WO2012033097A1 - 金属錯体量子結晶の製造方法 - Google Patents
金属錯体量子結晶の製造方法 Download PDFInfo
- Publication number
- WO2012033097A1 WO2012033097A1 PCT/JP2011/070274 JP2011070274W WO2012033097A1 WO 2012033097 A1 WO2012033097 A1 WO 2012033097A1 JP 2011070274 W JP2011070274 W JP 2011070274W WO 2012033097 A1 WO2012033097 A1 WO 2012033097A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- plasmon
- metal complex
- silver
- complex
- Prior art date
Links
- 150000004696 coordination complex Chemical class 0.000 title claims abstract description 48
- 239000013078 crystal Substances 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 98
- 239000002184 metal Substances 0.000 claims abstract description 98
- 229910052709 silver Inorganic materials 0.000 claims abstract description 38
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000004332 silver Substances 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000003446 ligand Substances 0.000 claims abstract description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 239000010949 copper Substances 0.000 claims abstract description 9
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052737 gold Inorganic materials 0.000 claims abstract description 8
- 239000010931 gold Substances 0.000 claims abstract description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 3
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 3
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 3
- 239000011701 zinc Substances 0.000 claims abstract description 3
- 239000000758 substrate Substances 0.000 claims description 41
- 239000007864 aqueous solution Substances 0.000 claims description 22
- 239000000243 solution Substances 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 9
- -1 amino acid ions Chemical class 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000000427 antigen Substances 0.000 claims description 5
- 102000036639 antigens Human genes 0.000 claims description 5
- 108091007433 antigens Proteins 0.000 claims description 5
- 230000002708 enhancing effect Effects 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- 239000002270 dispersing agent Substances 0.000 claims description 4
- 239000002923 metal particle Substances 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 239000002096 quantum dot Substances 0.000 abstract description 18
- 230000000694 effects Effects 0.000 abstract description 16
- 238000001179 sorption measurement Methods 0.000 abstract 1
- 238000001069 Raman spectroscopy Methods 0.000 description 15
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 15
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 14
- 229910000906 Bronze Inorganic materials 0.000 description 13
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 13
- 239000010974 bronze Substances 0.000 description 13
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 13
- 230000005284 excitation Effects 0.000 description 10
- 239000000523 sample Substances 0.000 description 9
- 238000007740 vapor deposition Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910001369 Brass Inorganic materials 0.000 description 6
- 238000001237 Raman spectrum Methods 0.000 description 6
- 239000010951 brass Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 229940024606 amino acid Drugs 0.000 description 5
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- MWVTWFVJZLCBMC-UHFFFAOYSA-N 4,4'-bipyridine Chemical compound C1=NC=CC(C=2C=CN=CC=2)=C1 MWVTWFVJZLCBMC-UHFFFAOYSA-N 0.000 description 4
- ZSILVJLXKHGNPL-UHFFFAOYSA-L S(=S)(=O)([O-])[O-].[Ag+2] Chemical compound S(=S)(=O)([O-])[O-].[Ag+2] ZSILVJLXKHGNPL-UHFFFAOYSA-L 0.000 description 4
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 229910001961 silver nitrate Inorganic materials 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 238000000015 thermotherapy Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 2
- 235000019345 sodium thiosulphate Nutrition 0.000 description 2
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229960003767 alanine Drugs 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- ZBKIUFWVEIBQRT-UHFFFAOYSA-N gold(1+) Chemical compound [Au+] ZBKIUFWVEIBQRT-UHFFFAOYSA-N 0.000 description 1
- 229910021480 group 4 element Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002331 protein detection Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 150000003378 silver Chemical group 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/64—Thiosulfates; Dithionites; Polythionates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G5/00—Compounds of silver
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/06—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
- C07C229/08—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F1/00—Compounds containing elements of Groups 1 or 11 of the Periodic Table
- C07F1/10—Silver compounds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/20—Particle morphology extending in two dimensions, e.g. plate-like
- C01P2004/24—Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
Definitions
- the present invention relates to a method of producing a metal complex quantum crystal encapsulating metal nanocluster quantum dots using an aqueous metal complex solution and its use.
- Nanoclusters are substances that perform unique functions different from atoms, molecules, and bulk solids. Since various functions are exerted by controlling the size and number of constituent atoms, new knowledge and discoveries on phase transition, crystal growth, chemical reaction, catalysis, etc.
- the electric field enhancement around a wavelength of 400 nm is very high at a predetermined interparticle distance, and below that, a peak exists near the wavelength of 300 nm.
- the relationship with the particle diameter is such that the peak position increases as the particle diameter increases, the peak shifts to the longer wavelength side, and the peak width increases as the particle increases, so it corresponds to a wide range of wavelengths. It is considered that an electric field enhancement effect can be expected.
- Non-Patent Documents 1, 2, 3, and Patent Document 1 A method of synthesizing silver or gold colloidal particles and fixing them on a glass substrate modified with lysine or cyan has been proposed (Non-Patent Documents 1, 2, 3, and Patent Document 1). Currently has to adopt the vapor deposition method.
- the substrate formed by the vapor deposition method does not have a function of adsorbing the sample, and a so-called drop & dry method in which the sample is applied and dried to form the substrate is adopted, but it is difficult to detect immediately, and there is a drawback associated with sample deterioration. is there.
- the magnitude of the enhancement in the plasmon phenomenon is said to depend on a number of parameters including the positions and orientations of various bonds present in the adsorbed molecules with respect to the electromagnetic field on the metal surface. In order to provide an optimal substrate and ensure reproducibility, it is involved in the mechanism that the SERS phenomenon occurs.
- the present invention has been made on the basis of such knowledge, and prepared an aqueous plasmon metal complex solution comprising a plasmon metal selected from gold, silver, copper, nickel, zinc, aluminum or platinum and a ligand.
- a plasmon metal complex is deposited by contact with a carrier made of a metal having a lower potential, a metal alloy, or a metal having a lower electrode potential than plasmon metal, and a quantum crystal having a plasmon enhancing effect is arranged on the metal carrier. This is a method for producing a quantum crystal.
- a metal substrate, metal particles, a metal needle, and a metal film in a capillary are selected according to various uses.
- the plasmon metal is silver
- a metal having a lower electrode potential than silver made of copper, brass, or phosphor bronze is selected as the metal substrate, and a substrate on which the sample can be dropped (FIG. 7) is employed. It is used to perform SERS inspection by dripping in the state.
- the metal particles are used when used as an electrode constituent material that transmits light on the light incident side of the solar cell.
- the metal needle is for use in thermotherapy, and is inserted directly into the affected area, and the affected area is treated by fever due to the plasmon effect by laser irradiation.
- Capillaries are used to reduce sample contamination and use in measurement methods that use capillaries that aspirate a small amount of sample, and form a metal film or metal piece as a carrier in the capillary by chemical plating or embedding.
- the quantum crystal of the present invention can be formed and used there.
- the metal complex is formed on a metal carrier with quantum crystals encapsulating plasmonic metal nanoclusters (see FIGS. 2, 3A and 3B). Due to the strong plasmon enhancement effect, it is considered that the plasmon metal aggregates in the nanocluster state with an average size of several nanometers to tens of nanometers to form nanosized quantum dots, which are regularly arranged at intervals. From the effects, it is presumed that (i) the optimum physical state of surface plasmon resonance in the metal that enhances the local intensity of incident light is provided.
- the metal complex is crystallized on the metal support, at least a part of the plasmon metal forming the nanocluster is bonded as a metal on the metal support, and at least the remainder of the plasmon metal is in an ion-bonded state with the ligand as the metal complex.
- the plasmon metal that forms this metal complex is ionized by dripping the sample solution and adsorbs the sample to be detected, so that (ii) a charge transfer complex is formed between the plasmon metal surface and the Raman active molecule, As a result, it is estimated that an immediate SERS inspection can be performed in an aqueous solution state.
- the plasmon metal in the present invention can form a metal complex by coordination of various ligands on a metal carrier.
- the type of ligand selected is determined by taking into account important parameters such as the stability constant of the metal complex in the aqueous solution and the complex structure with the ligand, which form the quantum crystal of the metal complex. It is essential that the plasmon metal forming the quantum dot and the ligand form a charge transfer complex, and at present, amino acid ions, ammonia ions, thiosulfate (thiosulfato) ions and nitrate ions are coordinated as ligands.
- a metal complex is formed as a child, coordinated to a quantum dot of plasmon metal, and detected by the SERS method.
- gold, silver or copper is preferably selected as the plasmon metal.
- the aqueous solution of the plasmon metal complex preferably has a metal concentration of 500 ppm to 5000 ppm, particularly 500 ppm to 2000 ppm.
- it can be prepared by adding a predetermined amount of silver chloride to an aqueous solution of ammonia, sodium thiosulfate or the like.
- the metal complex aqueous solution usually forms a suitable metal dot interval by precipitating and aggregating the metal complex on the metal support with an electrode potential difference, but if it is less than 500 ppm, it is impossible or too time consuming to achieve the proper dot interval.
- the molar fraction of the dispersant with respect to the silver nanocluster (considering that 20 to 40 silver atoms are aggregated at 10 to 20 nm) is suitably 1/50 to 1/150 in terms of silver atom amount. .
- a good localized plasmon enhancing effect can be obtained with an aqueous solution of 500 to 2000 ppm of silver thiosulfato complex, silver ammine complex, silver nitrate complex, and silver amino acid complex in terms of silver.
- an antigen-antibody reaction can be detected by using the present invention, probably because it is adsorbed via metal plasmon metal via charge (FIG. 6 (a ) (b)).
- the metal complex encapsulating the metal nanocluster can be reduced and deposited on the metal support using the potential difference, and the quantum crystal of the metal complex is encapsulated.
- the metal nanoclusters that are controlled to have an appropriate quantum size and arrangement and achieving an optimal physical state, a desirable quantum effect is exhibited.
- gold, silver, and copper metal nanoclusters form quantum dots and can provide a device material useful as a surface plasmon resonance excitation device.
- the metal complex is in a state where the metal component is easily ionized.
- the metal complex can have a charge that easily adsorbs proteins such as viruses by adjusting the charge.
- proteins such as viruses by adjusting the charge.
- a quantum dot in which protein avidin or biotin biotin is bound to a quantum dot is synthesized to be suitable for protein detection.
- a SERS substrate can also be formed.
- an antibody is dispersed in an aqueous metal complex solution, and the metal complex is deposited on a carrier, only an appropriate antigen can be adsorbed and an antigen-antibody reaction can be detected by selecting the antibody.
- thermotherapy can be performed utilizing the plasmon effect by inserting the metal needle directly into the affected area and irradiating the laser beam. .
- the silver thiosulfate complex forms a complex by coordination of thiosulfate (thiosulfato) ions to form a plate crystal of 100 to 200 nm, and exhibits excellent surface plasmon resonance excitation / electric field enhancement effect. This is probably because silver nanoclusters form quantum dots in hexagonal plate crystals (FIGS. 3 (a) and (b)).
- FIG. 6 is a graph when an antigen is dropped on the substrate of FIG. 5 (a) and the Raman scattering spectrum of the antigen-antibody is measured. It is process explanatory drawing which shows the production method of a SERS board
- FIGS. 7 (a) to 7 (c) it is possible to manufacture by pasting a thin metal plate 2 of about 0.1 mm on a plate by circular punching on a glass or plastic plate 1. it can. Since the metal part 2 is formed in a dish shape on this substrate, when the dispersion liquid is dropped, it becomes a droplet 3 (FIG. 7B). Thereafter, when the droplet is blown off by nitrogen blow or the like, the metal complex is precipitated, and the aggregation region 4 is formed on the metal surface, so that a measurement substrate having metal nanoclusters as quantum dots is created (FIG. 7C).
- a metal film may be formed by chemical plating or vapor deposition.
- silver nanoclusters in which silver chloride is dissolved in a sodium thiosulfate aqueous solution by an ordinary method diluted appropriately with pure water to a silver concentration of 500 to 2000 ppm, and amino acid (L-alanine) 10 to 20 ppm is added.
- a (silver complex) aqueous solution (colorless and transparent) is prepared.
- 1 drop (10 ⁇ L) of an aqueous silver nanocluster solution is dropped on a surface-cleaned brass (Cu60; Sn40) substrate at intervals, and after 3 minutes, nitrogen is blown to dry the water droplets, and surface plasmon resonance excitation SERS A substrate was prepared.
- FIG. 2 shows a scanning electron micrograph (20,000 times) of the surface state formed on the substrate. It can be confirmed that a hexagonal plate crystal of 100 to 150 nm is formed. In addition, when the crystal formed on the phosphor bronze plate is viewed with scanning electron micrographs (50,000 and 200,000 times), it can be confirmed that a large number of dots are formed in the crystal (FIG. 3 (a)). (See (b)). 4,4′-bipyridine was diluted with pure water to 10 mM, 1 ⁇ M, and 100 nM on the surface plasmon resonance excited brass substrate (FIG. 2) that was formed in 3 minutes, and added dropwise to PerkinElmer Japan Co., Ltd.
- the enhancement effect of surface plasmon was measured using a laser with a wavelength of 785 nm (resolution: 4.0 cm-1, laser output: 300 mmW, spot size: 100 ⁇ ) as excitation light.
- a Raman spectrum can be confirmed up to 100 nM (see FIG. 1). This is because the enhancement effect of 1000 times compared to the 100 ⁇ M Raman scattering spectrum confirmed by Dr. Poponin using a substrate prepared by vapor deposition technology was confirmed. It can be inferred that the result is that the silver nanoclusters form quantum dots in the plate-like crystal.
- a silver complex solution of 1000 ppm (silver weight equivalent) of silver nitrate was prepared by a conventional method, dropped on a phosphor bronze plate, and after 3 minutes, the dropping solution was sprayed with nitrogen gas to stop aggregation, and each substrate was treated with pure water and 4,4′-bipyridine was diluted with pure water to 100 nM and dropped, and a Raman spectrometer manufactured by Lambda Vision Co., Ltd. was used, and a 785 nm wavelength laser (laser output 80 mmW, spot size 50 ⁇ ) was used as excitation light. The enhancement effect of surface plasmon was measured. A Raman spectrum can be confirmed up to 100 nM (see FIGS. 4A and 4B).
- the sample to be detected was replaced with rhodamine 6G (R6G).
- a measurement substrate was prepared in the same manner as in Example 1 on a phosphor bronze plate using 1000 ppm of a thiosulfato silver complex aqueous solution prepared by a conventional method without using an amino acid, and a rhodamine 6G (R6G) aqueous solution was added dropwise to the measurement.
- R6G rhodamine 6G
- Anti-human IgE monoclonal antibody (antibody concentration: 1.23 mg / ml) (Mikuri Immuno Laboratory Co., Ltd. Lot. No. 214-01-002: Solution PBS: 0.09% sodium azide included) diluted 10 times with pure water
- a SERS measurement substrate was prepared by mixing in a 1000 ppm aqueous solution of silver thiosulfate with no amino acid added in a volume ratio of 1: 1 and dropping on a phosphor bronze plate in the same manner as in Example 1.
- Human IgE antigen (antibody concentration 1.70 mg / ml: solution PBS: containing 0.09% sodium azide) was diluted 10-fold with pure water, and dropped in the same manner as in Example 1 for measurement.
- a substrate was prepared in the same manner as in Example 1 except that a 5000 ppm silver nanocolloid solution (dispersant; 2-pyrrolidone 100-150 ppm) was used instead of the silver nanocolloid solution used in Example 1.
- the nanoclusters agglomerated at several points on the substrate, and the surface plasmon resonance excitation effect was not observed.
- metal nanoclusters are precipitated simultaneously with the precipitation of metal complex crystals from the metal complex solution, and metal complex crystals in which nano-sized quantum dots are encapsulated or deposited on the surface can be formed.
- the metal complex crystal prepared in the present invention is probably the world's first nano-sized complex crystal prepared from an aqueous solution.
- the metal is gold, silver, copper or platinum, it is formed by a physical method such as vapor deposition.
- a surface plasmon resonance excitation effect of 1000 times that of nanodots can be obtained, as an element using surface plasmon resonance, such as a SERS detection substrate, a solar cell photoelectric conversion element, a near-field optical microscope element, and a thermotherapy metal needle Useful.
- phosphor bronze and brass are used as the substrate metal
- various metal plates are used depending on the metal type of the nanocluster.
- a metal substrate that is lower than the metal of the nanocluster is preferable.
- a copper plate, a phosphor bronze plate can be used in addition to brass.
- the substrate usually has a plate shape, but is preferably formed into a particle shape, a needle shape, or a capillary shape, and a metal complex crystal is deposited on the surface to form a quantum crystal containing metal nanoclusters.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
そこで、原点に帰って考えると、プラズモン現象における増強の大きさは金属表面における電磁場に関する吸着分子中に存在するさまざまな結合の位置及び配向を含む多数のパラメータに依存するといわれるので、SERS法における最適基板を提供し、再現性を確保するためにはSERS現象が生ずるメカニズムに関与する(i)入射光の局所的強度を増強する金属中の表面プラズモン共鳴の最適物理的状況の達成と(ii)金属表面とラマン活性分子との間の電荷移動錯体の形成及びその後の遷移という最適化学的状況の達成が必要であり、最適物理的状況の達成のためには、最適状態への粒子サイズ及び配列の制御が難しいものの、蒸着法の採用も可能であるが、蒸着法では同時に電荷移動錯体の形成という最適化学的状況を達成することができないという観点に達した。
2)また、金属錯体は金属成分がイオン化しやすい状態にあり、(ii)イオン化金属表面にラマン活性分子が吸着して電荷移動錯体を形成するため、最適化学状態を達成し、再現性のよい結果を招来する。
3)金属錯体は電荷の調整によりタンパク質であるウイルス等を吸着しやすい電荷をもつことができ、例えば量子ドットにタンパク質アビジン又は生体物質ビオチンを結合させた量子ドットを合成し、タンパク検出に好適なSERS基板も形成させることができる。
4)金属錯体水溶液に抗体を分散させ、金属錯体ともに担体上に析出させると、抗体の選択により適切な抗原のみを吸着して抗原抗体反応を検出することができる。
5)金属針を担体として本発明の量子結晶を針先に形成すれば、患部に直接金属針を挿入してレーザ光を照射することによりプラズモン効果を利用して温熱療法を実施することができる。
本発明においては図7(a)~(c)に示すように、ガラス又はプラスチック板1上に円形打ち抜き成形して皿上の0.1mm程度の薄い金属板2を貼り付けて製造することができる。この基板は金属部分2が皿状に形成されるので、上記分散液を滴下すると、液滴3となって盛り上がる(図7(b))。その後液滴を窒素ブロー等で吹き飛ばすと、金属錯体が析出して凝集域4が金属表面上に形成されて金属ナノクラスタを量子ドットとする測定基板が作成される(図7(c))。薄い金属板2に代え、金属膜を化学鍍金、蒸着により形成するようにしてもよい。
Claims (10)
- 金、銀、銅、ニッケル、亜鉛、アルミニウム又は白金から選ばれるプラズモン金属と配位子とからなるプラズモン金属錯体水溶液を用意し、プラズモン金属より電極電位が卑なる金属又は金属合金またはプラズモン金属より卑なる電極電位を持たせた金属からなる担体と接触させてプラズモン金属錯体を析出させ、プラズモン増強効果を有する量子結晶を前記金属担体上に配列することを特徴とするプラズモン増強効果を有する金属錯体量子結晶の製造方法。
- 前記担体が金属基板、金属粒子、金属針、キャピラリー内金属膜である請求項1記載の製造方法。
- 量子結晶がプラズモン金属のナノクラスターを内包して前記金属担体上に配列され、ナノクラスターが平均数ナノから十数ナノメートルサイズのクラスターである請求項1記載の製造方法。
- 前記金属担体上で形成された金属錯体の量子結晶中のナノクラスターを形成するプラズモン金属の少なくとも一部が配位子とイオン結合状態にある請求項1記載の製造方法。
- プラズモン金属錯体がアミノ酸イオン、アンモニアイオン、チオ硫酸イオン及び硝酸イオンの1種を配位子として形成される請求項1記載の製造方法。
- 前記プラズモン金属が金、銀または銅から選ばれる請求項1記載の製造方法。
- プラズモン金属錯体水溶液が500ppmから5000ppmの濃度である請求項1記載の製造方法。
- プラズモン金属錯体水溶液が500ppmから2000ppmの濃度である請求項1記載の製造方法。
- 銀ナノクラスタに対する分散剤のモル分率が銀原子量換算で1/50~1/150である請求項1記載の製造方法。
- プラズモン金属錯体水溶液に抗体を添加し、金属基板上に抗体とともに金属錯体を析出させ、対応する抗原に特異的に反応する抗原-抗体反応用測定基板とする請求項1記載の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137008636A KR101832206B1 (ko) | 2010-09-06 | 2011-09-06 | 금속 착체 양자 결정의 제조 방법 |
EP11823572.0A EP2615059B1 (en) | 2010-09-06 | 2011-09-06 | Method for producing metal complex quantum crystals |
CN201180049341.2A CN103168001B (zh) | 2010-09-06 | 2011-09-06 | 金属络合物量子晶体的制造方法 |
JP2012532985A JP5964234B2 (ja) | 2010-09-06 | 2011-09-06 | 金属錯体量子結晶の製造方法 |
US13/821,235 US9139907B2 (en) | 2010-09-06 | 2011-09-06 | Method for producing metal complex quantum crystals |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010198555 | 2010-09-06 | ||
JP2010-198555 | 2010-09-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012033097A1 true WO2012033097A1 (ja) | 2012-03-15 |
Family
ID=45810695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/070274 WO2012033097A1 (ja) | 2010-09-06 | 2011-09-06 | 金属錯体量子結晶の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9139907B2 (ja) |
EP (1) | EP2615059B1 (ja) |
JP (2) | JP5964234B2 (ja) |
KR (1) | KR101832206B1 (ja) |
CN (2) | CN103168001B (ja) |
WO (1) | WO2012033097A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013065747A1 (ja) * | 2011-10-31 | 2013-05-10 | 有限会社マイテック | 金属錯体量子結晶及びそれを用いる生化学物質の表面増強ラマン散乱(sers)分析法 |
CN103400900A (zh) * | 2013-08-08 | 2013-11-20 | 扬州大学 | ZnO量子点基深紫外传感器及制备方法 |
WO2014181814A1 (ja) * | 2013-05-08 | 2014-11-13 | 有限会社マイテック | 生体試料のラマン定量分析用バイオチップ |
WO2015170711A1 (ja) * | 2014-05-08 | 2015-11-12 | 有限会社マイテック | プラズモニックチップおよびそれを用いるがん疾病の蛍光画像ならびにラマン分光による診断方法 |
JP2016508601A (ja) * | 2013-01-29 | 2016-03-22 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | 外面に表面増感分光法要素を有する装置 |
JP2016508602A (ja) * | 2013-01-30 | 2016-03-22 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | 偏光選択性表面増強ラマン分光法 |
JP2016212117A (ja) * | 2016-08-09 | 2016-12-15 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | 外面に表面増感分光法要素を有する装置 |
JP2017156104A (ja) * | 2016-02-29 | 2017-09-07 | 西松建設株式会社 | 光増強素子とその製造方法ならびに分光分析用キットおよび分光分析方法 |
US10067060B2 (en) | 2013-01-30 | 2018-09-04 | Hewlett-Packard Development Company, L.P. | Polarization selective surface enhanced raman spectroscopy |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5466226B2 (ja) * | 2009-03-04 | 2014-04-09 | 有限会社マイテック | 表面増強ラマン散乱活性測定基板 |
US11609229B2 (en) * | 2020-04-30 | 2023-03-21 | Mytech Co. Ltd. | Fluorescence counting system for quantifying viruses or antibodies on an immobilized metal substrate by using an antigen-antibody reaction |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07146295A (ja) * | 1993-11-19 | 1995-06-06 | Kyoto Daiichi Kagaku:Kk | ラマン分光測定による免疫分析方法及び装置 |
JP2006083450A (ja) * | 2004-09-17 | 2006-03-30 | Fuji Photo Film Co Ltd | 微細構造体およびその製造方法 |
JP2007198933A (ja) * | 2006-01-27 | 2007-08-09 | Keio Gijuku | 表面増強ラマン分光分析用基板の作成方法及び表面増強ラマン分光分析用基板 |
WO2008010442A1 (fr) * | 2006-07-20 | 2008-01-24 | Fujifilm Corporation | microstructure et procédé pour sa fabrication, dispositif de détection et dispositif de spectroscopie Raman |
JP2008281529A (ja) * | 2007-05-14 | 2008-11-20 | Canon Inc | 表面増強振動分光分析用治具およびその製造方法 |
JP2010203973A (ja) * | 2009-03-04 | 2010-09-16 | Hyogo Prefecture | 表面増強ラマン散乱の測定方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1161209A (ja) | 1997-08-15 | 1999-03-05 | Kdk Corp | 貴金属微粒子の分散体及びその製造方法、並びに分散体を利用した構造体デバイス及びその製造方法 |
US20050191665A1 (en) * | 2003-12-29 | 2005-09-01 | Xing Su | Composite organic-inorganic nanoclusters |
EP1825269A4 (en) * | 2004-12-13 | 2012-06-06 | Univ South Carolina | SURFACE-REINFORCED RAMAN SPECTROSCOPY USING SHAPED GOLDNANOPARTICLE |
US20080166706A1 (en) * | 2005-03-30 | 2008-07-10 | Jin Zhang | Novel gold nanoparticle aggregates and their applications |
IL172837A (en) * | 2005-12-27 | 2010-06-16 | Joma Int As | Methods for production of metal oxide nano particles and nano particles and preparations produced thereby |
CN100457250C (zh) * | 2006-12-30 | 2009-02-04 | 江苏天一超细金属粉末有限公司 | 一种合成金刚石用石墨与触媒复合材料的制备方法及设备 |
KR100942506B1 (ko) * | 2007-12-11 | 2010-02-12 | 한국식품연구원 | 광학적 특성을 이용한 분석용 센서를 위한 기판 제조 방법및 그 기판 |
JP5466226B2 (ja) * | 2009-03-04 | 2014-04-09 | 有限会社マイテック | 表面増強ラマン散乱活性測定基板 |
-
2011
- 2011-09-06 EP EP11823572.0A patent/EP2615059B1/en active Active
- 2011-09-06 JP JP2012532985A patent/JP5964234B2/ja active Active
- 2011-09-06 WO PCT/JP2011/070274 patent/WO2012033097A1/ja active Application Filing
- 2011-09-06 KR KR1020137008636A patent/KR101832206B1/ko active IP Right Grant
- 2011-09-06 CN CN201180049341.2A patent/CN103168001B/zh active Active
- 2011-09-06 US US13/821,235 patent/US9139907B2/en active Active
- 2011-09-06 CN CN201510177698.9A patent/CN104880452B/zh active Active
-
2016
- 2016-06-29 JP JP2016128252A patent/JP6294911B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07146295A (ja) * | 1993-11-19 | 1995-06-06 | Kyoto Daiichi Kagaku:Kk | ラマン分光測定による免疫分析方法及び装置 |
JP2006083450A (ja) * | 2004-09-17 | 2006-03-30 | Fuji Photo Film Co Ltd | 微細構造体およびその製造方法 |
JP2007198933A (ja) * | 2006-01-27 | 2007-08-09 | Keio Gijuku | 表面増強ラマン分光分析用基板の作成方法及び表面増強ラマン分光分析用基板 |
WO2008010442A1 (fr) * | 2006-07-20 | 2008-01-24 | Fujifilm Corporation | microstructure et procédé pour sa fabrication, dispositif de détection et dispositif de spectroscopie Raman |
JP2008281529A (ja) * | 2007-05-14 | 2008-11-20 | Canon Inc | 表面増強振動分光分析用治具およびその製造方法 |
JP2010203973A (ja) * | 2009-03-04 | 2010-09-16 | Hyogo Prefecture | 表面増強ラマン散乱の測定方法 |
Non-Patent Citations (3)
Title |
---|
K.C.GRABAR; P.C.SMITH; M.D.MUSICK; J.A.DAVIS; D.G.WAITER; M.A.JACKSON; A.P.GUTHR IE; M.J.NATAN, J.AM.CHEM,SOC., vol. 118, 1996, pages 1148 |
S. NIE; S.R.EMORY, SCIENCE, vol. 275, 1997, pages 1102 |
See also references of EP2615059A4 |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013065747A1 (ja) * | 2011-10-31 | 2015-04-02 | 有限会社マイテック | 金属錯体量子結晶及びそれを用いる生化学物質の表面増強ラマン散乱(sers)分析法 |
WO2013065747A1 (ja) * | 2011-10-31 | 2013-05-10 | 有限会社マイテック | 金属錯体量子結晶及びそれを用いる生化学物質の表面増強ラマン散乱(sers)分析法 |
US9675288B2 (en) | 2013-01-29 | 2017-06-13 | Hewlett-Packard Development Company, L.P. | Apparatus having surface-enhanced spectroscopy elements on an exterior surface |
JP2016508601A (ja) * | 2013-01-29 | 2016-03-22 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | 外面に表面増感分光法要素を有する装置 |
US10067060B2 (en) | 2013-01-30 | 2018-09-04 | Hewlett-Packard Development Company, L.P. | Polarization selective surface enhanced raman spectroscopy |
US9664621B2 (en) | 2013-01-30 | 2017-05-30 | Hewlett-Packard Development Company, L.P. | Polarization selective surface enhanced Raman spectroscopy |
JP2016508602A (ja) * | 2013-01-30 | 2016-03-22 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | 偏光選択性表面増強ラマン分光法 |
JP2014238384A (ja) * | 2013-05-08 | 2014-12-18 | 有限会社マイテック | ラマン定量用バイオチップ |
JPWO2014181814A1 (ja) * | 2013-05-08 | 2017-02-23 | 有限会社マイテック | 生体試料のラマン定量分析用バイオチップ |
EA037886B1 (ru) * | 2013-05-08 | 2021-06-01 | Митек Ко., Лтд. | Способ измерения связанных с раком веществ посредством спектроскопии комбинационного рассеяния света и биочип, применяемый в указанном способе |
KR102162706B1 (ko) | 2013-05-08 | 2020-10-07 | 유겐가이샤 마이테크 | 암 관련 물질의 라만 정량 방법 |
CN105452850A (zh) * | 2013-05-08 | 2016-03-30 | 米特奇有限公司 | 癌关联物质的拉曼定量方法 |
CN105452850B (zh) * | 2013-05-08 | 2018-12-28 | 米特奇有限公司 | 癌关联物质的拉曼定量方法 |
WO2014181816A1 (ja) * | 2013-05-08 | 2014-11-13 | 有限会社マイテック | 癌関連物質のラマン定量方法 |
WO2014181814A1 (ja) * | 2013-05-08 | 2014-11-13 | 有限会社マイテック | 生体試料のラマン定量分析用バイオチップ |
JPWO2014181816A1 (ja) * | 2013-05-08 | 2017-02-23 | 有限会社マイテック | 癌関連物質のラマン定量方法 |
KR20160019419A (ko) * | 2013-05-08 | 2016-02-19 | 유겐가이샤 마이테크 | 암 관련 물질의 라만 정량 방법 |
JP2014238382A (ja) * | 2013-05-08 | 2014-12-18 | 有限会社マイテック | 癌関連物質の定量方法 |
US10365222B2 (en) | 2013-05-08 | 2019-07-30 | Mytech Co., Ltd. | Biochip for Raman quantitative analysis of biological samples |
CN107202786B (zh) * | 2013-05-08 | 2019-10-25 | 米特奇有限公司 | 癌关联物质的拉曼定量方法 |
CN107202786A (zh) * | 2013-05-08 | 2017-09-26 | 米特奇有限公司 | 癌关联物质的拉曼定量方法 |
JP2017223678A (ja) * | 2013-05-08 | 2017-12-21 | 有限会社マイテック | バイオチップ |
US9535069B2 (en) | 2013-05-08 | 2017-01-03 | Mytech Co., Ltd. | Method of measuring cancer related substances by raman spectroscopy |
CN103400900A (zh) * | 2013-08-08 | 2013-11-20 | 扬州大学 | ZnO量子点基深紫外传感器及制备方法 |
WO2015170711A1 (ja) * | 2014-05-08 | 2015-11-12 | 有限会社マイテック | プラズモニックチップおよびそれを用いるがん疾病の蛍光画像ならびにラマン分光による診断方法 |
CN106461556A (zh) * | 2014-05-08 | 2017-02-22 | 米特奇有限公司 | 等离子体光子芯片及使用其的癌症疾病的利用荧光图像以及拉曼光谱的诊断方法 |
US10215700B2 (en) | 2015-02-26 | 2019-02-26 | Mytech Co., Ltd. | Plasmonic chip for observing cancer related substances by localized surface plasmon resonace |
JP2017156104A (ja) * | 2016-02-29 | 2017-09-07 | 西松建設株式会社 | 光増強素子とその製造方法ならびに分光分析用キットおよび分光分析方法 |
JP2016212117A (ja) * | 2016-08-09 | 2016-12-15 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | 外面に表面増感分光法要素を有する装置 |
Also Published As
Publication number | Publication date |
---|---|
CN104880452A (zh) | 2015-09-02 |
EP2615059A4 (en) | 2014-03-12 |
US9139907B2 (en) | 2015-09-22 |
CN104880452B (zh) | 2018-04-10 |
KR101832206B1 (ko) | 2018-02-26 |
JP2016197114A (ja) | 2016-11-24 |
CN103168001A (zh) | 2013-06-19 |
JP5964234B2 (ja) | 2016-08-03 |
EP2615059A1 (en) | 2013-07-17 |
US20130230660A1 (en) | 2013-09-05 |
JPWO2012033097A1 (ja) | 2014-01-20 |
CN103168001B (zh) | 2015-05-20 |
JP6294911B2 (ja) | 2018-03-14 |
EP2615059B1 (en) | 2017-11-08 |
KR20130102066A (ko) | 2013-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6294911B2 (ja) | 量子結晶基板 | |
Liu et al. | Metal–semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer | |
Kim et al. | Nonnoble‐metal‐based plasmonic nanomaterials: recent advances and future perspectives | |
Karthick Kannan et al. | Recent advances in 2D inorganic nanomaterials for SERS sensing | |
Mélinon et al. | Engineered inorganic core/shell nanoparticles | |
Basu et al. | Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling | |
US9658163B2 (en) | Assaying substrate with surface-enhanced raman scattering activity | |
Kumar et al. | Surface-enhanced raman scattering: Introduction and applications | |
WO2010116346A1 (en) | Silver nanoplates | |
JP2010532472A (ja) | 表面増強ラマン分光用光センサー | |
Ying et al. | Material design, development, and trend for surface-enhanced Raman scattering substrates | |
Kumar et al. | Modified absorption and emission properties leading to intriguing applications in plasmonic–excitonic nanostructures | |
Wang et al. | Recent advances in nanostructured substrates for surface-enhanced infrared absorption spectroscopy | |
Gong et al. | Adjustable plasmonic optical properties of hollow gold nanospheres monolayers and LSPR-dependent surface-enhanced Raman scattering of hollow gold nanosphere/graphene oxide hybrids | |
Basu et al. | Dipole–dipole plasmon interactions in self-assembly of gold organosol induced by glutathione | |
JP6054030B2 (ja) | 金属錯体量子結晶の作成方法 | |
IE20100204A1 (en) | Silver nanoplates | |
Kim et al. | Structural transition of gold octahedrons to nanoprisms induced by nitrogen-doped carbon quantum dots | |
JP2013057630A (ja) | 増強微粒子含有半導体ナノ粒子集積体 | |
Liu | Deposition of Metal-Organic Frameworks on Plasmonic Nanoparticles for SERS Detection | |
Wang et al. | Advances in the preparation and biological applications of core@ shell nanocrystals based on quantum dots and noble metal | |
Yuan | Controlling hot electrons via plasmon coupling to enhance catalytic reactions in plasmonic Au@ SiO2-Pt structures | |
Nahar | Sol-Gel Chemistry: An Advanced Technique to Produce Macroscopic Nanostructures of Metal and Semiconductor Colloids | |
Prezgot | Far-field and Near-field Optical Properties Of Strongly Interacting Silver Nanocrystals | |
Dzagli et al. | FORMATION OF GOLD NANOPARTICLE AGGREGATES BY CHEMICAL CROSS-LINKING: UV-VISIBLE SPECTROSCOPY AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11823572 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012532985 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011823572 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011823572 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137008636 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13821235 Country of ref document: US |