WO2012035602A1 - 電池の電極の製造方法および電池の電極の製造装置 - Google Patents

電池の電極の製造方法および電池の電極の製造装置 Download PDF

Info

Publication number
WO2012035602A1
WO2012035602A1 PCT/JP2010/065739 JP2010065739W WO2012035602A1 WO 2012035602 A1 WO2012035602 A1 WO 2012035602A1 JP 2010065739 W JP2010065739 W JP 2010065739W WO 2012035602 A1 WO2012035602 A1 WO 2012035602A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
coating width
electrode paste
battery
degree
Prior art date
Application number
PCT/JP2010/065739
Other languages
English (en)
French (fr)
Inventor
鈴木 繁
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/065739 priority Critical patent/WO2012035602A1/ja
Priority to US13/822,002 priority patent/US20130183438A1/en
Priority to KR1020137006285A priority patent/KR20130060294A/ko
Priority to CN2010800690825A priority patent/CN103119756A/zh
Priority to JP2011544526A priority patent/JP5304902B2/ja
Publication of WO2012035602A1 publication Critical patent/WO2012035602A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1005Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material already applied to the surface, e.g. coating thickness, weight or pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0411Methods of deposition of the material by extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/04Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades
    • B05C11/041Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades characterised by means for positioning, loading, or deforming the blades
    • B05C11/042Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades characterised by means for positioning, loading, or deforming the blades allowing local positioning, loading or deforming along the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • B05D1/42Distributing applied liquids or other fluent materials by members moving relatively to surface by non-rotary members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0493Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases using vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery electrode manufacturing method and a battery electrode manufacturing apparatus for manufacturing an electrode in which an electrode paste is coated on the surface of a strip-shaped current collector sheet.
  • an electrode is manufactured by continuously applying and drying an electrode paste on the surface of a strip-shaped current collector sheet, and a battery in which the manufactured electrode is wound is manufactured. Things have been done.
  • the coating width of the electrode paste after coating is measured, and a die and a current collector for discharging the electrode paste are measured.
  • the gap with the body sheet was changed based on the measurement result of the coating width, and the coating width of the electrode paste was controlled to be a desired width.
  • the coating width of the electrode paste increases.
  • the coating width of an electrode paste becomes small. Thereby, the coating width of the electrode paste was controlled to be a desired coating width.
  • the gap between the die and the current collector sheet is changed to control the coating width of the electrode paste, it takes time to stabilize the pressure at the lip portion of the die, and the desired coating width is required. It takes a lot of time to get. The reason for this is that if the gap between the die and the current collector sheet is changed, the pressure of the lip part will fluctuate, but at this time, all the points from the discharge port of the pump that discharges the electrode paste to the lip part of the die will be explained. This is because the pressure fluctuates in the flow paths, and it takes time for the pressure to stabilize in these flow paths.
  • the collector sheet of the portion where the electrode paste has been applied before the desired coating width is obtained cannot be used as the battery electrode, a long time is required until the desired coating width is obtained. If it requires, the yield in manufacture of the electrode of a battery will fall.
  • the coating width of the electrode paste (the flow rate of the electrode paste discharged from the die) is stabilized at the time h3 after the time h2. Therefore, a portion of the portion where the electrode paste is applied in the time zone b after the time h4 (time when the coating width is measured and confirmed to be a desired coating width) is further delayed from the time h3.
  • the current collector sheet can be used as an electrode of the battery, but the current collector sheet in the portion where the electrode paste is applied in the time zone a before the time h4 cannot be used as the battery electrode. Therefore, it is desired that the coating width of the electrode paste can be controlled to a desired coating width in a short time.
  • Patent Document 1 a decompression chamber for decompressing the upstream side of the web in the bead is provided at the tip portion of the die, and the opening of the valve is adjusted based on the measurement result of the pressure gauge.
  • a technique for keeping the pressure constant at a predetermined pressure is disclosed.
  • an object of the present invention is to provide a battery electrode manufacturing method and a battery electrode manufacturing apparatus that improve the yield in battery electrode manufacturing.
  • One aspect of the present invention made to solve the above problems is a method for manufacturing an electrode of a battery in which an electrode paste is applied to a current collector sheet to be conveyed.
  • a chamber is arranged, and the coating width of the electrode paste is controlled by changing the degree of decompression of the decompression chamber.
  • the coating width of the electrode paste is controlled by changing the degree of decompression of the decompression chamber, the coating width of the electrode paste can be controlled to be a desired coating width in a short time. Therefore, the coating part of the electrode paste that does not have a desired coating width in the current collector sheet can be shortened, and the yield in manufacturing the battery electrode is improved.
  • the coating width of the electrode paste can be controlled to be a desired coating width in a shorter time. Therefore, the yield in manufacturing the battery electrode is further improved.
  • the coating width of the electrode paste so as to be a desired coating width from the start of coating. Therefore, the current collector sheet coated with the electrode paste can be used as a battery electrode from the coating start portion. Therefore, the yield in manufacturing the battery electrode is further improved.
  • Another aspect of the present invention which has been made to solve the above problems, is a battery electrode manufacturing apparatus for applying an electrode paste to a current collector sheet to be conveyed, a die for discharging the electrode paste, and the die And a coating width control unit that controls the coating width of the electrode paste by changing the degree of decompression of the decompression chamber.
  • the coating width of the electrode paste is controlled by changing the degree of decompression of the decompression chamber, the coating width of the electrode paste can be controlled to be a desired coating width in a short time. Therefore, the coating part of the electrode paste that does not have a desired coating width in the current collector sheet can be shortened, and the yield in manufacturing the battery electrode is improved.
  • the coating width controller changes the degree of pressure reduction by changing the suction amount of a blower connected to the pressure reducing chamber.
  • the coating width control unit changes the degree of pressure reduction by changing a distance between the pressure reducing chamber and the current collector sheet.
  • the coating width of the electrode paste can be controlled to be a desired coating width in a shorter time. Therefore, the yield in manufacturing the battery electrode is further improved.
  • the coating width control part determines the said pressure reduction degree according to the said coating width measured with the said width measuring machine.
  • the coating width control unit is configured to measure the viscosity. It is preferable to set the degree of vacuum according to the viscosity of the electrode paste measured by a mechanism.
  • the coating width of the electrode paste so as to be a desired coating width from the start of coating. Therefore, the current collector sheet coated with the electrode paste can be used as a battery electrode from the coating start portion. Therefore, the yield in manufacturing the battery electrode is further improved.
  • the yield in battery electrode manufacturing is improved.
  • FIG. 1 is a configuration diagram of a manufacturing apparatus of Example 1.
  • FIG. It is the figure which looked at the die
  • It is a block diagram of the manufacturing apparatus of Example 2. It is a figure which shows the clearance between a backup roll and a pressure reduction chamber. It is a figure which shows an example of the relationship between a clearance and a pressure reduction degree.
  • FIG. 6 is a configuration diagram of a manufacturing apparatus of Example 3. It is a figure which shows an example of the relationship between a viscosity and a coating width. It is a figure which shows the evaluation result of the coating width when not changing a pressure reduction degree. It is a figure which shows the evaluation result of the coating width at the time of changing a pressure reduction degree. It is a figure which shows the problem in a prior art.
  • FIG. 1 is a configuration diagram of a battery electrode manufacturing apparatus 1 according to a first embodiment.
  • the battery electrode manufacturing apparatus 1 includes a backup roller 10, a die 12, a decompression chamber 14, a blower 16, a width measuring device 18, and a coating width control unit 20. Etc.
  • the battery electrode manufacturing apparatus 1 in Example 1 can be used, for example, for manufacturing a secondary battery electrode.
  • the backup roller 10 is a columnar rotating body, and a belt-shaped current collector sheet 22 is wound thereon, and is a means for conveying the current collector sheet 22.
  • the backup roller 10 rotates in the direction of the arrow shown in FIG. 1 to convey the current collector sheet 22 in the direction of the arrow shown in FIG.
  • the die 12 is a means for applying the electrode paste 24 to the current collector sheet 22 by discharging the electrode paste 24 supplied from a tank (not shown) from a lip portion 26 provided at the tip of the die 12.
  • the electrode paste 24 is a paste-like electrode material containing an electrode active material.
  • the decompression chamber 14 is a means for decompressing the space between the backup roller 10 and the lip portion 26 of the die 12.
  • the decompression chamber 14 decompresses the upstream side in the transport direction of the current collector sheet 22 of the electrode paste 24 applied to the current collector sheet 22.
  • the decompression chamber 14 is arrange
  • the suction port 28 is located in the upstream of the conveyance direction of the electrical power collector sheet
  • the blower 16 is means for sucking the inside of the decompression chamber 14 through the pipe 30 and making the inside of the decompression chamber 14 a negative pressure.
  • the width measuring device 18 is a means for measuring the coating width of the electrode paste 24 coated on the current collector sheet 22.
  • the width measuring device 18 is provided at a position downstream of the lip portion 26 of the die 12 in the conveying direction of the current collector sheet 22.
  • the coating width of the electrode paste 24 is the short direction of the current collector sheet 22 of the electrode paste 24 applied to the current collector sheet 22 (the direction perpendicular to the conveying direction of the current collector sheet 22). Width.
  • the coating width control unit 20 is means for controlling the coating width of the electrode paste 24 by changing the degree of decompression of the decompression chamber 14.
  • the coating width controller 20 changes the degree of decompression of the decompression chamber 14 by changing the inverter frequency of the blower 16 to change the suction amount (number of rotations) per unit time.
  • the rotational speed of the backup roller 10, the discharge amount of the electrode paste 24 from the die 12, and the like are set to specified various conditions and are supported by the backup roller 10.
  • the electrode paste 24 is applied to the current collector sheet 22 by discharging the electrode paste 24 from the lip portion 26 at the tip of the die 12 toward the conveyed current collector sheet 22.
  • the coating width of the electrode paste 24 coated on the current collector sheet 22 is measured by the width measuring device 18. Information on the measurement result of the coating width of the electrode paste 24 is transmitted from the width measuring machine 18 to the coating width control unit 20.
  • the relationship between the degree of decompression of the decompression chamber 14 and the coating width of the electrode paste 24 is determined.
  • regulated the relationship between the pressure reduction degree of the decompression chamber 14 and the coating width of the electrode paste 24 are represented like the following numerical formula and FIG. 3 as an example.
  • X is the degree of decompression in the decompression chamber 14, and Y is the coating width of the electrode paste 24.
  • the coating width control unit 20 sets the inverter frequency of the blower 16 to the set value obtained above, changes the suction amount per unit time of the blower 16, and sets the suction amount to the target value. Thereby, the pressure reduction degree of the pressure reduction chamber 14 is changed, the pressure reduction degree is set to a target value, and the coating width of the electrode paste 24 is controlled to a desired coating width, and the electrode paste to the current collector sheet 22 is controlled. 24 coatings can be performed.
  • the inverter frequency of the blower 16 is adjusted to change the degree of decompression of the decompression chamber 14, so that it takes time to stabilize the pressure at the lip portion 26 of the die 12 as in the prior art.
  • the required problem does not occur, and the coating width of the electrode paste 24 becomes a desired coating width in a short time.
  • the coating portion of the electrode paste 24 that does not have a desired coating width in the current collector sheet 22 can be shortened, and the portion that cannot be used as a battery electrode in the current collector sheet 22 can be reduced. Therefore, the yield in manufacturing the battery electrode is improved.
  • the coating width of the electrode paste 24 is more accurately set to the desired coating width. Can be controlled.
  • FIG. 5 is a diagram showing the evaluation results of the time until the coating width of the electrode paste 24 becomes a desired coating width and stabilizes, and shows the evaluation results for the prior art example and Example 1.
  • FIG. 5 the coating width of the electrode paste 24 is controlled by controlling the gap between the die 12 and the current collector sheet 22.
  • the time taken until the coating width of the electrode paste 24 is stabilized to a desired coating width (“width stabilization time” in FIG. 5) is assumed to be 100. In Example 1, it was about 55. Therefore, according to Example 1, it turned out that the time until the coating width of the electrode paste 24 becomes a desired coating width and is stabilized can be made shorter than in the prior art example.
  • Example 2 Next, Example 2 will be described.
  • the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described.
  • FIG. 6 is a configuration diagram of the manufacturing apparatus 2 according to the second embodiment.
  • the manufacturing apparatus 2 of the second embodiment has a movable mechanism 32 as a difference from the manufacturing apparatus 1 of the first embodiment.
  • the movable mechanism 32 is a driving means for moving the decompression chamber 14. By moving the decompression chamber 14 by the movable mechanism 32, the clearance C (see FIG. 7) between the backup roller 10 and the decompression chamber 14 can be changed.
  • the coating width control unit 20 moves the decompression chamber 14 by the movable mechanism 32 while keeping the inverter frequency of the blower 16 constant.
  • the clearance C between the backup roller 10 and the decompression chamber 14 By changing the clearance C between the backup roller 10 and the decompression chamber 14, the degree of decompression of the decompression chamber 14 is changed.
  • the coating width control unit 20 sets the clearance C for setting the degree of decompression of the decompression chamber 14 to the target value from the relationship diagram or calculation formula between the degree of decompression of the decompression chamber 14 and the clearance C. Ask for.
  • An example of a relationship diagram defining the relationship between the degree of decompression of the decompression chamber 14 and the clearance C is shown in FIG.
  • the coating width control unit 20 moves the decompression chamber 14 by the movable mechanism 32 to set the clearance C to the set value obtained above.
  • the method for determining the target value of the degree of decompression of the decompression chamber 14 is the same as in the first embodiment.
  • the pressure reduction degree of the pressure reduction chamber 14 is changed, the pressure reduction degree is set to a target value, and the coating width of the electrode paste 24 is controlled to a desired coating width, and the electrode paste to the current collector sheet 22 is controlled. 24 coatings can be performed.
  • the clearance C is changed to change the degree of decompression of the decompression chamber 14, it takes time until the pressure at the lip portion 26 of the die 12 is stabilized as in the prior art. There is no problem, and the coating width of the electrode paste 24 becomes a desired coating width and stabilizes in a short time.
  • the coating portion of the electrode paste 24 that does not have a desired coating width in the current collector sheet 22 can be shortened, and the portion that cannot be used as the battery electrode in the current collector sheet 22 can be reduced. Therefore, the yield in manufacturing the battery electrode is improved.
  • the moving direction of the decompression chamber 14 by the movable mechanism 32 may be the left-right direction or the up-down direction in FIG. 6 in addition to the radial direction of the backup roller 10.
  • FIG. 9 is a diagram showing an evaluation result of time until the coating width of the electrode paste 24 becomes a desired coating width and is stabilized, and the evaluation results for the prior art example, Example 1, and Example 2 are shown. Show. As shown in FIG. 9, the time required for the coating width of the electrode paste 24 to become a desired coating width and stabilization (“width stabilization time” in FIG. 9) is assumed to be 100. In Example 2, it was about 45. Therefore, according to Example 2, it turned out that the time until the coating width of the electrode paste 24 becomes a desired coating width and is stabilized can be made shorter than those of the prior art example and Example 1. Therefore, according to Example 2, it turned out that the yield in manufacture of the electrode of a battery improves further than Example 1. FIG.
  • Example 1 and Example 2 may be performed in combination or may be performed separately.
  • the method of changing the inverter frequency of the blower 16 as in the first embodiment and the method of changing the clearance C as in the second embodiment are performed simultaneously, or It is also possible to use them properly for each coating situation.
  • Example 3 Next, Example 3 will be described.
  • the same components as those in the first and second embodiments are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described.
  • the first and second embodiments an example in which feedback control of the coating width of the electrode paste 24 is performed based on the measurement result of the width measuring machine 18 measured when the electrode paste 24 is applied to the current collector sheet 22 will be described.
  • Example 3 an example will be described in which the feed forward control of the coating width of the electrode paste 24 is performed before the application of the electrode paste 24 to the current collector sheet 22 is started.
  • FIG. 10 is a configuration diagram of a manufacturing apparatus according to the third embodiment.
  • the manufacturing apparatus of the third embodiment has a viscosity measuring mechanism 34 as a different point from the first and second embodiments.
  • the viscosity measuring mechanism 34 is a means for measuring the viscosity of the electrode paste 24 stored in the paste tank 36. Information on the viscosity measured by the viscosity measuring mechanism 34 is transmitted to the coating width control unit 20.
  • the viscosity of the electrode paste 24 stored in the paste tank 36 is measured by the viscosity measurement mechanism 34 before the application of the electrode paste 24 to the current collector sheet 22 is started.
  • the measurement result of the viscosity of the electrode paste 24 is transmitted from the viscosity measurement mechanism 34 to the coating width control unit 20.
  • the coating width control unit 20 predicts based on the measurement result of the viscosity of the electrode paste 24 acquired from the viscosity measuring mechanism 34 from the relationship diagram or calculation formula between the viscosity of the electrode paste 24 and the coating width.
  • the coating width of the electrode paste 24 is calculated. An example of the relationship between the viscosity of the electrode paste 24 and the coating width is shown in FIG.
  • the coating width control unit 20 then applies the degree of decompression of the decompression chamber 14 and the application of the electrode paste 24 based on the calculated expected coating width of the electrode paste 24 as in the first embodiment.
  • a target value of the degree of decompression of the decompression chamber 14 for setting the coating width of the electrode paste 24 to a desired coating width is determined from a calculation formula or a relationship diagram with the width.
  • the coating width control unit 20 changes the degree of decompression of the decompression chamber 14 and sets the degree of decompression of the decompression chamber 14 to the target value determined above.
  • the pressure is reduced by the movable mechanism 32 as in the second embodiment.
  • a method of changing the clearance C between the chamber 14 and the backup roller 10 may be used.
  • the degree of decompression of the decompression chamber 14 is set to a target value in advance, and the application of the electrode paste 24 to the current collector sheet 22 is started.
  • the electrode paste 24 can be applied to the surface of the current collector sheet 22 with a desired coating width from the start of coating. Therefore, the current collector sheet 22 coated with the electrode paste 24 can be used as a battery electrode from the coating start portion. Therefore, according to Example 3, the yield in the manufacture of the battery electrode is further improved as compared with Examples 1 and 2.
  • the degree of vacuum of 14 may be changed.
  • FIG. 12 shows an evaluation result when the coating width of the electrode paste 24 is not controlled without changing the degree of decompression of the decompression chamber 14
  • FIG. 13 shows the result of applying the electrode paste 24 by changing the degree of decompression of the decompression chamber 14. The evaluation result when the work width is controlled is shown.
  • the coating width of the electrode paste 24 is between 114.5 mm and 115.9 mm. And it was not stable.
  • the coating width of the electrode paste 24 is 115. It was settled between 8 mm and 116.0 mm and stabilized.

Abstract

 本願は、電池の電極の製造における歩留りが向上する電池の電極の製造方法および電池の電極の製造装置を提供すること、を課題とする。そこで、本発明の一態様は、搬送される集電体シートに電極ペーストを塗工する電池の電極の製造方法において、前記電極ペーストを吐出するダイの先端部に減圧チャンバを配置し、前記減圧チャンバの減圧度を変化させることにより前記電極ペーストの塗工幅を制御すること、を特徴とする。

Description

電池の電極の製造方法および電池の電極の製造装置
 本発明は、帯状の集電体シートの面に電極ペーストが塗工された電極を製造する電池の電極の製造方法および電池の電極の製造装置に関するものである。
 二次電池など電池の製造においては、帯状の集電体シートの面に電極ペーストを連続的に塗工して乾燥させることにより電極を製造し、製造された電極が巻かれた電池を製造することが行われている。
 そして、帯状の集電体シートの面に電極ペーストを連続的に塗工する工程においては、従来では、塗工後の電極ペーストの塗工幅を測定し、電極ペーストを吐出するダイと集電体シートとの間のギャップを塗工幅の測定結果をもとに変化させて、電極ペーストの塗工幅が所望の幅になるように制御していた。
 このとき、ダイと集電体シートとの間のギャップを小さくすると、ダイの吐出口部分であるリップ部における圧力損失が増加してリップ部の圧力が増加し、その結果として塗工幅方向への電極ペーストの広がりが大きくなるので、電極ペーストの塗工幅が大きくなる。また、ダイと集電体シートとの間のギャップを大きくすると、ダイのリップ部の圧力損失が減少してリップ部の圧力が減少し、その結果として塗工幅方向への電極ペーストの広がりが小さくなるので、電極ペーストの塗工幅が小さくなる。これにより、電極ペーストの塗工幅を所望の塗工幅になるように制御していた。
 しかしながら、ダイと集電体シートとの間のギャップを変化させて電極ペーストの塗工幅を制御すると、ダイのリップ部の圧力が安定するまでに時間を要してしまい、所望の塗工幅が得られるまでに多くの時間を要してしまう。その理由としては、ダイと集電体シートとの間のギャップを変化させるとリップ部の圧力が変動するが、このとき、電極ペーストを排出するポンプの排出口からダイのリップ部までの全ての流路において圧力が変動してしまい、これらの流路において圧力が安定するのに時間を要するからである。
 そして、ダイから吐出される電極ペーストの流量はリップ部の圧力が安定した後に安定するので、集電体シートにおける電極ペーストの塗工幅が所望の塗工幅となるまでにはさらに時間を要してしまう。
 そして、所望の塗工幅が得られるまでに電極ペーストが塗工された部分の集電体シートは電池の電極として使用することができないので、所望の塗工幅が得られるまでに多くの時間を要してしまうと、電池の電極の製造における歩留りが低下してしまう。
 例えば、図14に示すように、時間h1の時点でダイと集電体シートとの間のギャップを変化させると、時間h1から遅れて時間h2の時点でダイのリップ部の圧力が安定し、さらに時間h2から遅れて時間h3の時点で電極ペーストの塗工幅(ダイから吐出される電極ペーストの流量)が安定することになる。そのため、時間h3からさらに遅れて時間h4(塗工幅の測定を行って所望の塗工幅であることが確認された時間)の時点以降の時間帯bに電極ペーストが塗工された部分の集電体シートは電池の電極として使用することができるが、時間h4の時点以前の時間帯aに電極ペーストが塗工された部分の集電体シートは電池の電極として使用することができない。したがって、電極ペーストの塗工幅は、短時間で所望の塗工幅に制御できることが望まれる。
 ここで、特許文献1には、ダイの先端部分にビードにおけるウェブの上流側を減圧するための減圧チャンバが設けられ、圧力計の測定結果に基づきバルブの開度を調節して、減圧チャンバ内を所定の圧力に一定に保つ技術が開示されている。
特開2006-272130号公報
 しかしながら、特許文献1の技術では、減圧チャンバ内を所定の圧力に一定に保つので、塗工環境の変化などによりビードの塗工幅が変動したときに、ビードの塗工幅が所望の塗工幅となるように調整できない。そのため、ウェブ上にビードを所望の塗工幅で塗工することができない。したがって、ビードを塗工したウェブの製造における歩留りが低下してしまう。
 そこで、本発明は、電池の電極の製造における歩留りが向上する電池の電極の製造方法および電池の電極の製造装置を提供すること、を課題とする。
 上記課題を解決するためになされた本発明の一態様は、搬送される集電体シートに電極ペーストを塗工する電池の電極の製造方法において、前記電極ペーストを吐出するダイの先端部に減圧チャンバを配置し、前記減圧チャンバの減圧度を変化させることにより前記電極ペーストの塗工幅を制御すること、を特徴とする。
 この態様によれば、減圧チャンバの減圧度を変化させることにより電極ペーストの塗工幅を制御するので、短時間で電極ペーストの塗工幅が所望の塗工幅となるように制御できる。そのため、集電体シートにおいて所望の塗工幅になっていない電極ペーストの塗工部分を短くすることができ、電池の電極の製造における歩留りが向上する。
 上記の態様においては、前記減圧チャンバに接続するブロアの吸引量を変化させることにより前記減圧度を変化させること、が好ましい。
 この態様によれば、例えばブロアのインバータ周波数を調整すれば足りるので、簡易な構造とすることができる。
 上記の態様においては、前記減圧チャンバと前記集電体シートとの間の距離を変化させることにより前記減圧度を変化させること、が好ましい。
 この態様によれば、より短時間で電極ペーストの塗工幅が所望の塗工幅となるように制御できる。そのため、電池の電極の製造における歩留りがさらに向上する。
 上記の態様においては、前記塗工幅を測定し、測定された前記塗工幅に応じて前記減圧度を決定すること、が好ましい。
 この態様によれば、塗工幅の測定値をもとにフィードバック制御を行うので、より正確に電極ペーストの塗工幅が所望の塗工幅となるように制御できる。
 上記の態様においては、前記集電体シートへの前記電極ペーストの塗工開始前にて、前記電極ペーストの粘度を測定し、測定された前記粘度に応じて前記減圧度を設定しておくこと、が好ましい。
 この態様によれば、塗工開始時から、電極ペーストの塗工幅が所望の塗工幅になるように制御することができる。そのため、電極ペーストが塗工された集電体シートは、塗工開始部分から電池の電極として使用することができるようになる。したがって、電池の電極の製造における歩留りがさらに向上する。
 上記課題を解決するためになされた本発明の他の態様は、搬送される集電体シートに電極ペーストを塗工する電池の電極の製造装置において、前記電極ペーストを吐出するダイと、前記ダイの先端部に配置された減圧チャンバと、前記減圧チャンバの減圧度を変化させることにより前記電極ペーストの塗工幅を制御する塗工幅制御部と、を有することを特徴とする。
 この態様によれば、減圧チャンバの減圧度を変化させることにより電極ペーストの塗工幅を制御するので、短時間で電極ペーストの塗工幅が所望の塗工幅となるように制御できる。そのため、集電体シートにおいて所望の塗工幅になっていない電極ペーストの塗工部分を短くすることができ、電池の電極の製造における歩留りが向上する。
 上記の態様においては、前記塗工幅制御部は、前記減圧チャンバに接続するブロアの吸引量を変化させることにより前記減圧度を変化させること、が好ましい。
 この態様によれば、例えばブロアのインバータ周波数を調整すれば足りるので、簡易な構造とすることができる。
 上記の態様においては、前記塗工幅制御部は、前記減圧チャンバと前記集電体シートとの距離を変化させることにより前記減圧度を変化させること、が好ましい。
 この態様によれば、より短時間で電極ペーストの塗工幅が所望の塗工幅となるように制御できる。そのため、電池の電極の製造における歩留りがさらに向上する。
 上記の態様においては、前記塗工幅を測定する幅測定機を有し、前記塗工幅制御部は、前記幅測定機で測定された前記塗工幅に応じて前記減圧度を決定すること、が好ましい。
 この態様によれば、塗工幅の測定値をもとにフィードバック制御を行うので、より正確に電極ペーストの塗工幅が所望の塗工幅となるように制御できる。
 上記の態様においては、前記電極ペーストの粘度を測定する粘度測定機構を有し、前記集電体シートへの前記電極ペーストの塗工開始前にて、前記塗工幅制御部は、前記粘度測定機構で測定された前記電極ペーストの粘度に応じて前記減圧度を設定しておくこと、が好ましい。
 この態様によれば、塗工開始時から、電極ペーストの塗工幅が所望の塗工幅になるように制御することができる。そのため、電極ペーストが塗工された集電体シートは、塗工開始部分から電池の電極として使用することができるようになる。したがって、電池の電極の製造における歩留りがさらに向上する。
 本発明に係る電池の電極の製造方法および電池の電極の製造装置によれば、電池の電極の製造における歩留りが向上する。
実施例1の製造装置の構成図である。 図1の上側からダイと減圧チャンバを見た図である。 減圧度と塗工幅との関係の一例を示す図である。 ブロアのインバータ周波数と減圧度との関係の一例を示す図である。 塗工幅が所望の塗工幅に安定するまでの時間を比較した図である。 実施例2の製造装置の構成図である。 バックアップロールと減圧チャンバとの間のクリアランスを示す図である。 クリアランスと減圧度との関係の一例を示す図である。 塗工幅が所望の塗工幅に安定するまでの時間を比較した図である。 実施例3の製造装置の構成図である。 粘度と塗工幅との関係の一例を示す図である。 減圧度を変化させない場合の塗工幅の評価結果を示す図である。 減圧度を変化させた場合の塗工幅の評価結果を示す図である。 従来技術における問題点を示す図である。
 以下、本発明を具体化した形態について、添付図面を参照しつつ詳細に説明する。
〔実施例1〕
 まず、実施例1における電池の電極の製造装置1の構成について説明する。図1は、実施例1における電池の電極の製造装置1の構成図である。
 図1に示すように、実施例1における電池の電極の製造装置1は、バックアップローラ10と、ダイ12と、減圧チャンバ14と、ブロア16と、幅測定機18と、塗工幅制御部20などを有する。なお、実施例1における電池の電極の製造装置1は、例えば、二次電池の電極の製造に使用することができる。
 バックアップローラ10は、円柱形状の回転体であり、帯状の集電体シート22が巻かれており、当該集電体シート22を搬送するための手段である。なお、バックアップローラ10は、図1に示す矢印の方向に回転することにより、集電体シート22を図1に示す矢印の方向に搬送する。
 ダイ12は、不図示のタンクなどから供給された電極ペースト24をダイ12の先端部に設けられたリップ部26から吐出して、集電体シート22に電極ペースト24を塗工する手段である。ここで、電極ペースト24は、電極活物質を含むペースト状の電極材料である。
 減圧チャンバ14は、バックアップローラ10とダイ12のリップ部26との間を減圧するための手段である。本実施例では、減圧チャンバ14は、集電体シート22に塗工される電極ペースト24の集電体シート22の搬送方向の上流側を減圧している。そして、減圧チャンバ14は、ダイ12の先端部に配置され、その吸引口28がダイ12のリップ部26の図1の上下方向の中心よりも集電体シート22の搬送方向の上流側に位置するように設けられている。なお、図2は、図1の上側からダイ12と減圧チャンバ14を見た図である。
 ブロア16は、配管30を介して減圧チャンバ14内を吸引し、減圧チャンバ14内を負圧にする手段である。
 幅測定機18は、集電体シート22に塗工された電極ペースト24の塗工幅を測定する手段である。幅測定機18は、ダイ12のリップ部26よりも集電体シート22の搬送方向の下流側の位置に設けられている。ここで、電極ペースト24の塗工幅とは、集電体シート22に塗工された電極ペースト24の集電体シート22の短手方向(集電体シート22の搬送方向と垂直な方向)の幅である。
 塗工幅制御部20は、減圧チャンバ14の減圧度を変化させて電極ペースト24の塗工幅を制御する手段である。実施例1では、塗工幅制御部20はブロア16のインバータ周波数を変化させて単位時間当たりの吸引量(回転数)を変化させることにより、減圧チャンバ14の減圧度を変化させる。
 次に、このような構成を有する製造装置1を使用した電池の電極の製造方法について説明する。
 実施例1の製造方法では、製造装置1においては、バックアップローラ10の回転数やダイ12からの電極ペースト24の吐出量などを規定の諸条件に設定し、バックアップローラ10により支持された状態で搬送される集電体シート22に向かってダイ12の先端のリップ部26から電極ペースト24を吐出することにより、集電体シート22への電極ペースト24の塗工を行う。
 このとき、集電体シート22に塗工した電極ペースト24の塗工幅を、幅測定機18により測定する。電極ペースト24の塗工幅の測定結果の情報は、幅測定機18から塗工幅制御部20に伝達される。
 そして、塗工幅制御部20にて、幅測定機18から取得した電極ペースト24の塗工幅の測定結果をもとに、減圧チャンバ14の減圧度と電極ペースト24の塗工幅との関係を規定した計算式および関係図を用いて演算を行い、電極ペースト24の塗工幅を所望の塗工幅とすることができる減圧チャンバ14の減圧度の目標値を決定する。なお、減圧チャンバ14の減圧度と電極ペースト24の塗工幅との関係を規定した計算式および関係図は、一例として、以下の数式および図3のように表わされる。なお、Xは減圧チャンバ14の減圧度で、Yは電極ペースト24の塗工幅である。
Figure JPOXMLDOC01-appb-M000001
 次に、塗工幅制御部20にて、決定された減圧チャンバ14の減圧度の目標値をもとに、減圧チャンバ14の減圧度とブロア16のインバータ周波数との関係を規定した計算式または関係図から、ブロア16のインバータ周波数の設定値を求める。なお、減圧チャンバ14の減圧度とブロア16のインバータ周波数との関係を規定した関係図の一例を、図4に示す。
 そして、塗工幅制御部20は、ブロア16のインバータ周波数を上記で求めた設定値に設定して、ブロア16の単位時間当たりの吸引量を変化させて当該吸引量を目標値に設定する。これにより、減圧チャンバ14の減圧度を変化させて当該減圧度を目標値に設定して電極ペースト24の塗工幅を所望の塗工幅に制御しつつ、集電体シート22への電極ペースト24の塗工を行うことができる。
 このように実施例1によれば、ブロア16のインバータ周波数を調整して減圧チャンバ14の減圧度を変化させるので、従来技術のようにダイ12のリップ部26における圧力が安定するまでに時間を要するような問題を生じることはなく、短時間で電極ペースト24の塗工幅が所望の塗工幅となる。
 そのため、集電体シート22において所望の塗工幅になっていない電極ペースト24の塗工部分を短くすることができ、集電体シート22において電池の電極として使用することができない部分を少なくできるので、電池の電極の製造における歩留りが向上する。
 また、ブロア16のインバータ周波数を調整すれば足りるので、簡易な構造とすることができる。
 また、幅測定機18により測定された電極ペースト24の塗工幅の測定値をもとにフィードバック制御を行うので、より正確に電極ペースト24の塗工幅が所望の塗工幅となるように制御できる。
 図5は、電極ペースト24の塗工幅が所望の塗工幅となって安定するまでの時間の評価結果を示す図であり、従来技術例と実施例1についての評価結果を示している。なお、従来技術例では、ダイ12と集電体シート22との間のギャップを制御することにより電極ペースト24の塗工幅を制御した例を示している。
 図5に示すように、電極ペースト24の塗工幅が所望の塗工幅となって安定するまでの時間(図5の「幅安定化時間」)について、従来技術例を100とすると、実施例1では約55となった。そのため、実施例1によれば、電極ペースト24の塗工幅が所望の塗工幅となって安定するまでの時間を従来技術例よりも短くできることが分かった。
〔実施例2〕
 次に、実施例2について説明する。以下の説明では、実施例1と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。
 まず、実施例2における電池の電極の製造装置2の構成について説明する。図6は、実施例2の製造装置2の構成図である。実施例2の製造装置2は、実施例1の製造装置1と異なる点として、可動機構32を有する。
 可動機構32は、減圧チャンバ14を移動させるための駆動手段である。可動機構32により減圧チャンバ14を移動させることにより、バックアップローラ10と減圧チャンバ14との間のクリアランスC(図7参照)を変化させることができる。
 次に、このような構成を有する製造装置2を使用した実施例2の電池の電極の製造方法について説明する。
 実施例2の製造方法では、実施例1の製造方法と異なる点として、塗工幅制御部20は、ブロア16のインバータ周波数を一定としたまま、可動機構32により減圧チャンバ14を移動させて、バックアップローラ10と減圧チャンバ14とのクリアランスCを変化させることにより減圧チャンバ14の減圧度を変化させる。
 具体的には、塗工幅制御部20にて、減圧チャンバ14の減圧度とクリアランスCとの関係図または計算式から、減圧チャンバ14の減圧度を目標値にするためのクリアランスCの設定値を求める。なお、減圧チャンバ14の減圧度とクリアランスCとの関係を規定した関係図の一例を、図8に示す。そして、塗工幅制御部20は、可動機構32により減圧チャンバ14を移動させて、クリアランスCを前記で求めた設定値にする。なお、減圧チャンバ14の減圧度の目標値を決定する方法は、前記の実施例1と同様である。
 これにより、減圧チャンバ14の減圧度を変化させて当該減圧度を目標値に設定して電極ペースト24の塗工幅を所望の塗工幅に制御しつつ、集電体シート22への電極ペースト24の塗工を行うことができる。
 このように実施例2によれば、クリアランスCを変化させて減圧チャンバ14の減圧度を変化させるので、従来技術のようにダイ12のリップ部26における圧力が安定するまでに時間を要するような問題を生じることはなく、短時間で電極ペースト24の塗工幅が所望の塗工幅となって安定する。
 そのため、集電体シート22において所望の塗工幅になっていない電極ペースト24の塗工部分を短くすることができ、集電体シート22における電池の電極として使用することができない部分を少なくできるので、電池の電極の製造における歩留りが向上する。
 なお、可動機構32による減圧チャンバ14の移動方向は、バックアップローラ10の径方向とする以外にも、図6の左右方向や上下方向としてもよい。
 図9は、電極ペースト24の塗工幅が所望の塗工幅となって安定するまでの時間の評価結果を示す図であり、従来技術例と実施例1と実施例2についての評価結果を示している。図9に示すように、電極ペースト24の塗工幅が所望の塗工幅となって安定するまでの時間(図9の「幅安定化時間」)について、従来技術例を100とすると、実施例2では約45となった。そのため、実施例2によれば、電極ペースト24の塗工幅が所望の塗工幅となって安定するまでの時間を従来技術例や実施例1よりも短くできることが分かった。したがって、実施例2によれば、実施例1よりもさらに、電池の電極の製造における歩留りが向上することが分かった。
 なお、集電体シート22への電極ペースト24の塗工において、実施例1と実施例2は、組み合わせて行ったり、使い分けて行ってもよい。例えば、減圧チャンバ14の減圧度を変化させる際に、実施例1のようにブロア16のインバータ周波数を変化させる方法と、実施例2のようにクリアランスCを変化させる方法とを同時に行ったり、または塗工状況毎に使い分けたりすることも考えられる。
〔実施例3〕
 次に、実施例3について説明する。以下の説明では、実施例1,2と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。前記の実施例1,2では集電体シート22への電極ペースト24の塗工時に測定した幅測定機18の測定結果をもとに電極ペースト24の塗工幅のフィードバック制御を行う例を説明したが、実施例3では集電体シート22への電極ペースト24の塗工開始前に電極ペースト24の塗工幅のフィードフォワード制御を行って塗工を開始する例を説明する。
 図10は、実施例3の製造装置の構成図である。実施例3の製造装置は、実施例1,2と異なる点として、粘度測定機構34を有する。
 粘度測定機構34は、ペーストタンク36に貯留した電極ペースト24の粘度を測定する手段である。そして、粘度測定機構34で測定された粘度の情報は、塗工幅制御部20に伝達される。
 次に、このような構成を有する製造装置3を使用した電池の電極の製造方法について説明する。
 まず、集電体シート22への電極ペースト24の塗工開始前にて、ペーストタンク36に貯留した電極ペースト24の粘度を、粘度測定機構34により測定する。電極ペースト24の粘度の測定結果は、粘度測定機構34から塗工幅制御部20に伝達される。
 次に、塗工幅制御部20は、粘度測定機構34から取得した電極ペースト24の粘度の測定結果をもとに、電極ペースト24の粘度と塗工幅との関係図または計算式より、予想される電極ペースト24の塗工幅を算出する。なお、電極ペースト24の粘度と塗工幅との関係図の一例を、図11に示す。
 そして、塗工幅制御部20は、算出された予想される電極ペースト24の塗工幅をもとに、前記の実施例1と同様に、減圧チャンバ14の減圧度と電極ペースト24の塗工幅との計算式または関係図から、電極ペースト24の塗工幅を所望の塗工幅とするための減圧チャンバ14の減圧度の目標値を決定する。
 そして、塗工幅制御部20は、減圧チャンバ14の減圧度を変化させて、減圧チャンバ14の減圧度を上記で決定した目標値に設定する。なお、減圧チャンバ14の減圧度を変化させる方法としては、前記の実施例1のようにブロア16のインバータ周波数を変化させる方法であっても、前記の実施例2のように可動機構32により減圧チャンバ14とバックアップローラ10とのクリアランスCを変化させる方法であってもよい。
 そして、このように予め減圧チャンバ14の減圧度を目標値に設定しておき、集電体シート22への電極ペースト24の塗工を開始する。
 これにより、塗工開始時から、集電体シート22の表面に電極ペースト24を所望の塗工幅で塗工することができる。そのため、電極ペースト24が塗工された集電体シート22は、塗工開始部分から電池の電極として使用することができる。したがって、実施例3によれば、実施例1と実施例2よりもさらに、電池の電極の製造における歩留りが向上する。
 なお、このようにして集電体シート22への電極ペースト24の塗工を開始した後、集電体シート22への電極ペースト24の塗工時において、前記の実施例1,2のように測定した幅測定機18の測定結果をもとに電極ペースト24の塗工幅のフィードバック制御を行ってもよい。
 また、粘度測定機構34を使用した例を説明したが、これに限定されず、製造装置3の装置外で測定した電極ペースト24の粘度の結果をもとに塗工幅制御部20により減圧チャンバ14の減圧度を変化させてもよい。
〔塗工幅の評価結果〕
 本発明のように減圧チャンバ14の減圧度を変化させて電極ペースト24の塗工幅を制御したときの効果を確認するための評価を行った。
 図12と図13にその評価結果を示す。図12は減圧チャンバ14の減圧度を変化させず電極ペースト24の塗工幅を制御しなかった場合の評価結果を示し、図13は減圧チャンバ14の減圧度を変化させて電極ペースト24の塗工幅を制御した場合の評価結果を示す。
 図12に示すように、減圧チャンバ14の減圧度を変化させず電極ペースト24の塗工幅を制御しなかった場合には、電極ペースト24の塗工幅は114.5mm~115.9mmの間でバラついて安定しなかった。これに対し、図13に示すように、本発明のように減圧チャンバ14の減圧度を変化させて電極ペースト24の塗工幅を制御した場合には、電極ペースト24の塗工幅が115.8mm~116.0mmの間に収まり安定した。
 なお、上記した実施の形態は単なる例示にすぎず、本発明を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。
 1  製造装置
 2  製造装置
 3  製造装置
 10 バックアップローラ
 12 ダイ
 14 減圧チャンバ
 16 ブロア
 18 幅測定機
 20 塗工幅制御部
 22 集電体シート
 24 電極ペースト
 32 可動機構
 34 粘度測定機構

Claims (10)

  1.  搬送される集電体シートに電極ペーストを塗工する電池の電極の製造方法において、
     前記電極ペーストを吐出するダイの先端部に減圧チャンバを配置し、
     前記減圧チャンバの減圧度を変化させることにより前記電極ペーストの塗工幅を制御すること、
     を特徴とする電池の電極の製造方法。
  2.  請求項1の電池の電極の製造方法において、
     前記減圧チャンバに接続するブロアの吸引量を変化させることにより前記減圧度を変化させること、
     を特徴とする電池の電極の製造方法。
  3.  請求項1または2の電池の電極の製造方法において、
     前記減圧チャンバと前記集電体シートとの間の距離を変化させることにより前記減圧度を変化させること、
     を特徴とする電池の電極の製造方法。
  4.  請求項1乃至3のいずれか1つの電池の電極の製造方法において、
     前記塗工幅を測定し、測定された前記塗工幅に応じて前記減圧度を決定すること、
     を特徴とする電池の電極の製造方法。
  5.  請求項1乃至4のいずれか1つの電池の電極の製造方法において、
     前記集電体シートへの前記電極ペーストの塗工開始前にて、前記電極ペーストの粘度を測定し、測定された前記粘度に応じて前記減圧度を設定しておくこと、
     を特徴とする電池の電極の製造方法。
  6.  搬送される集電体シートに電極ペーストを塗工する電池の電極の製造装置において、
     前記電極ペーストを吐出するダイと、
     前記ダイの先端部に配置された減圧チャンバと、
     前記減圧チャンバの減圧度を変化させることにより前記電極ペーストの塗工幅を制御する塗工幅制御部と、
     を有することを特徴とする電池の電極の製造装置。
  7.  請求項6の電池の電極の製造装置において、
     前記塗工幅制御部は、前記減圧チャンバに接続するブロアの吸引量を変化させることにより前記減圧度を変化させること、
     を特徴とする電池の電極の製造装置。
  8.  請求項6または7の電池の電極の製造装置において、
     前記塗工幅制御部は、前記減圧チャンバと前記集電体シートとの距離を変化させることにより前記減圧度を変化させること、
     を特徴とする電池の電極の製造装置。
  9.  請求項6乃至8のいずれか1つの電池の電極の製造装置において、
     前記塗工幅を測定する幅測定機を有し、
     前記塗工幅制御部は、前記幅測定機で測定された前記塗工幅に応じて前記減圧度を決定すること、
     を特徴とする電池の電極の製造装置。
  10.  請求項6乃至9のいずれか1つの電池の電極の製造装置において、
     前記電極ペーストの粘度を測定する粘度測定機構を有し、
     前記集電体シートへの前記電極ペーストの塗工開始前にて、前記塗工幅制御部は、前記粘度測定機構で測定された前記電極ペーストの粘度に応じて前記減圧度を設定しておくこと、
     を特徴とする電池の電極の製造装置。
PCT/JP2010/065739 2010-09-13 2010-09-13 電池の電極の製造方法および電池の電極の製造装置 WO2012035602A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/065739 WO2012035602A1 (ja) 2010-09-13 2010-09-13 電池の電極の製造方法および電池の電極の製造装置
US13/822,002 US20130183438A1 (en) 2010-09-13 2010-09-13 Battery electrode manufacturing method and battery electrode manufacturing device
KR1020137006285A KR20130060294A (ko) 2010-09-13 2010-09-13 전지의 전극의 제조 방법 및 전지의 전극의 제조 장치
CN2010800690825A CN103119756A (zh) 2010-09-13 2010-09-13 电池的电极的制造方法以及电池的电极的制造装置
JP2011544526A JP5304902B2 (ja) 2010-09-13 2010-09-13 電池の電極の製造方法および電池の電極の製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065739 WO2012035602A1 (ja) 2010-09-13 2010-09-13 電池の電極の製造方法および電池の電極の製造装置

Publications (1)

Publication Number Publication Date
WO2012035602A1 true WO2012035602A1 (ja) 2012-03-22

Family

ID=45831104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065739 WO2012035602A1 (ja) 2010-09-13 2010-09-13 電池の電極の製造方法および電池の電極の製造装置

Country Status (5)

Country Link
US (1) US20130183438A1 (ja)
JP (1) JP5304902B2 (ja)
KR (1) KR20130060294A (ja)
CN (1) CN103119756A (ja)
WO (1) WO2012035602A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140680A (ja) * 2011-12-28 2013-07-18 Nissan Motor Co Ltd 電極生産方法および電極生産制御システム
CN106000796A (zh) * 2016-07-01 2016-10-12 合肥国轩高科动力能源有限公司 一种锂离子电池流体涂覆用狭缝式模头
WO2018179205A1 (ja) * 2017-03-30 2018-10-04 日本電気株式会社 電池用電極、その製造方法及び電極製造装置
JP2019046637A (ja) * 2017-09-01 2019-03-22 トヨタ自動車株式会社 電極板の製造方法
WO2022118808A1 (ja) * 2020-12-02 2022-06-09 Apb株式会社 集電体供給装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6230893B2 (ja) * 2013-12-10 2017-11-15 株式会社ヒラノテクシード 間欠塗工装置
JP6365599B2 (ja) * 2016-06-29 2018-08-01 トヨタ自動車株式会社 電極用湿潤造粒体の製造装置および製造方法
JP6835696B2 (ja) * 2017-10-24 2021-02-24 株式会社ヒラノテクシード 塗工装置
DE102019104206A1 (de) * 2019-02-19 2020-08-20 Monbat New Power GmbH Verfahren und Vorrichtung zur Herstellung einer Elektrode für einen Akkumulator
JP7261783B2 (ja) * 2020-11-18 2023-04-20 プライムプラネットエナジー&ソリューションズ株式会社 電極の製造方法および電極ペースト塗工装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188962A (ja) * 1996-12-27 1998-07-21 Fuji Film Selltec Kk シート状極板の製造方法と非水電解質電池
JP2000262947A (ja) * 1999-03-23 2000-09-26 Konica Corp 塗布装置および塗布方法
JP2006095456A (ja) * 2004-09-30 2006-04-13 Fuji Photo Film Co Ltd 塗布液の塗布方法及び装置
JP2007258078A (ja) * 2006-03-24 2007-10-04 Matsushita Electric Ind Co Ltd 電極板の塗工幅制御システム及び制御方法
JP2008218079A (ja) * 2007-03-01 2008-09-18 Sanyo Electric Co Ltd 非水電解質二次電池の電極の製造方法
JP2009172513A (ja) * 2008-01-24 2009-08-06 Toyota Motor Corp 塗工方法、及び塗工装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168225A (ja) * 2007-01-12 2008-07-24 Fujifilm Corp スリット塗布方法及び装置、並びにカラーフィルタの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188962A (ja) * 1996-12-27 1998-07-21 Fuji Film Selltec Kk シート状極板の製造方法と非水電解質電池
JP2000262947A (ja) * 1999-03-23 2000-09-26 Konica Corp 塗布装置および塗布方法
JP2006095456A (ja) * 2004-09-30 2006-04-13 Fuji Photo Film Co Ltd 塗布液の塗布方法及び装置
JP2007258078A (ja) * 2006-03-24 2007-10-04 Matsushita Electric Ind Co Ltd 電極板の塗工幅制御システム及び制御方法
JP2008218079A (ja) * 2007-03-01 2008-09-18 Sanyo Electric Co Ltd 非水電解質二次電池の電極の製造方法
JP2009172513A (ja) * 2008-01-24 2009-08-06 Toyota Motor Corp 塗工方法、及び塗工装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140680A (ja) * 2011-12-28 2013-07-18 Nissan Motor Co Ltd 電極生産方法および電極生産制御システム
CN106000796A (zh) * 2016-07-01 2016-10-12 合肥国轩高科动力能源有限公司 一种锂离子电池流体涂覆用狭缝式模头
WO2018179205A1 (ja) * 2017-03-30 2018-10-04 日本電気株式会社 電池用電極、その製造方法及び電極製造装置
JPWO2018179205A1 (ja) * 2017-03-30 2020-01-09 日本電気株式会社 電池用電極、その製造方法及び電極製造装置
JP2019046637A (ja) * 2017-09-01 2019-03-22 トヨタ自動車株式会社 電極板の製造方法
WO2022118808A1 (ja) * 2020-12-02 2022-06-09 Apb株式会社 集電体供給装置
JP2022088250A (ja) * 2020-12-02 2022-06-14 Apb株式会社 集電体供給装置
JP7425716B2 (ja) 2020-12-02 2024-01-31 Apb株式会社 集電体供給装置

Also Published As

Publication number Publication date
JP5304902B2 (ja) 2013-10-02
JPWO2012035602A1 (ja) 2014-01-20
KR20130060294A (ko) 2013-06-07
CN103119756A (zh) 2013-05-22
US20130183438A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5304902B2 (ja) 電池の電極の製造方法および電池の電極の製造装置
JP6231292B2 (ja) 粉体塗工装置、およびそれを用いた電極の製造方法
JP6539069B2 (ja) 塗布装置
JP5293498B2 (ja) ウエブ搬送装置及びその方法と電池の製造方法
KR102059028B1 (ko) 웹 리프터/스태빌라이저 및 방법
JP2011206641A (ja) 両面間欠塗布装置
JP7208798B2 (ja) 電池用極板の製造装置および電池用極板の製造方法
JP5423209B2 (ja) 帯状材の搬送装置及び搬送制御方法
JP2013188663A (ja) 間欠塗布装置
JP2018167193A (ja) 両面塗工装置および塗膜形成システム
JP2015150516A (ja) 両面塗工装置、両面塗工方法および塗膜形成システム
JP2014057937A (ja) 間欠塗布装置
JP2019166425A (ja) 塗布装置
US8753710B2 (en) Coating method
JP6011007B2 (ja) 塗工システム
KR101739175B1 (ko) 제어 시스템 및 제어 방법
CN108554669B (zh) 一种喷嘴、涂布机及涂布方法
JP2017170311A (ja) スラリ塗工方法
JP2013048995A (ja) 塗布装置、塗布膜形成システム、塗布方法および塗布膜形成方法
WO2015182332A1 (ja) テンション制御装置
JP2012075980A (ja) 塗工装置
JP2004358804A (ja) セラミックグリーンシートの製造方法及び製造装置
JP2012245423A (ja) 塗布装置
JP6417810B2 (ja) 乾燥装置及び電極の製造方法
JP6424130B2 (ja) サイドウォール材料のカット方法およびカット装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069082.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011544526

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13822002

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137006285

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857236

Country of ref document: EP

Kind code of ref document: A1