WO2012032197A1 - Método y dispositivo para la determinación del estado de degradación de un aceite lubricante - Google Patents

Método y dispositivo para la determinación del estado de degradación de un aceite lubricante Download PDF

Info

Publication number
WO2012032197A1
WO2012032197A1 PCT/ES2010/070582 ES2010070582W WO2012032197A1 WO 2012032197 A1 WO2012032197 A1 WO 2012032197A1 ES 2010070582 W ES2010070582 W ES 2010070582W WO 2012032197 A1 WO2012032197 A1 WO 2012032197A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
degradation
transmittance
state
determining
Prior art date
Application number
PCT/ES2010/070582
Other languages
English (en)
French (fr)
Inventor
Eneko Gorritxategi Arrondo
Aitor Arnaiz Irigaray
Ana ARANZABE GARCÍA
Jesús Mª TERRADILLOS AZQUETA
Original Assignee
Fundacion Tekniker
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Tekniker filed Critical Fundacion Tekniker
Priority to ES10856908.8T priority Critical patent/ES2676649T3/es
Priority to US13/820,274 priority patent/US9063075B2/en
Priority to JP2013526516A priority patent/JP2013536939A/ja
Priority to CN2010800689739A priority patent/CN103210299A/zh
Priority to PCT/ES2010/070582 priority patent/WO2012032197A1/es
Priority to BR112013005216A priority patent/BR112013005216A2/pt
Priority to DK10856908.8T priority patent/DK2615444T3/en
Priority to EP10856908.8A priority patent/EP2615444B1/en
Publication of WO2012032197A1 publication Critical patent/WO2012032197A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration

Definitions

  • the present invention relates to a method for determining the state of degradation of a lubricating and hydraulic oil. More specifically, it refers to a method and a device for providing an accurate reading of the overall degradation during the use of an oil by measuring the transmittance in the visible range of the light spectrum of said oil.
  • the process of degradation of an oil follows several totally known steps: first it undergoes a loss of the content of additives and then acidic compounds are generated.
  • the percentage of acid constituents is determined by analytical techniques.
  • There are on-line measuring equipment such as the one described in JP 2000146696 that use absorbance in the visible range of the electromagnetic spectrum to correlate it with parameter AN.
  • These methods have the limitation that, although AN is one of the most indicative parameters of the lubricating oil state, it only contemplates the oxidative degradation of the oil.
  • this equipment cannot be used in engines due to the carbon generated in the combustion process.
  • the charcoal darkens the oil, so that the color change is not due to a change in the state of degradation of the oil.
  • US Pat. No. 6,061, 139 presents a method and apparatus for monitoring the thermal degradation of the lubricant. This method uses the 850 nm band of the light spectrum to determine the state of the oil. The use of a single band does not have a very high sensitivity and the result is affected by other factors.
  • the RU2329502 patent also uses measurements of the transmittance of the visible light spectrum with the 3 spectral ranges (red, green and blue) to result in the content of "total impurities", particles that are generated during oil degradation.
  • the present invention aims at facilitating real-time monitoring and providing a device and a fast and reliable method of determining the state of degradation of the oil that solves the problems set forth above.
  • the method and sensor result in the Oil Degradation Index (OD), which indicates as a percentage the overall degradation at the time of monitoring or measurement.
  • OD Oil Degradation Index
  • the corresponding device comprises a white light source, a fluidic cell adapted for the passage of oil through it, a detector capable of transforming the amount of light emitted by the source and absorbed by the oil into an electrical signal characteristic of the transmittance in the visible and program means to carry out the above procedure.
  • a particle filter and means for removing oil bubbles are also provided.
  • Figure 1 It is a scheme of the measuring principle, where the intensity of light transmitted after passing through the oil is represented and collected by the detector.
  • Figure 2 is a scheme of the implementation of the sensor of the invention in a lubrication system.
  • Figures 3a and 3b are graphs showing the value of oil degradation (OD) measured according to the invention, compared to the most representative parameters of the degradation of two oils.
  • the sensor of the invention (1) is designed to be installed in a bypass of the lubrication system (2).
  • the installation takes advantage of the pressure difference so that the oil (5) circulates through the sensor.
  • the oil after the by-pass, passes through a series of hydraulic components inside the sensor: an electrovalve that manages the passage of oil through the device, a particle filter to remove particles of a certain size and a system to eliminate bubbles that are generated in the oil circulation system.
  • the oil After passing through all the hydraulic elements, the oil passes to the fluidic cell (3) which is where the measurement is to be carried out. This cell has an established light path.
  • a beam of white light is struck in the visible range of the spectrum by means of an LED-type emitter (8), and the light that is not absorbed by the oil is collected by a detector (for example a photodiode ).
  • the detector (4) collects the light at various wavelengths of the visible spectrum. Said spectrum range covers wavelengths from 380nm to 780nm.
  • transmission spectroscopy is used.
  • a visible beam of light passes through the oil into the fluidic glass cell.
  • the technique used in the state of the art sensors to monitor the degradation of used oils is based on the search for information in the visible spectrum, correlating the physical chemical variables of the lubricating oil (Acid Number AN, Viscosity ...) with the Sample color change.
  • the degradation index calculated by known methods is a mixture of several laboratory parameters related to the determination of the state of degradation of the oil. These parameters are RUL (Remaining Useful Lifetime in English, Remaining Useful Life), Oxidation (FTIR, Fourier Transform InfraRed,), Acid Number (AN) and Viscosity.
  • RUL Remaining Useful Lifetime in English, Remaining Useful Life
  • Oxidation FTIR, Fourier Transform InfraRed
  • AN Acid Number
  • Viscosity Viscosity.
  • Each parameter is indicative of a certain degree of degradation, for example the RUL is indicative at the beginning of the degradation process, when the additives are being consumed.
  • AN and FTIR oxidation are indicative later, when the first acidic compounds begin to be generated.
  • the AN is also a good indication that additives are being lost, since their value varies (decreases) and then increases.
  • the viscosity is the last one to vary, almost at the end of the life of the oil.
  • the darkening or color change of the oil is appreciated from the beginning to the end, from when the additives begin to be consumed until it is completely degraded.
  • the percentage of transmittance varies as the oil degrades. Correlating all these parameters to calculate the state of degradation is, however, much more laborious than applying the method of the invention.
  • Lubricating oils may have different colors at the beginning.
  • the elements responsible for the color of a lubricating oil are the base oil and the additives.
  • Base oil The color of a lubricant varies depending on the degree of refining and the origin of refined oil. Generally the color is closely related to the sulfur and aromatic content
  • additives Some additives are determinants of the color of the final oil.
  • those sulfur-containing additives in their composition have a greater influence on the final color of the same (such as some detergent or antioxidant additives)
  • the lubricants get darker with use.
  • a color change in a lubricant indicates some kind of contamination, overheating, excessive degradation or an inappropriate lubricant.
  • the method of calculating the remaining life of the oil according to the invention takes into account the components in the red, green and blue bands of the transmittance of the unused oil (reference or new), l R0 , l G oel B o.
  • a dark measurement is made (without light hitting the detector) to subtract it from subsequent measurements.
  • Several measurements of the transmittance are then carried out (about 50 preferably) and an arithmetic average of the transmittance is obtained for each color, whereby the values l R , l G the B (transmittance in the three main bands for the waste oil).
  • the value of the color index of the oil that is measured by the formula and that of the reference oil is obtained.
  • Oil Degradation OLED Degradation
  • Alarms can also be applied for example at 10%, 20% or 30% so that the evolution of the oil can be monitored.
  • Figures 3a and 3b show tests performed for two types of oils: Fuch Renolyn 320 ⁇ and Shell Ornala HD 320 ⁇ . The test was carried out using the procedure described above and different degrees of degradation were obtained until the oil tested was completely degraded. The degradation index OD has been obtained by means of the sensor of the invention and compared with the laboratory parameters.
  • Figure 3 shows the results of the Fuch Renolyn 320 oil degradation process in which the results of the OD degradation index (%) are compared with the different laboratory parameters; RUL, AN, Oxi by FTIR and Viscosity. It is observed in the RUL chart that the variation of RUL is in the first part of the degradation process, while the additives are running out. Oxidation (Oxi) is the next parameter to begin to vary and then the AN. Viscosity detects changes in advanced degradation states.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

La presente invención proporciona un método y dispositivo para Ia determinación de Ia degradación de un aceite usado. El método de Ia invención se basa en calcular los componentes en las bandas roja, verde y azul del espectro de Ia transmitancia del aceite sin usar, IRO, lGo e lBo, realizar varias medidas de Ia transmitancia del mismo aceite ya usado, calcular los índices del color del aceite usado y el índice de color de referencia como Cl=1 *IR+0,5*IG+0,5IB CIREF= 1 *IRO+O,5*IGO+O,5IBO y obtener el valor de degradación global como OD(%)=100 - 100*LOG10 (CIREF/CI). Gracias al método y al dispositivo correspondiente, se facilita Ia monitorización en tiempo real de Ia degradación de aceite.

Description

MÉTODO Y DISPOSITIVO PARA LA DETERMINACIÓN DEL ESTADO DE DEGRADACIÓN DE UN ACEITE LUBRICANTE
D E S C R I P C I Ó N
CAMPO DE LA INVENCIÓN
La presente invención se refiere a un método para determinar el estado de degradación de un aceite lubricante e hidráulico. Más en concreto se refiere a un método y un dispositivo para proporcionar una lectura precisa de la degradación global durante el uso de un aceite midiendo la transmitancia en el rango visible del espectro de luz de dicho aceite.
ANTECEDENTES DE LA INVENCIÓN
La necesidad del uso de sensores apropiados para llevar a cabo la monitorización del aceite industrial ha sido reconocida como un área crítica por ingenieros operativos, fabricantes de maquinaria y incluso por organismos de normas estándares especialmente durante los últimos años, donde la fiabilidad, eficiencia y seguridad sobre los procesos y/o productos juega un papel muy importante.
La maquinaría industrial, ya sean motores generadores de energía, como compresores, multiplicadoras etc. sufren muchas paradas y fallos debido a la degradación de aceites lubricantes e hidráulicos. Este problema da lugar a situaciones de riesgo cuando estas máquinas se emplean como componentes de sistemas más complejos, de manera que el efecto de una parada en estos casos es mucho peor tanto desde un punto de vista de coste como desde el punto de vista de la seguridad de la maquinaria.
La reducción de vida de servicio del equipo produce con frecuencia costos innecesarios de mantenimiento y las metodologías actuales de medición 'off-line' no proporcionan una detección suficientemente temprana del proceso de degradación. Además, en muchos entornos (transporte, industrial, energía...) esta metodología de control implica una carga logística y económica significativa, para un retorno muy pequeño. Para hacer frente a este problema, se está desarrollando una nueva generación de sensores que es capaz de realizar el análisis del estado de la máquina en tiempo real.
Teniendo todo esto en cuenta, el uso de sensores inteligentes permitirá a medio plazo la optimización del tiempo de vida, reduciendo costes y problemas en la maquinaria. La maquinaria crítica puede beneficiarse de un aumento de fiabilidad y el personal operacional puede aprovecharse de una reducción de carga en trabajos inadecuados de mantenimiento.
El proceso de degradación de un aceite sigue varios pasos totalmente conocidos: primero sufre una pérdida del contenido de aditivos para después generarse compuestos ácidos. El porcentaje de constituyentes ácidos (en forma de aditivos en el caso de lubricantes nuevos y en forma de compuestos de oxidación en el caso de los lubricantes en servicio) se determina mediante técnicas analíticas. Existen equipos de medida on-line como el descrito en la patente JP 2000146696 que utilizan la absorbancia en el rango visible del espectro electromagnético para correlacionarlo con el parámetro AN. Estos métodos presentan la limitación de que, aunque el AN es uno de los parámetros más indicativos del estado aceite lubricante, solo contempla la degradación oxidativa del aceite. Además, estos equipos no se pueden usar en motores debido a la carbonilla que se genera en el proceso de combustión. La carbonilla oscurece el aceite, de manera que el cambio de color no es debido a un cambio en el estado de degradación del aceite.
La patente U.S. Pat. No. 7,612,874 presenta un método y aparato para la monitorización del deterioro del aceite en tiempo real. Esta patente se basa en el cálculo del deterioro mediante el ratio cromático Cr=Ur/Ug (absorbancia en el rojo y en el verde), para determinar el deterioro térmico y oxidativo del aceite. El método sin embargo no permite conocer la vida remanente del aceite.
La patente U.S. Pat. No. 6,061 ,139 presenta un método y aparato para monitorizar la degradación térmica del lubricante. Este método utiliza la banda de 850 nm del espectro de luz para determinar el estado del aceite. La utilización de una única banda hace que no se tenga una sensibilidad muy alta y que se vea afectado el resultado por otros factores.
La patente RU2329502 utiliza también mediciones de la transmitancia el espectro de luz visible con los 3 rangos espectrales (rojo, verde y azul) para dar como resultado el contenido de "impurezas totales", partículas que se generan durante la degradación del aceite.
OBJETO DE LA INVENCIÓN
La presente invención tiene por objeto facilitar la monitorizacion en tiempo real y proporcionar un dispositivo y un método rápido y fiable de determinación del estado de degradación del aceite que resuelva los problemas expuestos anteriormente. El método y sensor ofrecen como resultado el índice de degradación del aceite (Oil Degradation, OD por sus siglas en inglés) que indica en porcentaje la degradación global en el momento de la monitorizacion o medida. El procedimiento comprende los siguientes pasos:
a. calcular los componentes en las bandas roja, verde y azul del espectro de la transmitancia del aceite sin usar, lR0, lGo e lB0
b. realizar varias medidas de la transmitancia del mismo aceite ya usado en las tres bandas y obtener la media aritmética, lR, lG e lB
c. calcular los índices del color del aceite usado y el índice de color de referencia como
Figure imgf000005_0001
CI ref= 1 *I RO+0,5*Igo+0,5IBO
d. obtener el valor de degradación global como OD(%)=100 - 100*LOGi0 (CIREF/CI). El dispositivo correspondiente comprende una fuente de luz blanca, una celda fluídica adaptada para el paso del aceite a través de la misma, un detector capaz de transformar la cantidad de luz emitida por la fuente y absorbida por el aceite en una señal eléctrica característica de la transmitancia en el visible y medios de programa para llevar a cabo el procedimiento anterior. Opcionalmente, comprende además un filtro de partículas y medios para eliminar las burbujas del aceite. BREVE DESCRIPCIÓN DE LAS FIGURAS
Con objeto de ayudar a una mejor comprensión de la presente descripción, acuerdo con un ejemplo preferente de realización práctica de la invención, se adjuntan las siguientes figuras, cuyo carácter es ilustrativo y no limitativo:
Figura 1 : es un esquema del principio de medida, donde se representa la intensidad de luz transmitida tras su paso por el aceite y que se recoge mediante el detector. Figura 2: es un esquema de la implementación del sensor de la invención en un sistema de lubricación.
Figuras 3a y 3b: son gráficos donde se representa el valor de la degradación de aceite (OD) medido según la invención, en comparación con los parámetros más representativos de la degradación de dos aceites. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En referencia a las figuras 1 y 2, el sensor de la invención (1 ) está ideado para ser instalado en un by-pass del sistema de lubricación (2). La instalación aprovecha la diferencia de presiones para que el aceite (5) circule a través del sensor. El aceite, después del by-pass, pasa por una serie de componentes hidráulicos dentro del sensor: una electroválvula que gestiona el paso del aceite por el dispositivo, un filtro de partículas para eliminar las partículas de cierto tamaño y un sistema para eliminar las burbujas que se generan en el sistema de circulación de aceite. Después de pasar por todos los elementos hidráulicos, el aceite pasa a la celda fluídica (3) que es donde se va a realizar la medida. Esta celda dispone de un paso de luz establecido. Con el aceite en la celda, se hace incidir un haz de luz blanca en el rango visible del espectro mediante un emisor tipo LED (8), y la luz que no es absorbida por el aceite se recoge mediante un detector (por ejemplo un fotodiodo). El detector (4) recoge la luz en varias longitudes de onda del espectro visible. Dicho rango del espectro abarca longitudes de onda desde 380nm hasta 780nm. Para las mediciones en el visible se usa espectroscopia de transmisión. Un haz de luz visible pasa a través del aceite dentro de la celda fluídica de vidrio. La intensidad de luz transmitida viene dada por la ley de Lambert-Beer: I(x) = I0e-Kx
K : constante de absorción
La técnica utilizada en los sensores del estado del arte para monitorizar la degradación de los aceites usados se basa en la búsqueda de información en el espectro visible, correlacionando las variables físico químicas del aceite lubricante (Acid Number AN, Viscosidad...) con el cambio de color de la muestra. El índice de degradación calculado mediante métodos conocidos es una mezcla de varios parámetros de laboratorio relacionados con la determinación del estado de degradación del aceite. Estos parámetros son el RUL (Remaining Useful Lifetime en inglés, vida remanente útil), Oxidación (FTIR, Fourier Transform InfraRed,), Acid Number (AN) y Viscosidad. Cada parámetro es indicativo a un cierto grado de degradación, por ejemplo el RUL es indicativo al principio del proceso de degradación, cuando se están consumiendo los aditivos. El AN y Oxidación por FTIR son indicativos después, cuando se comienzan a generar los primeros compuestos ácidos. En algunos casos el AN también es un buen indicativo de que se están perdiendo aditivos, ya que varía (decrece) su valor para después aumentar. La viscosidad es la última en variar, casi al final de la vida útil del aceite. El oscurecimiento o cambio de color del aceite en cambio se aprecia desde el principio hasta el final, desde que comienzan a consumirse los aditivos hasta que se degrada completamente. El porcentaje de transmitancia varía según se va degradando el aceite. Correlacionar todos estos parámetros para calcular el estado de degradación es, sin embargo, mucho más laborioso que aplicar el método de la invención.
Los aceites lubricantes pueden tener diferentes colores en su inicio. Los elementos responsables del color de un aceite lubricante son el aceite base y los aditivos.
• Aceite base: El color de un lubricante varía en función del grado de refino y del origen de petróleo refinado. Generalmente el color está estrechamente relacionado con el contenido en azufre y en aromáticos
• Aditivos: Algunos aditivos son determinantes del color del aceite final.
Concretamente, aquellos aditivos que contienen azufre en su composición, influyen más en el color final del mismo (como por ejemplo algunos aditivos detergentes o antioxidantes) Los lubricantes van oscureciéndose con el uso. Un cambio de color en un lubricante, indica algún tipo de contaminación, sobrecalentamiento, degradación excesiva o un lubricante inapropiado.
El método de cálculo de vida remanente del aceite mediante según la invención tiene en cuenta los componentes en las bandas roja, verde y azul de la transmitancia del aceite sin usar (de referencia o nuevo), lR0, lGo e lBo. Opcionalmente, para reducir el ruido en la señal, se efectúa una medida en oscuro (sin que incida luz sobre el detector) para restarla de las mediciones posteriores. A continuación se realizan varias medidas de la transmitancia (unas 50 preferentemente) y se obtiene una media aritmética de la transmitancia para cada color, con lo que se obtienen los valores lR, lG e lB (transmitancia en las tres bandas principales para el aceite usado). Mediante estos valores se obtiene el valor del índice de color del aceite que se mide mediante la fórmula y el del aceite de referencia.
Cl= 1 *IR+0,5*IG+0,5IB
CI REF= 1 *I RO+0,5*Igo+0,5IBO
Mediante el índice de color del aceite usado y del aceite de referencia se obtiene el valor de degradación del aceite (Oil Degradation, OD) que se calcula mediante:
OD(%)=100 - 100*LOG10 (CIREF/CI)
Cada usuario marcará los límites de degradación a su gusto pero se considera que el aceite estará agotado cuando el valor OD llegue a cero. También se pueden aplicar alarmas por ejemplo a los 10%, 20% o 30% para que se comience a vigilar la evolución del aceite.
En las figuras 3a y 3b se muestran ensayos realizados en para dos tipos de aceites: Fuch Renolyn 320 © y Shell Ornala HD 320 ©. El ensayo se ha realizado mediante el procedimiento expuesto anteriormente y se han obtenido diferentes grados de degradación hasta conseguir degradar totalmente el aceite ensayado. Mediante el sensor de la invención se ha obtenido el índice de degradación OD y se ha comparado con los parámetros de laboratorio.
En la figura 3 se presentan los resultados del proceso de degradación del aceite Fuch Renolyn 320 en los que se comparan los resultados del índice de degradación OD(%) con los diferentes parámetros de laboratorio; RUL, AN, Oxi por FTIR y Viscosidad. Se observa en gráfico del RUL que la variación de RUL es en la primera parte del proceso de degradación, mientras se están agotando los aditivos. La oxidación (Oxi) es el siguiente parámetro en comenzar a variar y después el AN. La viscosidad detecta cambios en estados de degradación avanzados.
En las figuras 3A y 3B se puede apreciar como el valor ofrecido por el sensor de la invención identifica de forma óptima la degradación del aceite, ya que el parámetro OD se comporta de manera muy estable durante todo el proceso de degradación del aceite, al contrario que otros parámetros. Se observa una relación directa del índice de degradación OD con el RUL en la primera parte del proceso de degradación. Se identifica también una relación inversa con el resto de parámetros. En este caso se observa que la viscosidad va variando durante toda la degradación y los parámetros Oxi (FTIR) y AN comienzan a variar más adelante.

Claims

REIVINDICACIONES
1 . Procedimiento para calcular la degradación global de un aceite lubricante usado, que comprende los siguientes pasos:
a. calcular los componentes en las bandas roja, verde y azul del espectro de la transmitancia del aceite sin usar, lR0, lGo e lBo
b. realizar varias medidas de la transmitancia del mismo aceite ya usado en las tres bandas y obtener la media aritmética, lR, lG e lB
c. calcular los índices del color del aceite usado y el índice de color de referencia como
Cl= 1 *I R+0,5*IG+0,5I B
CI REF= 1 *I RO+0,5*IGO+0,5IBO
d. obtener el valor de degradación global como OD(%)=1 00 - 1 00*LOG10 (CIREF/CI).
2. Dispositivo para determinar el estado de degradación de un aceite lubricante usado el cual comprende una fuente de luz blanca (8), una celda fluídica (3) adaptada para el paso del aceite a través de la misma, un detector (4) capaz de transformar la cantidad de luz emitida por la fuente y absorbida por el aceite en una señal eléctrica característica de la transmitancia en el visible y medios de programa para llevar a cabo el procedimiento de la reivindicación 1 con las medidas de la transmitancia.
3. Dispositivo según la reivindicación 2 que comprende además un filtro de partículas y medios para eliminar las burbujas del aceite.
PCT/ES2010/070582 2010-09-07 2010-09-07 Método y dispositivo para la determinación del estado de degradación de un aceite lubricante WO2012032197A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES10856908.8T ES2676649T3 (es) 2010-09-07 2010-09-07 Método y dispositivo para la determinación del estado de degradación de un aceite lubricante
US13/820,274 US9063075B2 (en) 2010-09-07 2010-09-07 Method and device for determining the state of degradation of a lubricant oil
JP2013526516A JP2013536939A (ja) 2010-09-07 2010-09-07 潤滑油の劣化状態を判定するための方法および装置
CN2010800689739A CN103210299A (zh) 2010-09-07 2010-09-07 用于确定润滑油衰变状态的方法和装置
PCT/ES2010/070582 WO2012032197A1 (es) 2010-09-07 2010-09-07 Método y dispositivo para la determinación del estado de degradación de un aceite lubricante
BR112013005216A BR112013005216A2 (pt) 2010-09-07 2010-09-07 "método para calcular a degradação global de um óleo lubrificante usado e dispositivo para determinar o estado de degradação de um óleo lubrificante usado"
DK10856908.8T DK2615444T3 (en) 2010-09-07 2010-09-07 Method and apparatus for determining the degradation state of a lubricating oil
EP10856908.8A EP2615444B1 (en) 2010-09-07 2010-09-07 Method and device for determining the state of degradation of a lubricant oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070582 WO2012032197A1 (es) 2010-09-07 2010-09-07 Método y dispositivo para la determinación del estado de degradación de un aceite lubricante

Publications (1)

Publication Number Publication Date
WO2012032197A1 true WO2012032197A1 (es) 2012-03-15

Family

ID=45810155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070582 WO2012032197A1 (es) 2010-09-07 2010-09-07 Método y dispositivo para la determinación del estado de degradación de un aceite lubricante

Country Status (8)

Country Link
US (1) US9063075B2 (es)
EP (1) EP2615444B1 (es)
JP (1) JP2013536939A (es)
CN (1) CN103210299A (es)
BR (1) BR112013005216A2 (es)
DK (1) DK2615444T3 (es)
ES (1) ES2676649T3 (es)
WO (1) WO2012032197A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019002651A1 (es) 2017-06-27 2019-01-03 Fundación Tekniker Sistema y método de monitorización del estado de un fluido
JP2020186941A (ja) * 2019-05-10 2020-11-19 株式会社日立製作所 潤滑油の診断方法および潤滑油の監視システム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839436B2 (ja) * 2010-12-02 2016-01-06 ナブテスコ株式会社 光学センサ
KR20180115335A (ko) 2010-12-02 2018-10-22 나부테스코 가부시키가이샤 산업 로봇용 감속기
FR3032531B1 (fr) * 2015-02-06 2017-03-10 Total Marketing Services Installation et procede de suivi de l'evolution de la basicite d'un lubrifiant
JP6409227B2 (ja) * 2015-03-30 2018-10-24 三菱重工業株式会社 油劣化度評価方法、油劣化度評価装置
MY175958A (en) * 2015-09-09 2020-07-16 Tnb Res Sdn Bhd Method for obtaining failure prognostic information of electrical power equipment
RU2606837C1 (ru) * 2015-09-14 2017-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" Способ определения цвета по шкале ЦНТ нефтяных масляных фракций
JP2017215254A (ja) * 2016-06-01 2017-12-07 株式会社Ihi 潤滑状態判定装置及び潤滑状態判定方法
CN106769910A (zh) * 2016-12-26 2017-05-31 广州机械科学研究院有限公司 一种油液颜色检测传感器
JP7099816B2 (ja) * 2017-10-27 2022-07-12 株式会社日立製作所 潤滑油の劣化診断方法、回転機械の潤滑油の監視システムおよび方法
WO2019103091A1 (ja) * 2017-11-22 2019-05-31 川崎重工業株式会社 機械装置の劣化診断装置、劣化診断装置において実行される機械装置の劣化診断方法、及び、機械装置の劣化診断方法
CN108931502B (zh) * 2018-06-01 2020-09-08 西安交通大学 红外点状激光发射器在线监测润滑脂衰变程度系统及方法
JP6954405B2 (ja) * 2019-05-16 2021-10-27 ダイキン工業株式会社 液体センサ及び油圧ユニット
JP6966714B2 (ja) * 2019-08-01 2021-11-17 ダイキン工業株式会社 液体劣化判定装置及び油圧ユニット
DE102020111029A1 (de) 2020-04-23 2021-10-28 Bayerische Motoren Werke Aktiengesellschaft Messvorrichtung zum optischen Messen einer Flüssigkeit
CN113640227B (zh) * 2021-08-24 2022-05-17 中国科学院兰州化学物理研究所 一种基于光热效应的润滑油衰变监测模型建立方法及监测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194910A (en) * 1990-07-31 1993-03-16 Gas Research Institute Use of optical spectrometry to evaluate the condition of used motor oil
US6061139A (en) 1996-10-04 2000-05-09 Hitachi, Ltd Nondestructive diagnostic method and nondestructive diagnostic apparatus
JP2000146696A (ja) 1998-11-05 2000-05-26 Mk Seiko Co Ltd オイル等の劣化判定方法および装置
US20080024761A1 (en) * 2006-07-27 2008-01-31 Hosung Kong Method and apparatus for monitoring oil deterioration in real time
RU2329502C1 (ru) 2006-11-28 2008-07-20 Государственное научное учреждение "Институт механики металлополимерных систем имени В.А. Белого Национальной академии наук Беларуси" Способ оперативного контроля работоспособности масла и устройство для его осуществления

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142447A (ja) * 1990-10-02 1992-05-15 Ishikawajima Harima Heavy Ind Co Ltd 潤滑油監視装置
JP3266637B2 (ja) * 1992-02-14 2002-03-18 出光興産株式会社 潤滑油劣化度判定方法およびその装置
JPH0634541A (ja) * 1992-07-14 1994-02-08 Nippon Oil Co Ltd 潤滑油劣化モニター装置
JP2963346B2 (ja) * 1994-08-22 1999-10-18 株式会社ジャパンエナジー 潤滑油の劣化検知方法
JPH1082735A (ja) * 1996-09-10 1998-03-31 Nippon Soken Inc 潤滑油中の不溶解分測定装置
JP4468046B2 (ja) * 2004-04-01 2010-05-26 株式会社構造計画研究所 鋼材から成る構造物の発錆状況判定装置、方法及びプログラム
JP4860576B2 (ja) * 2006-09-01 2012-01-25 中部電力株式会社 セルロース繊維の劣化判定方法および劣化判定装置
JP4833047B2 (ja) * 2006-12-06 2011-12-07 Ntn株式会社 軸受の潤滑剤劣化検出装置および検出装置付き軸受
KR100928947B1 (ko) * 2008-02-21 2009-11-30 한국과학기술연구원 통합형 인라인 오일 모니터링 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194910A (en) * 1990-07-31 1993-03-16 Gas Research Institute Use of optical spectrometry to evaluate the condition of used motor oil
US6061139A (en) 1996-10-04 2000-05-09 Hitachi, Ltd Nondestructive diagnostic method and nondestructive diagnostic apparatus
JP2000146696A (ja) 1998-11-05 2000-05-26 Mk Seiko Co Ltd オイル等の劣化判定方法および装置
US20080024761A1 (en) * 2006-07-27 2008-01-31 Hosung Kong Method and apparatus for monitoring oil deterioration in real time
US7612874B2 (en) 2006-07-27 2009-11-03 Korea Institute Of Science & Technology Method and apparatus for monitoring oil deterioration in real time
RU2329502C1 (ru) 2006-11-28 2008-07-20 Государственное научное учреждение "Институт механики металлополимерных систем имени В.А. Белого Национальной академии наук Беларуси" Способ оперативного контроля работоспособности масла и устройство для его осуществления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GORRITXATEGI ET AL.: "Nuevo metodo para la evaluacion del estado de calidad del lubricante basado in analisis espectrometrico visible", MANTENIMIENTO, no. 220, December 2008 (2008-12-01), pages 29 - 40, XP008172176 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019002651A1 (es) 2017-06-27 2019-01-03 Fundación Tekniker Sistema y método de monitorización del estado de un fluido
JP2020186941A (ja) * 2019-05-10 2020-11-19 株式会社日立製作所 潤滑油の診断方法および潤滑油の監視システム
JP7179674B2 (ja) 2019-05-10 2022-11-29 株式会社日立製作所 潤滑油の診断方法および潤滑油の監視システム

Also Published As

Publication number Publication date
EP2615444B1 (en) 2018-04-11
US9063075B2 (en) 2015-06-23
US20140146307A1 (en) 2014-05-29
ES2676649T3 (es) 2018-07-23
EP2615444A4 (en) 2017-04-12
EP2615444A1 (en) 2013-07-17
CN103210299A (zh) 2013-07-17
BR112013005216A2 (pt) 2016-04-26
JP2013536939A (ja) 2013-09-26
DK2615444T3 (en) 2018-07-23

Similar Documents

Publication Publication Date Title
WO2012032197A1 (es) Método y dispositivo para la determinación del estado de degradación de un aceite lubricante
JP6618485B2 (ja) 潤滑油の管理方法および潤滑油の寿命予測方法
KR100795373B1 (ko) 오일 열화 실시간 모니터링 방법 및 장치
US9689802B2 (en) Systems, methods and apparatus for analysis of multiphase fluid mixture in pipelines
CN108603838B (zh) 利用荧光上升时间确定油的劣化
JP7099816B2 (ja) 潤滑油の劣化診断方法、回転機械の潤滑油の監視システムおよび方法
IL167479A (en) Fluid condition monitor
JP2008542713A (ja) 使用中の潤滑油の鉄含有量の定量方法及びテストキット
RU2329502C1 (ru) Способ оперативного контроля работоспособности масла и устройство для его осуществления
US20200200673A1 (en) Inferential fluid condition sensor and method thereof
JP5938620B2 (ja) 潤滑剤の劣化度評価装置及び劣化度評価方法
Sharma et al. IoT based dipstick type engine oil level and impurities monitoring system: a portable online spectrophotometer
EP3327736B1 (en) Method for determining abnormality in oil-filled electric apparatus
WO2010107893A2 (en) Method and test kit for the determination of iron content of in-use lubricants
Victor Ossia et al. Utilization of color change in the condition monitoring of synthetic hydraulic oils
Glos et al. Monitoring an Engine Condition based on Tribological Diagnostics in Military Vehicles
Fentress et al. The use of linear sweep voltammetry in condition monitoring of diesel engine oil
JP7499712B2 (ja) 潤滑油の診断方法およびシステム
Sharma et al. IoT based engine oil sludge monitoring system: a portable colorimetric analyzer
Horwich et al. Using accurate online oil condition monitoring sensor data to improve HUMS
Lee et al. Design of Optical Biological Sensor for Phycocyanin Parameters Measurement using Fluorescence Technique
KR20220014518A (ko) 엔진 오일 산화도 측정 장치
Li et al. Study on Light Scattering Method to Monitor Vehicle Lubricant Performance
Andrews et al. Comparison of lubricant oil antioxidant analysis using remaining useful life of lubricant oil determined by fluorescence spectroscopy and linear sweep voltammetry
Kowalik et al. Advancements in Grease Sampling and Analysis Using Simple Screening Techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526516

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010856908

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13820274

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013005216

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013005216

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130304