WO2012033036A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2012033036A1
WO2012033036A1 PCT/JP2011/070124 JP2011070124W WO2012033036A1 WO 2012033036 A1 WO2012033036 A1 WO 2012033036A1 JP 2011070124 W JP2011070124 W JP 2011070124W WO 2012033036 A1 WO2012033036 A1 WO 2012033036A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium ion
ion secondary
electrode mixture
secondary battery
Prior art date
Application number
PCT/JP2011/070124
Other languages
English (en)
French (fr)
Inventor
辻川 知伸
荒川 正泰
佳樹 宮本
林 晃司
全基 中原
Original Assignee
株式会社Nttファシリティーズ
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttファシリティーズ, 新神戸電機株式会社 filed Critical 株式会社Nttファシリティーズ
Priority to KR1020137005733A priority Critical patent/KR20140027044A/ko
Priority to US13/820,830 priority patent/US20130216899A1/en
Priority to CN201180042814.6A priority patent/CN103140961B/zh
Priority to EP11823511.8A priority patent/EP2615670A4/en
Publication of WO2012033036A1 publication Critical patent/WO2012033036A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery, and in particular, an electrode in which a positive electrode plate having a positive electrode mixture containing a positive electrode active material and a negative electrode plate having a negative electrode mixture containing a negative electrode active material are arranged via a separator.
  • the group relates to a lithium ion secondary battery infiltrated with a non-aqueous electrolytic solution in which a lithium salt is mixed in an organic solvent and accommodated in a battery container.
  • Lithium ion secondary batteries have a high energy density, making it possible to reduce the size and weight of the power supply. For this reason, it is used not only for portable small power sources but also for power sources for electric vehicles. In addition, it is also used for effective utilization of natural energy such as sunlight and wind power, and leveling of electric power use, and development is progressing as an industrial power source for use in uninterruptible power supplies and construction machinery.
  • battery components such as non-aqueous electrolytes may burn if exposed to a high temperature environment during battery abnormalities such as overcharging. Further, oxygen generated by the thermal decomposition reaction of the positive electrode active material may further accelerate the combustion of the battery constituent material.
  • Various safety techniques have been proposed in order to avoid such a situation and ensure the safety of the battery. That is, a technique for making a non-aqueous electrolyte non-flammable by adding a flame retardant to the non-aqueous electrolyte (for example, Japanese Unexamined Patent Publication No. 2006-286571, Journal of Electrochemical Society, Volume 149, Issue 5). , Pp. A622-A626 (2002)), and a technique for suppressing the acceleration of combustion of battery constituent materials by adding a flame retardant to a positive electrode mixture (for example, Japanese Patent Application Laid-Open No. 2009-2009). No. 016106).
  • an object of the present invention is to provide a lithium ion secondary battery that can ensure safety in the event of battery abnormality and suppress deterioration in high-rate discharge characteristics.
  • the present invention provides an electrode group in which a positive electrode plate having a positive electrode mixture containing a positive electrode active material and a negative electrode plate having a negative electrode mixture containing a negative electrode active material are arranged via a separator.
  • a flame retardant is blended in the positive electrode mixture and formed in the positive electrode mixture
  • the mode value of the pore diameter is in the range of 0.5 ⁇ m to 2.0 ⁇ m.
  • the mode of pore diameters formed in the positive electrode mixture is preferably in the range of 1.0 ⁇ m to 1.6 ⁇ m.
  • the positive electrode active material may include lithium manganate having a spinel crystal structure.
  • the average secondary particle diameter of the positive electrode active material may be 20 ⁇ m or more.
  • the positive electrode plate has a positive electrode mixture on one surface or both surfaces of the positive electrode current collector, and the thickness of the positive electrode mixture per one surface of the positive electrode current collector can be in the range of 30 ⁇ m to 100 ⁇ m.
  • the mode of pore diameters formed in the positive electrode mixture may be in the range of 1.3 ⁇ m to 1.6 ⁇ m.
  • the flame retardant is preferably a cyclic phosphazene compound in a solid state at room temperature.
  • the phosphazene compound can be blended in the positive electrode mixture in the range of 2 to 6% by mass.
  • the lithium salt may be lithium tetrafluoroborate, and the concentration of the lithium salt may be in the range of 1.5M to 1.8M.
  • the flame retardant since the flame retardant is blended in the positive electrode mixture, the flame retardant suppresses the combustion of the battery constituent material when the temperature rises due to battery abnormality, and is formed in the positive electrode mixture.
  • the mode value of the fine pore diameter in the range of 0.5 ⁇ m to 2.0 ⁇ m, a migration path of lithium ions can be secured during charge and discharge even when a flame retardant is blended in the positive electrode mixture, Since the electron transfer path between the active materials and between the active material and the current collector is strengthened, an effect that high rate discharge characteristics can be maintained can be obtained.
  • the lithium ion secondary battery of Example 3 it is a graph which shows the relationship between the mode value of the pore diameter of a positive electrode mixture, and the ratio of the discharge capacity at the time of 3.0 CA discharge with respect to the discharge capacity at the time of 0.2 CA discharge.
  • the lithium ion secondary battery of Example 4 it is a graph which shows the relationship between the mode value of the pore diameter of a positive electrode mixture, and the ratio of the discharge capacity at the time of 3.0 CA discharge with respect to the discharge capacity at the time of 0.2 CA discharge. .
  • FIG. 10 is a cross-sectional view showing a nail penetration / crushing jig used in a nail penetration / crush test of the lithium ion secondary battery of Example 7.
  • the lithium ion secondary battery 1 of the present embodiment has a bottomed cylindrical battery container 6 made of steel plated with nickel.
  • the battery container 6 accommodates an electrode group 5 in which a strip-like positive electrode plate 2 and a negative electrode plate 3 are wound in a spiral shape with a separator 4 interposed therebetween.
  • the positive electrode plate 2 and the negative electrode plate 3 are wound in a spiral shape with a polyethylene microporous membrane separator 4 interposed therebetween.
  • the separator 4 has a width of 58 mm and a thickness of 30 ⁇ m.
  • a ribbon-like positive electrode tab terminal made of aluminum and having one end fixed to the positive electrode plate 2 is led out on the upper end surface of the electrode group 5.
  • the other end of the positive electrode tab terminal is joined by ultrasonic welding to the lower surface of a disk-shaped battery lid that is disposed on the upper side of the electrode group 5 and serves as a positive electrode external terminal.
  • a ribbon-like negative electrode tab terminal made of copper with one end fixed to the negative electrode plate 3 is led to the lower end surface of the electrode group 5.
  • the other end of the negative electrode tab terminal is joined to the inner bottom of the battery container 6 by resistance welding. Therefore, the positive electrode tab terminal and the negative electrode tab terminal are respectively led out to the opposite sides of the both end surfaces of the electrode group 5.
  • omitted illustration is given to the outer peripheral surface whole periphery of the electrode group 5.
  • the battery lid is caulked and fixed to the upper part of the battery container 6 via an insulating resin gasket. For this reason, the inside of the lithium ion secondary battery 1 is sealed.
  • a non-aqueous electrolyte (not shown) is injected into the battery container 6.
  • LiBF 4 lithium tetrafluoroborate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the concentration of the lithium salt in the non-aqueous electrolyte can be set in the range of 1.5 to 1.8 mol / liter (M), but in this example, it is 1.5M. In general, it is difficult to set the concentration of the lithium salt in the nonaqueous electrolytic solution to 2 M or more because of the limit of solubility of the lithium salt in the solvent.
  • This non-aqueous electrolyte contains a liquid phosphazene compound having phosphorus and nitrogen as a basic skeleton as a flame retardant. In this example, the content ratio of the flame retardant in the non-aqueous electrolyte is set to 15% by volume.
  • the phosphazene compound is a cyclic compound represented by the general formula (NPR 1 R 2 ) 3 or (NPR 1 R 2 ) 4 .
  • R 1 and R 2 in the general formula each represent a monovalent substituent.
  • alkoxy groups such as methoxy group and ethoxy group
  • aryloxy groups such as phenoxy group and methylphenoxy group
  • alkyl groups such as methyl group and ethyl group
  • aryl groups such as phenyl group and tolyl group
  • Examples thereof include an amino group containing a substituted amino group such as a methylamino group, an alkylthio group such as a methylthio group and an ethylthio group, an arylthio group such as a phenylthio group, and a halogen group.
  • Such a phosphazene compound is solid or liquid depending on the type of the substituents R 1 and R 2 .
  • the phosphazene compound to be contained in the non-aqueous electrolyte those in a liquid state at room temperature are used.
  • the positive electrode plate 2 constituting the electrode group 5 has an aluminum foil or an aluminum alloy foil as a positive electrode current collector.
  • the thickness of the positive electrode current collector is set to 20 ⁇ m in this example.
  • a positive electrode tab terminal is joined by ultrasonic welding at a substantially central portion in the longitudinal direction of the positive electrode current collector.
  • a positive electrode mixture containing a lithium transition metal composite oxide as a positive electrode active material is applied substantially evenly to form a positive electrode mixture.
  • lithium manganate powder having a spinel crystal structure is used.
  • the lithium manganate powder having a spinel crystal structure forms secondary particles in which primary particles are aggregated, and the average secondary particle size is larger than that of conventional products, and is set to 20 ⁇ m or more. In this example, those having an average secondary particle diameter of 25 ⁇ m are used.
  • the surface area with respect to the volume of the particles is smaller than that having an average secondary particle diameter of less than 20 ⁇ m, and the electrical resistance can be lowered even if the amount of the conductive material is small. .
  • an insulating solid flame retardant when mixed with the positive electrode mixture, it is advantageous in terms of supplementing conductivity. Further, since the elution of manganese is small, the life characteristics can be improved.
  • the positive electrode mixture for example, 5% by mass of flaky graphite as a conductive material and polyvinylidene fluoride of a binder (binder) (hereinafter abbreviated as PVDF) with respect to 84% by mass of the lithium transition metal composite oxide. ))
  • a powdered (solid state) phosphazene compound as a flame retardant.
  • the phosphazene compound can be blended in the positive electrode mixture in the range of 2 to 6% by mass, but in this example, it is adjusted to 4% by mass.
  • a cyclic compound represented by the general formula (NPR 1 R 2 ) 3 or (NPR 1 R 2 ) 4 similar to the phosphazene compound contained in the non-aqueous electrolyte is used. And those in a solid state at room temperature. That is, as the phosphazene compound to be blended in the positive electrode mixture, those having the same molecular structure of the cyclic portion as the phosphazene compound contained in the non-aqueous electrolyte and different substituents R 1 and R 2 are used.
  • a slurry is prepared by dispersing the positive electrode mixture in a viscosity adjusting solvent N-methylpyrrolidone (hereinafter abbreviated as NMP). At this time, the dispersion is agitated using a mixer equipped with rotor blades. The obtained slurry is applied to the positive electrode current collector by a roll-to-roll transfer method.
  • the positive electrode plate 2 is dried and then pressed, cut into a width of 54 mm, and formed into a strip shape.
  • the thickness of the positive electrode mixture can be adjusted by the pressing pressure (load) at the time of pressing, and in this example, the thickness is set in the range of 30 to 100 ⁇ m per side of the positive electrode current collector.
  • voids between particles that is, pores are formed, but the pore diameter can be adjusted by adjusting the load at the time of pressing and the gap (gap) between the press rolls.
  • the pore diameter is measured by a mercury porosimeter (mercury poremeter), and the mode value of the pore diameter is set in the range of 0.5 to 2.0 ⁇ m.
  • a mercury porosimeter is a device that measures the pore distribution of a porous solid by a mercury intrusion method. In the measurement of the pore diameter, any device other than the mercury porosimeter can be used as long as the device can measure a numerical range corresponding to a mode value of the pore diameter measured using a mercury porosimeter of 0.5 to 2.0 ⁇ m. May be used.
  • the negative electrode plate 3 has a rolled copper foil or a rolled copper alloy foil as a negative electrode current collector.
  • the thickness of the negative electrode current collector is set to 10 ⁇ m in this example.
  • a negative electrode tab terminal is joined by ultrasonic welding to an end portion on one side in the longitudinal direction of the negative electrode current collector.
  • a negative electrode mixture containing amorphous carbon powder capable of occluding and releasing lithium ions is applied as a negative electrode active material substantially evenly.
  • binder PVDF is blended in the negative electrode mixture.
  • the mass ratio of the negative electrode active material and PVDF can be set to 90:10, for example.
  • the length of the negative electrode plate 3 is such that when the positive electrode plate 2, the negative electrode plate 3 and the separator 4 are wound, the positive electrode plate 2 protrudes from the negative electrode plate 3 in the winding innermost circumference and outermost circumference.
  • the length of the positive electrode plate 2 is set to be 6 mm longer so that there is no occurrence.
  • Example 1 In Example 1, as shown in Table 1 below, in a non-aqueous electrolyte having a lithium salt concentration of 1.0 M, a phosphazene compound as a flame retardant (trade name Phoslite (registered trademark), manufactured by Bridgestone Corporation), 15% by volume of liquid) was mixed.
  • the positive electrode mixture includes 4% by mass of a phosphazene compound as a flame retardant (trade name Phoslite (registered trademark), solid form, manufactured by Bridgestone Corporation), a lithium manganate powder (average secondary particle diameter of 25 ⁇ m) as a positive electrode active material ) 84% by mass, 5% by mass of flake graphite, and 7% by mass of PVDF.
  • the mode of the pore diameter of the positive electrode mixture was measured, and the lithium ion secondary battery having a mode diameter of the positive electrode mixture of 0.5 ⁇ m 1 was produced.
  • a plurality of lithium ion secondary batteries having different mode values of the pore diameter of the positive electrode mixture were produced.
  • the mode values of the positive electrode mixture of these lithium ion secondary batteries were 0.7 ⁇ m, 1.0 ⁇ m, 1.3 ⁇ m, 1.5 ⁇ m, 2.0 ⁇ m, 3.7 ⁇ m, and 4.8 ⁇ m, respectively.
  • Table 1 shows the concentration of the lithium salt in the non-aqueous electrolyte, the presence or absence of the flame retardant in the non-aqueous electrolyte, and the blending ratio of the flame retardant in the positive electrode mixture.
  • Example 2 As shown in Table 1, in Example 2, the mode of the pore diameter of the positive electrode mixture was changed in the same manner as in Example 1 except that a nonaqueous electrolytic solution having a lithium salt concentration of 1.5 M was used. A plurality of different lithium ion secondary batteries were produced.
  • the mode of pore diameter of the positive electrode mixture of these lithium ion secondary batteries is 0.5 ⁇ m, 0.6 ⁇ m, 0.9 ⁇ m, 1.3 ⁇ m, 1.6 ⁇ m, 2.0 ⁇ m, 2.3 ⁇ m, respectively. It was 3.2 ⁇ m.
  • Example 3 As shown in Table 1, in Example 3, a nonaqueous electrolytic solution having a lithium salt concentration of 1.5 M was used, and the same as Example 1 except that 2% by mass of the phosphazene compound was blended in the positive electrode mixture. Thus, a plurality of lithium ion secondary batteries having different mode values of the pore diameter of the positive electrode mixture were produced.
  • the mode of pore diameter of the positive electrode mixture of these lithium ion secondary batteries is 0.5 ⁇ m, 1.0 ⁇ m, 1.3 ⁇ m, 1.9 ⁇ m, 2.0 ⁇ m, 2.2 ⁇ m, 2.8 ⁇ m, respectively. It was 3.0 ⁇ m.
  • Example 4 As shown in Table 1, in Example 4, a nonaqueous electrolytic solution having a lithium salt concentration of 1.5 M was used, and the same as Example 1 except that 6% by mass of the phosphazene compound was blended in the positive electrode mixture. Thus, a plurality of lithium ion secondary batteries having different mode values of the pore diameter of the positive electrode mixture were produced.
  • the mode of pore diameter of the positive electrode mixture of these lithium ion secondary batteries is 0.2 ⁇ m, 0.3 ⁇ m, 0.5 ⁇ m, 1.3 ⁇ m, 1.6 ⁇ m, 1.9 ⁇ m, 2.0 ⁇ m, respectively. It was 2.3 ⁇ m.
  • Example 5 As shown in Table 1, in Example 5, a nonaqueous electrolytic solution having a lithium salt concentration of 1.5 M was used, and the same procedure as in Example 1 was performed except that the phosphazene compound was not added to the nonaqueous electrolytic solution. A plurality of lithium ion secondary batteries having different mode values of the pore diameter of the positive electrode mixture were produced.
  • the mode values of the pore diameters of the positive electrode mixture of these lithium ion secondary batteries are 0.5 ⁇ m, 0.6 ⁇ m, 1.0 ⁇ m, 1.5 ⁇ m, 1.8 ⁇ m, 2.0 ⁇ m, 2.3 ⁇ m, respectively. It was 3.1 ⁇ m.
  • Example 6 In Example 6, the positive active material lithium manganate powder was sieved, and the average secondary particle size was classified into 10 ⁇ m, 15 ⁇ m, 17 ⁇ m, 18 ⁇ m, 20 ⁇ m, 25 ⁇ m, and 30 ⁇ m, respectively. A plurality of lithium ion secondary batteries 1 having different secondary particle sizes were produced. The mode value of the pore diameter of the positive electrode mixture of these lithium ion secondary batteries 1 was 1.3 ⁇ m. As shown in Table 1, the concentration of the lithium salt in the non-aqueous electrolyte, the presence or absence of the flame retardant in the non-aqueous electrolyte, and the blending ratio of the flame retardant in the positive electrode mixture are all the same as in Example 2. did.
  • Example 7 in order to evaluate the safety of the lithium ion secondary battery, a different type lithium ion secondary battery for evaluation (10 Ah class) from the embodiment described above was produced. That is, the battery of Example 7 is a lithium ion secondary battery including an electrode group in which a positive electrode plate and a negative electrode plate each formed in a rectangular shape are stacked. As shown in Table 2 below, the composition of the positive electrode mixture, the negative electrode mixture, the non-aqueous electrolyte, and the like is the same as in Example 5, so that the mode value of the pore diameter of the positive electrode mixture is 1.3 ⁇ m. did.
  • the positive electrode mixture was cut so that the size of the positive electrode mixture application portion was 150 mm ⁇ 145 mm, and the negative electrode plate was cut so that the size of the negative electrode mixture application portion was 154 mm ⁇ 149 mm.
  • a positive electrode plate was sandwiched one by one in a cylindrical separator welded on two sides with a soldering iron, and one of the two unwelded sides was welded with a soldering iron. Fifteen positive electrode plates and 16 negative electrode plates sandwiched between separators were alternately laminated to produce an electrode group. After ultrasonic welding of the electrode tab and the current collector plate of the electrode group, the electrode group was inserted into a laminate bag, and three sides were thermally welded. After drying at 60 ° C.
  • a non-aqueous electrolyte was poured into the laminate bag. After pouring, the laminate bag was evacuated and the remaining one side was thermally welded and sealed. The obtained lithium ion secondary battery for evaluation was allowed to stand overnight, and the electrode group was infiltrated with the nonaqueous electrolytic solution.
  • Comparative Example 1 As shown in Table 2, in Comparative Example 1, a lithium ion secondary battery for evaluation was prepared in the same manner as in Example 7 except that the mode value of the pore diameter of the positive electrode mixture was 1.2 ⁇ m. Produced.
  • Test 1 Each lithium ion secondary battery produced in Examples 1 to 5 and having a different mode of pore diameter of the positive electrode mixture was subjected to a discharge test at 0.2 CA and 3.0 CA. The ratio (relative capacity ratio) of the discharge capacity measured during 3.0 CA discharge to the discharge capacity measured during 0.2 CA discharge was calculated as a percentage.
  • the mode of pore diameter of the positive electrode mixture is in the range of 0.5 to 2.0 ⁇ m.
  • the relative volume ratio was 30% or more and the mode of pore diameters was in the range of 0.7 to 1.5 ⁇ m, the relative volume ratio was 40% or more.
  • the mode value of the pore diameter was 1.3 ⁇ m, the relative volume ratio showed a maximum value of 53%.
  • the mode value of the pore diameter exceeded 2.0 ⁇ m, the relative volume ratio decreased. From the above, it has been found that high rate discharge characteristics can be maintained when the mode of pore diameter is in the range of 0.5 to 2.0 ⁇ m and the relative capacity ratio is 30% or more.
  • the relative capacity ratio is preferably in the range exceeding 45%, that is, the mode of the pore diameter is in the range of 1.0 to 1.5 ⁇ m.
  • Example 2 using a non-aqueous electrolyte with a lithium salt concentration of 1.5M, when the mode value of the pore diameter of the positive electrode mixture is in the range of 0.5 to 2.0 ⁇ m The relative capacity ratio was 30% or more. When the mode value of the pore diameter was 1.3 ⁇ m, the relative volume ratio showed a maximum value of 68%, which was higher than the maximum value of 53% in Example 1. Further, the relative capacity ratio when the mode value of the pore diameter was smaller than 1.3 ⁇ m was higher in Example 2 than in Example 1 (see also FIG. 2). This is probably because in Example 2, the concentration of the lithium salt in the non-aqueous electrolyte was higher than in Example 1, and the number of movable lithium ions increased.
  • the relative volume ratio decreased. From the above, it has been found that the high rate discharge characteristics of the lithium ion secondary battery 1 improve as the number of lithium ions in the non-aqueous electrolyte increases. It was also found that high rate discharge characteristics can be maintained when the relative capacity ratio is 30% or more and the mode of pore diameter is in the range of 0.5 to 2.0 ⁇ m. In order to further improve the high-rate discharge characteristics, it has been found that the relative capacity ratio is preferably in the range exceeding 50%, that is, the mode in which the mode value of the pore diameter is 0.5 to 1.6 ⁇ m.
  • Example 3 As shown in FIG. 4, in Example 3 where the blending ratio of the flame retardant of the positive electrode mixture is 2 mass%, the relative capacity ratio when the mode value of the pore diameter exceeds 1.3 ⁇ m is greater than that in Example 2. High value was shown. This is presumably because Example 3 has a higher proportion of the flame retardant in the positive electrode mixture than Example 2 and thus has higher electron conductivity. In Example 3, the relative capacity ratio was about 80% when the mode value of the pore diameter was in the range of 0.5 to 2.0 ⁇ m. Thus, it was found that high rate discharge characteristics could be maintained in this range.
  • Example 4 As shown in FIG. 5, in Example 4 where the blending ratio of the flame retardant of the positive electrode mixture is 6% by mass, when the mode value of the pore diameter is 1.3 ⁇ m, the relative capacity ratio is the maximum value of 50%. It was lower than the maximum value of Example 2 of 68%. This is presumably because, in Example 4, the blending amount of the flame retardant in the positive electrode mixture was higher than that in Example 2, and electronic conduction was inhibited. For this reason, in Example 4, in which the blending ratio of the flame retardant in the positive electrode mixture is higher than those in Examples 1 to 3, the range of the mode of pore diameters in which the high rate discharge characteristics can be satisfactorily maintained is in Example 1. It will be restricted by the third embodiment. That is, in Example 4, it was found that high rate discharge characteristics can be maintained in the range where the relative capacity ratio is 30% or more, that is, the mode of the pore diameter is in the range of 0.5 to 1.6 ⁇ m.
  • Example 5 in which the flame retardant is not blended in the non-aqueous electrolyte, when the mode value of the pore diameter is 1.5 ⁇ m, the relative capacity ratio shows a maximum value of 98%. The maximum value of 2 was larger than 68%. This is presumably because in Example 5, no flame retardant was blended in the non-aqueous electrolyte, so that the movement of lithium ions was not inhibited. As the mode value of the pore diameter increased, the relative volume ratio decreased. In Example 5, since the relative capacity ratio was 30% or more when the mode value of the pore diameter was in the range of 0.5 to 2.0 ⁇ m, it was found that high rate discharge characteristics could be maintained in this range. In order to further improve the high rate discharge characteristics, it has been found that the relative capacity ratio is preferably in the range exceeding 70%, that is, the mode in which the mode value of the pore diameter is in the range of 0.5 to 1.8 ⁇ m.
  • Example 2 About each lithium ion secondary battery from which the average secondary particle diameter of the positive electrode active material produced in Example 6 differs, the discharge test was done at 0.2 CA and 3.0 CA. The ratio (relative capacity ratio) of the discharge capacity measured during 3.0 CA discharge to the discharge capacity measured during 0.2 CA discharge was calculated as a percentage.
  • Example 6 when the average secondary particle diameter of the lithium manganate powder of the positive electrode active material is different, when the average secondary particle diameter is less than 20 ⁇ m, the relative capacity ratio is 50% or less in all cases. Indicated. When the average secondary particle size was 20 ⁇ m or more, the relative volume ratios all showed values close to 65 to 70%. The larger the average secondary particle size, the higher the relative volume ratio. This is presumably because the higher the average secondary particle diameter, the smaller the ratio of the surface area to the volume of the particles, so that the electron conductivity increased and the high rate discharge characteristics improved. When the secondary particle diameter of the positive electrode active material was 20 ⁇ m or more, the relative capacity ratio showed a value close to 65 to 70%, indicating that higher high rate discharge characteristics could be obtained.
  • Example 3 The lithium ion secondary batteries for evaluation of Example 7 and Comparative Example 1 having different mode values of the pore diameter of the positive electrode mixture were subjected to a nail penetration / crush test to evaluate safety.
  • a nail penetration / crushing jig 20 provided with a ceramic nail 15 having a diameter of 5 mm ⁇ was used and evaluated at an environmental temperature of 29 ° C.
  • the lithium ion secondary battery was placed on a flat table, and the nail piercing / crushing jig 20 was pierced into the lithium ion secondary battery from the upper side of the battery at a nail penetration speed of 1.6 mm / s.
  • the surface temperature reached the highest after nail penetration and crushing was measured to determine whether there was a thermal runaway reaction. Table 3 below shows the maximum surface temperature and thermal runaway reaction.
  • the results of the nail penetration / crush test with the lithium ion secondary batteries of Example 7 and Comparative Example 1 are as follows. It is possible. That is, by increasing the mode value of the pore diameter of the positive electrode mixture, it is considered that the voids increase and the thermal conductivity decreases. For this reason, it is considered that the thermal runaway reaction occurred locally and it was difficult to spread to the whole positive electrode plate (positive electrode mixture), thereby improving safety.
  • the pore size increases by increasing the mode value of the pore diameter, the amount of electrolyte infiltrated into the positive electrode mixture increases, the heat capacity of the positive electrode mixture increases, and the temperature does not easily rise. It is thought that the property improved.
  • the voids are increased by increasing the mode value of the pore diameter, it is considered that a discharge path for the gas generated due to the battery abnormality is secured and the gas can easily escape. Considering these comprehensively, it is considered that the safety is improved by setting the mode value of the pore diameter to a large value, that is, 1.3 ⁇ m or more.
  • a phosphazene compound is blended in the positive electrode mixture of the positive electrode plate 2 constituting the electrode group 5 as a flame retardant.
  • blending a flame retardant with a positive mix a phosphazene compound will exist in the vicinity of a positive electrode active material.
  • an active species such as a radical due to a thermal decomposition reaction or a chain reaction of the positive electrode active material. Will occur.
  • This active species causes a termination reaction with the phosphazene compound and suppresses thermal decomposition and chain reaction. Thereby, since combustion of a battery constituent material is suppressed, the battery behavior of the lithium ion secondary battery 1 can be moderated and safety can be ensured.
  • the phosphazene compound blended in the positive electrode mixture is adjusted to a range of 2 to 6% by mass.
  • the safety can be improved by increasing the blending ratio of the phosphazene compound, since the phosphazene compound has low conductivity or non-conductivity, the electron conductivity in the positive electrode mixture is lowered. That is, by increasing the amount of the phosphazene compound, the resulting lithium ion secondary battery results in a reduction in discharge capacity during charge / discharge, particularly during high rate discharge.
  • blended with a positive mix is solid at normal temperature, it does not elute in a non-aqueous electrolyte at the time of charging / discharging, and it can suppress the influence which acts on battery performance.
  • a flame retardant is blended in the positive electrode mixture, and the mode of pore diameters formed by voids between particles in the positive electrode mixture is set in the range of 0.5 to 2.0 ⁇ m. Has been. For this reason, even if a flame retardant is blended in the positive electrode mixture, the movement path of lithium ions and the movement path of electrons are ensured and can move sufficiently between the positive and negative electrode plates. ), In particular, it is possible to suppress a decrease in discharge capacity during high rate discharge and maintain high rate discharge characteristics.
  • the mode value of the pore diameter of the positive electrode mixture is larger than 2.0 ⁇ m, the electron movement path is cut off, the electron conductivity is lowered, and the resistance is increased.
  • the mode value of the pore diameter is smaller than 0.5 ⁇ m, the movement path of lithium ions becomes narrow and the resistance increases.
  • the flame retardant is an insulator, the density of the mixture must be increased in order to strengthen the contact between the particles such as the cathode active material of the cathode mixture and between the particles and the electrode current collector. Therefore, there is a problem that the pore diameter of the positive electrode mixture must be reduced as compared with a conventional positive electrode not containing a flame retardant. On the other hand, if the pore diameter is too small, there is also a problem that ion conductivity is lowered.
  • the high rate discharge characteristics can be improved by setting the mode of pore diameters in the range of 1.0 to 1.6 ⁇ m. Can do.
  • the mode value of the pore diameter of the positive electrode mixture the following can be said from the results of the nail penetration / crush test described above. That is, even when a flame retardant is blended in the positive electrode mixture and the mode of pore diameter is in the range of 0.5 to 2.0 ⁇ m, the battery behavior becomes severe when physical force is applied from the outside of the battery. (See also Example 7 and Comparative Example 1). By setting the mode value of the pore diameter to 1.3 ⁇ m or more, safety can be improved without causing a thermal runaway reaction even when the battery is abnormal due to external force.
  • the phosphazene compound is preferably in the range of 2 to 6% by mass, and the mode of pore diameter of the positive electrode mixture is preferably in the range of 1.3 to 2.0 ⁇ m. Furthermore, in consideration of further suppressing the decrease in electron conductivity and improving the high rate discharge characteristics, it is more preferable to set the mode value of the pore diameter in the range of 1.3 to 1.6 ⁇ m (Examples) See also 1 to Example 5).
  • lithium manganate powder having an average secondary particle diameter of 25 ⁇ m, that is, 20 ⁇ m or more is used as the positive electrode active material.
  • the average secondary particle diameter of the positive electrode active material is set to 20 ⁇ m or more, the ratio of the surface area to the volume of the positive electrode active material particles is smaller than that having an average secondary particle diameter of less than 20 ⁇ m. It becomes higher and the high rate discharge characteristics can be improved (see also Example 6).
  • the thickness of the positive electrode mixture is adjusted to a range of 30 to 100 ⁇ m per side of the positive electrode current collector. For this reason, even if a positive electrode active material having an average secondary particle diameter of 20 ⁇ m or more is dispersed and mixed, the mode value of the pore diameter can be formed in the above-described range.
  • the present invention is not limited to this, and the flame retardant is not a non-aqueous electrolyte. It is not necessary to add to.
  • the non-aqueous electrolyte can be made non-flammable (incombustible), and even if the non-aqueous electrolyte leaks outside the battery, the effect on the surroundings is suppressed. And acceleration of combustion of other battery constituent materials can be controlled.
  • the blending amount of the phosphazene compound with respect to the non-aqueous electrolyte is not particularly limited, but the flame retardancy can be sufficiently exerted if it is in the range of 10 to 15% by volume.
  • the positive active material has an average secondary particle diameter of 25 ⁇ m.
  • the present invention is not limited to this, and the average secondary particle diameter is 20 ⁇ m or more. I just need it.
  • the average secondary particle diameter of the positive electrode active material is 20 ⁇ m or more, the ratio of the surface area to the volume of the active material particles is smaller than that of the secondary particle diameter of less than 20 ⁇ m. The rate discharge characteristic can be exhibited.
  • the average secondary particle diameter is preferably smaller than the thickness of the positive electrode mixture layer described above (single side: 30 to 100 ⁇ m). If the thickness of the positive electrode mixture is less than 30 ⁇ m, the amount of the positive electrode active material is relatively reduced, and the battery performance is lowered.
  • the thickness of the positive electrode mixture exceeds 100 ⁇ m, the mobility of lithium ions and electrons may be hindered. Therefore, it is preferable that the thickness of the positive electrode mixture is in the above-described range. Moreover, in this embodiment, although the example which forms a positive electrode mixture on both surfaces of a positive electrode collector was shown, this invention is not limited to this, A positive electrode mixture is only on one side of a positive electrode collector. It may be formed.
  • lithium hexafluorophosphate may be used as the lithium salt.
  • hydrogen fluoride may be generated during charge and discharge, which may shorten the life.
  • lithium tetrafluoroborate does not generate halogen such as hydrogen fluoride at the time of charging / discharging, so that the battery life characteristics can be improved.
  • lithium manganate powder having a spinel crystal structure is exemplified as the lithium transition metal composite oxide used for the positive electrode active material.
  • the positive electrode active material that can be used in the present invention lithium transition metal is used. Any composite oxide may be used.
  • the lithium manganate powder having a spinel crystal structure is excellent in electron conductivity, and the energy density of the lithium ion secondary battery can be made relatively high.
  • the crystal structure is relatively stable, safety is high, resources are abundant, and environmental impact is small.
  • a monoclinic crystal structure may be mixed with the spinel crystal structure.
  • the type of the negative electrode active material, the composition of the non-aqueous electrolyte, and the like are not particularly limited.
  • a phosphazene compound in a solid state at room temperature is used as a flame retardant to be mixed in the positive electrode mixture, but the present invention is not limited to this, and at a predetermined temperature. It is only necessary to suppress the temperature rise due to the thermal decomposition reaction of the active material or the chain reaction.
  • the phosphazene compound can be made halogen-free or antimony-free depending on the type of the substituents R 1 and R 2 and is excellent in hydrolysis resistance and heat resistance.
  • the 18650 type (for small-sized consumer use) lithium ion secondary battery 1 is exemplified, but the present invention is not limited to this, and a large-sized lithium ion secondary battery having a battery capacity exceeding about 3 Ah. It can also be applied to secondary batteries.
  • the electrode group 5 which wound the positive electrode plate and the negative electrode plate through the separator was illustrated, the present invention is not limited to this, for example, a rectangular positive electrode plate, negative electrode plate May be laminated to form an electrode group.
  • the battery shape may be flat, square or the like in addition to the cylindrical shape.
  • the present invention provides a lithium ion secondary battery that can ensure safety in the event of battery abnormality and suppress deterioration in high rate discharge characteristics, and thus contributes to the manufacture and sale of lithium ion secondary batteries. So it has industrial applicability.

Abstract

 電池異常時の安全性を確保し高率放電特性の低下を抑制することができるリチウムイオン二次液電池を提供する。リチウムイオン二次電池1は、正極活物質を含む正極合剤が集電体に形成された正極板2と、負極活物質を含む負極合剤が集電体に形成された負極板3とが多孔質セパレータ4を介して捲回された電極群5を有している。正極板2の正極合剤に難燃化剤が配合されており、水銀ポロシメータで測定される、正極合剤に形成された細孔径の最頻値が0.5~2.0μmの範囲に設定されている。充放電時にリチウムイオンの移動経路および電子の移動経路が同時に確保される。

Description

リチウムイオン二次電池
 本発明は、リチウムイオン二次電池に係り、特に、正極活物質を含む正極合剤を有する正極板と、負極活物質を含む負極合剤を有する負極板とがセパレータを介して配置された電極群が、有機溶媒にリチウム塩を混合した非水電解液に浸潤され電池容器に収容されたリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、高エネルギー密度のため、電源の小型化や軽量化を可能としている。このため、携帯用の小型電源に止まらず、電気自動車用の電源にも使用されている。また、太陽光や風力等の自然エネルギーの有効活用、電力使用の平準化にも利用され、無停電電源装置や建設機械に用いられる産業用の電源としても開発が進められている。
 リチウムイオン二次電池では、過充電等の電池異常時に高温環境下に曝された場合には、非水電解液等の電池構成材料が燃焼することがある。また、正極活物質の熱分解反応により発生する酸素が、電池構成材料の燃焼を更に加速させるおそれがある。このような事態を回避し電池の安全性を確保するために種々の安全化技術が提案されている。すなわち、非水電解液に難燃化剤を添加させて非水電解液を不燃化(難燃化)する技術(例えば、日本国特開2006-286571号公報、Journal of Electrochemical Society,Volume149,Issue5,pp.A622-A626(2002)参照)や、正極合剤に難燃化剤を配合して電池構成材料の燃焼の加速化を抑制する技術が開示されている(例えば、日本国特開2009-016106号公報参照)。
 しかしながら、リチウムイオン二次電池を産業で利用するには、電池の安全性および電池性能を両立させることが要求される。この要求に対して、特開2006-286571号公報、Journal of Electrochemical Societyの技術では、非水電解液に難燃化剤が含有されたことで、非水電解液を不燃化(難燃化)することができるものの、非水電解液のイオン伝導性が低下するため、出力特性あるいは高率放電特性の低下を招くおそれがある。また、特開2009-016106号公報の技術では、正極合剤に難燃化剤が配合されたことで、電池構成材料の燃焼の加速化を抑制することができるものの、出力特性あるいは高率放電特性が低下することがある。すなわち、難燃化剤の配合により、大電流放電の場合には小電流放電の場合と比べて電圧降下が大きくなるため、大電流放電時の容量が小電流放電時の容量より小さくなる。このため、現在のところ難燃化剤を正極合剤内に混合したリチウムイオン二次電池は商品化されていない。本発明者らは、正負極の合剤に難燃化剤を配合した場合に高率放電特性が低下する機構について鋭意検討を重ねた結果、本来絶縁性を有する難燃化剤が配合されたことで正極の電子伝導性が妨げられることを見出した。
 本発明は上記事案に鑑み、電池異常時の安全性を確保し高率放電特性の低下を抑制することができるリチウムイオン二次電池を提供することを課題とする。
 上記課題を解決するために、本発明は、正極活物質を含む正極合剤を有する正極板と、負極活物質を含む負極合剤を有する負極板とがセパレータを介して配置された電極群が、有機溶媒にリチウム塩を混合した非水電解液に浸潤され電池容器に収容されたリチウムイオン二次電池において、前記正極合剤に難燃化剤が配合されており、前記正極合剤に形成された細孔径の最頻値が0.5μm~2.0μmの範囲であることを特徴とする。
 本発明において、正極合剤に形成された細孔径の最頻値を1.0μm~1.6μmの範囲とすることが好ましい。また、正極活物質を、スピネル結晶構造を有するマンガン酸リチウムを含むようにしてもよい。このとき、正極活物質の平均二次粒子径を20μm以上としてもよい。正極板が正極集電体の片面または両面に正極合剤を有しており、正極集電体の片面あたりでの正極合剤の厚さを30μm~100μmの範囲とすることができる。このとき、正極合剤に形成された細孔径の最頻値を1.3μm~1.6μmの範囲としてもよい。難燃化剤を常温で固体状態の環状ホスファゼン化合物とすることが好ましい。ホスファゼン化合物を正極合剤に2質量%~6質量%の範囲で配合することができる。また、リチウム塩を4フッ化ホウ酸リチウムとし、リチウム塩の濃度を1.5M~1.8Mの範囲としてもよい。
 本発明によれば、正極合剤に難燃化剤が配合されたことで、電池異常で温度上昇したときに難燃化剤が電池構成材料の燃焼を抑制すると共に、正極合剤に形成された細孔径の最頻値を0.5μm~2.0μmの範囲とすることで、正極合剤に難燃化剤が配合されていても充放電時にリチウムイオンの移動経路が確保されると共に、活物質間、活物質および集電体間の電子の移動経路が強固となるため、高率放電特性を維持することができる、という効果を得ることができる。
本発明が適用可能な実施形態の円柱状リチウムイオン二次電池の断面図である。 実施例1のリチウムイオン二次電池において、正極合剤の細孔径の最頻値と、0.2CA放電時の放電容量に対する3.0CA放電時の放電容量の割合との関係を示すグラフである。 実施例2のリチウムイオン二次電池において、正極合剤の細孔径の最頻値と、0.2CA放電時の放電容量に対する3.0CA放電時の放電容量の割合との関係を示すグラフである。 実施例3のリチウムイオン二次電池において、正極合剤の細孔径の最頻値と、0.2CA放電時の放電容量に対する3.0CA放電時の放電容量の割合との関係を示すグラフである。 実施例4のリチウムイオン二次電池において、正極合剤の細孔径の最頻値と、0.2CA放電時の放電容量に対する3.0CA放電時の放電容量の割合との関係を示すグラフである。 実施例5のリチウムイオン二次電池において、正極合剤の細孔径の最頻値と、0.2CA放電時の放電容量に対する3.0CA放電時の放電容量の割合との関係を示すグラフである。 実施例6のリチウムイオン二次電池において、正極活物質の平均二次粒子径と、0.2CA放電時の放電容量に対する3.0CA放電時の放電容量の割合との関係を示すグラフである。 実施例7のリチウムイオン二次電池の釘刺し・圧壊試験に用いた釘刺し・圧壊治具を示す断面図である。
 以下、図面を参照して、本発明を18650タイプの円柱状リチウムイオン二次電池(リチウムイオン二次電池)に適用した実施の形態について説明する。
 図1に示すように、本実施形態のリチウムイオン二次電池1は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器6を有している。電池容器6には、帯状の正極板2および負極板3がセパレータ4を介して断面渦巻状に捲回された電極群5が収容されている。
 電極群5は、正極板2および負極板3がポリエチレン製微多孔膜のセパレータ4を介して断面渦巻状に捲回されている。セパレータ4は、本例では、幅が58mm、厚さが30μmに設定されている。電極群5の上端面には、一端部を正極板2に固定されたアルミニウム製でリボン状の正極タブ端子が導出されている。正極タブ端子の他端部は、電極群5の上側に配置され正極外部端子となる円盤状の電池蓋の下面に超音波溶接で接合されている。
 一方、電極群5の下端面には、一端部を負極板3に固定された銅製でリボン状の負極タブ端子が導出されている。負極タブ端子の他端部は、電池容器6の内底部に抵抗溶接で接合されている。従って、正極タブ端子および負極タブ端子は、それぞれ電極群5の両端面の互いに反対側に導出されている。なお、電極群5の外周面全周には、図示を省略した絶縁被覆が施されている。
 電池蓋は、絶縁性の樹脂製ガスケットを介して電池容器6の上部にカシメ固定されている。このため、リチウムイオン二次電池1の内部は密封されている。また、電池容器6内には、図示しない非水電解液が注液されている。非水電解液には、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の体積比2:3のカーボネート系混合溶媒中に、リチウム塩として4フッ化ホウ酸リチウム(LiBF)が溶解されている。非水電解液のリチウム塩の濃度は、1.5~1.8モル/リットル(M)の範囲に設定することができるが、本例では、1.5Mとしている。なお、溶媒に対するリチウム塩の溶解限度から、一般に、非水電解液のリチウム塩の濃度を2M以上とすることは難しい。この非水電解液には、難燃化剤として、リンおよび窒素を基本骨格とする液体状のホスファゼン化合物が含有されている。非水電解液中の難燃化剤の含有割合は、本例では、15体積%に設定されている。
 ホスファゼン化合物は、一般式(NPRまたは(NPRで表される環状化合物である。一般式中のR、Rは、それぞれ一価の置換基を示している。一価の置換基としては、メトキシ基やエトキシ基等のアルコキシ基、フェノキシ基やメチルフェノキシ基等のアリールオキシ基、メチル基やエチル基等のアルキル基、フェニル基やトリル基等のアリール基、メチルアミノ基等の置換型アミノ基を含むアミノ基、メチルチオ基やエチルチオ基等のアルキルチオ基、フェニルチオ基等のアリールチオ基、および、ハロゲン基を挙げることができる。このようなホスファゼン化合物は、置換基R、Rの種類により固体または液体となる。非水電解液に含有させるホスファゼン化合物には、常温で液体状態のものが用いられている。
 電極群5を構成する正極板2は、正極集電体としてアルミニウム箔またはアルミニウム合金箔を有している。正極集電体の厚さは本例では20μmに設定されている。正極板2は、正極集電体の長手方向略中央部に正極タブ端子が超音波溶接で接合されている。正極集電体の両面には、正極活物質としてリチウム遷移金属複合酸化物を含む正極合剤が略均等に塗着されて正極合剤が形成されている。
 リチウム遷移金属複合酸化物には、一般に知られた種々のものを用いることができるが、本例では、スピネル結晶構造を有するマンガン酸リチウム粉末が用いられている。スピネル結晶構造を有するマンガン酸リチウム粉末は、一次粒子が凝集した二次粒子を形成しており、平均二次粒子径が従来品の中でも大きく、20μm以上に設定されている。本例では、平均二次粒子径が25μmのものが使用されている。平均二次粒子径が20μm以上のものを用いると、平均二次粒子径が20μm未満のものより粒子の体積に対する表面積が小さくなり、導電材の量が少なくても電気抵抗を低くすることができる。特に、絶縁体の固体難燃化剤を正極合剤に混合する場合、導電性を補う点で有利である。また、マンガンの溶出が少ないため寿命特性を向上させることもできる。正極合剤には、例えば、リチウム遷移金属複合酸化物の84質量%に対して、導電材として鱗片状黒鉛の5質量%、バインダ(結着材)のポリフッ化ビニリデン(以下、PVDFと略記する。)の7質量%、および、難燃化剤として粉末状(固体状態)のホスファゼン化合物が配合されている。ホスファゼン化合物は、正極合剤に2~6質量%の範囲で配合することができるが、本例では、4質量%に調整されている。
 正極合剤に配合されるホスファゼン化合物には、非水電解液に含有されるホスファゼン化合物と同様の一般式(NPRまたは(NPRで表される環状化合物が用いられ、常温で固体状態のものが用いられる。すなわち、正極合剤に配合するホスファゼン化合物には、非水電解液に含有されるホスファゼン化合物と環状部分の分子構造が同じで、置換基R、Rが異なるものが用いられる。
 正極合剤を正極集電体に塗着するときには、粘度調整溶媒のN-メチルピロリドン(以下、NMPと略記する。)に正極合剤を分散させてスラリを作製する。このとき、分散液は回転翼を具備した混合機を用いて攪拌される。得られたスラリが正極集電体にロール・ツー・ロール転写法で塗布される。正極板2は、乾燥後、プレス加工され、幅54mmに裁断され帯状に形成される。正極合剤の厚さは、プレス加工時のプレス圧(荷重)で調整することができ、本例では、正極集電体の片面あたり30~100μmの範囲に設定されている。
 正極合剤には、粒子間の空隙、すなわち、細孔が形成されるが、プレス加工する際の荷重やプレスロール間の隙間(ギャップ)を調整することで、細孔径を調整することができる。細孔径は水銀ポロシメータ(水銀細孔計)によって測定され、細孔径の最頻値は0.5~2.0μmの範囲に設定されている。水銀ポロシメータは水銀圧入法によって多孔性固体の細孔分布を測定する装置である。なお、細孔径の測定では、水銀ポロシメータを用いて測定した細孔径の最頻値が0.5~2.0μmの範囲に相当する数値範囲を測定可能な装置であれば、水銀ポロシメータ以外の装置を用いてもよい。
 一方、負極板3は、負極集電体として圧延銅箔または圧延銅合金箔を有している。負極集電体の厚さは本例では10μmに設定されている。負極板3は、負極集電体の長手方向一側の端部に負極タブ端子が超音波溶接で接合されている。負極集電体の両面には、負極活物質として、リチウムイオンを吸蔵、放出可能な非晶質炭素粉末を含む負極合剤が略均等に塗着されている。
 負極合剤には、負極活物質以外に、例えば、バインダのPVDFが配合されている。負極活物質とPVDFとの質量比は、例えば、90:10とすることができる。負極合剤を負極集電体に塗着するときには、粘度調整溶媒のNMPに負極合剤を分散させてスラリを作製する。このとき、分散液は回転翼を具備した混合機を用いて攪拌される。得られたスラリが負極集電体にロール・ツー・ロール転写法で塗布される。負極板3は、乾燥後、プレス加工され、幅56mmに裁断され帯状に形成される。
 なお、負極板3の長さは、正極板2、負極板3およびセパレータ4を捲回したときに、捲回最内周および最外周で捲回方向に正極板2が負極板3からはみ出すことがないように、正極板2の長さより6mm長く設定されている。
 次に、本実施形態に従い作製したリチウムイオン二次電池1の実施例について説明する。
(実施例1)
 実施例1では、下表1に示すように、リチウム塩の濃度が1.0Mの非水電解液中に、難燃化剤のホスファゼン化合物(株式会社ブリヂストン製、商品名ホスライト(登録商標)、液体状)の15体積%を混合した。正極合剤には、難燃化剤のホスファゼン化合物(株式会社ブリヂストン製、商品名ホスライト(登録商標)、固体状)の4質量%、正極活物質のマンガン酸リチウム粉末(平均二次粒子径25μm)の84質量%、鱗片状黒鉛の5質量%、PVDFの7質量%を配合した。水銀ポロシメータ(株式会社島津製作所製、オートポアIV9520)を用いて、正極合剤の細孔径の最頻値を測定し、正極合剤の細孔径の最頻値が0.5μmのリチウムイオン二次電池1を作製した。同様の手順で、正極合剤の細孔径の最頻値の異なる複数のリチウムイオン二次電池を作製した。これらのリチウムイオン二次電池の正極合剤の最頻値は、それぞれ、0.7μm、1.0μm、1.3μm、1.5μm、2.0μm、3.7μm、4.8μmであった。表1には、非水電解液のリチウム塩の濃度、非水電解液の難燃化剤の有無、正極合剤の難燃化剤の配合割合を示している。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 表1に示すように、実施例2では、リチウム塩の濃度が1.5Mの非水電解液を使用したこと以外は実施例1と同様にして、正極合剤の細孔径の最頻値の異なる複数のリチウムイオン二次電池を作製した。これらのリチウムイオン二次電池の正極合剤の細孔径の最頻値は、それぞれ、0.5μm、0.6μm、0.9μm、1.3μm、1.6μm、2.0μm、2.3μm、3.2μmであった。
(実施例3)
 表1に示すように、実施例3では、リチウム塩の濃度が1.5Mの非水電解液を使用し、正極合剤にホスファゼン化合物の2質量%を配合したこと以外は実施例1と同様にして、正極合剤の細孔径の最頻値の異なる複数のリチウムイオン二次電池を作製した。これらのリチウムイオン二次電池の正極合剤の細孔径の最頻値は、それぞれ、0.5μm、1.0μm、1.3μm、1.9μm、2.0μm、2.2μm、2.8μm、3.0μmであった。
(実施例4)
 表1に示すように、実施例4では、リチウム塩の濃度が1.5Mの非水電解液を使用し、正極合剤にホスファゼン化合物の6質量%を配合したこと以外は実施例1と同様にして、正極合剤の細孔径の最頻値の異なる複数のリチウムイオン二次電池を作製した。これらのリチウムイオン二次電池の正極合剤の細孔径の最頻値は、それぞれ、0.2μm、0.3μm、0.5μm、1.3μm、1.6μm、1.9μm、2.0μm、2.3μmであった。
(実施例5)
 表1に示すように、実施例5では、リチウム塩の濃度が1.5Mの非水電解液を使用し、非水電解液中にホスファゼン化合物を添加しないこと以外は実施例1と同様にして、正極合剤の細孔径の最頻値の異なる複数のリチウムイオン二次電池を作製した。これらのリチウムイオン二次電池の正極合剤の細孔径の最頻値は、それぞれ、0.5μm、0.6μm、1.0μm、1.5μm、1.8μm、2.0μm、2.3μm、3.1μmであった。
(実施例6)
 実施例6では、正極活物質のマンガン酸リチウム粉末をふるいにかけて、平均二次粒子径をそれぞれ、10μm、15μm、17μm、18μm、20μm、25μm、30μmに分級分別し、マンガン酸リチウム粉末の平均二次粒子径の異なる複数のリチウムイオン二次電池1を作製した。これらのリチウムイオン二次電池1の正極合剤の細孔径の最頻値は、いずれも1.3μmであった。表1に示すように、非水電解液のリチウム塩の濃度、非水電解液の難燃化剤の有無、正極合剤の難燃化剤の配合割合は、いずれも実施例2と同様とした。
(実施例7)
 実施例7では、リチウムイオン二次電池の安全性を評価するために上述した実施形態と異なるタイプの評価用リチウムイオン二次電池(10Ah級)を作製した。すなわち、実施例7の電池は、それぞれ矩形状に形成された正極板、負極板を積層した電極群を備えたリチウムイオン二次電池である。下表2に示すように、正極合剤、負極合剤および非水電解液等の組成は、実施例5と同様にし、正極合剤の細孔径の最頻値が1.3μmとなるようにした。正極板では正極合剤塗布部の大きさが150mm×145mm、負極板では負極合剤塗布部の大きさが154mm×149mmとなるようにそれぞれ切断した。半田ゴテにより2辺を溶着した筒状のセパレータに正極板を1枚ずつ挟み込み、溶着していない2辺のうち1辺を半田ゴテで溶着した。セパレータに挟み込んだ正極板の15枚と、負極板の16枚とを交互に積層し、電極群を作製した。電極群の電極タブと集電板とを超音波溶接後、電極群をラミネート袋に挿入し、3辺の熱溶着を行った。60℃で72時間の乾燥後、ラミネート袋に非水電解液を注液した。注液後、ラミネート袋を真空引きし、残りの1辺を熱溶着して封止した。得られた評価用リチウムイオン二次電池を一晩静置し、電極群を非水電解液に浸潤させた。
Figure JPOXMLDOC01-appb-T000002
(比較例1)
 表2に示すように、比較例1では、正極合剤の細孔径の最頻値が1.2μmとなるようにしたこと以外は実施例7と同様にして、評価用リチウムイオン二次電池を作製した。
(試験1)
 実施例1~実施例5で作製した、正極合剤の細孔径の最頻値の異なる各リチウムイオン二次電池について、0.2CAおよび3.0CAにて放電試験を行った。0.2CA放電時に測定した放電容量に対する、3.0CA放電時に測定した放電容量の割合(相対容量比)を百分率で算出した。
 図2に示すように、リチウム塩の濃度が1.0Mの非水電解液を使用した実施例1では、正極合剤の細孔径の最頻値が0.5~2.0μmの範囲のとき、相対容量比が30%以上を示し、細孔径の最頻値が0.7~1.5μmの範囲のとき、相対容量比が40%以上を示した。また、細孔径の最頻値が1.3μmのとき、相対容量比が最大値53%を示した。細孔径の最頻値が2.0μmを超えると、相対容量比が低下した。以上より、相対容量比が30%以上を示した、細孔径の最頻値が0.5~2.0μmの範囲で高率放電特性を維持できることが判った。さらに高率放電特性の向上を図るためには、相対容量比が45%を超える範囲、すなわち、細孔径の最頻値が1.0~1.5μmの範囲が好ましいことが判った。
 図3に示すように、リチウム塩の濃度が1.5Mの非水電解液を使用した実施例2では、正極合剤の細孔径の最頻値が0.5~2.0μmの範囲のとき、相対容量比が30%以上を示した。細孔径の最頻値が1.3μmのとき、相対容量比が最大値68%を示し、実施例1の最大値53%より高い値を示した。また、細孔径の最頻値が1.3μmより小さいときの相対容量比は、実施例1より実施例2の方が高い値を示した(図2も参照。)。これは、実施例2では、非水電解液のリチウム塩の濃度が実施例1より高く、移動可能なリチウムイオンの数が増加したためと考えられる。細孔径の最頻値が高くなるにつれ、相対容量比が低下した。以上より、リチウムイオン二次電池1の高率放電特性は、非水電解液のリチウムイオンの数が多いほど向上することが判明した。また、相対容量比が30%以上を示した、細孔径の最頻値が0.5~2.0μmの範囲で高率放電特性を維持できることが判った。さらに高率放電特性の向上を図るためには、相対容量比が50%を超える範囲、すなわち、細孔径の最頻値が0.5~1.6μmの範囲が好ましいことが判った。
 図4に示すように、正極合剤の難燃化剤の配合割合が2質量%の実施例3では、細孔径の最頻値が1.3μmを超えるときの相対容量比が実施例2より高い値を示した。これは、実施例3は、正極合剤の難燃化剤の配合割合が実施例2より少ないので、電子伝導性が高くなったためと考えられる。実施例3では、細孔径の最頻値が0.5~2.0μmの範囲で相対容量比が約80%を示したことから、この範囲で高率放電特性を維持できることが判った。
 図5に示すように、正極合剤の難燃化剤の配合割合が6質量%の実施例4では、細孔径の最頻値が1.3μmのとき、相対容量比が最大値50%を示し、実施例2の最大値68%より低下した。これは、実施例4では、正極合剤の難燃化剤の配合量が実施例2より高く、電子伝導が阻害されたためと考えられる。このため、正極合剤の難燃化剤の配合割合が実施例1~実施例3より高い実施例4では、高率放電特性を良好に維持できる細孔径の最頻値の範囲が実施例1~実施例3より制限されることとなる。すなわち、実施例4では、相対容量比が30%以上を示す範囲、つまり、細孔径の最頻値が0.5~1.6μmの範囲で高率放電特性を維持できることが判った。
 図6に示すように、非水電解液に難燃化剤を配合しない実施例5では、細孔径の最頻値が1.5μmのとき、相対容量比が最大値98%を示し、実施例2の最大値68%より大きい値を示した。これは、実施例5では、非水電解液に難燃化剤を配合しなかったため、リチウムイオンの移動が阻害されないためと考えられる。細孔径の最頻値が高くなるにつれ、相対容量比が低下した。実施例5では、細孔径の最頻値が0.5~2.0μmの範囲で相対容量比が30%以上を示したことから、この範囲で高率放電特性を維持できることが判った。さらに高率放電特性の向上を図るためには、相対容量比が70%を超える範囲、すなわち、細孔径の最頻値が0.5~1.8μmの範囲が好ましいことが判った。
(試験2)
 実施例6で作製した、正極活物質の平均二次粒子径の異なる各リチウムイオン二次電池について、0.2CAおよび3.0CAにて放電試験を行った。0.2CA放電時に測定した放電容量に対する、3.0CA放電時に測定した放電容量の割合(相対容量比)を百分率で算出した。
 図7に示すように、正極活物質のマンガン酸リチウム粉末の平均二次粒子径がそれぞれ異なる実施例6では、平均二次粒子径が20μm未満のとき、相対容量比がいずれも50%以下を示した。平均二次粒子径が20μm以上のとき、相対容量比がいずれも65~70%に近い値を示した。平均二次粒子径が大きくなるほど、相対容量比も高い値を示した。これは、平均二次粒子径が大きいほど粒子の体積に対する表面積の割合が小さいため、電子伝導性が高くなり、高率放電特性が向上したと考えられる。正極活物質の二次粒子径が20μm以上のとき、相対容量比が65~70%近い値を示したことから、より高い高率放電特性が得られることが判った。
(試験3)
 正極合剤の細孔径の最頻値の異なる実施例7および比較例1の各評価用リチウムイオン二次電池について、釘刺し・圧壊試験を行い安全性を評価した。釘刺し・圧壊試験では、図8に示すように、直径5mmφのセラミック製釘15を備えた釘刺し・圧壊治具20を使用し、29℃の環境温度下にて評価した。リチウムイオン二次電池を平台上に載置し、電池上方から釘刺し・圧壊治具20を1.6mm/sの釘刺し速度でリチウムイオン二次電池に突き刺した。釘刺し・圧壊後の、最高到達表面温度を測定し、熱暴走反応の有無を判定した。最高到達表面温度、熱暴走反応の有無を下表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、正極合剤の細孔径の最頻値を1.2μmとした比較例1のリチウムイオン二次電池では、釘刺し・圧壊試験の釘刺しにより、熱暴走反応を起こし、最高到達表面温度が301.8℃となった。これに対して、正極合剤の細孔径の最頻値を1.3μmとした実施例7のリチウムイオン二次電池では、釘刺し・圧壊試験でも熱暴走反応を起こすことがなく、最高到達表面温度も79.2℃となり比較例1のものと比べて大幅に低い温度であった。このことから、正極合剤に難燃化剤を配合することで燃焼を抑制することはできるものの、細孔径の最頻値によっては、釘刺しのような電池外部からの物理的な力が作用したときに熱暴走反応を起こし、最高到達表面温度が高温に達することもあることが明らかとなった。従って、正極合剤の細孔径の最頻値を1.3μm以上とすることで、熱暴走反応を起こさず、電池温度の上昇も抑制することができることが判明した。
 細孔径の最頻値と安全性との関係については、メカニズムが明確になっていないものの、実施例7および比較例1のリチウムイオン二次電池での釘刺し・圧壊試験の結果から、次のことが考えられる。すなわち、正極合剤の細孔径の最頻値を大きくすることで、空隙が増大し熱伝導性が低下することが考えられる。このため、熱暴走反応が局所的に起こり、正極板(正極合剤)の全体に波及しにくくなったことで、安全性向上を図ることができたものと考えられる。また、細孔径の最頻値を大きくすることで空隙が増大すると、正極合剤に浸潤する電解液量が多くなり、正極合剤の熱容量が増加し温度が上昇しにくくなったことで、安全性が向上したものと考えられる。さらには、細孔径の最頻値を大きくすることで空隙が増大すると、電池異常により発生したガスの排出経路が確保され、ガスが抜けやすくなったことも考えられる。これらのことを総合的に考えると、細孔径の最頻値を大きく、つまり、1.3μm以上とすることで、安全性が向上したものと考えられる。
(作用等)
 次に本実施形態のリチウムイオン二次電池1の作用等について説明する。
 本実施形態では、電極群5を構成する正極板2の正極合剤に、難燃化剤としてホスファゼン化合物が配合されている。難燃化剤が正極合剤に配合されることで、ホスファゼン化合物が正極活物質の近傍に存在することとなる。リチウムイオン二次電池1が異常な高温環境下に曝されたときや電池異常が生じたときに、電池温度が上昇することで正極活物質の熱分解反応やその連鎖反応によりラジカル等の活性種が発生する。この活性種が、ホスファゼン化合物と終止反応を起こし、熱分解反応や連鎖反応を抑制する。これにより、電池構成材料の燃焼が抑制されるため、リチウムイオン二次電池1の電池挙動を穏やかにし安全性を確保することができる。
 また、本実施形態では、正極合剤に配合されるホスファゼン化合物が、2~6質量%の範囲に調整されている。ホスファゼン化合物の配合割合を大きくすることで、安全性向上を図ることができるものの、ホスファゼン化合物が低導電性ないし不導電性であることから正極合剤での電子伝導性を低下させることとなる。すなわち、ホスファゼン化合物の量を増加させることで、得られるリチウムイオン二次電池では、充放電時、とりわけ高率放電時の放電容量を低下させる結果となる。ホスファゼン化合物を上述した範囲とすることで、電子伝導性の低下、ひいては、電池性能の低下を抑制することができる。また、正極合剤に配合されるホスファゼン化合物は、常温で固体のため、充放電時に非水電解液中に溶出することがなく、電池性能に及ぼす影響を抑制することができる。
 更に、本実施形態では、正極合剤に、難燃化剤が配合され、正極合剤に粒子間の空隙により形成された細孔径の最頻値が0.5~2.0μmの範囲に設定されている。このため、正極合剤に難燃化剤が配合されていても、リチウムイオンの移動経路や電子の移動経路が確保され正負極板間を十分に移動することができるため、電池使用(充放電)時、とりわけ高率放電時の放電容量の低下を抑制し高率放電特性を維持することができる。正極合剤の細孔径の最頻値が2.0μmより大きい場合、電子の移動経路が分断され、電子伝導性が低下し、抵抗が上昇してしまう。反対に、細孔径の最頻値が0.5μmより小さい場合、リチウムイオンの移動経路が狭くなり、抵抗が上昇してしまう。つまり、難燃化剤が絶縁体のため、正極合剤の正極活物質等の粒子同士、および、粒子と電極集電体との接触を強固にするために合剤密度を高めなければならず、そのため難燃化剤を配合しない従来の正極と比べ正極合剤の細孔径を小さくしなければならない、という課題がある。その反面、細孔径が小さすぎるとイオン伝導性が低下する、という課題もある。本実施形態では、これら2つの課題を解決することで、難燃化剤を正極合剤に混合したリチウムイオン二次電池の電池特性の低下を抑制している。更に、上述した実施例1~実施例5の評価結果を総合的に考えれば、細孔径の最頻値を1.0~1.6μmの範囲とすることで高率放電特性の向上を図ることができる。
 また更に、正極合剤の細孔径の最頻値については、上述した釘刺し・圧壊試験の結果から、次のことがいえる。すなわち、正極合剤に難燃化剤を配合し細孔径の最頻値を0.5~2.0μmの範囲としても、電池外部から物理的な力が作用した場合は、電池挙動が激しくなることもある(実施例7、比較例1も参照)。細孔径の最頻値を1.3μm以上とすることで、外力による電池異常時でも熱暴走反応を起こすことなく、安全性向上を図ることができる。換言すれば、高率放電時の容量低下を抑制しつつ、異常な高温環境下にさらされたときのみならず外力による電池異常時にも安全性向上を図るためには、正極合剤に配合するホスファゼン化合物を2~6質量%の範囲とし、正極合剤の細孔径の最頻値を1.3~2.0μmの範囲とすることが好ましい。さらに、電子伝導性の低下を一層抑制し高率放電特性の向上を図ることを考慮すれば、細孔径の最頻値を1.3~1.6μmの範囲とすることがより好ましい(実施例1~実施例5も参照)。
 更にまた、本実施形態では、正極活物質として平均二次粒子径が25μm、つまり20μm以上のマンガン酸リチウム粉末が使用されている。正極活物質の平均二次粒子径を20μm以上とすることで、平均二次粒子径が20μm未満のものと比べて、正極活物質粒子の体積に対する表面積の割合が小さくなるため、電子伝導性が高くなり高率放電特性を向上させることができる(実施例6も参照)。また、本実施形態では、正極合剤の厚さが正極集電体の片面あたりで30~100μmの範囲に調整されている。このため、平均二次粒子径が20μm以上の正極活物質が分散混合されても、細孔径の最頻値を上述した範囲に形成することができる。
 なお、本実施形態では、非水電解液に15体積%の難燃化剤を配合する例を示したが、本発明はこれに限定されるものではなく、難燃化剤を非水電解液に配合しなくてもよい。非水電解液に難燃化剤を配合した場合、非水電解液を不燃化(難燃化)することができ、電池外部に非水電解液が漏洩しても、周囲への影響を抑制し、他の電池構成材料の燃焼の加速を抑制することができる。非水電解液に対するホスファゼン化合物の配合量についても特に制限されるものではないが、10~15体積%の範囲であれば、難燃性を十分に発揮することができる。
 また、本実施形態では、正極活物質の平均二次粒子径が25μmのものを使用する例を示したが、本発明はこれに限定されるものではなく、平均二次粒子径が20μm以上であればよい。正極活物質の平均二次粒子径が20μm以上のものは、二次粒子径が20μm未満のものより、活物質の粒子の体積に対する表面積の割合が小さいため、電子伝導性が高く、より高い高率放電特性を発揮することができる。また、平均二次粒子径は、上述した正極合剤層の厚さ(片面30~100μm)より小さいことが好ましい。正極合剤の厚さが30μmに満たないと、相対的に正極活物質の量が少なくなるため、電池性能を低下させることとなる。反対に、正極合剤の厚さが100μmを超えると、却ってリチウムイオンや電子の移動性を阻害する可能性がある。従って、正極合剤の厚さを上述した範囲とすることが好ましい。また、本実施形態では、正極集電体の両面に正極合剤を形成する例を示したが、本発明はこれに限定されるものではなく、正極集電体の片面のみに正極合剤が形成されていてもよい。
 更に、本実施形態では、リチウム塩として4フッ化ホウ酸リチウムを1.5~1.8Mの範囲の濃度に溶解させた非水電解液を用いる例を示したが、本発明はこれに限定されるものではなく、例えば、リチウム塩に6フッ化リン酸リチウムを用いてもよい。6フッ化リン酸リチウムは、イオン伝導性に優れるものの、充放電時にフッ化水素が発生することがあり、寿命を低下させることがある。これに対して、4フッ化ホウ酸リチウムは、充放電時にフッ化水素等のハロゲンを発生することがないため、電池の寿命特性を向上させることができる。4フッ化ホウ酸リチウムの濃度が1.5Mより小さい場合は、移動できるリチウムイオンの数が不足するためイオン伝導性を十分に発揮することができない。反対に、4フッ化ホウ酸リチウムの濃度が1.8Mより大きい場合は、塩が析出してしまう。
 また更に、本実施形態では、正極活物質に用いるリチウム遷移金属複合酸化物として、スピネル結晶構造を有するマンガン酸リチウム粉末を例示したが、本発明で用いることのできる正極活物質としてはリチウム遷移金属複合酸化物であればよい。スピネル結晶構造を有するマンガン酸リチウム粉末は、電子伝導性に優れておりリチウムイオン二次電池のエネルギー密度も比較的高くすることができる。また、結晶構造が比較的安定しており、安全性が高く、資源が豊富で、環境への影響も少ないという利点がある。このようなスピネル結晶構造のものに単斜晶構造のものを混合するようにしてもよい。また、負極活物質の種類、非水電解液の組成などについても特に制限されるものではない。
 更にまた、本実施形態では、正極合剤に配合する難燃化剤に、常温で固体状態のホスファゼン化合物を用いる例を示したが、本発明はこれに限定されるものではなく、所定温度で活物質の熱分解反応やその連鎖反応による温度上昇を抑制することができればよい。ホスファゼン化合物は、置換基R、Rの種類によりハロゲンフリー、アンチモンフリーとすることも可能であり、耐加水分解性、耐熱性に優れている。
 また、本実施形態では、18650タイプ(小型民生用)のリチウムイオン二次電池1を例示したが、本発明はこれに限定されるものではなく、電池容量が約3Ahを超える大型のリチウムイオン二次電池にも適用することができる。また、本実施形態では、正極板、負極板をセパレータを介して捲回した電極群5を例示したが、本発明はこれに限定されるものではなく、例えば、矩形状の正極板、負極板を積層して電極群としてもよい。更に、電池形状についても、円柱状以外に扁平状、角型等としてもよいことは論を待たない。
 本発明は、電池異常時の安全性を確保し高率放電特性の低下を抑制することができるリチウムイオン二次電池を提供するものであるため、リチウムイオン二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。

Claims (9)

  1.  正極活物質を含む正極合剤を有する正極板と、負極活物質を含む負極合剤を有する負極板とがセパレータを介して配置された電極群が、有機溶媒にリチウム塩を混合した非水電解液に浸潤され電池容器に収容されたリチウムイオン二次電池において、前記正極合剤に難燃化剤が配合されており、前記正極合剤に形成された細孔径の最頻値が0.5μm~2.0μmの範囲であることを特徴とするリチウムイオン二次電池。
  2.  前記正極合剤に形成された前記細孔径の最頻値が1.0μm~1.6μmの範囲であることを特徴とする請求項1に記載のリチウムイオン二次電池。
  3.  前記正極活物質がスピネル結晶構造を有するマンガン酸リチウムを含むことを特徴とする請求項1または請求項2に記載のリチウムイオン二次電池。
  4.  前記正極活物質の平均二次粒子径が20μm以上であることを特徴とする請求項3に記載のリチウムイオン二次電池。
  5.  前記正極板は、正極集電体の片面または両面に前記正極合剤を有しており、前記正極集電体の片面あたりでの前記正極合剤の厚さが30μm~100μmの範囲であることを特徴とする請求項4に記載のリチウムイオン二次電池。
  6.  前記正極合剤に形成された前記細孔径の最頻値が1.3μm~1.6μmの範囲であることを特徴とする請求項5に記載のリチウムイオン二次電池。
  7.  前記難燃化剤は、常温で固体状態の環状ホスファゼン化合物であることを特徴とする請求項1に記載のリチウムイオン二次電池。
  8.  前記ホスファゼン化合物は、前記正極合剤に2質量%~6質量%の範囲で配合されていることを特徴とする請求項7に記載のリチウムイオン二次電池。
  9.  前記リチウム塩は4フッ化ホウ酸リチウムであり、前記リチウム塩の濃度は1.5M~1.8Mの範囲であることを特徴とする請求項1に記載のリチウムイオン二次電池。
PCT/JP2011/070124 2010-09-06 2011-09-05 リチウムイオン二次電池 WO2012033036A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137005733A KR20140027044A (ko) 2010-09-06 2011-09-05 리튬 이온 2차 전지
US13/820,830 US20130216899A1 (en) 2010-09-06 2011-09-05 Lithium ion secondary battery
CN201180042814.6A CN103140961B (zh) 2010-09-06 2011-09-05 锂离子二次电池
EP11823511.8A EP2615670A4 (en) 2010-09-06 2011-09-05 LITHIUM ION SECONDARY BATTERY

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-198762 2010-09-06
JP2010198762 2010-09-06
JP2011-182092 2011-08-24
JP2011182092A JP5820662B2 (ja) 2010-09-06 2011-08-24 リチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2012033036A1 true WO2012033036A1 (ja) 2012-03-15

Family

ID=45810637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070124 WO2012033036A1 (ja) 2010-09-06 2011-09-05 リチウムイオン二次電池

Country Status (6)

Country Link
US (1) US20130216899A1 (ja)
EP (1) EP2615670A4 (ja)
JP (1) JP5820662B2 (ja)
KR (1) KR20140027044A (ja)
CN (1) CN103140961B (ja)
WO (1) WO2012033036A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119249A1 (ja) * 2013-01-31 2014-08-07 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP2016035837A (ja) * 2014-08-01 2016-03-17 株式会社Nttファシリティーズ リチウムイオン電池及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926908B2 (ja) * 2011-09-05 2016-05-25 株式会社Nttファシリティーズ リチウムイオン電池
US9819026B2 (en) 2013-01-31 2017-11-14 Sanyo Electric Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6777388B2 (ja) * 2015-02-27 2020-10-28 パナソニック株式会社 非水電解質二次電池
CN104659370B (zh) * 2015-03-20 2018-03-06 宁德新能源科技有限公司 正极膜片及应用该正极膜片的锂离子电池
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
CN106558701A (zh) * 2015-09-30 2017-04-05 深圳市沃特玛电池有限公司 锂离子电池以及该锂离子电池的制作方法
CN107492660B (zh) * 2016-06-13 2020-04-24 宁德新能源科技有限公司 正极浆料、正极片及锂离子电池
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP7108533B2 (ja) * 2018-12-27 2022-07-28 三洋電機株式会社 二次電池
US11018371B1 (en) * 2020-03-26 2021-05-25 Enevate Corporation Functional aliphatic and/or aromatic amine compounds or derivatives as electrolyte additives to reduce gas generation in li-ion batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151971A (ja) * 1991-11-29 1993-06-18 Fuji Elelctrochem Co Ltd リチウム電池
JPH09180709A (ja) * 1995-12-27 1997-07-11 Matsushita Electric Ind Co Ltd 電池用正極合剤の製造方法
JP2003173821A (ja) * 2001-09-28 2003-06-20 Tdk Corp 非水電解質電池
JP2006286571A (ja) 2005-04-05 2006-10-19 Bridgestone Corp リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP2009004139A (ja) * 2007-06-20 2009-01-08 Hitachi Maxell Ltd リチウム二次電池
JP2009016106A (ja) 2007-07-03 2009-01-22 Ntt Facilities Inc リチウムイオン二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW431004B (en) * 1998-10-29 2001-04-21 Toshiba Corp Nonaqueous electrolyte secondary battery
US7217406B2 (en) * 2002-02-21 2007-05-15 Tosoh Corporation Lithium-manganese composite oxide granular secondary particle, method for production thereof and use thereof
JP5135664B2 (ja) * 2003-12-05 2013-02-06 日産自動車株式会社 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
JP5103857B2 (ja) * 2005-11-10 2012-12-19 日産自動車株式会社 二次電池用電極、および、これを用いた二次電池
JP5428125B2 (ja) * 2005-11-24 2014-02-26 日産自動車株式会社 非水電解質二次電池用正極活物質、および、これを用いた非水電解質二次電池
CN101212038B (zh) * 2006-12-31 2010-08-25 比亚迪股份有限公司 一种锂离子二次电池及极片的处理方法
JP4210710B2 (ja) * 2007-04-09 2009-01-21 花王株式会社 リチウム電池用正極活物質の製造方法
JP5245425B2 (ja) * 2007-06-05 2013-07-24 ソニー株式会社 負極および二次電池
JP4465407B1 (ja) * 2008-10-27 2010-05-19 花王株式会社 電池用正極活物質粒子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151971A (ja) * 1991-11-29 1993-06-18 Fuji Elelctrochem Co Ltd リチウム電池
JPH09180709A (ja) * 1995-12-27 1997-07-11 Matsushita Electric Ind Co Ltd 電池用正極合剤の製造方法
JP2003173821A (ja) * 2001-09-28 2003-06-20 Tdk Corp 非水電解質電池
JP2006286571A (ja) 2005-04-05 2006-10-19 Bridgestone Corp リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP2009004139A (ja) * 2007-06-20 2009-01-08 Hitachi Maxell Ltd リチウム二次電池
JP2009016106A (ja) 2007-07-03 2009-01-22 Ntt Facilities Inc リチウムイオン二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF ELECTROCHEMICAL SOCIETY, vol. 149, no. 5, 2002, pages A622 - A626
See also references of EP2615670A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119249A1 (ja) * 2013-01-31 2014-08-07 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP2016035837A (ja) * 2014-08-01 2016-03-17 株式会社Nttファシリティーズ リチウムイオン電池及びその製造方法

Also Published As

Publication number Publication date
EP2615670A4 (en) 2015-02-25
EP2615670A1 (en) 2013-07-17
JP2012079685A (ja) 2012-04-19
CN103140961A (zh) 2013-06-05
KR20140027044A (ko) 2014-03-06
CN103140961B (zh) 2016-06-01
JP5820662B2 (ja) 2015-11-24
US20130216899A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP5820662B2 (ja) リチウムイオン二次電池
US10868301B2 (en) Rechargeable electrochemical cell
KR101268989B1 (ko) 리튬 이온 2차 전지
US20120301778A1 (en) Solid-state multi-layer electrolyte, electrochemical cell and battery including the electrolyte, and method of forming same
JP6318882B2 (ja) 非水電解質二次電池
WO2010101180A1 (ja) 非水電解液電池
JP5623199B2 (ja) 非水電解液電池
JP5753672B2 (ja) 非水電解液二次電池
JP4240078B2 (ja) リチウム二次電池
JP2007265668A (ja) 非水電解質二次電池用正極及びその製造方法
JP2008262832A (ja) 非水電解質二次電池
US20160372798A1 (en) Non-aqueous electrolyte secondary battery
JP2015115168A (ja) リチウムイオン二次電池用電極及びそれを用いたリチウムイオン二次電池
WO2013032005A1 (ja) 非水電解液二次電池
WO2012033045A1 (ja) 非水電解液電池
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
JP2011192561A (ja) 非水電解液二次電池の製造方法
JP2012227068A (ja) リチウムイオン二次電池及び組電池システム
KR20140083011A (ko) 비수 전해질 2차 전지
JP2010015852A (ja) 二次電池
JP6120065B2 (ja) 非水電解液二次電池及びその製造方法
JP2010033869A (ja) 非水系二次電池用電極板およびこれを用いた非水系二次電池
WO2013032006A1 (ja) 非水電解液電池
KR20230054608A (ko) 음극 극판, 이차 전지, 전지 모듈, 전지 팩 및 전기 장치
JP2016062855A (ja) リチウムイオン電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042814.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137005733

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011823511

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011823511

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13820830

Country of ref document: US