semiconductor circuit device 10 executes the BIST while changing the frequency of the BIST clock signal by the cycle sweep circuit 11, and acquires the frequency characteristics of the shmoo plot in a single continuous process. enable.
- test pattern generation circuit 13 is obtained by adding a new function to the test pattern generation circuit 3 of the first embodiment. This additional function will be described later.
- the cycle sweep circuit 11 is disposed between the PLL 12, the test pattern generation circuit 13, the circuit under test 14, and the test result storage circuit 15.
- the cycle sweep circuit 11 is a circuit that can input the BIST clock signal CKA output from the PLL 12 as an example of the clock generation unit and change the frequency of the clock signal CKA.
- the cycle sweep circuit 11 receives the clock signal CKA and outputs the clock signal CKB in which the frequency of the clock signal CKA is changed.
- the clock signal CKB is a signal obtained by changing the frequency of the clock signal CKA by advancing or retarding the phase of the clock signal CKA.
- the degree to which the clock signal CKA is advanced or retarded can be set discretely.
- the clock signal CKA is advanced, one cycle of the clock signal CKB output from the cycle sweep circuit 11 is shortened and the frequency is increased.
- the clock signal CKA is retarded, one cycle of the clock signal CKB output from the cycle sweep circuit 11 becomes longer and the frequency becomes lower.
- “0” can be set as the degree to advance or retard the clock signal CKA.
- the clock signal CKB output from the cycle sweep circuit 11 has the same cycle and frequency as the clock signal CKA input to the cycle sweep circuit 11.
- the clock signal CKB output from the cycle sweep circuit 11 is input to the test pattern generation circuit 13, the circuit under test 14, and the test result storage circuit 15.
- the test pattern generation circuit 13 outputs a certain type of test pattern a plurality of times (m is an arbitrary integer of 2 or more) based on the BIST clock signal CKB input from the cycle sweep circuit 11. It is an example.
- the test pattern output from the test pattern generation circuit 13 is input to the circuit under test 14.
- test pattern in the first embodiment is generated together with the clock signal CKB whose cycle is gradually shortened in the test pattern generation circuit 13, the test pattern generated continuously has a plurality of operating frequencies. Will be included.
- test pattern generation circuit 13 has a function of outputting a wrap signal to be input to the test result storage circuit 15 as an additional function to the test pattern generation circuit 3 of the comparative example. Similar to the test pattern, the wrap signal is generated by a program register inside the test pattern generation circuit 13.
- the test pattern generation circuit 13 outputs a wrap signal every time the test pattern is switched once when m test patterns are generated in order.
- the wrap signal is raised to the H level (“1”) for a predetermined period by the test pattern generation circuit 13 every time the test pattern is switched once (every test pattern is completed).
- the signal is set to L level (“0”) during execution, and details thereof will be described later.
- the circuit under test 14 is an example of a circuit unit that processes a test pattern based on the BIST clock signal CKB and inputs a processing result (operation result) to the test result storage circuit 15.
- the test result storage circuit 15 compares the processing result (operation result) of the circuit under test 14 with an expected value, and stores data representing the test result (comparison result).
- the test result storage circuit 15 includes a function as an example of a comparison unit that compares a processing result (operation result) with an expected value, and a function as an example of a comparison result holding unit that holds a test result (comparison result).
- FIG. 3 is a diagram showing the cycle sweep circuit 11 of the semiconductor circuit device 10 according to the first embodiment.
- the cycle sweep circuit 11 includes a clock input terminal 11A, a clock output terminal 11B, a lap signal input terminal 11C, phase control circuits 20 1 , 20 2, ..., 20 n ⁇ 1 , a phase selection circuit 30, and a sweep sequencer 40. including.
- n signal lines branched in parallel.
- the branched n signal lines are distinguished from Node 0, Node 1, Node 2, ..., Node ⁇ ⁇ ⁇ n-1.
- the clock output terminal 11B is connected to the test pattern generation circuit 13, the circuit under test 14 and the test result storage circuit 15 shown in FIG. 2, and the clock signal whose frequency has been changed by the cycle sweep circuit 11 is used as the test pattern generation circuit. 13, input to the circuit under test 14 and the test result storage circuit 15.
- the wrap signal input terminal 11C is connected to the test pattern generation circuit 13 shown in FIG. 2, and inputs the wrap signal output from the test pattern generation circuit 13 to the cycle sweep circuit 11.
- phase control circuits 20 1 , 20 2 ,..., 20 n ⁇ 1 are respectively connected between the clock input terminal 11A and the phase selection circuit 30 with Node 1, Node 2,. It is inserted in the signal line. A phase control circuit is not inserted in the signal line of Node 0.
- the phase control circuits 20 1 , 20 2 ,..., 20 n ⁇ 1 are used to advance the phase of the clock signal CKA based on the phase control signals 1 to n ⁇ 1 input from the sweep sequencer 40, respectively.
- An example of a plurality of phase control units that shortens one cycle of the clock signal CKA by (1 ⁇ k) times, (2 ⁇ k) times,..., ((N ⁇ 1) ⁇ k) times the unit time. is there.
- the phase control signals 1 to n-1 input from the sweep sequencer 40 are the clock signals CKA generated by the phase control circuits 20 1 , 20 2 ,..., 20 n ⁇ 1 according to the values of n and k. This is a control signal for controlling the advance angle or delay angle of the phase.
- the phase control signals 1 to n ⁇ 1 are respectively (1 ⁇ k) times, (2 ⁇ k) times of unit time ((n ⁇ 1) ⁇ ) as the degree of shortening of one cycle of the clock signal CKA. k) represents double times.
- n is an arbitrary integer equal to or greater than 2, and is a fixed value obtained by adding a fraction of Node 0 to the number (n ⁇ 1) of the phase control circuits 20 1 , 20 2 ... 20 n ⁇ 1. It is.
- the parameter k is a parameter that increases in order from 0 to m, with the maximum value being m ⁇ 1 (m is an arbitrary integer (fixed value) of 2 or more).
- the semiconductor circuit device 10 executes BIST using m test patterns 0 to m-1 in order.
- the value of the parameter k represents the test pattern k used at that time.
- the number of test patterns is m from 0 to m-1, but when the value of the parameter k increases sequentially from 0 and reaches m, the BIST by the test patterns 0 to m-1 is all completed. It will be.
- the clock signal CKA is sequentially increased by the phase control circuits 20 1 , 20 2 ... 20 n ⁇ 1 while sequentially increasing the value of the parameter k from 0 to (m ⁇ 1). To shorten the period.
- the semiconductor circuit device 10 ends the BIST when the value of the parameter k reaches m.
- the period of the clock signal CKA, the phase control circuit 20 1, 20 2,..., In 20 n-1 the unit time (1 ⁇ k) times, (2 ⁇ k) times ...
- the value of the parameter k is shortened while increasing in order from 0 to (m ⁇ 1).
- the unit time is (1 ⁇ 0) times, (2 ⁇ 0) times,..., ((N ⁇ 1) ⁇ 0) times. (0x1) times, (1x1) times, (2x1) times ... ((n-1) x1) times, ..., (0x (m-1)) times.
- the cycle of the clock signal CKA is in the order of (1 ⁇ (m ⁇ 1)) times, (2 ⁇ (m ⁇ 1)) times,... ((N ⁇ 1) ⁇ (m ⁇ 1)) times. Repeatedly shortened.
- the phase selection circuit 30 is a circuit that generates a clock signal CKB with a shortened period based on the phase selection signal input from the sweep sequencer 40.
- the phase selection signal is a clock signal CKA (when Node 0 is selected) or phase control that is input to the phase selection circuit 30 via each signal line of Node ⁇ 0, Node 1, Node 2, ... Node n-1.
- This is a signal for sequentially selecting H (High) level pulses of the clock signals from the circuits 1 to n-1 (when Nodes 1 to n-1 are selected).
- the phase selection signal represents the Node number of the signal line selected by the phase selection circuit 30. .
- Node number represented by the phase selection signal in order to sequentially select the clock signal CKA input to the phase selection circuit 30 from the signal line of Node ⁇ 0, Node 1, Node 2,. Change in turn every cycle.
- the phase selection circuit 30 Based on the phase selection signal, the phase selection circuit 30 outputs an H level pulse of the clock signal CKA input via each signal line of Node ⁇ 0, Node 1, Node 2, ..., Node n-1.
- the clock signal CKB with a shortened cycle is generated by selecting one by one for each cycle.
- a selector may be used as the phase selection circuit 30.
- the phase selection circuit 30 is an example of a selection unit.
- phase control circuits 20 1 , 20 2 ,..., 20 n ⁇ 1 are inserted in the signal lines of Node 1, Node 2,.
- a phase control circuit is not inserted in the signal line.
- phase of the H level pulse of the clock signal CKA input to the phase selection circuit 30 via the signal lines of Node 0, Node 1, Node 2, ... Node n-1 is 0 times the unit time, ( The angle is advanced by (1 ⁇ k) times, (2 ⁇ k) times, ((n ⁇ 1) ⁇ k) times.
- the phase control circuits 20 1 , 20 2 ... 20 n ⁇ 1 sequentially output the H level pulses of the clock signal CKA until the value of the parameter k changes from 0 to the maximum value (m ⁇ 1).
- the phase selection circuit 30 generates an H level pulse of the clock signal CKA input through the signal lines of Node 0, Node 1, Node 2,..., Node n ⁇ 1. Select one by one in order.
- the phase of the H level pulse of the cycle of the clock signal CKB output from the phase selection circuit 30 is 0 times the unit time in turn for each cycle with respect to the phase of the H level pulse of the clock signal CKA. , (1 ⁇ k) times, (2 ⁇ k) times... ((N ⁇ 1) ⁇ k) times.
- the phase of the H level pulse of the cycle of the clock signal CKB is (0 ⁇ 0) times, (1 ⁇ 0) times (1 ⁇ 0) times (2) of the phase of the H level pulse of the clock signal CKA.
- the angle is repeatedly advanced while increasing the value of the parameter k from 0 to the maximum value (m ⁇ 1) in the order of times.
- Such a shortening of the cycle of the clock signal CKB is performed in order to obtain the frequency characteristics of the shmoo plot continuously in a single process.
- Sweep sequencer 40 outputs the phase control signal 1 ⁇ n-1 to be input to each of the phase control circuit 20 1, 20 2 ⁇ 20 n -1, and a phase selection signal input to the phase selection circuit 30 It is an example of a control part.
- the sweep sequencer 40 receives a lap signal as an example of a control signal from the test pattern generation circuit 13 (see FIG. 2).
- the sweep sequencer 40 increases the value of the parameter k by one each time a lap signal is input.
- the sweep sequencer 40 controls the phase control circuits 20 1 , 20 2 ... 20 n ⁇ 1 and the phase selection circuit 30 with the phase control signals 1 to n ⁇ 1 and the phase selection signal.
- the phase of the H level pulse of the clock signal CKB output from the phase selection circuit 30 is increased by one in the order of the parameter k for each cycle with respect to the phase of the H level pulse of the clock signal CKA.
- the angle is advanced by (0 ⁇ k) times, (1 ⁇ k) times, (2 ⁇ k) times... ((N ⁇ 1) ⁇ k) times the unit time.
- FIG. 4 is a timing chart showing a procedure for changing the frequency of the clock signal in the semiconductor circuit device 10 of the first embodiment.
- the waveforms of the clock signals CKA, CKA1, CKA2,..., CKAn-1 input to the circuit 30 and the clock signal CKB output from the phase selection circuit 30 are shown.
- FIG. 4B is a diagram showing the relationship between the clock signal CKB shown in FIG. 4A and all the clock signals CKB necessary for executing the test pattern 1.
- FIG. 4C shows all the clock signals CKB required to execute the test pattern 1 shown in FIG. 4B and all the clocks required to execute each of the test patterns other than the test pattern 1. It is a figure which shows the relationship between the signal CKB and the clock signal CKB required in order to perform all the test patterns, and the timing which a lap signal outputs.
- FIG. 4C shows the clock signals CKB required to execute each test pattern as test pattern 0 to test pattern m-1.
- the phase of the clock signals CKA1, CKA2,..., CKAn-1 on the signal lines of Node 1, Node 2,..., Node n ⁇ 1 is the phase control signal 1 to n output by the sweep sequencer 40.
- ⁇ 1 is advanced by each of the phase control circuits 20 1 , 20 2 ... 20 n ⁇ 1 .
- the clock signal CKB has an H level pulse of the clock signal CKA of Node 0, an H level pulse of the clock signal CKA1 of Node 1, an H level pulse of the clock signal CKA2 of Node 2, ..., Node ⁇ ⁇ ⁇ n. ⁇ 1 clock signal CKAn ⁇ 1 becomes a clock signal combined with an H level pulse.
- the clock signal CKAn-1 of Node n-1 becomes CKA3 of Node 3.
- the clock signal CKB is a clock signal obtained by sequentially combining high level pulses of the clock signals CKA, CKA1, CKA2, and CKA3 input from the four signal lines from Node 0 to Node 3, and Node 0 to Node 3. During the four cycles until, the phase gradually advances and the frequency increases.
- phase selection circuit 30 selects the clock signal CKA of the Node 0 signal line again after the clock signal CKAn-1 of the Node n-1 signal line. For this reason, during the period from the fall of the H level pulse of the clock signal CKAn-1 of Node n-1 to the rise of the clock signal CKA of Node 0, each clock signal CKA of Node 0 to Node 2 falls. It becomes longer than the period until the next pulse rises.
- the semiconductor circuit device 10 executes BIST using one test pattern by repeatedly using the n-cycle clock signal CKB as described above.
- the number of cycles of the clock signal CKB necessary for executing one test pattern is a larger number of cycles than n.
- the clock signal CKB necessary to execute the test pattern 1 includes a plurality of sets of n-cycle clock signals CKB.
- the clock signals CKB of n cycles shown in FIG. 4B are all clock signals of Node ⁇ 0, Node 1, Node 2... Node n ⁇ 1, similarly to the clock signal CKB shown in FIG. This is a clock signal combining CKA, CKA1, CKA2,..., CKAn-1 H level pulses.
- the wrap signal is raised to the H level (“1”) by the test pattern generation circuit 13 when the test pattern is switched, so that it is necessary to execute each test pattern.
- the clock signal CKB is output at the end timing.
- the frequency characteristics of the shmoo plot are obtained by continuously changing the operating frequency of the test pattern at once using m test patterns 0 to m-1. Acquired in a single continuous process.
- the clock signal CKB required for all the test patterns 0 to m ⁇ 1 necessary for obtaining the frequency characteristics of the shmoo plot in a single continuous process is as shown in FIG.
- the clock signal CKB necessary for executing each of the test patterns 0 to m ⁇ 1 is a continuous clock signal.
- the value of the parameter k increases to 1 or more, it is shortened by the equation of (1 ⁇ k) times, (2 ⁇ k) times ((n ⁇ 1) ⁇ k) times the unit time.
- the period is shortened (the frequency is increased) by gradually advancing the phase.
- BIST can be performed using the clock signal CKB.
- the time for creating the shmoo plot of the semiconductor circuit device 10 can be greatly shortened.
- the circuit under test 14 of the semiconductor circuit device 10 is an SRAM having an address length of 2 kw (kiloNword) and an address length of N
- a test pattern corresponding to an address length of N ⁇ 12 times is applied to the circuit under test 14 think of.
- the operating frequency is 2 GHz, that is, one cycle of 500 ps (picoseconds).
- the semiconductor circuit device 10 when the number (m) of test patterns is 12, the semiconductor circuit device 10 according to the first embodiment can apply 12 test patterns to the circuit under test 14 continuously in one process. Therefore, the test time required to obtain the BIST test result with 12 test patterns is about 150 ⁇ s.
- the test is performed 12 times. It takes about 15 ms (milliseconds) to execute the BIST by the pattern.
- the time required to acquire the frequency characteristics of the shmoo plot is the same as the test pattern in the semiconductor circuit device 1 of the comparative example. This is about 1/10 of the time required for execution.
- the clock signal CKB in which the phase of the clock signal CKA is advanced has been described.
- the clock signal CKB in which the phase of the clock signal CKA is retarded may be used.
- the most shortened frequency at the end of the BIST is set to the initial frequency of the clock signal CKA, and the frequency of the Node 0 is replaced with the frequency of the Node n-1, and as the BIST progresses
- the BIST may be executed while generating the clock signal CKB so as to gradually increase the cycle.
- the second embodiment is a more specific embodiment of the circuit configuration of the semiconductor circuit device of the first embodiment.
- FIG. 5 is a diagram showing a state in which the semiconductor circuit device of the second embodiment is connected to the LSI tester.
- the semiconductor circuit device 200 includes a cycle sweep circuit 211, a PLL 12, a test pattern generation circuit 13, a circuit under test 14, a test result storage circuit 15, and a scan system control circuit 16.
- the semiconductor circuit device 200 also has terminals 201 and 202 for connecting the LSI tester 300, the terminal 201 is connected to the terminal 301 of the LSI tester 300, and the terminal 202 is connected to the terminal 302 of the LSI tester 300. Is done.
- the LSI tester 300 includes a test clock output unit 303 that outputs a test clock (CKS), and a scan control signal output unit 304 that outputs a scan control signal.
- CKS test clock
- scan control signal output unit 304 that outputs a scan control signal.
- the test clock signal (CKS) is input from the test clock output unit 303 of the LSI tester 300 to the terminal 201 of the semiconductor circuit device 200.
- a scan control signal (TCK, TMS) and test data for scan test (TDI) are input to the terminal 202 from the scan control signal output unit 304 of the LSI tester 300. Further, data (TDO) representing the result of the scan test is output from the terminal 202.
- TCK is a clock signal for a scan test
- TMS is a signal for controlling the state transition of the scan system control circuit 16.
- the PLL 12 is basically the same as the PLL 12 of the semiconductor circuit device 10 of the first embodiment, but in the second embodiment, a test clock signal (CKS) is input from the LSI tester 300.
- CKS test clock signal
- the test pattern generation circuit 13 is basically the same as the test pattern generation circuit 13 of the first embodiment, but in the second embodiment, a READ signal is input to the test result storage circuit 15. Note that the READ signal is a signal for controlling the reading of the test result to the test result storage circuit 15, and details thereof will be described later.
- the circuit under test 14 is basically the same as the circuit under test 14 of the first embodiment. However, in the second embodiment, the data present in each bit cell in the circuit under test 14 after the BIST is performed is read data. Is input to the test result storage circuit 15.
- the test result storage circuit 15 is basically the same as the test result storage circuit 15 of the semiconductor circuit device 10 according to the first embodiment, except that the READ signal is input from the test pattern generation circuit 13 and the test circuit 14 READ data is input.
- the test result storage circuit 15 inputs the test result to the scan system control circuit 16.
- the cycle sweep circuit 211 is basically the same as the cycle sweep circuit 11 of the first embodiment, but receives a setting control signal.
- the scan control circuit 16 outputs the setting control signal.
- the scan system control circuit 16 is a circuit that controls the scan shift of the LSI 10.
- a scan control signal is input from the LSI tester 300 to the LSI 10
- a setting control signal is sent to the cycle sweep circuit 211, the PLL 12, and the test result storage circuit 15. Enter.
- the setting control signal is a signal for initial setting of the cycle sweep circuit 211, the PLL 12, the test pattern generation circuit 13, and the test result storage circuit 15 before executing the BIST.
- the cycle sweep circuit 211 sets the parameter k to “0”, the PLL 12 outputs the clock signal CKA based on the test clock signal CKS input from the LSI tester 300, and the test pattern generation circuit 13 The test pattern held inside is initialized, and the test result storage circuit 15 resets the value of the internal register.
- FIG. 6 is a diagram showing the cycle sweep circuit 211 of the semiconductor circuit device 200 of the second embodiment.
- cycle sweep circuit 211 will be described focusing on differences from the cycle sweep circuit 11 of the first embodiment.
- the cycle sweep circuit 211 includes a clock input terminal 11A, a clock output terminal 11B, a wrap signal input terminal 11C, a setting control signal input terminal 11D, and phase control circuits 20 1 , 20 2 ,. n-1 , phase selection circuit 30, and sweep sequencer 40.
- the components other than the setting control signal input terminal 11D are the same as those of the cycle sweep circuit 11 of the first embodiment.
- a setting control signal is input from the LSI tester 300 to the sweep sequencer 40 via the setting control signal input terminal 11D, and the sweep sequencer 40 outputs a step number signal.
- the end signal are different from the first embodiment.
- the setting control signal is a signal for performing the initial setting of the cycle sweep circuit 211, the PLL 12, and the test result storage circuit 15 before executing the BIST as described above.
- the sweep sequencer 40 in the cycle sweep circuit 211 sets the phase control signals 1 to n-1 and the phase selection signal to initial values, and the step number signal is predetermined.
- the predetermined value (referred to as the number of steps) is set.
- the step number of the step number signal can be set to an arbitrary integer of 1 or more.
- the step number signal is a signal for multiplying the degree of shortening of the period by each of the phase control signals 1 to n ⁇ 1 by an integer.
- the step number signal is generated by the phase control circuits 20 1 , 20 2 ,..., 20 n ⁇ 1 based on the phase control signals 1 to n ⁇ 1.
- the cycle of the clock signal CKB included in each is shortened, (1 ⁇ k) times, (2 ⁇ k) times ((n ⁇ 1)) corresponding to the phase control signals 1 to n ⁇ 1.
- Xk) represents a value to be multiplied by each of the multiples.
- the number of steps is set to an arbitrary number of 2 or more. It can be set to an integer.
- the phase control circuits 20 1 , 20 2 ... 20 n ⁇ 1 respectively set the period of the clock signal CKB to (1 ⁇ k) ⁇ 2 times (2 ⁇ k). ⁇ 2 times ... ((n-1) ⁇ k) ⁇ 2 times.
- the end signal is a signal indicating the end of the BIST
- the sweep sequencer 40 counts the number of tests with an internal counter, and is output from the sweep sequencer 40 when the count value reaches a predetermined value.
- the phase selection circuit 30 ends the generation of the clock signal CKB and stops outputting the clock signal CKB.
- test pattern generation circuit 13 the circuit under test 14, and the test result storage circuit 15 are stopped, and the BIST is completed.
- phase control circuit 20 a specific circuit configuration of the phase control circuits 20 1 , 20 2 ... 20 n ⁇ 1 will be described with reference to FIGS. Since the circuit configuration of the phase control circuit 20 1, 20 2 ⁇ 20 n -1 are all similar, where without distinguishing the phase control circuit 20 1, 20 2 ⁇ 20 n -1 is The phase control circuit 20 will be described.
- FIG. 7A is a diagram illustrating the phase control circuit 20 of the semiconductor circuit device 200 according to the second embodiment.
- FIG. 7B is a timing chart for explaining the operating principle of the phase control circuit 20 of the semiconductor circuit device 200 according to the second embodiment.
- the phase control circuit 20 includes a phase interpolator 220 and a multiplier 230.
- the phase interpolator 220 includes a DLL (Delay Locked Loop) 221 and a phase mixer 222.
- DLL Delay Locked Loop
- the DLL 221 receives the clock signal CKA and outputs the phase of the clock signal CKA.
- the DLL 221 outputs four clock signals obtained by changing the phase of the clock signal CKA by 0 °, ⁇ 90 °, ⁇ 180 °, and ⁇ 270 °.
- the three clock signals whose phases have changed by ⁇ 90 °, ⁇ 180 °, and ⁇ 270 ° are signals whose phases are advanced by 90 °, 180 °, and 270 ° with respect to the 0 ° clock signal, respectively. .
- the phase mixer 222 receives the four clock signals output from the DLL 221, and advances and outputs the phase of the clock signal CKA based on the phase signal input from the multiplier 230.
- the phase mixer 222 has a resolution for dividing 360 °, which is a phase amount of one cycle, into a predetermined number, and generates a phase difference with the phase amount obtained by dividing 360 ° into a predetermined number as a minimum unit.
- the circuit can change and output the phase of the clock signal CKA by a phase difference corresponding to an integral multiple of the minimum unit.
- phase signal is a signal for designating a change in phase in the phase mixer 222.
- the phase mixer 222 can generate a phase difference whose minimum unit is a phase amount (one division) obtained by dividing 360 ° into 64 parts.
- phase mixer 222 can combine the output of the DLL 221 with the phase 0 ° and the output of the phase ⁇ 90 ° and divide the output into 16 parts.
- the output of the DLL 221 having a phase of 0 ° is a clock signal having the same cycle and the same phase as the clock signal CKA input to the phase control circuit 20.
- the frequency of the clock signal A is 2 GHz
- one cycle of the clock signal CKA is 500 ps
- the phase mixer 222 causes the phase of the clock signal CKA to be the minimum unit time (about 7.8 ps: one division). And advance as the clock signal CKB.
- the multiplier 230 receives the phase control signal and the step number signal, and outputs a phase signal obtained by multiplying the phase control signal and the step number signal.
- the phase control signal represents the time for shortening one cycle of the clock signal CKA.
- the step number signal is a signal for multiplying the cycle shortening time by the phase control signal by an integer (number of steps).
- the phase signal obtained by multiplying the phase control signal by the number of steps represents the time at which the phase of the clock signal CKA is advanced by the phase control circuit 20.
- the phase signal is a signal set to a value for designating the amount of phase change in the phase mixer 222.
- phase control circuit 20 including the phase interpolator 220 and the multiplier 230 changes the frequency of the clock signal CKA and outputs it.
- FIG. 8 is a diagram showing the sweep sequencer 40 of the semiconductor circuit device 200 according to the second embodiment.
- the sweep sequencer 40 includes a phase selection counter 241, a phase control counter 242, a phase change cycle number setting register 243, a parameter maximum value setting register 244, a step number setting register 245, an AND circuit 246, and a multiplier. 247, 248, 249.
- the sweep sequencer 40 includes clock signal input terminals 240A and 240B, a lap signal input terminal 240C, a phase selection signal output terminal 240D, an end signal output terminal 240E, and phase control signal output terminals 240F to 240I, steps. It includes a number signal output terminal 240J and a setting control signal input terminal 240K.
- the clock signal input terminals 240A and 240B are terminals for inputting the clock signals CKA and CKB to the sweep sequencer 40, respectively.
- the lap signal input terminal 240C is a terminal through which a lap signal is input to the sweep sequencer 40.
- the phase selection signal output terminal 240D is a terminal that outputs a phase selection signal from the sweep sequencer 40 to the phase selection circuit 30.
- the end signal output terminal 240E is a terminal for outputting the end signal from the sweep sequencer 40 to the phase selection circuit 30.
- the step number signal output terminal 240J is a terminal that outputs a step number signal from the sweep sequencer 40 to the phase control circuits 20 1 , 20 2 ... 20 n ⁇ 1 .
- the setting control signal input terminal 240K is a terminal for inputting a setting control signal to the sweep sequencer 40.
- the phase selection counter 241 receives the clock signal CKB from the clock signal input terminal 240B, the setting control signal from the setting control signal input terminal 240K, and the phase change cycle number signal from the phase change cycle number setting register 243. Is done.
- the phase selection counter 241 is a counter that holds the Node number represented by the phase selection signal. When the setting control signal is input before the BIST is executed, the phase selection counter 241 performs initial setting of the counter value. The value of the phase selection counter 241 at the initial setting is “0” representing Node ⁇ 0.
- the phase selection counter 241 is an up counter whose count value is incremented at the time of counting, and repeatedly counts until the count value reaches the cycle number (n) represented by the phase change cycle number signal input from the phase change cycle number setting register 243. I do.
- the number of cycles (n) represented by the phase change cycle number signal corresponds to the number of Nodes (Node 0, Node 1, Node 2, ..., NodeNon-1).
- the phase selection counter 241 repeatedly counts the Node number (0 to n-1) every time the clock signal CKB is input, and counts the value (0 to n-1) every time the clock signal CKB is counted. A phase selection signal is output.
- the phase selection counter 241 is an example of a selection signal generation unit. The phase selection signal is input to the phase selection circuit 30 via the phase selection signal output terminal 240D.
- the phase control counter 242 receives the setting control signal from the setting control signal input terminal 240K and receives the number of times signal from the parameter maximum value setting register 244.
- the phase control counter 242 is an up counter, and counts the value of the parameter k included in the phase control signals 1 to n ⁇ 1 input to the phase control circuits 20 1 , 20 2 ... 20 n ⁇ 1 .
- the phase control counter 242 When the setting control signal is input from the LSI tester 300 via the setting control signal input terminal 240K, the phase control counter 242 performs initial setting of the register value.
- the value of the phase control counter 242 at the initial setting is “0”. That is, the value of the parameter k is initialized to “0”.
- the phase control counter 242 counts up the value of the parameter k by one each time an H level signal is input from the AND circuit 246.
- phase control counter 242 becomes the phase control signal 1 (1 ⁇ k) and is input to the multipliers 247, 248, and 249.
- the phase control counter 242 When the value of the parameter k reaches the maximum value m input from the parameter maximum value setting register 244, the phase control counter 242 outputs an end signal.
- the end signal is input to the phase selection circuit 30 via the end signal output terminal 240E.
- the phase change cycle number setting register 243 holds the number (n) of Node 0, Node 1, Node 2... Node n ⁇ 1 selected by the phase selection signals 1 to n ⁇ 1 as the cycle number. n) is input to the phase selection counter 241 as a phase change cycle number signal.
- the phase change cycle number setting register 243 sets the number of cycles to n when the setting control signal is input from the setting control signal input terminal 240K.
- the parameter maximum value setting register 244 holds the maximum value (m) of the parameter k and inputs it to the phase control counter 242.
- the parameter maximum value setting register 244 sets the maximum value to m when a setting control signal is input from the setting control signal input terminal 240K.
- the step number setting register 245 holds the step number of the step number signal described above.
- the step number signal output from the step number setting register 245 is input to the phase control circuits 20 1 , 20 2 ... 20 n ⁇ 1 via the step number signal output terminal 240J.
- the AND circuit 246 outputs a logical product of the clock signal CKA and the wrap signal, and inputs the H level (“1”) to the phase control counter 242 when the wrap signal becomes the H level (“1”). When the lap signal becomes H level (“1”), it corresponds to the end of one test pattern.
- Multipliers 247, 248, and 249 generate timing according to the result of multiplying the parameter k output from the phase control counter 242 by 2 times, 3 times, and (n-1) times, and based on the generated timing, the phase control signal 2, 3, and n-1 are output, respectively.
- phase control counter 242 becomes the phase control signal 1 as it is, and therefore no multiplier is inserted between the phase control counter 242 and the phase control signal output terminal 240F.
- phase control signals 1 to n ⁇ 1 are respectively output from the phase control signal output terminals 240F to 240I and input to the phase control circuits 20 1 , 20 2 ... 20 n ⁇ 1 .
- phase control counter 242 the AND circuit 246, and the multipliers 247, 248, and 249 are examples of the phase control signal generation unit.
- the values of the phase control signals 1 to n ⁇ 1 are (1 ⁇ 0), (2 ⁇ 0), (3 ⁇ 0)... ((N ⁇ 1) ⁇ 0), (0 ⁇ 1), (1 ⁇ 1), (2 ⁇ 1), (3 ⁇ 1)... ((N ⁇ 1) X1), ..., (0 x (m-1)), (1 x (m-1)), (2 x (m-1)), (3 x (m-1)) ... It changes as ((n-1) ⁇ (m-1)).
- the phase selection circuit 30 Based on these phase control signals 1 to n-1, the phase selection circuit 30 generates a clock signal CKB with a shortened period.
- FIG. 9A is a diagram illustrating processing performed by the scan system control circuit 16 of the semiconductor circuit device 200 according to the second embodiment.
- the process shown in FIG. 9A is a process executed by the scan system control circuit 16 when BIST is executed in the semiconductor circuit device 200.
- the scanning system control circuit 16 When the scanning system control circuit 16 starts processing (START), it initializes the test system circuit (step S1). Specifically, the scan system control circuit 16 inputs a setting control signal to the PLL 12, the cycle sweep circuit 211, the test pattern generation circuit 13, and the test result storage circuit 15, and each circuit (12, 211, 13, 15). Perform initial settings for.
- the cycle sweep circuit 211 sets the parameter k to 0, the PLL 12 outputs the clock signal CKA based on the test clock signal CKS input from the LSI tester 300, and the test pattern generation circuit 13 is internally provided.
- the test pattern to be held is initialized, and the test result storage circuit 15 resets the value of the internal register.
- the scan system control circuit 16 sets the frequency of the clock signal output from the PLL 12 to the frequency for BIST (step S2). As a result, the frequency of the clock signal output from the PLL 12 is set to the frequency of the clock signal CKA used in the BIST.
- test pattern generation circuit 13 (step S3).
- the test pattern is data representing write data for writing to all bit cells included in the circuit under test 14, address data of each bit cell, W / E signal, expected value, and the like.
- the scan system control circuit 16 sets the initial phase of the cycle sweep circuit 211 (step S4).
- the initial phase is a change by which the cycle sweep circuit 211 changes the phase of the clock signal CKA, and is set to “0” here.
- Scan system control circuit 16 causes PLL 12 to start oscillation of clock signal CKA (step S5). As a result, the PLL 12 outputs the clock signal CKA.
- the scan system control circuit 16 determines whether or not the BIST test time has elapsed (step S6).
- the BIST test time refers to the time required to acquire the frequency characteristics of the shmoo plot while changing the phase of the clock signal CKB, and is the time required to acquire the frequency characteristics of the shmoo plot. Is set to a time obtained by adding a predetermined compensation time. Necessary for obtaining the frequency characteristics of the shmoo plot can be obtained in advance based on the number of words, address length, operating frequency, etc. of the circuit under test 14.
- step S6 is repeatedly executed until the scan system control circuit 16 determines that the BIST test time has elapsed.
- the scan system control circuit 16 determines that the BIST test time has elapsed (YES in S6), it reads the BIST test result from the test result storage circuit 15 and transfers the test result to the LSI tester 300 (step S7).
- the LSI tester 300 can confirm the BIST test result.
- the power supply voltage or temperature what is necessary is just to acquire a frequency characteristic continuously by one process in each power supply voltage or temperature conditions, changing a setting.
- the acquisition time of the shmoo plot including the frequency characteristic and the power supply voltage characteristic or the temperature characteristic can be greatly shortened.
- FIG. 9B is a diagram illustrating processing performed by the sweep sequencer 40 of the semiconductor circuit device 200 according to the second embodiment.
- the process shown in FIG. 9B is a process executed by the sweep sequencer 40 so that the cycle sweep circuit 211 changes the frequency of the clock signal CKB when executing the BIST in the semiconductor circuit device 200.
- the sweep sequencer 40 When the process is started (START), the sweep sequencer 40 outputs the phase control signals 1 to n-1 one by one (step S11).
- the sweep sequencer 40 deselects all the phase control signals 1 to n ⁇ 1 (L (Low) level) when the phase selection circuit 30 selects the signal line of Node 0. Thereby, the phase selection circuit 30 selects the signal line of Node 0.
- the sweep sequencer 40 selects only the phase control signal corresponding to the node number of the signal line to be selected (H) when the phase selection circuit 30 selects any of the signal lines of Node 1 to NodeNon-1. Level), and all the phase control signals corresponding to the node numbers of the signal lines not selected are not selected (L level).
- the sweep sequencer 40 determines whether or not the selection of the signal lines of Node 0 to Node n-1 by the phase selection circuit 30 has been completed (step S12). In step S12, it is determined whether or not the signal lines of Node 0 to Node n-1 are selected one by one with the phase control signals 1 to n-1.
- step S12 when the sweep sequencer 40 determines in step S12 that the selection of the signal lines of Node 0 to Node n-1 by the phase selection circuit 30 has not been completed (NO in S12), the flow proceeds to step S11. Return. Thereby, the sweep sequencer 40 outputs a phase control signal for selecting the signal line of the next Node number in S11.
- the phase selection circuit 30 sequentially selects the signal lines of Node 0 to Node n-1.
- the sweep sequencer 40 determines whether or not the lap signal has become the H level (“1”) (Ste S13).
- the wrap signal is a signal that is raised to the H level (“1”) by the test pattern generation circuit 13 when the test pattern is switched.
- step S13 If the sweep sequencer 40 determines in step S13 that an H level (“1”) lap signal has not been input (S13: NO), the flow returns to step S11.
- steps S11 and S12 are repeated until an H level (“1”) lap signal is input, and the phase selection circuit 30 selects the signal lines of Node 0 to Node n ⁇ 1 one by one in order.
- step S13 When the sweep sequencer 40 determines in step S13 that an H level ("1") lap signal has been input (YES in S13), the sweep sequencer 40 increases the value of the parameter k by one (step S14).
- Step S14 is a process for preparing to perform BIST in which the phase of the clock signal CKB is changed more than before by increasing the value of the parameter k by one.
- step S16 If the sequencer for sweep 40 determines in step S16 that the value of the parameter k has not reached m (S16: NO), the flow returns to step S11. As a result, the processes in steps S11 to S13 are repeatedly executed using the parameter k increased by one in step S14.
- step S16 When the sweep sequencer 40 determines in step S16 that the value of the parameter k has reached m (S16 YES), the flow ends.
- the transition state is shown as S (Node number, parameter k).
- phase control circuits 20 1 , 20 2 ... 20 n ⁇ 1 are inserted in Node 1 to Node n ⁇ 1, respectively.
- the phase of the clock signals CKA, CKA1, CKA2,..., CKAn-1 output by the phase control circuits 20 1 , 20 2 ... 20 n ⁇ 1 is (0 ⁇ k) times the unit time, (1 ⁇ k) times, (2 ⁇ k) times... ((n ⁇ 1) ⁇ k) times are advanced.
- the phase selection circuit 30 sequentially selects the signal lines of Node ⁇ 0 to Node-1n-1, and one by one whenever an H level ("1") wrap signal is input.
- the phase of the clock signal CKB is advanced using the parameter k whose value increases.
- the phase selection circuit 30 starts (START) generation of the clock signal CKB from S (0, 0).
- phase selection circuit 30 selects the Node 0 signal line, and uses the H-level pulse of the clock signal CKA input to the phase selection circuit 30 via the Node 0 signal line as the first pulse of the clock signal CKB. That is, in S (0, 0), the phase of the clock signal CKB output from the phase selection circuit 30 is equal to the phase of the clock signal CKA input to the phase selection circuit 30.
- phase selection circuit 30 the S (1, 0), and selects the signal line of Node 1, via a signal line of Node 1 of the clock signal CKA1 input from the phase control circuit 20 1 to the phase selection circuit 30
- the H level pulse is the second pulse of the clock signal CKB.
- phase of the clock signal CKB output from the phase selection circuit 30 is equal to the phase of the clock signal CKA input to the phase selection circuit 30.
- a clock signal CKB whose phase is not advanced with respect to the clock signal CKA is output from the phase selection circuit 30.
- n 4
- the circuit under test 14 is 2 kw (kilo word), and the address length N is 12, (2) until the wrap signal becomes H level (“1”).
- the wrap signal is raised to the H level (“1”) each time test pattern 0 to test pattern m ⁇ 1 are completed in the first embodiment.
- the phase selection circuit 30 When the parameter k becomes “1”, the phase selection circuit 30 generates the clock signal CKB in the state of S (0,1) to S (n ⁇ 1,1).
- phase selection circuit 30 selects the signal line of Node 1, via a signal line of Node 1 of the clock signal CKA1 input from the phase control circuit 20 1 to the phase selection circuit 30
- the H level pulse is used as the clock signal CKB.
- the phase selection circuit 30 determines S (0, m ⁇ 1). In this state, the H-level pulse of the clock signal CKA input to the phase selection circuit 30 via the Node 0 signal line is made the first pulse of the clock signal CKB. That is, in the state of S (0, m ⁇ 1), the phase of the clock signal CKB output from the phase selection circuit 30 is equal to the phase of the clock signal CKA input to the phase selection circuit 30.
- the H level pulse is the first pulse of the clock signal CKB.
- the time shortened by the above general formula is unit time ⁇ (m ⁇ 1). Therefore, in S (1, m ⁇ 1), the phase of the clock signal CKB output from the phase selection circuit 30 is unit time ⁇ (m ⁇ 1) than the phase of the clock signal CKA input to the phase selection circuit 30. Only advance.
- the time periods are, in order, unit time ⁇ 2 ⁇ (m ⁇ 1),..., Unit time ⁇ (n ⁇ 1) ⁇ (m ⁇ 1).
- the phase of the clock signal CKB output from the phase selection circuit 30 is the clock input to the phase selection circuit 30.
- the phase is advanced by unit time ⁇ 2 ⁇ (m ⁇ 1),..., Unit time ⁇ (n ⁇ 1) ⁇ (m ⁇ 1) sequentially from the phase of the signal CKA.
- phase selection circuit 30 In the state of S (n ⁇ 1, m ⁇ 1), when the H level (“1”) wrap signal is not input, the phase selection circuit 30 returns to S (0, m ⁇ 1), and S A clock signal CKB in the state of (0, m ⁇ 1) to S (n ⁇ 1, m ⁇ 1) is generated.
- FIG. 11A and 11B are timing charts when the clock signal CKB is generated by sequentially selecting the signal lines from Node 0 to Node 1 in the phase selection circuit 30 of the semiconductor circuit device 200 according to the second embodiment.
- FIG. FIG. 11A shows a timing chart when the parameter k is “0”
- FIG. 11B shows a timing chart when the parameter k is “1”.
- n is set to “4” for convenience of explanation. For this reason, Node n-1 becomes Node 3. Further, the Node 1, Node 2, Node 3 signal lines, respectively, the phase control circuit 20 1, the phase control circuit 20 2, described as the phase control circuit 20 3 is inserted.
- the clock signals CKA, CKA1, CKA2, CKA3, and the clock signal output from the phase selection circuit 30 are input to the phase selection circuit 30 through the Node 3 through Node 3 from the Node C0.
- CKB and the value of the phase selection signal held by the phase selection counter 241 are shown.
- clock signals input to the phase selection circuit 30 from Node 0 to Node 3 are denoted as CKA (Node 0), CKA1 (Node 1), CKA2 (Node 2), and CKA3 (Node 3), respectively.
- the value of the phase selection signal held by the phase selection counter 241 is the Node number represented by the phase selection signal as described above.
- the Node number represented by the phase selection signal changes in order of 0, 1, 2, and 3 in each cycle of the clock signal CKB.
- the clock signal CKA, clock signal CKA (Node 0), CKA1 (Node 1), CKA2 (Node 2), and CKA3 (Node 3) output from the PLL 12 all have the same phase.
- the phase selection circuit 30 selects the H level pulse of the clock signal CKA (Node 0) as indicated by the arrow A0, and as indicated by the arrow B0. , And is taken in as a clock signal CKB.
- the H level pulse in the cycle 0 of the clock signal CKB is a pulse having the same phase as the H level pulse of the clock signal CKA (Node 0).
- the value of the phase selection signal becomes “1” as indicated by an arrow C1 due to the fall of the clock signal CKB.
- the phase selection circuit 30 selects the H level pulse of the clock signal CKA1 (Node 1) as indicated by the arrow A1, and takes it as the clock signal CKB as indicated by the arrow B1.
- the H level pulse in the cycle 1 of the clock signal CKB is a pulse having the same phase as the H level pulse of the clock signal CKA1 (Node1).
- the value of the phase selection signal becomes “2” as indicated by the arrow C2 due to the fall of the clock signal CKB.
- the phase selection circuit 30 selects the H level pulse of the clock signal CKA2 (Node2) as indicated by the arrow A2, and takes it in as the clock signal CKB as indicated by the arrow B2.
- the H level pulse in the cycle 2 of the clock signal CKB is a pulse having the same phase as the H level pulse of the clock signal CKA2 (Node 2).
- the value of the phase selection signal becomes “3” as indicated by an arrow C3 due to the fall of the clock signal CKB.
- the phase selection circuit 30 selects the H level pulse of the clock signal CKA3 (Node 3) as indicated by the arrow A3, and takes it in as the clock signal CKB as indicated by the arrow B3.
- the H level pulse in the cycle 3 of the clock signal CKB is a pulse having the same phase as the H level pulse of the clock signal CKA3 (Node 3).
- the value of the phase selection signal becomes “0” as indicated by an arrow C4 due to the fall of the clock signal CKB.
- the phase selection circuit 30 selects an H level pulse of the clock signal CKA4 (Node 4) as indicated by an arrow A4, and captures it as the clock signal CKB as indicated by an arrow B4.
- the H level pulse in the cycle 4 of the clock signal CKB is a pulse having the same phase as the H level pulse of the clock signal CKA4 (Node4).
- phase selection circuit 30 sequentially takes in the H level pulses of the clock signals CKA (Node ⁇ ⁇ ⁇ ⁇ 0), CKA 1 (Node 1), CKA 2 (Node 2), CKA 3 (Node 3) in the same manner as described above.
- a clock signal CKB is generated.
- phase selection circuit 30 selects the H level pulse of the clock signal CKA (Node 0) as indicated by the arrow A10, and the clock signal CKB as indicated by the arrow B10. Capture as.
- the H level pulse in the cycle 0 of the clock signal CKB is a pulse having the same phase as the H level pulse of the clock signal CKA (Node 0).
- the value of the phase selection signal becomes “1” as indicated by the arrow C11 due to the fall of the clock signal CKB.
- the phase selection circuit 30 selects an H level pulse of the clock signal CKA1 (Node 1) as indicated by an arrow A11, and captures it as a clock signal CKB as indicated by an arrow B11.
- the H level pulse in the cycle 1 of the clock signal CKB is a pulse having the same phase as the H level pulse of the clock signal CKA1 (Node1).
- the H level pulse of the clock signal CKA1 (Node 1) is advanced by the unit time ⁇ 1 with respect to the clock signal CKA (Node 0)
- the H level pulse in the cycle 1 of the clock signal CKB is the clock signal.
- the signal is advanced by the unit time ⁇ 1 with respect to the signal CKA (Node 0).
- phase of the clock signal CKB is advanced in the period 1 by the unit time ⁇ 1 from the clock signal CKA (Node 0).
- the value of the phase selection signal becomes “2” as indicated by the arrow C2 due to the fall of the clock signal CKB.
- the phase selection circuit 30 selects an H level pulse of the clock signal CKA2 (Node2) as indicated by an arrow A12, and captures it as a clock signal CKB as indicated by an arrow B12.
- the H level pulse in the cycle 2 of the clock signal CKB is a pulse having the same phase as the H level pulse of the clock signal CKA2 (Node 2).
- the H level pulse of the clock signal CKA2 (Node 2) is advanced by the unit time ⁇ 2 with respect to the clock signal CKA (Node 0)
- the H level pulse in the cycle 2 of the clock signal CKB is the clock signal.
- the signal is advanced by a unit time ⁇ 2 with respect to the signal CKA (Node 0).
- phase of the clock signal CKB is advanced by a unit time ⁇ 2 from the clock signal CKA (Node 0) in the period 2.
- the value of the phase selection signal becomes “3” as indicated by the arrow C13 due to the fall of the clock signal CKB.
- the phase selection circuit 30 selects an H level pulse of the clock signal CKA3 (Node 3) as indicated by an arrow A13, and captures it as a clock signal CKB as indicated by an arrow B13.
- the H level pulse in the cycle 3 of the clock signal CKB is a pulse having the same phase as the H level pulse of the clock signal CKA3 (Node 3).
- the H level pulse of the clock signal CKA3 (Node 3) is advanced by the unit time ⁇ 3 with respect to the clock signal CKA (Node 0)
- the H level pulse in the cycle 3 of the clock signal CKB is the clock signal CKA3 (Node 3).
- the signal is advanced by the unit time ⁇ 3 with respect to the signal CKA (Node 0).
- phase of the clock signal CKB is advanced by the unit time ⁇ 3 from the clock signal CKA (Node 0) in the period 3.
- the value of the phase selection signal becomes “0” as indicated by an arrow C14 due to the fall of the clock signal CKB.
- the phase selection circuit 30 selects an H level pulse of the clock signal CKA (Node 0) as indicated by an arrow A14, and captures it as a clock signal CKB as indicated by an arrow B14.
- the H level pulse in the cycle 4 of the clock signal CKB is a pulse having the same phase as the H level pulse of the clock signal CKA (Node 0).
- the phase selection circuit 30 sequentially takes in the H level pulses of the clock signals CKA (Node ⁇ ⁇ ⁇ ⁇ 0), CKA 1 (Node 1), CKA 2 (Node 2), CKA 3 (Node 3) in the same manner as described above.
- a clock signal CKB whose phase is repeatedly advanced is generated.
- the period 1, the period 2 and the period 3 are the same period, and the period 0 is the period 1
- the period is longer than the period 2 and the period 3 by a unit time.
- the phases of the clock signals CKA1 (Node 1), CKA2 (Node 2), and CKA3 (Node 3) are different from those of the clock signal CKA (Node 0), respectively.
- the unit time is advanced by 1 ⁇ k, unit time ⁇ 2 ⁇ k, and unit time ⁇ 3 ⁇ k.
- the clock signal CKB, CKA1 (Node ⁇ 1), CKA2 (Node 2), and CKA3 (Node 3) only have a phase advance time of k times. This is the same as the case where the value of the parameter k shown in 11B is “1”.
- the phase selection circuit 30 generates the clock signal CKB whose phase is periodically advanced.
- FIG. 12 is a diagram illustrating the test result storage circuit 15 of the semiconductor circuit device 200 according to the second embodiment.
- the test result storage circuit 15 includes a clock signal input terminal 270A, a READ signal input terminal 270B, a wrap signal input terminal 270C, a READ data input terminal 270D, an expected value input terminal 270E, a scan-in terminal 270F, a scan clock input terminal 270G, And a scan-out terminal 270H.
- the EOR circuit 251 outputs an exclusive OR that compares the READ data input from the READ data input terminal 270D with the expected value input from the expected value input terminal 270E.
- the READ data is the same value (“0” or “1”) as the expected value, so the output of the EOR circuit 251 is the same as the READ data and the expected value. If it matches, it becomes “0”, and if the READ data does not match the expected value, it becomes “1”.
- OR circuit 252 receives the output of the EOR circuit 251 to one input terminal, scan FF260 1 output (Q) is input to the other input terminal.
- the wrap signal is inverted from the wrap signal input terminal 270C and input to one input terminal, and the output terminal of the OR circuit 252 is connected to the other input terminal.
- Output terminals of the AND circuit 253 is connected to the scan FF260 1 input terminal (D).
- the output of the AND circuit 253 represents the BIST test result because the value varies depending on the test result obtained by comparing the READ data with the expected value in the EOR circuit 251.
- the output of the AND circuit 253 is reset when the wrap signal to be inverted and input to one input terminal becomes H level (“1”). That is, the output of the AND circuit 253 is reset to “0” when the test pattern is switched (since the wrap signal becomes “1”).
- the output of the AND circuit 253 is sequentially held at the output terminals (Q) of the scan FFs 260 1 to 260 m as values representing the BIST test results.
- Scan-chain 254 is a signal line for scan testing connecting the scan-in terminal 270F and the scan FF260 1 of the scan-in terminal SI (Scan In).
- the scan-out chain 255 is a signal line for a scan test that connects the scan-out terminal SO (Scan Out) of the scan FF 260 m and the scan-out terminal 270H.
- An OR (logical sum) circuit 256 outputs a logical sum of the READ signal and the wrap signal.
- the output of the OR circuit 256 inverts the input to the scan FF260 1 of the IH (INHIBIT) terminal.
- the scan FFs 260 1 to 260 m have an input terminal D, an output terminal Q, a scan-in terminal SI (Scan In), a scan-out terminal SO (Scan Out), an IH (InHibit) terminal, a clock input terminal, and a scan clock input, respectively. It has a terminal SCK. Negative operation units 280 1 to 280 m are connected to the IH terminals of the scan FFs 260 1 to 260 m , respectively.
- each of the scan FFs 260 1 to 260 m is connected to the input terminal D and the output terminal Q, and is connected to the scan-in terminal SI and the scan-out terminal SO. Is realized.
- the scan FFs 260 1 to 260 m are provided to hold BIST results based on m test patterns, respectively.
- a wrap signal input terminal 270C is connected to the IH terminals of the scan FFs 260 2 to 260 m via negative calculators 280 2 to 280 m .
- a scan-out chain 255 is connected to the scan-out terminal SO of the scan FF 260 m .
- the clock input terminals of the scan FFs 260 1 to 260 m are connected to the clock signal input terminal 270A, and the scan clock input terminal 270G is connected to the scan clock input terminal SCK.
- the clock signal input terminal 270A is a terminal for inputting the clock signal CKB to the clock input terminals of the scan FFs 260 1 to 260 m .
- the READ signal input terminal 270B is a terminal through which the READ signal is input to the test result storage circuit 15.
- the wrap signal input terminal 270C is a terminal through which a wrap signal is input to the test result storage circuit 15.
- the READ data input terminal 270D is a terminal through which READ data is input from the circuit under test 14 to the EOR circuit 251 of the test result storage circuit 15.
- the expected value input terminal 270E is a terminal through which an expected value is input from the test pattern generation circuit 13 to the EOR circuit 251 of the test result storage circuit 15.
- the scan clock input terminal 270G is a terminal for inputting a scan clock TCK used for scan-in / scan-out of test data to the scan clock input terminals SCK of the scan FFs 260 1 to 260 m .
- the scan-out terminal 270H is a terminal for outputting the test result of the circuit under test 14 from the scan FFs 260 1 to 260 m via the scan-out chain 255.
- the scan FFs 260 1 to 260 m operate based on the clock signal CKB input to the clock input terminal.
- the scan FFs 260 1 to 260 m switch prohibition / permission of data reading based on an input to the IH terminal.
- READ signal, scan FF260 1 is a signal for controlling the operation of reading the test results of BIST.
- wrap signal is a signal that becomes H level (“1”) when the test pattern is switched, it is L level (“0”) during execution of BIST by the test pattern. Therefore, during the execution of the BIST are "1" is input to the IH terminal of the scan FF260 1 ⁇ 260 m, it scans FF260 1 ⁇ 260 m is write-protected.
- the scan FF260 1 Enter “0" to the terminal IH of ⁇ 260 m, it scans FF260 1 ⁇ 260 m is in a state of write enable . With this write permission, the test results are sequentially written in the scan FFs 260 1 to 260 m .
- the wrap signal becomes H level (“1”) only at the timing when the test pattern is switched, but is “0” during execution of BIST by any of the test patterns 0 to m ⁇ 1, and the wrap signal is an AND circuit. Invert to 253 and input.
- the output of the AND circuit 253 is sequentially read into the scan FFs 260 1 to 260 m as data representing the BIST test result.
- the value of the output terminal (Q) of the scan FF 260 1 is input to one input terminal of the OR circuit 252, and unless the wrap signal becomes H level (“1”), the output terminal (Q) of the scan FF 260 1 The value of is not reset.
- test results obtained by executing BIST by test pattern 0 to test pattern m ⁇ 1 continuously in a single process are sequentially held in scan FFs 260 1 to 260 m , the test is performed by LSI tester 300. By reading the result, it is possible to acquire the frequency characteristics of the shmoo plot for one type of power supply voltage and one type of temperature at a time.
- the scan control signal is sent from the LSI tester 300 (see FIG. 5) through the scan system control circuit 16.
- the scan system control circuit selects the scan-in chain 254 and the scan-out chain 255 under the control of (TCK, TMS).
- the frequency characteristic of the shmoo plot can be acquired by the LSI tester 300.
- the clock signal GKB whose period is shortened (frequency is increased) by gradually advancing the phase is obtained.
- BIST for various frequencies can be executed continuously in a single process.
- the time is shortened by unit time ⁇ ((n ⁇ 1) ⁇ (m ⁇ 1)) compared to the rising timing of the H level pulse.
- the time for creating the shmoo plot of the semiconductor circuit device 200 can be greatly shortened.
- the test time is significantly shortened by making the frequency of the clock signal for BIST variable.
- the circuit under test 14 is an SRAM.
- the circuit under test may be another type of RAM.
- the semiconductor circuit device 200 inputs a operand (operation value) to an arithmetic unit or the like and compares the operation result with an expected value. You may apply to BIST.
- the test pattern generator may generate a test pattern for a logic circuit such as an arithmetic unit instead of the SRAM.
- Phase selection circuit 40 Sweep sequencer 200 Semiconductor circuit device 201, 202 Terminal 211 Cycle sweep circuit 11A Clock input terminal 11B Clock output terminal 11C Lap signal input terminal 11D Setting control signal input terminal 16 Scan system control circuit 300 LSI tester 220 Phase interpolator 221 DLL 222 Phase mixer 230 Multiplier 241 Phase selection counter 242 Phase control counter 243 Phase change cycle number setting register 244 Parameter maximum value setting register 245 Step number setting register 246 AND circuit 247, 248, 249 Multiplier 240A, 240B Clock signal input Terminal 240C Lap signal input terminal 240D Phase selection signal output terminal 240E End signal output terminal 240F to 240I Phase control signal output terminal 240J Step number signal output terminal 240K Setting control signal input terminal 251 EOR circuit 252 OR circuit 253 AND circuit 254 Scan-in chain 255 Scan-out chain 260 1 , 260 2 ,..., 260 m- scan FF 270A Clock signal
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tests Of Electronic Circuits (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
BIST用のクロック信号の周波数を可変にすることにより、試験時間の短縮を図った回路装置を提供することを課題とする。 回路装置は、第1周波数のクロックを出力するクロック生成部と、クロック生成部が出力する第1周波数のクロックを入力し、第1周波数のクロックの位相に対し、位相を進角又は遅角させた第1周波数のクロックをそれぞれ出力する複数の位相制御部と、複数の位相制御部がそれぞれ出力する複数の第1周波数のクロックを入力し、複数の第1周波数のクロックのパルスを順次選択して、第2周波数のクロックを出力する選択部と、選択部が出力した第2周波数のクロックに基づいて、テストパターンを生成するパターン生成部と、選択部が出力した第2周波数のクロックとパターン発生部が生成したテストパターンを入力し、第2周波数のクロックに基づき、テストパターンを入力として動作した動作結果を出力する回路部を有する。
Description
本願発明は、回路装置、周波数変更回路、回路装置の試験方法、及び周波数変更回路の制御方法に関する。
従来より、LSIの回路の論理に応じた所定のテストパターンを生成するパターン生成回路と、生成したテストパターンを入力して回路を動作させた結果に基づき、LSIの良否を判定する判定回路とを、LSI内部に組み込むBIST(Build In Self Test:組み込み自己試験)技術が知られている。このBIST技術により、半導体工場におけるLSI出荷工程における試験時間を短縮させるとともに、試験コストを引き下げることができる。
ところで、従来の半導体回路装置のような回路装置は、BIST用のクロック信号の周波数を変更するための回路を含んでいない。
このため、クロック信号の周波数を振った場合のBISTによる試験結果を取得するためには、クロック信号を出力するPLL(Phase Locked Loop:位相同期回路)等の出力周波数を変更する度に、PLLの周波数設定を変更するとともに、PLLの出力周波数が安定するのを待ち、被試験回路の初期化を実行してから、BISTを実行する必要があった。
そこで、BIST用のクロック信号の周波数を可変にすることによりPLLの周波数設定値を変更する必要がなくなり、試験時間の短縮を図った回路装置、周波数変更回路、回路装置の試験方法、及び周波数変更回路の制御方法を提供することを目的とする。
本発明の実施の形態の回路装置は、第1の周波数のクロック信号を出力するクロック生成部と、前記クロック生成部が出力する第1の周波数のクロック信号を入力し、前記第1の周波数のクロック信号の位相に対し、位相を進角又は遅角させた第1の周波数のクロック信号をそれぞれ出力する複数の位相制御部と、前記複数の位相制御部がそれぞれ出力する複数の第1の周波数のクロック信号を入力し、前記複数の第1の周波数のクロック信号のパルスを順次選択して、第2の周波数のクロック信号を出力する選択部と、前記選択部が出力した第2の周波数のクロック信号に基づいて、テストパターンを生成するパターン生成部と、前記選択部が出力した第2の周波数のクロック信号と前記パターン発生部が生成したテストパターンを入力し、前記第2の周波数のクロック信号に基づき、前記テストパターンを入力として動作した動作結果を出力する回路部を有することを特徴とする。
BIST用のクロック信号の周波数を可変にすることによりPLLの周波数設定値を変更する必要がなくなり、試験時間の短縮を図った回路装置、周波数変更回路、回路装置の試験方法、及び周波数変更回路の制御方法を提供することができる。
以下、本発明の回路装置、周波数変更回路、回路装置の試験方法、及び周波数変更回路の制御方法を適用した実施の形態について説明する。
実施の形態1、2の半導体回路装置について説明する前に、まず、図1を用いて、比較例の半導体回路装置における問題点について説明する。
図1は、比較例の半導体回路装置を示すブロック図である。
比較例の半導体回路装置1は、PLL(Phase Locked Loop:位相同期回路)2、テストパターン発生回路3、被試験回路4、及び試験結果記憶回路5を含む。
半導体回路装置1は、LSI(Large Scale Integration circuit:大規模集積回路)であり、例えば、SRAM(Static Random Access Memory)を含む。
図1に示す半導体回路装置1のうち、テストパターン発生回路3及び試験結果記憶回路5は、BISTを実行するために必要な回路であり、被試験回路4はSRAMである。
PLL2は、半導体回路装置1の外部から入力するクロック信号の周波数を逓倍したクロック信号を出力する。PLL2は、半導体回路装置1の通常動作(システム動作)時に半導体回路装置1の外部の水晶発振器からクロック信号が入力されると、通常動作(システム動作)用のクロック信号を出力する。また、PLL2は、BIST実行時にLSIテスタからクロック信号が入力されると、BIST用のクロック信号を出力する。
PLL2は、テストパターン発生回路3、被試験回路4、及び試験結果記憶回路5に接続されており、テストパターン発生回路3、被試験回路4、及び試験結果記憶回路5にBIST用のクロック信号をそれぞれ入力する。
ここで、通常動作(システム動作)とは、半導体回路装置1がSRAM(Static Random Access Memory)である場合は、半導体回路装置1をSRAMとして用いる動作をいう。このため、通常動作用のクロック信号は、SRAMとしての半導体回路装置1が通常動作(システム動作)を行うのに必要なクロック信号である。
また、BIST用のクロック信号とは、被試験回路4のBISTを実行するのに必要なクロック信号である。
テストパターン発生回路3は、被試験装置4のBISTに必要なテストパターンのデータを発生する回路であり、例えば、プログラムレジスタを含むシーケンサを用いることができる。
ここで、テストパターンは、被試験回路4に含まれるすべてのビットセルに書き込むためのデータ(書き込みデータ)、各ビットセルのアドレスを表すデータ(アドレスデータ)、W/E(Write/Enable)信号、期待値等を表すデータを含む。テストパターンは、テストパターン発生回路3のプログラムレジスタによって発生される。
テストパターン発生回路3の出力端は、被試験回路4と試験結果記憶回路5に接続されている。
テストパターン発生回路3は、被試験装置4にテストパターンのうちの書き込みデータ、アドレスデータ、及びW/E信号を入力し、試験結果記憶回路5に期待値を入力する。
被試験回路4は、BISTの試験対象となる回路であり、例えば、SRAMである。
被試験回路4の出力端は試験結果記憶回路5に接続されている。被試験回路4は、BIST用のクロック信号とテストパターンとに基づいて動作した結果を表す動作結果を出力する。
試験結果記憶回路5は、被試験回路4の動作結果を期待値と比較することによって得る試験結果(BISTの試験結果)を記憶する回路であり、例えば、レジスタを用いることができる。
BISTの試験結果は、書き込みデータを被試験回路4に書き込んだ後に被試験回路4から読み出したデータと、期待値とを比較し場合の一致/不一致の結果(被試験回路4の良否結果)を表す。
被試験回路4のすべてのビットセルから読み出したデータが、期待値と一致する場合には試験結果は合格(被試験回路4は良品)となり、読み出したデータに期待値と不一致のデータが含まれる場合には試験結果は不合格(被試験回路4は不良品)となる。
半導体回路装置1のBISTを行う場合は、半導体回路装置1をLSIテスタに接続し、PLL2にBIST用の入力信号を入力する。PLLはBIST用のクロック信号を出力し、BIST用のクロック信号は、テストパターン発生回路3、被試験回路4、及び試験結果記憶回路5に入力する。
テストパターン発生回路3は、PLL2から入力するBIST用のクロック信号に応じ、試験対象である被試験回路の論理に基づいたテストパターンを出力する。テストパターン発生回路3が出力するテストパターンは、被試験回路4に入力する。
被試験回路4は、BIST用のクロック信号に基づいてテストパターンに含まれる書き込みデータを書き込む。書き込み処理が終わると、書き込みデータは被試験回路4から読み出され、試験結果記憶回路5が読み出したデータを期待値と比較し、試験結果を表すデータを記憶する。
そして、試験結果記憶回路5に記憶された試験結果は、LSIテスタによってスキャンアウトされて試験結果記憶回路5の外部に取り出される。
ところで、半導体回路装置1の良否判定を検証する際には、テストパターンを印加する被試験回路4の動作周波数を変化させて、様々な動作条件下での試験結果を検証する必要がある。
このため、一般的に、半導体回路装置1のようなLSIの良否判定を検証する際には、シュムープロット(Shmoo Plot)を作成する。
シュムープロットとは、実物のLSIでの動作マージンを調査するために、BISTのテストパターンを印加する際における被試験回路4の電源電圧と動作周波数といった相関関係のあるパラメータを縦軸及び横軸とし、被試験回路4の電源電圧及び動作周波数を変化させて得る試験結果をマトリクス状にまとめたものである。
シュムープロットは、被試験回路4の電源電圧と動作周波数に加えて半導体回路装置1の温度もパラメータとする場合には、縦軸及び横軸に直交する第3の軸(温度軸)を含むことになる。
このようなシュムープロットを用いれば、LSIが動作しうる範囲における各パラメータの組み合わせを把握することができる。
しかしながら、比較例の半導体回路装置1のBISTでは、1回の試験で、1つのテストパターンによる動作試験(1種類の電源電圧、1種類の動作周波数、1種類の温度についての動作試験)を行っている。被試験回路4の電源電圧、動作周波数、又は温度を変更するには、電源電圧、動作周波数、又は温度を再設定する必要がある。
従って、複数の電源電圧、複数の動作周波数、複数の温度についてBISTを実行してシュムープロットを作成するためには、被試験回路4の電源電圧、動作周波数等のパラメータを変更しながら、BISTを繰り返す必要があった。
また、1つのテストパターンによるBISTを行う場合は、被試験回路4にテストパターンを印加する時間の他に、被試験回路4の電源をオン/オフするための時間、スキャンイン/スキャンアウトによる被試験回路4の設定/試験結果の読み出しに必要な時間等がかかる。
このため、比較例の半導体回路装置1において、パラメータを変更しながらシュムープロットを作成するには、多大な時間を要するという問題があった。
特に、パラメータの中でも被試験回路4の動作周波数を変更する場合には、PLL2が出力するクロック信号の周波数を変更する必要があり、PLL2の出力周波数が安定するまでに時間がかかるため、シュムープロットの作成時間の長時間化の大きな要因になっていた。
以上のように、比較例の半導体回路装置1は、被試験回路4の動作周波数を変更しながらシュムープロットを作成するのに多大な時間を要するという問題があった。
このため、以下で説明する実施の形態1、2では、上述の問題点を解決した半導体回路装置を提供することを目的とする。以下、実施の形態1、2の半導体回路装置について説明する。
<実施の形態1>
図2は、実施の形態1の半導体回路装置10を示すブロック図である。
図2は、実施の形態1の半導体回路装置10を示すブロック図である。
実施の形態1の半導体回路装置10は、サイクルスイープ回路11、PLL12、テストパターン発生回路13、被試験回路14、及び試験結果記憶回路15を含む。
図2に示すPLL12、被試験回路14、及び試験結果記憶回路15は、それぞれ、入力するBIST用のクロック信号が実施の形態1と異なるが、図1に示す比較例の半導体回路装置1のPLL2、被試験回路4、及び試験結果記憶回路5と基本的に同様である。このため、PLL12、被試験回路14、及び試験結果記憶回路15についての説明は、図1に示すPLL2、被試験回路4、及び試験結果記憶回路5の説明を援用する。
実施の形態1では、回路装置の一例として、半導体回路装置10がLSIである場合について説明する。半導体回路装置10がLSIである場合には、高速化、高機能化、製造コストの抑制、信頼性の向上等を図ることができる。
しかしながら、回路装置は、半導体回路装置10のようなLSIに限らず、サイクルスイープ回路11、PLL12、テストパターン発生回路13、又は試験結果記憶回路15のうちの少なくともいずれか一つは、ディスクリート部品又はFPG(Field Programmable Gate array)等で実現されてもよい。
実施の形態1の半導体回路装置10は、サイクルスイープ回路11でBIST用のクロック信号の周波数を変更しながらBISTを実行し、シュムープロットの周波数特性を連続的な一度の処理で取得することを可能にする。
このような処理を可能にするため、テストパターン発生回路13は、実施の形態1のテストパターン発生回路3に新たな機能を追加したものになっている。この追加機能については後述する。
サイクルスイープ回路11は、PLL12とテストパターン発生回路13、被試験回路14、及び試験結果記憶回路15との間に配設されている。
サイクルスイープ回路11は、クロック生成部の一例としてのPLL12が出力するBIST用のクロック信号CKAを入力し、クロック信号CKAの周波数を変更することのできる回路である。
以下の説明では、サイクルスイープ回路11は、クロック信号CKAを入力し、クロック信号CKAの周波数を変更したクロック信号CKBを出力することとする。クロック信号CKBは、クロック信号CKAの位相を進角又は遅角させることにより、クロック信号CKAの周波数を変更した信号である。
ここで、クロック信号CKAを進角又は遅角する度合は、離散的に設定することができる。クロック信号CKAを進角させた場合は、サイクルスイープ回路11から出力するクロック信号CKBの1周期は短くなり、周波数は高くなる。一方、クロック信号CKAを遅角させた場合は、サイクルスイープ回路11から出力するクロック信号CKBの1周期は長くなり、周波数は低くなる。
また、クロック信号CKAを進角又は遅角する度合として、"0"を設定することもできる。進角又は遅角の度合として"0"を設定した場合、サイクルスイープ回路11から出力するクロック信号CKBは、サイクルスイープ回路11に入力するクロック信号CKAと同一の周期及び周波数を有することになる。
なお、実施の形態1では、クロック信号CKAの位相を進角させたクロック信号CKBを用いる実施形態について説明する。
サイクルスイープ回路11から出力するクロック信号CKBは、テストパターン発生回路13、被試験回路14、試験結果記憶回路15に入力する。
テストパターン発生回路13は、サイクルスイープ回路11から入力するBIST用のクロック信号CKBに基づき、ある種類のテストパターンを複数回(m回(mは2以上の任意の整数))出力するパターン生成部の一例である。テストパターン発生回路13が出力するテストパターンは、被試験回路14に入力される。
ここで、実施の形態1におけるテストパターンは、テストパターン発生回路13において、周期が徐々に短縮されるクロック信号CKBとともに発生されるため、連続して生成されるテストパターンは、複数の動作周波数を含むことになる。
また、テストパターン発生回路13は、比較例のテストパターン発生回路3に対する追加機能として、試験結果記憶回路15に入力するためのラップ信号を出力する機能を有する。ラップ信号は、テストパターンと同様に、テストパターン発生回路13の内部のプログラムレジスタによって発生される。
テストパターン発生回路13は、m回のテストパターンを順番に発生する際に、テストパターンが一巡して切り替わる度に、ラップ信号を出力する。ラップ信号は、テストパターンが一巡して切り替わる度に(1つ1つのテストパターンが終了する度に)テストパターン発生回路13によって所定期間だけHレベル("1")に立ち上げられ、テストパターンの実行中はLレベル("0")に設定される信号であるが、その詳細については後述する。
被試験回路14は、BIST用のクロック信号CKBに基づいてテストパターンを処理し、処理結果(動作結果)を試験結果記憶回路15に入力する回路部の一例である。
試験結果記憶回路15は、被試験回路14の処理結果(動作結果)を期待値と比較し、試験結果(比較結果)を表すデータを記憶する。試験結果記憶回路15は、処理結果(動作結果)を期待値と比較する比較部の一例としての機能と、試験結果(比較結果)を保持する比較結果保持部の一例としての機能とを含む。
次に、図3を用いて、サイクルスイープ回路11について説明する。
図3は、実施の形態1の半導体回路装置10のサイクルスイープ回路11を示す図である。
サイクルスイープ回路11は、クロック入力端11A、クロック出力端子11B、ラップ信号入力端子11C、位相制御回路201、202、・・・、20n-1、位相選択回路30、及びスイープ用シーケンサ40を含む。
クロック入力端11Aと位相選択回路30との間は、信号線が並列なn本に分岐している。分岐したn本の信号線をそれぞれ、Node 0、Node 1、Node 2、・・・、Node n-1と区別する。
クロック出力端子11Bは、図2に示すテストパターン生成回路13、被試験回路14、及び試験結果記憶回路15に接続されており、サイクルスイープ回路11で周波数が変更されたクロック信号をテストパターン生成回路13、被試験回路14、及び試験結果記憶回路15に入力する。
ラップ信号入力端子11Cは、図2に示すテストパターン発生回路13に接続されており、テストパターン発生回路13が出力するラップ信号をサイクルスイープ回路11に入力する。
位相制御回路201、202、・・・、20n-1は、それぞれ、クロック入力端11Aと位相選択回路30との間において、Node 1、Node 2、・・・、Node n-1の信号線に挿入されている。Node 0の信号線には、位相制御回路は挿入されていない。
位相制御回路201、202、・・・、20n-1は、それぞれ、スイープ用シーケンサ40から入力する位相制御信号1~n-1に基づき、クロック信号CKAの位相を進角させるために、クロック信号CKAの1周期を単位時間の(1×k)倍、(2×k)倍、・・・、((n-1)×k)倍だけ短縮する複数の位相制御部の一例である。
スイープ用シーケンサ40から入力する位相制御信号1~n-1は、nとkの値に応じて、位相制御回路201、202、・・・、20n-1の各々によるクロック信号CKAの位相の進角又は遅角を制御する制御信号である。
位相制御信号1~n-1は、それぞれ、クロック信号CKAの1周期の短縮の度合として、単位時間の(1×k)倍、(2×k)倍・・・((n-1)×k)倍の時間を表す。
ここで、nは、2以上の任意の整数であり、位相制御回路201、202・・・20n-1の数(n-1)に、Node 0の分の1を加えた固定値である。
また、パラメータkは、最大値をm-1(mは2以上の任意の整数(固定値))として、0からmまで順番に増加するパラメータである。
実施の形態1の半導体回路装置10は、m個のテストパターン0~テストパターンm-1を順番に用いてBISTを実行する。パラメータkの値は、そのときに用いるテストパターンkを表す。
なお、テストパターンは、0~m-1のm個であるが、パラメータkの値が0から順番に増加してmに達すると、テストパターン0~テストパターンm-1によるBISTがすべて終了したことになる。
実施の形態1の半導体回路装置10では、パラメータkの値を0から(m-1)まで順番に増やしながら、位相制御回路201、202・・・20n-1で順番にクロック信号CKAの周期を短縮する。また、半導体回路装置10は、パラメータkの値がmに達すると、BISTを終了する。
具体的には、クロック信号CKAの周期は、位相制御回路201、202、・・・、20n-1において、単位時間の(1×k)倍、(2×k)倍・・・((n-1)×k)倍の式により、パラメータkの値を0から(m-1)まで順番に増やしながら、短縮される。
すなわち、パラメータkが0から最大値(m-1)になるまでに、単位時間の(1×0)倍、(2×0)倍、・・・、((n-1)×0)倍、(0×1)倍、(1×1)倍、(2×1)倍・・・((n-1)×1)倍、・・・、(0×(m-1))倍、(1×(m-1))倍、(2×(m-1))倍、・・・、((n-1)×(m-1))倍という順番で、クロック信号CKAの周期が繰り返し短縮される。
位相選択回路30は、スイープ用シーケンサ40から入力する位相選択信号に基づいて、周期を短縮したクロック信号CKBを生成する回路である。
位相選択信号は、位相選択回路30にNode 0、Node 1、Node 2・・・Node n-1の各々の信号線を介して入力するクロック信号CKA(Node 0が選択された場合)又は位相制御回路1~n-1からのクロック信号(Node 1~n-1が選択された場合)のH(High)レベルのパルスを順番に選択する信号である。
ここで、Node 0、Node 1、Node 2・・・Node n-1の各々の信号線の番号をNode番号とすると、位相選択信号は、位相選択回路30が選択する信号線のNode番号を表す。
Node 0、Node 1、Node 2、・・・、Node n-1の信号線から位相選択回路30に入力するクロック信号CKAを1周期毎に順番に選択するために、位相選択信号が表すNode番号は、1周期毎に順番に変化する。
位相選択回路30は、位相選択信号に基づいて、Node 0、Node 1、Node 2、・・・、Node n-1の各々の信号線を介して入力するクロック信号CKAのHレベルのパルスを1周期毎に1つずつ順番に選択することにより、周期を短縮したクロック信号CKBを生成する。位相選択回路30としては、例えば、セレクタを用いればよい。位相選択回路30は、選択部の一例である。
上述のように、Node 1、Node 2、・・・、Node n-1の信号線には、位相制御回路201、202、・・・、20n-1が挿入されており、Node0の信号線には位相制御回路が挿入されていない。
このため、Node 0、Node 1、Node 2・・・Node n-1の信号線を介して位相選択回路30に入力するクロック信号CKAのHレベルのパルスの位相は、単位時間の0倍、(1×k)倍、(2×k)倍・・・((n-1)×k)倍だけそれぞれ進角する。
上述のように、パラメータkの値が0から最大値(m-1)になるまで、位相制御回路201、202・・・20n-1で順番にクロック信号CKAのHレベルのパルスの位相を進角するのに合わせて、位相選択回路30は、Node 0、Node 1、Node 2、・・・、Node n-1の信号線を介して入力するクロック信号CKAのHレベルのパルスを1つずつ順番に選択する。
これにより、位相選択回路30が出力するクロック信号CKBの周期のHレベルのパルスの位相は、クロック信号CKAのHレベルのパルスの位相に対して、1周期毎に順番に、単位時間の0倍、(1×k)倍、(2×k)倍・・・((n-1)×k)倍ずつ進角される。
すなわち、クロック信号CKBの周期のHレベルのパルスの位相は、クロック信号CKAのHレベルのパルスの位相に対して、1単位時間の(0×0)倍、(1×0)倍、(2×0)倍・・・((n-1)×0)倍、(0×1)倍、(1×1)倍、(2×1)倍・・・((n-1)×1)倍、・・・、(0×(m-1))倍、(1×(m-1))倍、(2×(m-1))倍・・・((n-1)×(m-1))倍という順番で、パラメータkの値を0から最大値(m-1)まで増やしながら、繰り返し進角される。
このようなクロック信号CKBの周期の短縮は、シュムープロットの周波数特性を連続的に一度の処理で取得するために行われる。
スイープ用シーケンサ40は、位相制御回路201、202・・・20n-1の各々に入力する位相制御信号1~n-1と、位相選択回路30に入力する位相選択信号とを出力する制御部の一例である。
スイープ用シーケンサ40には、テストパターン発生回路13(図2参照)から制御信号の一例であるラップ信号が入力する。
なお、ラップ信号は、上述のように、1つのテストパターンが終了する毎にテストパターン発生回路13によってHレベル("1")に立ち上げられ、テストパターンの実行中はLレベル("0")に設定される。
スイープ用シーケンサ40は、ラップ信号が入力する度に、パラメータkの値を1つずつ増加させる。
スイープ用シーケンサ40が位相制御信号1~n-1及び位相選択信号で位相制御回路201、202・・・20n-1及び位相選択回路30を制御する。これにより、位相選択回路30から出力するクロック信号CKBのHレベルのパルスの位相は、クロック信号CKAのHレベルのパルスの位相に対して、1周期毎に順番にパラメータkの値が1ずつ増加しながら、単位時間の(0×k)倍、(1×k)倍、(2×k)倍・・・((n-1)×k)倍ずつ進角される。
ここで、図4のタイミングチャートを用いて、実施の形態1の半導体回路装置10においてクロック信号の周波数を変更する手順について説明する。
図4は、実施の形態1の半導体回路装置10におけるクロック信号の周波数を変更する手順を示すタイミングチャートである。
図4(A)は、k=1(テストパターン1)を被試験回路14に印加する場合に、Node 0、Node 1、Node 2、・・・、Node n-1の信号線を経て位相選択回路30に入力するクロック信号CKA、CKA1、CKA2、・・・、CKAn-1と、位相選択回路30から出力するクロック信号CKBとの波形を示す。
図4(B)は、図4(A)に示すクロック信号CKBと、テストパターン1を実行するのに必要なすべてのクロック信号CKBとの関係を示す図である。
図4(C)は、図4(B)に示すテストパターン1を実行するのに必要なすべてのクロック信号CKBと、テストパターン1以外のテストパターンの各々を実行するのに必要なすべてのクロック信号CKBと、すべてのテストパターンを実行するのに必要なクロック信号CKBとの関係、及び、ラップ信号が出力するタイミングを示す図である。
図4(C)には、各テストパターンを実行するのに必要なクロック信号CKBを、テストパターン0~テストパターンm-1と示す。
図4(A)に示すように、Node 1、Node 2、・・・、Node n-1の信号線を経て位相選択回路30に入力するクロック信号CKA1、CKA2、・・・、CKAn-1は、それぞれ、Node 0の信号線を経て位相選択回路30に入力するクロック信号CKAに対して、t1(単位時間×1)、t2(単位時間×2)、tn-1(単位時間×(n-1))だけ進角している。
Node 1、Node 2、・・・、Node n-1の各々の信号線におけるクロック信号CKA1、CKA2、・・・、CKAn-1の位相は、スイープ用シーケンサ40が出力する位相制御信号1~n-1により、位相制御回路201、202・・・20n-1の各々で進角される。
位相選択回路30は、スイープ用シーケンサ40から入力する位相選択信号に基づき、Node 0、Node 1、Node 2・・・Node n-1の各々の信号線を経て入力するクロック信号CKA、CKA1、CKA2、・・・、CKAn-1のHレベルのパルスを順番に選択することにより、クロック信号CKBを生成する。
これにより、クロック信号CKBは、Node 0のクロック信号CKAのHレベルのパルス、Node 1のクロック信号CKA1のHレベルのパルス、Node 2のクロック信号CKA2のHレベルのパルス、・・・、Node n-1のクロック信号CKAn-1のHレベルのパルスを組み合わせたクロック信号になる。
このため、クロック信号CKBは、位相が全く進角されていないNode 0のクロック信号CKAと比較すると、Node 0からNode n-1にかけてのnサイクルの間に、徐々に位相が進角して周波数が高くなることが分かる。
例えば、nが4である場合にはNode n-1のクロック信号CKAn-1は、Node 3のCKA3となる。この場合のクロック信号CKBは、Node 0からNode 3の4つの信号線から入力するクロック信号CKA、CKA1、CKA2、CKA3のHレベルのパルスを順番に組み合わせたクロック信号になり、Node 0からNode 3にかけての4サイクルの間に、徐々に位相が進角して周波数が高くなる。
なお、位相選択回路30は、Node n-1の信号線のクロック信号CKAn-1の次に、再びNode 0の信号線のクロック信号CKAを選択することになる。このため、Node n-1のクロック信号CKAn-1のHレベルのパルスが立ち下がった後からNode 0のクロック信号CKAが立ち上がるまでの期間は、Node 0~Node 2の各クロック信号CKAが立ち下がってから次のパルスが立ち上がるまでの期間よりも長くなる。 実施の形態1の半導体回路装置10は、上述のようなnサイクルのクロック信号CKBを繰り返して用いることにより、1つのテストパターンによるBISTを実行する。
ここで、1つのテストパターンを実行するために必要なクロック信号CKBのサイクル数は、nに比べて多大なサイクル数になる。
このため、図4(B)に示すように、テストパターン1を実行するのに必要なクロック信号CKBは、nサイクルのクロック信号CKBを複数組含むことになる。
図4(B)に示すnサイクルのクロック信号CKBは、すべて図4(A)に示すクロック信号CKBと同様に、Node 0、Node 1、Node 2・・・Node n-1の各々のクロック信号CKA、CKA1、CKA2、・・・、CKAn-1のHレベルのパルスを組み合わせたクロック信号である。
また、図4(B)に示すように、ラップ信号は、テストパターンが切り替わる際にテストパターン発生回路13によってHレベル("1")に立ち上げられるため、各テストパターンを実行するのに必要なクロック信号CKBが終了するタイミングで出力することになる。テストパターン発生回路13によってラップ信号がHレベル("1")に立ち上げられると、パラメータkの値が1つ増加する。
上述のように、実施の形態1では、m個のテストパターン0~テストパターンm-1を用いて、連続的に一度にテストパターンの動作周波数を変化させることにより、シュムープロットの周波数特性を連続的に一度の処理で取得する。
このため、シュムープロットの周波数特性を連続した一度の処理で取得するのに必要なすべてのテストパターン0~テストパターンm-1に必要なクロック信号CKBは、図4(C)に示すように、テストパターン0~テストパターンm-1の各々を実行するのに必要なクロック信号CKBが連続したクロック信号となる。
テストパターン0~テストパターンm-1の各々に含まれるクロック信号CKBの周期は、位相制御回路201、202・・・20n-1において、単位時間の(1×k)倍、(2×k)倍・・・((n-1)×k)倍の割合で短縮される。
テストパターン0の場合は、k=0であるため、クロック信号CKA1、CKA2、・・・、CKAn-1の位相はクロック信号CKAと同一である。このため、クロック信号CKBは位相が進角されず、クロック信号CKAと同一位相のクロック信号CKBが位相選択回路30から出力される。
これに対して、パラメータkの値が1以上に大きくなると、単位時間の(1×k)倍、(2×k)倍・・・((n-1)×k)倍の式で短縮される度合いが増加するため、図4(A)に示すk=1の場合のクロック信号CKBよりも、Node 1、Node 2・・・Node n-1のHレベルのパルスの立ち上がりの位相が進角したクロック信号CKBになる。
以上のように、実施の形態1の半導体回路装置10によれば、図4(A)~(C)に示すように、位相を徐々に進角させることによって周期を短縮(周波数を高く)したクロック信号CKBを用いてBISTを実行することができる。
クロック信号CKBの周期は、k=0の場合からk=m-1の場合にかけて段階的に短縮され、周期が最も短縮される場合では、Node 0のHレベルのパルスの立ち上がりのタイミングに比べて単位時間×((n-1)×(m-1))だけ短縮される。
このため、半導体回路装置10のシュムープロットの周波数特性をすべて網羅できるように、クロック信号CKAの周波数、mの値、nの値、及び単位時間を設定すれば、連続した一度のBISTを実行することにより、シュムープロットの周波数特性を取得することができる。
これにより、半導体回路装置10のシュムープロットを作成する時間を大幅に短縮することができる。
ここで、半導体回路装置10の被試験回路14が2kw(kilo word)で、アドレス長をNのSRAMとした場合に、アドレス長N×12回相当のテストパターンを被試験回路14に印加する場合を考える。なお、一例として、動作周波数は2GHz、すなわち1周期500ps(ピコ秒)とする。
1回のテストパターンによるBISTに要する時間は、2kw(2048ワード)×12×500ps(ピコ秒)=約12.3μs(マイクロ秒)となる。
例えば、テストパターンの数(m)が12パターンである場合、実施の形態1の半導体回路装置10は、12パターンのテストパターンを連続的に一度の処理で被試験回路14に印加することができるため、12パターンのテストパターンによるBISTの試験結果を得るのに必要な試験時間は、約150μsとなる。
これに対して、一例として、比較例の半導体回路装置1のように、シュムープロットの周波数特性を取得するために、周波数を変える度にPLL12の出力周波数を変更する場合は、12回のテストパターンによるBISTを実行するのに、約15ms(ミリ秒)程度の時間がかかる。
このため、実施の形態1の半導体回路装置10によれば、上述の例において、シュムープロットの周波数特性を取得するのに要する時間は、比較例の半導体回路装置1において1回のテストパターンを実行するのに必要な時間の約1/10となる。
以上、実施の形態1によれば、BIST用のクロック信号の周波数を可変にすることにより、PLLの設定を変更する必要が無くなるため、試験時間の大幅な短縮化を図った半導体回路装置を提供することができる。
なお、以上では、クロック信号CKAの位相を進角させたクロック信号CKBを用いる形態について説明したが、クロック信号CKAの位相を遅角させたクロック信号CKBを用いてもよい。この場合は、上述のBISTの最後に最も短縮される周波数をクロック信号CKAの初期の周波数に設定し、かつ、上述のNode 0の周波数をNode n-1の周波数と入れ替え、BISTが進行するにつれて、徐々に周期を長くするようにクロック信号CKBを生成しながらBISTを実行すればよい。
<実施の形態2>
実施の形態2は、実施の形態1の半導体回路装置の回路構成をより具体的にした実施形態である。
実施の形態2は、実施の形態1の半導体回路装置の回路構成をより具体的にした実施形態である。
図5は、実施の形態2の半導体回路装置をLSIテスタに接続した状態を示す図である。
実施の形態2の半導体回路装置200は、サイクルスイープ回路211、PLL12、テストパターン発生回路13、被試験回路14、試験結果記憶回路15、及びスキャン系制御回路16を含む。
また、半導体回路装置200は、LSIテスタ300を接続するための端子201、202を有し、端子201にはLSIテスタ300の端子301が接続され、端子202にはLSIテスタ300の端子302が接続される。
LSIテスタ300は、試験クロック(CKS)を出力する試験クロック出力部303と、スキャン制御信号を出力するスキャン制御信号出力部304とを有する。
半導体回路装置200の端子201には、LSIテスタ300の試験クロック出力部303から試験クロック信号(CKS)が入力される。端子202にはLSIテスタ300のスキャン制御信号出力部304からスキャン制御信号(TCK,TMS)とスキャン試験用のテストデータ(TDI)が入力される。また、端子202からスキャン試験の結果を表すデータ(TDO)が出力される。
なお、TCKはスキャンテスト用のクロック信号、TMSはスキャン系制御回路16の状態遷移を制御するための信号である。
PLL12は、実施の形態1の半導体回路装置10のPLL12と基本的に同様であるが、実施の形態2では、LSIテスタ300から試験クロック信号(CKS)が入力するようになっている。
テストパターン発生回路13は、実施の形態1のテストパターン発生回路13と基本的に同様であるが、実施の形態2では、READ信号を試験結果記憶回路15に入力するようになっている。なお、READ信号は、試験結果記憶回路15への試験結果の読み込みを制御するための信号であるが、その詳細については後述する。
被試験回路14は、実施の形態1の被試験回路14と基本的に同様であるが、実施の形態2では、BISTを行った後に被試験回路14内の各ビットセルに存在するデータをREADデータとして試験結果記憶回路15に入力するようになっている。
試験結果記憶回路15は、実施の形態1の半導体回路装置10の試験結果記憶回路15と基本的に同様であるが、テストパターン発生回路13からREAD信号が入力されるとともに、被試験回路14からREADデータが入力されるようになっている。また、試験結果記憶回路15は、試験結果をスキャン系制御回路16に入力する。
サイクルスイープ回路211は、実施の形態1のサイクルスイープ回路11と基本的に同様であるが、設定制御信号が入力するようになっている。設定制御信号は、スキャン系制御回路16が出力する。
スキャン系制御回路16は、LSI10のスキャンシフトを制御する回路であり、LSIテスタ300からLSI10にスキャン制御信号が入力されると、サイクルスイープ回路211、PLL12、及び試験結果記憶回路15に設定制御信号を入力する。設定制御信号は、BISTを実行する前に、サイクルスイープ回路211、PLL12、テストパターン発生回路13、及び試験結果記憶回路15の初期設定を行うための信号である。
初期設定では、サイクルスイープ回路211はパラメータkを"0"に設定し、PLL12はLSIテスタ300から入力する試験クロック信号CKSに基づいてクロック信号CKAを出力するようになり、テストパターン発生回路13は内部で保持するテストパターンを初期化し、試験結果記憶回路15は内部のレジスタの値をリセットする。
次に、図6を用いて、実施の形態2の半導体回路装置200のサイクルスイープ回路211について説明する。
図6は、実施の形態2の半導体回路装置200のサイクルスイープ回路211を示す図である。
以下では、サイクルスイープ回路211について、実施の形態1のサイクルスイープ回路11との相違点を中心に説明を行う。
図6に示すように、サイクルスイープ回路211は、クロック入力端11A、クロック出力端子11B、ラップ信号入力端子11C、設定制御信号入力端子11D、位相制御回路201、202、・・・、20n-1、位相選択回路30、及びスイープ用シーケンサ40を含む。
サイクルスイープ回路211の構成要素のうち、設定制御信号入力端子11D以外の構成要素は、実施の形態1のサイクルスイープ回路11と同一である。
また、サイクルスイープ回路211の内部で取り扱う信号については、スイープ用シーケンサ40に設定制御信号入力端子11Dを介してLSIテスタ300から設定制御信号が入力される点と、スイープ用シーケンサ40がステップ数信号と終了信号を出力する点が実施の形態1と異なる。
設定制御信号は、上述のように、BISTを実行する前に、サイクルスイープ回路211、PLL12、及び試験結果記憶回路15の初期設定を行うための信号である。
このため、サイクルスイープ回路211内のスイープ用シーケンサ40は、設定制御信号が入力すると、位相制御信号1~n-1、及び位相選択信号を初期値に設定するとともに、ステップ数信号を予め定められた所定の値(ステップ数と称す)に設定する。
ステップ数信号のステップ数は、1以上の任意の整数に設定することができる。ステップ数信号は、位相制御信号1~n-1の各々による周期の短縮度合を整数倍するための信号である。
すなわち、ステップ数信号は、位相制御回路201、202、・・・、20n-1が位相制御信号1~n-1に基づいて、単位時間のテストパターン0~テストパターンm-1の各々に含まれるクロック信号CKBの周期を短縮する際に、位相制御信号1~n-1に対応して、(1×k)倍、(2×k)倍・・・((n-1)×k)倍の各々にさらに乗じる値を表す。
実施の形態2では、ステップ数が1である場合について説明するが、BISTを実行する際に上述の式の整数倍で各テストパターンの周期を短縮したい場合には、ステップ数を2以上の任意の整数に設定すればよい。
例えば、ステップ数が2の場合は、位相制御回路201、202・・・20n-1は、それぞれ、クロック信号CKBの周期を、(1×k)×2倍、(2×k)×2倍・・・((n-1)×k)×2倍で短縮することになる。
終了信号は、BISTの終了を表す信号であり、スイープ用シーケンサ40が内部のカウンタで試験の回数をカウントし、カウント値が所定値に達したときにスイープ用シーケンサ40から出力される。スイープ用シーケンサ40が、終了信号を位相選択回路30に出力すると、位相選択回路30はクロック信号CKBの生成を終了し、クロック信号CKBの出力が停止する。
これにより、テストパターン発生回路13、被試験回路14、及び試験結果記憶回路15の動作が停止し、BISTが終了する。
次に、図7A~Cを用いて、位相制御回路201、202・・・20n-1の具体的な回路構成について説明する。なお、位相制御回路201、202・・・20n-1の回路構成はすべて同様であるため、ここでは位相制御回路201、202・・・20n-1を区別することなく、位相制御回路20と表記して説明する。
図7Aは、実施の形態2の半導体回路装置200の位相制御回路20を示す図である。
図7Bは、実施の形態2の半導体回路装置200の位相制御回路20の動作原理を説明するためのタイミングチャートである。
図7Aに示すように、位相制御回路20は、フェイズインターポレータ220と乗算器230とを含む。
フェイズインターポレータ220は、DLL(Delay Locked Loop)221と位相ミキサ222とを有する。
DLL221は、クロック信号CKAを入力し、クロック信号CKAの位相を出力する。実施の形態2では、一例として、DLL221は、クロック信号CKAの位相を0°、-90°、-180°、-270°変化させた4つのクロック信号を出力する。
なお、位相が-90°、-180°、-270°変化した3つのクロック信号は、それぞれ、0°のクロック信号に対して、位相が90°、180°、270°進角した信号である。
位相ミキサ222は、DLL221が出力する4つのクロック信号を入力し、乗算器230から入力する位相信号に基づき、クロック信号CKAの位相を進角して出力する。
ここで、位相ミキサ222は、1周期の位相量である360°を所定の数に分割するための分解能を持ち、360°を所定数に分割した位相量を最小単位とする位相差を生成することにより、クロック信号CKAの位相を最小単位の整数倍に相当する位相差だけ変更して出力できる回路である。
また、位相信号は、位相ミキサ222における位相の変更分を指定するための信号である。
例えば、位相ミキサ222の分解能が64であるとする。この場合、図7Bに示すように、位相ミキサ222は、360°を64分割した位相量(1分割分)を最小単位とする位相差を生成することができる。
例えば、位相ミキサ222がDLL221の位相0°の出力と、位相-90°の出力とを合成して、16分割して出力できることとする。なお、DLL221の位相0°の出力は、位相制御回路20に入力するクロック信号CKAと同一周期、同一位相のクロック信号である。
例えば、クロック信号Aの周波数が2GHzであるとすると、クロック信号CKAの1周期は500psであり、16分割した最小単位の時間幅は、500ps/64=約7.8psとなる。
この場合に、位相信号で、最小単位の時間(約7.8ps:1分割分)を指定すれば、位相ミキサ222は、クロック信号CKAの位相を最小単位の時間(約7.8ps:1分割分)だけ進角してクロック信号CKBとして出力することができる。
乗算器230は、位相制御信号とステップ数信号を入力し、位相制御信号とステップ数信号とを乗算して得る位相信号を出力する。
上述のように、位相制御信号は、クロック信号CKAの1周期を短縮する時間を表す。
また、ステップ数信号は、位相制御信号による周期の短縮時間を整数(ステップ数)倍するための信号である。
このため、位相制御信号にステップ数を乗じて得る位相信号は、位相制御回路20でクロック信号CKAの位相が進角される時間を表す。位相信号は、上述のように、位相ミキサ222における位相の変更分を指定するための値に設定される信号である。
図7A及び図7Bでは、位相制御回路201、202・・・20n-1を区別することなく、位相制御回路20として示すが、実際には、位相制御回路201、202・・・20n-1の各々において、位相信号によってクロック信号CKAの位相が進角される。
以上のようにして、フェイズインターポレータ220と乗算器230とを含む位相制御回路20は、クロック信号CKAの周波数を変更して出力する。
次に、図8を用いてスイープ用シーケンサ40の回路構成について説明する。
図8は、実施の形態2の半導体回路装置200のスイープ用シーケンサ40を示す図である。
実施の形態2のスイープ用シーケンサ40は、位相選択用カウンタ241、位相制御用カウンタ242、位相変更サイクル数設定レジスタ243、パラメータ最大値設定レジスタ244、ステップ数設定レジスタ245、AND回路246、乗算器247、248、249を含む。
また、実施の形態2のスイープ用シーケンサ40は、クロック信号入力端子240A、240B、ラップ信号入力端子240C、位相選択信号出力端子240D、終了信号出力端子240E、位相制御信号出力端子240F~240I、ステップ数信号出力端子240J、及び設定制御信号入力端子240Kを含む。
クロック信号入力端子240A、240Bは、クロック信号CKA、CKBをスイープ用シーケンサ40にそれぞれ入力する端子である。
ラップ信号入力端子240Cは、ラップ信号がスイープ用シーケンサ40に入力する端子である。
位相選択信号出力端子240Dは、スイープ用シーケンサ40から位相選択信号を位相選択回路30に出力する端子である。
終了信号出力端子240Eは、スイープ用シーケンサ40からの終了信号を位相選択回路30に出力する端子である。
位相制御信号出力端子240F~240Iは、スイープ用シーケンサ40からの位相制御信号1~n-1を位相制御回路201、202・・・20n-1に出力する端子である。
ステップ数信号出力端子240Jは、スイープ用シーケンサ40からステップ数信号を位相制御回路201、202・・・20n-1に出力する端子である。
設定制御信号入力端子240Kは、設定制御信号をスイープ用シーケンサ40に入力する端子である。
位相選択用カウンタ241には、クロック信号入力端子240Bからクロック信号CKBが入力され、設定制御信号入力端子240Kから設定制御信号が入力され、位相変更サイクル数設定レジスタ243から位相変更サイクル数信号が入力される。
位相選択用カウンタ241は、位相選択信号が表すNode番号を保持するカウンタである。位相選択用カウンタ241は、BISTを実行する前に、設定制御信号が入力すると、カウンタの値の初期設定を行う。初期設定時における位相選択用カウンタ241の値はNode 0を表す"0"である。
位相選択用カウンタ241は、計数時に計数値が増分されるアップカウンタであり、位相変更サイクル数設定レジスタ243から入力する位相変更サイクル数信号が表すサイクル数(n)にカウント値が達するまで繰り返しカウントを行う。
位相変更サイクル数信号が表すサイクル数(n)は、Node(Node 0、Node 1、Node 2、・・・、Node n-1)の数に対応している。
このため、位相選択用カウンタ241は、クロック信号CKBが入力する度にNode番号(0~n-1)を繰り返しカウントし、クロック信号CKBをカウントする度にカウント値(0~n-1)を表す位相選択信号を出力する。位相選択用カウンタ241は、選択信号生成部の一例である。位相選択信号は、位相選択信号出力端子240Dを経て位相選択回路30に入力する。
位相制御用カウンタ242は、設定制御信号入力端子240Kから設定制御信号が入力し、パラメータ最大値設定レジスタ244から振り回数信号が入力する。
位相制御用カウンタ242は、アップカウンタであり、位相制御回路201、202・・・20n-1に入力する位相制御信号1~n-1に含まれるパラメータkの値をカウントする。
位相制御用カウンタ242は、設定制御信号入力端子240Kを介してLSIテスタ300から設定制御信号が入力されると、レジスタの値の初期設定を行う。初期設定時における位相制御用カウンタ242の値は"0"である。すなわち、パラメータkの値は"0"に初期設定される。
位相制御用カウンタ242は、AND回路246からHレベルの信号が入力する度に、パラメータkの値を1つずつカウントアップする。
位相制御用カウンタ242の出力は、位相制御信号1(1×k)になるとともに、乗算器247、248、249に入力される。
位相制御用カウンタ242は、パラメータkの値がパラメータ最大値設定レジスタ244から入力される最大値mに達すると、終了信号を出力する。終了信号は、終了信号出力端子240Eを経て位相選択回路30に入力する。
位相変更サイクル数設定レジスタ243は、位相選択信号1~n-1によって選択するNode 0、Node 1、Node 2・・・Node n-1の数(n)をサイクル数として保持し、サイクル数(n)を位相変更サイクル数信号として位相選択用カウンタ241に入力する。
なお、位相変更サイクル数設定レジスタ243は、設定制御信号入力端子240Kから設定制御信号が入力すると、サイクル数をnに設定する。
パラメータ最大値設定レジスタ244は、パラメータkの最大値(m)を保持し、位相制御用カウンタ242に入力する。
なお、パラメータ最大値設定レジスタ244は、設定制御信号入力端子240Kから設定制御信号が入力すると、最大値をmに設定する。
ステップ数設定レジスタ245は、上述したステップ数信号のステップ数を保持する。ステップ数設定レジスタ245から出力するステップ数信号は、ステップ数信号出力端子240Jを経て位相制御回路201、202・・・20n-1に入力される。
AND回路246は、クロック信号CKAとラップ信号の論理積を出力し、ラップ信号がHレベル("1")になると、位相制御用カウンタ242にHレベル("1")を入力する。ラップ信号がHレベル("1")になることは、1つのテストパターンが終了することに対応する。
乗算器247、248、249は、位相制御用カウンタ242から出力するパラメータkを2倍、3倍、(n-1)倍した結果に応じてタイミングを生成し、生成したタイミングに基づき位相制御信号2、3、n-1をそれぞれ出力する。
なお、位相制御用カウンタ242の値(パラメータk)はそのまま位相制御信号1になるため、位相制御用カウンタ242と位相制御信号出力端子240Fとの間には、乗算器が挿入されていない。
位相制御信号1~n-1は、それぞれ、位相制御信号出力端子240F~240Iから出力し、位相制御回路201、202・・・20n-1に入力する。
なお、位相制御用カウンタ242、AND回路246、及び乗算器247、248、249は、位相制御信号生成部の一例である。
以上のようなスイープ用シーケンサ40において、パラメータkの値が0から(m-1)まで増加すると、位相制御信号1~n-1の値は、(1×0)、(2×0)、(3×0)・・・((n-1)×0)、(0×1)、(1×1)、(2×1)、(3×1)・・・((n-1)×1)、・・・、(0×(m-1))、(1×(m-1))、(2×(m-1))、(3×(m-1))・・・((n-1)×(m-1))と変化する。
これらの位相制御信号1~n-1に基づき、位相選択回路30で周期の短縮されたクロック信号CKBが生成される。
次に、図9Aと図9Bを用いて、実施の形態2の半導体回路装置200のスキャン系制御回路16とスイープ用シーケンサ40がそれぞれ行う処理について説明する。
図9Aは、実施の形態2の半導体回路装置200のスキャン系制御回路16が行う処理を示す図である。図9Aに示す処理は、半導体回路装置200においてBISTを実行する際に、スキャン系制御回路16が実行する処理である。
スキャン系制御回路16は、処理を開始すると(START)、試験系回路の初期化を行う(ステップS1)。具体的には、スキャン系制御回路16は、設定制御信号をPLL12、サイクルスイープ回路211、テストパターン発生回路13、及び試験結果記憶回路15に入力し、各回路(12、211、13、15)の初期設定を行う。
初期設定では、サイクルスイープ回路211はパラメータkを0に設定し、PLL12はLSIテスタ300から入力する試験クロック信号CKSに基づいてクロック信号CKAを出力するようになり、テストパターン発生回路13は内部で保持するテストパターンを初期化し、試験結果記憶回路15は内部のレジスタの値をリセットする。
次に、スキャン系制御回路16は、PLL12が出力するクロック信号の周波数をBIST用の周波数に設定する(ステップS2)。これにより、PLL12が出力するクロック信号の周波数は、BISTで用いるクロック信号CKAの周波数に設定される。
スキャン系制御回路16は、テストパターン発生回路13にテストパターンを書き込む(ステップS3)。テストパターンは、被試験回路14に含まれるすべてのビットセルに書き込むための書き込みデータ、各ビットセルのアドレスデータ、W/E信号、及び期待値等を表すデータである。
次いで、スキャン系制御回路16は、サイクルスイープ回路211の初期位相を設定する(ステップS4)。初期位相とは、サイクルスイープ回路211がクロック信号CKAの位相を変更する変更分のことであり、ここでは、"0"に設定する。
スキャン系制御回路16は、PLL12にクロック信号CKAの発振を開始させる(ステップS5)。これにより、PLL12は、クロック信号CKAを出力する。
次に、スキャン系制御回路16は、BISTの試験時間が経過したか否かを判定する(ステップS6)。ここで、BISTの試験時間とは、クロック信号CKBの位相を変化させながらシュムープロットの周波数特性を取得するために必要な時間を言い、シュムープロットの周波数特性を取得するのに必要な時間に所定の補償時間を追加した時間に設定される。シュムープロットの周波数特性を取得するのに必要は、被試験回路14のワード数、アドレス長、動作周波数等に基づき、予め求めることができる。
なお、ステップS6の処理は、スキャン系制御回路16がBISTの試験時間が経過したと判定するまで繰り返し実行される。
スキャン系制御回路16は、BISTの試験時間が経過したと判定すると(S6 YES)、試験結果記憶回路15からBISTの試験結果を読み出し、試験結果をLSIテスタ300に転送する(ステップS7)。
BISTの試験結果は、各テストパターンについて被試験回路14の動作の良否を表す結果であるため、LSIテスタ300でBISTの試験結果を確認することができる。
以上、図9Aでは、シュムープロットの周波数特性を連続的に一度の処理で取得する際にスキャン系制御回路16で実行する処理について説明した。
ところで、被試験回路14の周波数特性に加えて、被試験回路14に印加する電源電圧、又は半導体回路装置200の温度を変更した場合のシュムープロットを取得する場合には、電源電圧又は温度の設定を変更しながら、各電源電圧又は温度の条件において、周波数特性を連続的に一度の処理で取得すればよい。これにより、従来及び比較例の半導体回路装置に比べて、周波数特性と、電源電圧特性又は温度特性とを含むシュムープロットの取得時間を大幅に短縮することができる。
次に、図9Bを用いて、シュムープロットの周波数特性を取得するために、実施の形態2の半導体回路装置200のスイープ用シーケンサ40が行う処理について説明する。
図9Bは、実施の形態2の半導体回路装置200のスイープ用シーケンサ40が行う処理を示す図である。図9Bに示す処理は、半導体回路装置200においてBISTを実行する際に、サイクルスイープ回路211がクロック信号CKBの周波数を変更するために、スイープ用シーケンサ40が実行する処理である。
スイープ用シーケンサ40は、処理を開始すると(START)、位相制御信号1~n-1を1つずつ出力する(ステップS11)。
ここで、スイープ用シーケンサ40は、位相選択回路30にNode 0の信号線を選択させる場合は、位相制御信号1~n-1をすべて非選択(L(Low)レベル)にする。これにより、位相選択回路30は、Node 0の信号線を選択する。
また、スイープ用シーケンサ40は、位相選択回路30にNode 1~Node n-1のいずれかの信号線を選択させる場合は、選択する信号線のNode番号に対応する位相制御信号だけを選択(Hレベル)にし、選択しない信号線のNode番号に対応する位相制御信号をすべて非選択(Lレベル)にする。
スイープ用シーケンサ40は、位相選択回路30によるNode 0~Node n-1の信号線の選択が一巡したか否かを判定する(ステップS12)。ステップS12では、位相制御信号1~n-1でNode 0~Node n-1の信号線を1つずつ順番に選択したか否かを判定する。
このため、スイープ用シーケンサ40は、ステップS12において、位相選択回路30によるNode 0~Node n-1の信号線の選択が一巡していないと判定した場合(S12 NO)は、フローをステップS11にリターンする。これにより、スイープ用シーケンサ40は、S11において、次のNode番号の信号線を選択するための位相制御信号を出力する。
ステップS11、S12を繰り返し実行することにより、位相選択回路30はNode 0~Node n-1の信号線を1つずつ順番に選択する。
スイープ用シーケンサ40は、Node 0~Node n-1の信号線の選択が一巡したと判定した場合(S12 YES)は、ラップ信号がHレベル("1")になったか否かを判定する(ステップS13)。ラップ信号は、テストパターンが切り替わる際にテストパターン発生回路13によってHレベル("1")に立ち上げられる信号である。
スイープ用シーケンサ40は、ステップS13において、Hレベル("1")のラップ信号が入力されなかったと判定した場合(S13 NO)は、フローをステップS11にリターンする。
この結果、ステップS11、S12がHレベル("1")のラップ信号が入力されるまで繰り返され、位相選択回路30はNode 0~Node n-1の信号線を1つずつ順番に選択する。
位相選択回路30によるNode 0~Node n-1の信号線の選択は、ステップS13でHレベル("1")のラップ信号が入力されたと判定されるまで繰り返される。
スイープ用シーケンサ40は、ステップS13において、Hレベル("1")のラップ信号が入力されたと判定した場合(S13 YES)は、パラメータkの値を1つ増加する(ステップS14)。
ステップS14は、パラメータkの値を1つ増加することにより、クロック信号CKBの位相を、それまでよりも大きく変化させるBISTを行うために準備をするための処理である。
スイープ用シーケンサ40は、試験結果を試験結果記憶回路15に格納する(ステップS15)。ステップS11からステップS13によって、1つのテストパターンについてのBISTの試験結果が得られるため、後にLSIテスタ300で読み出すために、試験結果記憶回路15に格納することとしたものである。
スイープ用シーケンサ40は、パラメータkの値がmに到達したか否かを判定する(ステップS16)。BISTには、テストパターン0からテストパターンm-1を用いるが、パラメータkの値がmに達したときには、テストパターンm-1によるBISTまで終了しているため、パラメータkの値がmに到達したか否かで、すべてのBISTの終了を判定することとしたものである。
スイープ用シーケンサ40は、ステップS16において、パラメータkの値がmに到達していないと判定した場合(S16 NO)は、フローをステップS11にリターンする。これにより、ステップS14において1つ増加されたパラメータkを用いて、ステップS11~S13の処理が繰り返し実行される。
スイープ用シーケンサ40は、ステップS16において、パラメータkの値がmに到達したと判定した場合(S16 YES)は、フローを終了する。
これにより、パラメータkが0からm-1のすべての値について、クロック信号CKBの位相を変化させた場合におけるシュムープロットを取得することができる。
次に、図10の状態遷移図を用いて、実施の形態2の半導体回路装置200の位相選択回路30でクロック信号CKBの位相を変化させる際の、Node番号とパラメータkの値の遷移の様子について説明する。
図10は、実施の形態2の半導体回路装置200の位相選択回路30でクロック信号CKBの位相を変化させる際の、Node番号とパラメータkの値の遷移の様子を表す状態遷移図である。
図10において、遷移状態をS(Node番号、パラメータk)として示す。
クロック信号CKA、CKA1、CKA2、・・・、CKAn-1の周期は、位相制御回路201、202・・・20n-1において、単位時間の(0×k)倍、(1×k)倍、(2×k)倍・・・((n-1)×k)倍という式により、パラメータkの値を0から(m-1)まで順番に増やしながら、短縮(進角)される。
上述したように、Node 0には位相制御回路が挿入されておらず、Node 1~Node n-1には、それぞれ、位相制御回路201、202・・・20n-1が挿入されている。位相制御回路201、202・・・20n-1が出力するクロック信号CKA、CKA1、CKA2、・・・、CKAn-1の位相は、単位時間の(0×k)倍、(1×k)倍、(2×k)倍・・・((n-1)×k)倍で表される分だけ進角される。
位相選択回路30は、図10に示す状態遷移図に従い、Node 0~Node n-1の信号線を順番に選択するとともに、Hレベル("1")のラップ信号が入力する度に1つずつ値が増加するパラメータkを用いて、クロック信号CKBの位相を進角させる。
位相選択回路30は、クロック信号CKBの生成をS(0,0)から開始(START)する。
S(0,0)は、Node 0、パラメータk=0に相当する。すなわち、位相選択回路30は、Node 0の信号線を選択し、Node 0の信号線を経て位相選択回路30に入力するクロック信号CKAのHレベルのパルスをクロック信号CKBの最初のパルスにする。すなわち、S(0,0)において、位相選択回路30が出力するクロック信号CKBの位相は、位相選択回路30に入力するクロック信号CKAの位相と等しい。
次に、位相選択回路30は、S(1,0)において、Node 1の信号線を選択し、Node 1の信号線を経て位相制御回路201から位相選択回路30に入力するクロック信号CKA1のHレベルのパルスをクロック信号CKBの2番目のパルスにする。
このとき、Node番号は"1"であるが、パラメータkが"0"であるため、上述の式によって短縮される時間は"0"となる。このため、S(1,0)において、位相選択回路30が出力するクロック信号CKBの位相は、位相選択回路30に入力するクロック信号CKAの位相と等しい。
以後、S(n-1,0)までNode番号が増加しても、パラメータkが"0"であるため、上述の式によって短縮される時間は"0"となり、S(2,0)~(n-1,0)において、位相選択回路30が出力するクロック信号CKBの位相は、位相選択回路30に入力するクロック信号CKAの位相と等しい。
すなわち、S(0,0)~S(n-1,0)の間は、位相選択回路30が出力するクロック信号CKBの位相は、位相選択回路30に入力するクロック信号CKAの位相と等しく、クロック信号CKAに対して位相が進角していないクロック信号CKBが位相選択回路30から出力する。
これは、BISTの最初のテストパターンを用いて、クロック信号CKAの位相と等しいクロック信号CKBについて被試験回路14の動作確認を行うためである。
S(n-1,0)において、Hレベル("1")のラップ信号が入力していない場合は、位相選択回路30はS(0,0)にリターンし、S(0,0)~S(n-1,0)の状態におけるクロック信号CKBを生成する。
S(0,0)~S(n-1,0)の状態は、Hレベル("1")のラップ信号が入力されるまで繰り返される。これは、実施の形態1において、図4(B)でnサイクルのクロック信号CKBが繰り返されている状態に相当する。
ここで、例えば、nが4であり、被試験回路14が2kw(kilo word)であり、アドレス長Nが12の場合、ラップ信号がHレベル("1")になるまでには、(2×1024×12)/4=6144回だけS(0,0)~S(n-1,0)の状態が繰り返されることになる。
ラップ信号は、実施の形態1において、図4(C)に示した通り、テストパターン0~テストパターンm-1のそれぞれ終了する度に、Hレベル("1")に立ち上げられる。
次に、パラメータkが"1"になると、位相選択回路30は、S(0,1)~S(n-1,1)の状態においてクロック信号CKBを生成する。
S(0,1)では、Node 0の信号線を経て位相選択回路30に入力するクロック信号CKAのHレベルのパルスをクロック信号CKBの最初のパルスにする。すなわち、S(0,1)において、位相選択回路30が出力するクロック信号CKBの位相は、位相選択回路30に入力するクロック信号CKAの位相と等しい。
次に、位相選択回路30は、S(1,1)において、Node 1の信号線を選択し、Node 1の信号線を経て位相制御回路201から位相選択回路30に入力するクロック信号CKA1のHレベルのパルスをクロック信号CKBのパルスにする。
このとき、Node番号は"1"であり、パラメータkは"1"であるため、上述の式によって短縮される時間は単位時間×1となる。このため、S(1,1)において、位相選択回路30が出力するクロック信号CKBの位相は、位相選択回路30に入力するクロック信号CKAの位相よりも、単位時間×1だけ進角する。
以後、パラメータkが"1"の状態で、S(2,1)からS(n-1,1)までNode番号が増加すると、上述の式によって短縮される時間は、順番に、単位時間×2、・・・、単位時間×(n-1)となる。
すなわち、S(2,1)からS(n-1,1)までは、位相選択回路30が出力するクロック信号CKBの位相は、位相選択回路30に入力するクロック信号CKAの位相よりも、順番に、単位時間×2、・・・、単位時間×(n-1)だけ進角する。
S(n-1,1)において、Hレベル("1")のラップ信号が入力していない場合は、位相選択回路30はS(0,1)にリターンし、S(0,1)~S(n-1,1)の状態におけるクロック信号CKBを生成する。
S(0,1)~S(n-1,1)の状態は、Hレベル("1")のラップ信号が入力するまで繰り返される。
以後、パラメータkの値が"2"から1つずつ順番に増加し、最後のテストパターンの番号に相当する(m-1)になると、位相選択回路30は、S(0,m-1)の状態において、Node 0の信号線を経て位相選択回路30に入力するクロック信号CKAのHレベルのパルスをクロック信号CKBの最初のパルスにする。すなわち、S(0,m-1)の状態において、位相選択回路30が出力するクロック信号CKBの位相は、位相選択回路30に入力するクロック信号CKAの位相と等しい。
位相選択回路30は、S(1,m-1)の状態において、Node 1の信号線を選択し、Node 1の信号線を経て位相制御回路201から位相選択回路30に入力するクロック信号CKA1のHレベルのパルスをクロック信号CKBの最初のパルスにする。
このとき、Node番号は"1"であり、パラメータkは"m-1"であるため、上述の一般式によって短縮される時間は単位時間×(m-1)となる。このため、S(1,m-1)において、位相選択回路30が出力するクロック信号CKBの位相は、位相選択回路30に入力するクロック信号CKAの位相よりも、単位時間×(m-1)だけ進角する。
以後、パラメータkが"m-1"の状態で、S(2,m-1)の状態からS(n-1,m-1)の状態までNode番号が増加すると、上述の一般式によって短縮される時間は、順番に、単位時間×2×(m-1)、・・・、単位時間×(n-1)×(m-1)となる。
すなわち、S(2,m-1)の状態からS(n-1,m-1)の状態までは、位相選択回路30が出力するクロック信号CKBの位相は、位相選択回路30に入力するクロック信号CKAの位相よりも、順番に、単位時間×2×(m-1)、・・・、単位時間×(n-1)×(m-1)だけ進角する。
S(n-1,m-1)の状態において、Hレベル("1")のラップ信号が入力していない場合は、位相選択回路30はS(0,m-1)にリターンし、S(0,m-1)~S(n-1,m-1)の状態におけるクロック信号CKBを生成する。
S(0,m-1)~S(n-1,m-1)の状態は、S(n-1,m-1)の状態においてHレベル("1")のラップ信号が入力するまで繰り返される。
S(n-1,m-1)の状態でHレベル("1")のラップ信号が入力すると、パラメータkの値は、1加算され、mになる。これにより、クロック信号CKBの周波数を変更する処理は終了する(END)。
次に、図11を用いて、実施の形態2の半導体回路装置200のサイクルスイープ回路211に含まれる位相選択回路30において、Node 0からNode n-1の信号線を順番に選択して、クロック信号CKBを生成する際のタイミングチャートについて説明する。
図11A、図11Bは、実施の形態2の半導体回路装置200の位相選択回路30において、Node 0からNode n-1の信号線を順番に選択して、クロック信号CKBを生成する際のタイミングチャートを示す図である。図11Aは、パラメータkが"0"の場合のタイミングチャートを示し、図11Bは、パラメータkが"1"の場合のタイミングチャートを示す。
なお、図11A、図11Bにおいて、説明の便宜上、nは"4"に設定してある。このため、Node n-1がNode 3となる。また、Node 1、Node 2、Node 3の信号線には、それぞれ、位相制御回路201、位相制御回路202、位相制御回路203が挿入されていることとして説明する。
図11A、図11Bには、PLL12が出力するクロック信号CKA、Node 0からNode 3を経て位相選択回路30に入力されるクロック信号CKA、CKA1、CKA2、CKA3、位相選択回路30が出力するクロック信号CKB、及び位相選択用カウンタ241が保持する位相選択信号の値を示す。
ここで、Node 0からNode 3を経て位相選択回路30に入力するクロック信号を、それぞれ、CKA(Node 0)、CKA1(Node 1)、CKA2(Node 2)、CKA3(Node 3)と示す。
位相選択用カウンタ241が保持する位相選択信号の値は、上述のように、位相選択信号が表すNode番号である。位相選択信号が表すNode番号は、0、1、2、3の順に、クロック信号CKBの1周期毎に順番に変化する。
また、図11Aは、パラメータkが"0"の場合のタイミングチャートを示すため、Node 1からNode 3の位相制御回路201~203では、クロック信号CKA(Node 0)、CKA1(Node 1)、CKA2(Node 2)、CKA3(Node 3)の位相は変化しない。
このため、PLL12が出力するクロック信号CKA、クロック信号CKA(Node 0)、CKA1(Node 1)、CKA2(Node 2)、CKA3(Node 3)は、すべて同一の位相を有する。
時刻t0において、位相選択信号の値は"0"であるため、位相選択回路30は、矢印A0で示すようにクロック信号CKA(Node0)のHレベルのパルスを選択し、矢印B0で示すように、クロック信号CKBとして取り込む。
このため、クロック信号CKBの周期0におけるHレベルのパルスは、クロック信号CKA(Node0)のHレベルのパルスと同一位相のパルスとなる。
次に、時刻t1において、クロック信号CKBの立ち下がりにより、矢印C1で示すように、位相選択信号の値が"1"になる。
これにより、位相選択回路30は、矢印A1で示すようにクロック信号CKA1(Node1)のHレベルのパルスを選択し、矢印B1で示すように、クロック信号CKBとして取り込む。
このため、クロック信号CKBの周期1におけるHレベルのパルスは、クロック信号CKA1(Node1)のHレベルのパルスと同一位相のパルスとなる。
次に、時刻t2において、クロック信号CKBの立ち下がりにより、矢印C2で示すように、位相選択信号の値が"2"になる。
これにより、位相選択回路30は、矢印A2で示すようにクロック信号CKA2(Node2)のHレベルのパルスを選択し、矢印B2で示すように、クロック信号CKBとして取り込む。
このため、クロック信号CKBの周期2におけるHレベルのパルスは、クロック信号CKA2(Node2)のHレベルのパルスと同一位相のパルスとなる。
次に、時刻t3において、クロック信号CKBの立ち下がりにより、矢印C3で示すように、位相選択信号の値が"3"になる。
これにより、位相選択回路30は、矢印A3で示すようにクロック信号CKA3(Node3)のHレベルのパルスを選択し、矢印B3で示すように、クロック信号CKBとして取り込む。
このため、クロック信号CKBの周期3におけるHレベルのパルスは、クロック信号CKA3(Node3)のHレベルのパルスと同一位相のパルスとなる。
次に、時刻t4において、クロック信号CKBの立ち下がりにより、矢印C4で示すように、位相選択信号の値が"0"になる。
これにより、位相選択回路30は、矢印A4で示すようにクロック信号CKA4(Node4)のHレベルのパルスを選択し、矢印B4で示すように、クロック信号CKBとして取り込む。
このため、クロック信号CKBの周期4におけるHレベルのパルスは、クロック信号CKA4(Node4)のHレベルのパルスと同一位相のパルスとなる。
以後、位相選択回路30は、上述の場合と同様に、クロック信号CKA(Node 0)、CKA1(Node 1)、CKA2(Node 2)、CKA3(Node 3)のHレベルのパルスを順番に取り込み、クロック信号CKBを生成する。
次に、図11Bを用いて、パラメータkが"1"の場合のタイミングチャートについて説明する。
図11Bでは、パラメータkの値が"1"であるため、クロック信号CKA1(Node 1)、CKA2(Node 2)、CKA3(Node 3)の位相は、クロック信号CKA(Node 0)に対して、それぞれ、単位時間×1、単位時間×2、単位時間×3だけ進角している。
時刻t0において、クロック信号CKBの立ち下がりを受けて、矢印C00で示すように、位相選択信号の値が"0"になったこととする。また、このとき、テストパターン0によるBISTが終了し、パラメータkの値が"0"から"1"に増加したこととする。
位相選択信号の値が"0"であるため、位相選択回路30は、矢印A10で示すようにクロック信号CKA(Node0)のHレベルのパルスを選択し、矢印B10で示すように、クロック信号CKBとして取り込む。
このため、クロック信号CKBの周期0におけるHレベルのパルスは、クロック信号CKA(Node0)のHレベルのパルスと同一位相のパルスとなる。
次に、時刻t1において、クロック信号CKBの立ち下がりにより、矢印C11で示すように、位相選択信号の値が"1"になる。
これにより、位相選択回路30は、矢印A11で示すようにクロック信号CKA1(Node1)のHレベルのパルスを選択し、矢印B11で示すように、クロック信号CKBとして取り込む。
このため、クロック信号CKBの周期1におけるHレベルのパルスは、クロック信号CKA1(Node1)のHレベルのパルスと同一位相のパルスとなる。
クロック信号CKA1(Node1)のHレベルのパルスは、クロック信号CKA(Node 0)に対して、単位時間×1だけ進角しているため、クロック信号CKBの周期1におけるHレベルのパルスは、クロック信号CKA(Node 0)に対して単位時間×1だけ進角する。
すなわち、クロック信号CKBは、周期1において、クロック信号CKA(Node0)よりも単位時間×1の分だけ位相が進角する。
次に、時刻t2において、クロック信号CKBの立ち下がりにより、矢印C2で示すように、位相選択信号の値が"2"になる。
これにより、位相選択回路30は、矢印A12で示すようにクロック信号CKA2(Node2)のHレベルのパルスを選択し、矢印B12で示すように、クロック信号CKBとして取り込む。
このため、クロック信号CKBの周期2におけるHレベルのパルスは、クロック信号CKA2(Node2)のHレベルのパルスと同一位相のパルスとなる。
クロック信号CKA2(Node2)のHレベルのパルスは、クロック信号CKA(Node 0)に対して、単位時間×2だけ進角しているため、クロック信号CKBの周期2におけるHレベルのパルスは、クロック信号CKA(Node 0)に対して単位時間×2だけ進角する。
すなわち、クロック信号CKBは、周期2において、クロック信号CKA(Node0)よりも単位時間×2の分だけ位相が進角する。
次に、時刻t3において、クロック信号CKBの立ち下がりにより、矢印C13で示すように、位相選択信号の値が"3"になる。
これにより、位相選択回路30は、矢印A13で示すようにクロック信号CKA3(Node3)のHレベルのパルスを選択し、矢印B13で示すように、クロック信号CKBとして取り込む。
このため、クロック信号CKBの周期3におけるHレベルのパルスは、クロック信号CKA3(Node3)のHレベルのパルスと同一位相のパルスとなる。
クロック信号CKA3(Node3)のHレベルのパルスは、クロック信号CKA(Node 0)に対して、単位時間×3だけ進角しているため、クロック信号CKBの周期3におけるHレベルのパルスは、クロック信号CKA(Node 0)に対して単位時間×3だけ進角する。
すなわち、クロック信号CKBは、周期3において、クロック信号CKA(Node0)よりも単位時間×3の分だけ位相が進角する。
次に、時刻t4において、クロック信号CKBの立ち下がりにより、矢印C14で示すように、位相選択信号の値が"0"になる。
これにより、位相選択回路30は、矢印A14で示すようにクロック信号CKA(Node0)のHレベルのパルスを選択し、矢印B14で示すように、クロック信号CKBとして取り込む。
このため、クロック信号CKBの周期4におけるHレベルのパルスは、クロック信号CKA(Node0)のHレベルのパルスと同一位相のパルスとなる。
以後、位相選択回路30は、上述の場合と同様に、クロック信号CKA(Node 0)、CKA1(Node 1)、CKA2(Node 2)、CKA3(Node 3)のHレベルのパルスを順番に取り込み、位相が繰り返し進角されるクロック信号CKBを生成する。
なお、上述のようにして得られるクロック信号CKBは、単位時間ずつ進角したHレベルのパルスを順番に取り込むため、周期1、周期2、周期3は同一周期であり、周期0は、周期1、周期2、周期3よりも単位時間だけ長い周期になる。
また、パラメータkの値が2以上になった場合は、クロック信号CKA1(Node 1)、CKA2(Node 2)、CKA3(Node 3)の位相は、クロック信号CKA(Node 0)に対して、それぞれ、単位時間×1×k、単位時間×2×k、単位時間×3×kだけ進角する。
このため、クロック信号CKA、CKA1(Node 1)、CKA2(Node 2)、CKA3(Node 3)において位相が進角される時間がk倍になるだけで、クロック信号CKBの生成の仕方は、図11Bに示すパラメータkの値が"1"の場合と同様である。
以上のようにして、位相選択回路30は、位相が周期的に進角するクロック信号CKBを生成する。
次に、図12を用いて、試験結果記憶回路15の回路構成について説明する。
図12は、実施の形態2の半導体回路装置200の試験結果記憶回路15を示す図である。
半導体回路装置200の試験結果記憶回路15は、EOR(排他的論理和)回路251、OR(論理和)回路252、AND(論理積)回路253、スキャンインチェーン254、スキャンアウトチェーン255、OR(論理和)回路256、及びm個のスキャンFF(Flip Flop:フリップフロップ)2601、2602、・・・、260mを含む。
また、試験結果記憶回路15は、クロック信号入力端子270A、READ信号入力端子270B、ラップ信号入力端子270C、READデータ入力端子270D、期待値入力端子270E、スキャンイン端子270F、スキャンクロック入力端子270G、及びスキャンアウト端子270Hを含む。
EOR回路251は、READデータ入力端子270Dから入力するREADデータと期待値入力端子270Eから入力する期待値を比較した排他的論理和を出力する。被試験回路14が正常に動作している場合は、READデータは期待値と同一の値("0"または"1")であるため、EOR回路251の出力は、READデータと期待値が一致していれば"0"となり、READデータと期待値が一致していなければ"1"となる。
OR回路252は、一方の入力端子にEOR回路251の出力が入力し、他方の入力端子にスキャンFF2601の出力(Q)が入力する。
AND回路253は、一方の入力端子にラップ信号入力端子270Cからラップ信号が反転して入力し、他方の入力端子にOR回路252の出力端子が接続されている。AND回路253の出力端子は、スキャンFF2601の入力端子(D)に接続されている。
AND回路253の出力は、EOR回路251でREADデータと期待値とを比較した試験結果によって値が変わるため、BISTの試験結果を表す。
また、AND回路253の出力は、一方の入力端子に反転入力するラップ信号がHレベル("1")になると、リセットされる。すなわち、AND回路253の出力は、テストパターンが切り替わると(ラップ信号が"1"になるので)、"0"にリセットされることになる。
AND回路253の出力は、BISTの試験結果を表す値として、スキャンFF2601~260mの出力端子(Q)に順番に保持される。
スキャンインチェーン254は、スキャンイン端子270FとスキャンFF2601のスキャンイン端子SI(Scan In)とを接続するスキャン試験用の信号線である。
スキャンアウトチェーン255は、スキャンFF260mのスキャンアウト端子SO(Scan Out)とスキャンアウト端子270Hとを接続するスキャン試験用の信号線である。
OR(論理和)回路256は、READ信号とラップ信号の論理和を出力する。OR回路256の出力は、スキャンFF2601のIH(InHibit)端子に反転入力する。
スキャンFF2601~260mは、それぞれ、入力端子D、出力端子Q、スキャンイン端子SI(Scan In)、スキャンアウト端子SO(Scan Out)、IH(InHibit)端子、クロック入力端子、及びスキャンクロック入力端子SCKを有する。スキャンFF2601~260mのIH端子には、それぞれ、否定演算器2801~280mが接続されている。
スキャンFF2601~260mは、図12に示すように、互いに入力端子Dと出力端子Qが接続されるとともに、互いにスキャンイン端子SIとスキャンアウト端子SOが接続されることにより、mビットのレジスタを実現している。スキャンFF2601~260mは、それぞれ、m個のテストパターンによるBISTの結果を保持するために設けられている。
スキャンFF2601は、入力端子(D)にAND回路253の出力端子が接続され、スキャンイン端子SIにスキャンインチェーン254が接続され、IH端子に否定演算器2801を介してOR回路256の出力端子が接続されている。
スキャンFF2602~260mのIH端子には、否定演算器2802~280mを介して、ラップ信号入力端子270Cが接続されている。
スキャンFF260mのスキャンアウト端子SOには、スキャンアウトチェーン255が接続されている。
なお、スキャンFF2601~260mのクロック入力端子は、クロック信号入力端子270Aに接続されており、スキャンクロック入力端子SCKには、スキャンクロック入力端子270Gが接続されている。
クロック信号入力端子270Aは、クロック信号CKBをスキャンFF2601~260mのクロック入力端子に入力するための端子である。
READ信号入力端子270Bは、READ信号が試験結果記憶回路15に入力する端子である。
ラップ信号入力端子270Cは、ラップ信号が試験結果記憶回路15に入力する端子である。
READデータ入力端子270Dは、READデータが被試験回路14から試験結果記憶回路15のEOR回路251に入力する端子である。
期待値入力端子270Eは、期待値がテストパターン発生回路13から試験結果記憶回路15のEOR回路251に入力する端子である。
スキャンイン端子270Fは、スキャンインチェーン254を介して、スキャン系制御回路16からスキャンイン用のデータをスキャンFF2601~260mに入力するための端子である。
スキャンクロック入力端子270Gは、試験データのスキャンイン/スキャンアウトの際に用いるスキャンクロックTCKをスキャンFF2601~260mのスキャンクロック入力端子SCKに入力する端子である。
スキャンアウト端子270Hは、スキャンアウトチェーン255を介して、被試験回路14の試験結果をスキャンFF2601~260mから出力するための端子である。
図12に示すような試験結果記憶回路15において、スキャンFF2601~260mは、クロック入力端子に入力するクロック信号CKBに基づいて動作を行う。
スキャンFF2601~260mは、データの読み込みの禁止/許可をIH端子への入力に基づいて切り替える。
ここで、READ信号は、スキャンFF2601がBISTの試験結果を読み込む動作を制御するための信号である。
READ信号が"1"の場合は、スキャンFF2601のIH端子に"0"が入力するため、読み込みが許可され、スキャンFF2601はBISTの試験結果を読み込む。
一方、READ信号が"0"の場合は、スキャンFF2601のIH端子に"1"が入力するため、読み込みが禁止される。
また、ラップ信号は、テストパターンの切り替え時にHレベル("1")になる信号であるため、テストパターンによるBISTの実行中は、Lレベル("0")である。このため、BISTの実行中は、スキャンFF2601~260mのIH端子に"1"が入力し、スキャンFF2601~260mは書き込み禁止になる。
一方、テストパターンの切り替え時にラップ信号がHレベル("1")になると、スキャンFF2601~260mのIH端子に"0"が入力し、スキャンFF2601~260mは書き込み許可の状態になる。この書き込み許可の状態で、試験結果はスキャンFF2601~260mに順次書き込まれる。
以上のような実施の形態2の試験結果記憶回路15において、READデータと期待値が一致する場合は、EOR回路251の出力が"0"となる。
また、READデータと期待値とが一致している間は、スキャンFF2601の出力は"0"であり、OR回路252の入力は、ともに"0"となるため、OR回路252の出力は"0"である。
また、ラップ信号はテストパターンが切り替わるタイミングにのみHレベル("1")になるが、テストパターン0~m-1のいずれかによるBISTの実行中は"0"であり、ラップ信号はAND回路253に反転して入力する。
このため、READデータと期待値とが一致している間で、テストパターン0~m-1のいずれかによるBISTの実行中でラップ信号がLレベル("0")の場合は、AND回路253には"1"(ラップ信号の反転値)と"0"(OR回路252の出力)が入力し、AND回路253の出力は"0"となる。
テストパターン0~m-1が切り替わる度に、AND回路253の出力は、BISTの試験結果を表すデータとして、スキャンFF2601~260mに順番に読み込まれる。
一方、EOR回路251において、READデータと期待値とが不一致になった場合は、EOR回路251の出力が"1"となる。
また、BISTの実行中は、ラップ信号がLレベル("0")であり、AND回路253に反転して入力されるため、READデータと期待値とが一度不一致になると、AND回路253の出力"1"がスキャンFF2601の出力端子(Q)に保持される。
スキャンFF2601の出力端子(Q)の値は、OR回路252の片方の入力端子に入力されており、ラップ信号がHレベル("1")にならない限り、スキャンFF2601の出力端子(Q)の値はリセットされない。
このため、READデータと期待値とが一度不一致になると、その後、同一のテストパターンの中で、READデータと期待値とが一致してEOR回路251の出力が"0"に戻っても、OR回路252の出力は"1"で固定される。
このため、1つのテストパターンにおいて、一度でもREADデータと期待値との不一致が生じると、スキャンFF2601の出力端子(Q)に"1"(不一致有り)として保持される。
従って、テストパターン0~テストパターンm-1によるBISTを連続的に一度の処理で実行して得るm個の試験結果をスキャンFF2601~260mに順番に保持させれば、LSIテスタ300で試験結果を読み出すことにより、1種類の電源電圧、1種類の温度についてのシュムープロットの周波数特性を一度に取得することができる。
スキャンFF2601~260mが保持するm個の試験結果を表すデータ(TDO)を試験結果記憶回路15から読み出す場合は、スキャン系制御回路16を通じて、LSIテスタ300(図5参照)からスキャン制御信号(TCK、TMS)による制御でスキャン系制御回路がスキャンインチェーン254、スキャンアウトチェーン255を選択する。
そして、スキャンクロック(TCK)でスキャンFF2601~260mが保持するデータ(TDO)を順番に取り出せば、LSIテスタ300でシュムープロットの周波数特性を取得することができる。
以上のように、実施の形態2の半導体回路装置200によれば、図11A、図11Bに示すように、位相を徐々に進角させることによって周期を短縮(周波数を高く)したクロック信号GKBを用いることにより、様々な周波数についてのBISTを連続的に一度の処理で実行することができる。
クロック信号CKBの周期は、図10の状態遷移図に示した通り、k=0の場合からk=m-1の場合にかけて段階的に短縮され、周期が最も短縮される場合では、Node 0のHレベルのパルスの立ち上がりのタイミングに比べて単位時間×((n-1)×(m-1))だけ短縮される。
このため、半導体回路装置200のシュムープロットの周波数特性をすべて網羅できるように、クロック信号CKAの周波数、mの値、nの値、及び単位時間を設定すれば、連続した一度のBISTを実行することにより、シュムープロットの周波数特性を取得することができる。
これにより、半導体回路装置200のシュムープロットを作成する時間を大幅に短縮することができる。
以上、実施の形態2によれば、BIST用のクロック信号の周波数を可変にすることにより、試験時間の大幅な短縮化を図った半導体回路装置を提供することができる。
なお、以上では、被試験回路14がSRAMである場合について説明したが、被試験回路は、他の種類のRAMであってもよい。
また、被試験回路14としてRAMを用いるRAMBISTの実施形態について説明したが、半導体回路装置200は、演算器等に対してオペランド(被演算値)を入力して演算結果と期待値と比較する論理BISTに適用してもよい。
半導体回路装置200を論理BISTに適用する場合は、テストパターン発生部は、SRAMの代わりに、演算器等の論理回路に対するテストパターンを生成するようにすればよい。
以上、本発明の例示的な実施の形態の回路装置、周波数変更回路、回路装置の試験方法、及び周波数変更回路の制御方法について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
10 半導体回路装置
11 サイクルスイープ回路
11A クロック入力端
11B クロック出力端子
11C ラップ信号入力端子
12 PLL
13 テストパターン発生回路
14 被試験回路
15 試験結果記憶回路
201、202・・・20n-1 位相制御回路
30 位相選択回路
40 スイープ用シーケンサ
200 半導体回路装置
201、202 端子
211 サイクルスイープ回路
11A クロック入力端
11B クロック出力端子
11C ラップ信号入力端子
11D 設定制御信号入力端子
16 スキャン系制御回路
300 LSIテスタ
220 フェイズインターポレータ
221 DLL
222 位相ミキサ
230 乗算器
241 位相選択用カウンタ
242 位相制御用カウンタ
243 位相変更サイクル数設定レジスタ
244 パラメータ最大値設定レジスタ
245 ステップ数設定レジスタ
246 AND回路
247、248、249 乗算器
240A、240B クロック信号入力端子
240C ラップ信号入力端子
240D 位相選択信号出力端子
240E 終了信号出力端子
240F~240I 位相制御信号出力端子
240J ステップ数信号出力端子
240K 設定制御信号入力端子
251 EOR回路
252 OR回路
253 AND回路
254 スキャンインチェーン
255 スキャンアウトチェーン
2601、2602、・・・、260m スキャンFF
270A クロック信号入力端子
270B READ信号入力端子
270C ラップ信号入力端子
270D READデータ入力端子
270E 期待値入力端子
270F スキャンイン端子
270G スキャンクロック入力端子
270H スキャンアウト端子
11 サイクルスイープ回路
11A クロック入力端
11B クロック出力端子
11C ラップ信号入力端子
12 PLL
13 テストパターン発生回路
14 被試験回路
15 試験結果記憶回路
201、202・・・20n-1 位相制御回路
30 位相選択回路
40 スイープ用シーケンサ
200 半導体回路装置
201、202 端子
211 サイクルスイープ回路
11A クロック入力端
11B クロック出力端子
11C ラップ信号入力端子
11D 設定制御信号入力端子
16 スキャン系制御回路
300 LSIテスタ
220 フェイズインターポレータ
221 DLL
222 位相ミキサ
230 乗算器
241 位相選択用カウンタ
242 位相制御用カウンタ
243 位相変更サイクル数設定レジスタ
244 パラメータ最大値設定レジスタ
245 ステップ数設定レジスタ
246 AND回路
247、248、249 乗算器
240A、240B クロック信号入力端子
240C ラップ信号入力端子
240D 位相選択信号出力端子
240E 終了信号出力端子
240F~240I 位相制御信号出力端子
240J ステップ数信号出力端子
240K 設定制御信号入力端子
251 EOR回路
252 OR回路
253 AND回路
254 スキャンインチェーン
255 スキャンアウトチェーン
2601、2602、・・・、260m スキャンFF
270A クロック信号入力端子
270B READ信号入力端子
270C ラップ信号入力端子
270D READデータ入力端子
270E 期待値入力端子
270F スキャンイン端子
270G スキャンクロック入力端子
270H スキャンアウト端子
Claims (10)
- 第1の周波数のクロック信号を出力するクロック生成部と、
前記クロック生成部が出力する第1の周波数のクロック信号を入力し、前記第1の周波数のクロック信号の位相に対し、位相を進角又は遅角させた第1の周波数のクロック信号をそれぞれ出力する複数の位相制御部と、
前記複数の位相制御部がそれぞれ出力する複数の第1の周波数のクロック信号を入力し、前記複数の第1の周波数のクロック信号のパルスを順次選択して、第2の周波数のクロック信号を出力する選択部と、
前記選択部が出力した第2の周波数のクロック信号に基づいて、テストパターンを生成するパターン生成部と、
前記選択部が出力した第2の周波数のクロック信号と前記パターン発生部が生成したテストパターンを入力し、前記第2の周波数のクロック信号に基づき、前記テストパターンを入力として動作した動作結果を出力する回路部を有することを特徴とする回路装置。 - 前記回路装置はさらに、
前記パターン生成部が出力する制御信号を入力し、前記制御信号に基づいて前記選択部を制御する制御部を有することを特徴とする請求項1記載の回路装置。 - 前記回路装置において、
前記パターン生成部は、
前記回路部に入力するテストパターンを出力した後に前記制御信号を出力することを特徴とする請求項1記載の回路装置。 - 前記回路装置はさらに、
前記回路部が出力する動作結果と前記回路部に入力されるテストパターンに対する期待値を入力するとともに、前記動作結果と前記期待値とを比較した比較結果を出力する比較部と、
前記比較部が出力する比較結果を保持する比較結果保持部を有することを特徴とする請求項1記載の回路装置。 - 前記回路装置において、
前記比較部は、
前記動作結果と前記期待値との排他的論理和演算を行う排他的論理和演算回路と、
前記排他的論理和演算回路の出力と前記比較結果保持部の出力との論理和演算を行った結果を、前記比較結果保持部に出力する論理和演算回路を有することを特徴とする請求項4記載の回路装置。 - 前記回路装置において、
前記比較部はさらに、
前記論理和演算回路からの前記排他的論理和演算回路の出力と前記比較結果保持部の出力との論理和演算を行った結果と前記制御信号の否定演算を行った結果との論理積演算を行った結果を、前記比較結果保持部に出力する論理積演算回路を有することを特徴とする請求項5記載の回路装置。 - 前記回路装置において、
前記制御部は、
前記選択部が出力する第2の周波数のクロック信号に基づいて、前記選択部が入力した複数の第1の周波数のクロック信号のパルスを順次選択する選択信号を出力する選択信号生成部と、
前記入力した制御信号と前記クロック生成部が出力する第1の周波数のクロック信号に基づいて、前記複数の位相制御部を制御する位相制御信号をそれぞれ出力する複数の位相制御信号生成部を有することを特徴とする請求項2記載の回路装置。 - 第1の周波数のクロック信号を出力するクロック生成回路に接続する周波数変更回路において、
前記クロック生成回路が出力する第1の周波数のクロック信号を入力し、前記第1の周波数のクロック信号の位相に対し、位相を進角又は遅角させた第1の周波数のクロック信号をそれぞれ出力する複数の位相制御部と、
前記複数の位相制御部がそれぞれ出力する複数の第1の周波数のクロック信号を入力し、前記複数の第1の周波数のクロック信号のパルスを順次選択して、第2の周波数のクロック信号を出力する選択部を有することを特徴とする周波数変更回路。 - 回路装置の試験方法において、
前記回路装置が有するクロック生成部が、第1の周波数のクロック信号を出力するステップと、
前記回路装置が有する複数の位相制御部が、前記クロック生成部が出力する第1の周波数のクロック信号を入力し、前記第1の周波数のクロック信号の位相に対し、位相を進角又は遅角させた第1の周波数のクロック信号をそれぞれ出力するステップと、
前記回路装置が有する選択部が、前記複数の位相制御部がそれぞれ出力する複数の第1の周波数のクロック信号を入力し、前記複数の第1の周波数のクロック信号のパルスを順次選択して、第2の周波数のクロック信号を出力するステップと、
前記回路装置が有するパターン生成部が、前記選択部が出力した第2の周波数のクロック信号に基づいて、テストパターンを生成するステップと、
前記回路装置が有する回路部が、前記選択部が出力した第2の周波数のクロック信号と前記パターン発生部が生成したテストパターンを入力し、前記第2の周波数のクロック信号に基づき、前記テストパターンを入力として動作した動作結果を出力するステップを有することを特徴とする回路装置の試験方法。 - 第1の周波数のクロック信号を出力するクロック生成回路に接続する周波数変更回路の制御方法において、
前記周波数変更回路が有する複数の位相制御部が、前記クロック生成回路が出力する第1の周波数のクロック信号を入力し、前記第1の周波数のクロック信号の位相に対し、位相を進角又は遅角させた第1の周波数のクロック信号をそれぞれ出力するステップと、
前記周波数変更回路が有する選択部が、前記複数の位相制御部がそれぞれ出力する複数の第1の周波数のクロック信号を入力し、前記複数の第1の周波数のクロック信号のパルスを順次選択して、第2の周波数のクロック信号を出力するステップを有することを特徴とする周波数変更回路の制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/066184 WO2012035651A1 (ja) | 2010-09-17 | 2010-09-17 | 回路装置、周波数変更回路、回路装置の試験方法、及び周波数変更回路の制御方法 |
EP10857285.0A EP2618167A1 (en) | 2010-09-17 | 2010-09-17 | Circuit device, frequency altering circuit, method for testing circuit device, and method for controlling frequency altering circuit |
JP2012533802A JPWO2012035651A1 (ja) | 2010-09-17 | 2010-09-17 | 回路装置、周波数変更回路、回路装置の試験方法、及び周波数変更回路の制御方法 |
US13/834,433 US8810297B2 (en) | 2010-09-17 | 2013-03-15 | Circuit device, frequency changing circuit, method of testing circuit device, and method of controlling frequency changing circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/066184 WO2012035651A1 (ja) | 2010-09-17 | 2010-09-17 | 回路装置、周波数変更回路、回路装置の試験方法、及び周波数変更回路の制御方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/834,433 Continuation US8810297B2 (en) | 2010-09-17 | 2013-03-15 | Circuit device, frequency changing circuit, method of testing circuit device, and method of controlling frequency changing circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012035651A1 true WO2012035651A1 (ja) | 2012-03-22 |
Family
ID=45831150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/066184 WO2012035651A1 (ja) | 2010-09-17 | 2010-09-17 | 回路装置、周波数変更回路、回路装置の試験方法、及び周波数変更回路の制御方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8810297B2 (ja) |
EP (1) | EP2618167A1 (ja) |
JP (1) | JPWO2012035651A1 (ja) |
WO (1) | WO2012035651A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2524858C2 (ru) * | 2012-10-29 | 2014-08-10 | Общество с ограниченной ответственностью "Научно-производственное предприятие "Цифровые решения" | Система функционального тестирования карт полупроводниковой памяти |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9385859B2 (en) * | 2013-12-27 | 2016-07-05 | Realtek Semiconductor Corp. | Multi-lane serial data link receiver and method thereof |
US9350336B2 (en) * | 2014-02-05 | 2016-05-24 | Texas Instruments Incorporated | Timing compensation using the system clock |
KR20170066082A (ko) * | 2015-12-04 | 2017-06-14 | 삼성전자주식회사 | Bist 회로, 이를 포함하는 메모리 장치 및 이의 동작방법 |
US11032725B1 (en) * | 2020-03-18 | 2021-06-08 | Litepoint Corporation | System and method for testing data packet signal transceivers with a tester using externally initiated and self-terminating test control sequences |
US11500016B2 (en) * | 2020-12-07 | 2022-11-15 | Taiwan Semiconductor Manufacturing Company Ltd. | Circuit screening system and circuit screening method |
CN112924848B (zh) * | 2021-01-25 | 2023-09-01 | 英孚康(浙江)工业技术有限公司 | 一种提高fct测试平台安全性的方法和系统 |
JP2022115179A (ja) * | 2021-01-28 | 2022-08-09 | キオクシア株式会社 | 半導体集積回路装置及びその動作方法 |
IT202100019967A1 (it) | 2021-07-27 | 2023-01-27 | Campagnolo Srl | Dispositivo manuale di comando per bicicletta |
US11821946B2 (en) | 2021-09-15 | 2023-11-21 | Nxp Usa, Inc. | Built in self test (BIST) for clock generation circuitry |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004212310A (ja) | 2003-01-08 | 2004-07-29 | Toshiba Corp | 動作テスト回路を含む半導体集積回路、および、その動作テスト方法 |
JP2005003628A (ja) * | 2003-06-16 | 2005-01-06 | Matsushita Electric Ind Co Ltd | Lsiテスト回路およびそのテスト方法 |
JP2005332555A (ja) * | 2004-04-23 | 2005-12-02 | Oki Electric Ind Co Ltd | テスト回路、テスト方法、及び半導体集積回路装置 |
JP2006064588A (ja) * | 2004-08-27 | 2006-03-09 | Advantest Corp | 電子デバイス、及び試験方法 |
JP2007064648A (ja) | 2005-08-29 | 2007-03-15 | Nec Electronics Corp | 半導体集積回路及びテスト方法 |
WO2008032701A1 (en) * | 2006-09-13 | 2008-03-20 | Nec Corporation | Clock adjusting circuit and semiconductor integrated circuit device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6127858A (en) * | 1998-04-30 | 2000-10-03 | Intel Corporation | Method and apparatus for varying a clock frequency on a phase by phase basis |
US7225379B2 (en) | 2004-04-23 | 2007-05-29 | Oki Electric Industry Co., Ltd. | Circuit and method for testing semiconductor device |
US7492850B2 (en) * | 2005-08-31 | 2009-02-17 | International Business Machines Corporation | Phase locked loop apparatus with adjustable phase shift |
-
2010
- 2010-09-17 JP JP2012533802A patent/JPWO2012035651A1/ja active Pending
- 2010-09-17 WO PCT/JP2010/066184 patent/WO2012035651A1/ja active Application Filing
- 2010-09-17 EP EP10857285.0A patent/EP2618167A1/en not_active Withdrawn
-
2013
- 2013-03-15 US US13/834,433 patent/US8810297B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004212310A (ja) | 2003-01-08 | 2004-07-29 | Toshiba Corp | 動作テスト回路を含む半導体集積回路、および、その動作テスト方法 |
JP2005003628A (ja) * | 2003-06-16 | 2005-01-06 | Matsushita Electric Ind Co Ltd | Lsiテスト回路およびそのテスト方法 |
JP2005332555A (ja) * | 2004-04-23 | 2005-12-02 | Oki Electric Ind Co Ltd | テスト回路、テスト方法、及び半導体集積回路装置 |
JP2006064588A (ja) * | 2004-08-27 | 2006-03-09 | Advantest Corp | 電子デバイス、及び試験方法 |
JP2007064648A (ja) | 2005-08-29 | 2007-03-15 | Nec Electronics Corp | 半導体集積回路及びテスト方法 |
WO2008032701A1 (en) * | 2006-09-13 | 2008-03-20 | Nec Corporation | Clock adjusting circuit and semiconductor integrated circuit device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2524858C2 (ru) * | 2012-10-29 | 2014-08-10 | Общество с ограниченной ответственностью "Научно-производственное предприятие "Цифровые решения" | Система функционального тестирования карт полупроводниковой памяти |
Also Published As
Publication number | Publication date |
---|---|
EP2618167A1 (en) | 2013-07-24 |
US20130200931A1 (en) | 2013-08-08 |
JPWO2012035651A1 (ja) | 2014-01-20 |
US8810297B2 (en) | 2014-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012035651A1 (ja) | 回路装置、周波数変更回路、回路装置の試験方法、及び周波数変更回路の制御方法 | |
US7408371B2 (en) | Apparatus for measuring on-chip characteristics in semiconductor circuits and related methods | |
JP4649480B2 (ja) | 試験装置、クロック発生装置、及び電子デバイス | |
JP4874963B2 (ja) | 低周波数デジタル信号と高周波数デジタル信号との間の同期化 | |
JP3625400B2 (ja) | 可変遅延素子のテスト回路 | |
US11892506B2 (en) | Method and circuit for at-speed testing of multicycle path circuits | |
Abas et al. | Built-in time measurement circuits–a comparative design study | |
US9916888B1 (en) | System for measuring access time of memory | |
CN111341376B (zh) | Sram时序测试电路及测试方法 | |
US20110234282A1 (en) | Method And Circuit For Testing And Characterizing High Speed Signals Using An ON-Chip Oscilloscope | |
JP5301787B2 (ja) | 半導体装置 | |
US20040218459A1 (en) | Oscillation based access time measurement | |
US9666301B2 (en) | Scannable memories with robust clocking methodology to prevent inadvertent reads or writes | |
JP2012234605A (ja) | 半導体試験装置及びそのテスト方法 | |
US20090284247A1 (en) | Digital signal delay measuring circuit and digital signal delay measuring method | |
JP2000090693A (ja) | メモリ試験装置 | |
CN111383702B (zh) | Sram时序测试电路、方法和存储器 | |
JPH0534412A (ja) | タイミング発生装置 | |
TWI779714B (zh) | 延遲電路測試方法以及測試電路 | |
US20040046615A1 (en) | Oscillation based cycle time measurement | |
JP2011158440A (ja) | クロック生成回路、半導体集積回路およびその試験システム | |
JP4866509B2 (ja) | タイミング発生器及び試験装置 | |
Patel et al. | On-board setup-hold time measurement using FPGA based adaptive methodology | |
JPH0536752B2 (ja) | ||
JP2002071735A (ja) | 信号検査回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10857285 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012533802 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010857285 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |