WO2012026723A9 - 비정상적인 핵산 중합 효소의 활성을 이용한 금속이온의 검출방법 및 이를 이용한 논리게이트 - Google Patents

비정상적인 핵산 중합 효소의 활성을 이용한 금속이온의 검출방법 및 이를 이용한 논리게이트 Download PDF

Info

Publication number
WO2012026723A9
WO2012026723A9 PCT/KR2011/006182 KR2011006182W WO2012026723A9 WO 2012026723 A9 WO2012026723 A9 WO 2012026723A9 KR 2011006182 W KR2011006182 W KR 2011006182W WO 2012026723 A9 WO2012026723 A9 WO 2012026723A9
Authority
WO
WIPO (PCT)
Prior art keywords
ions
present
logic gate
mercury
silver ions
Prior art date
Application number
PCT/KR2011/006182
Other languages
English (en)
French (fr)
Other versions
WO2012026723A2 (ko
WO2012026723A3 (ko
Inventor
박현규
박기수
정철희
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2012026723A2 publication Critical patent/WO2012026723A2/ko
Publication of WO2012026723A3 publication Critical patent/WO2012026723A3/ko
Publication of WO2012026723A9 publication Critical patent/WO2012026723A9/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors

Definitions

  • the present invention relates to a method for detecting metal ions and a logic gate using abnormal nucleic acid polymerase activity, and more specifically, to specific binding of thymine-thymine base pair and mercury ions or to specific binding of cytosine-cytosine base pair to silver ions.
  • the present invention relates to a method for detecting mercury or silver using an abnormal nucleic acid polymerase activity induced by non-complementary thymine-mercury-thymine or cytosine-silver-cytosine base pairs, and a logic gate using the same.
  • DNAzyme DNAzyme
  • metal ions and nucleobases or synthesized nucleobases of nucleic acids can form stabilized base pairs through specific coordination bonds (Clever et. Al., Angew. Chem. Int Ed., 46; 6262, 2007).
  • This molecular logic gate is a device capable of performing basic logic AND, NOT and OR, or a combination thereof, and plays a role similar to the electronic logic gate of a computer microprocessor (de silva et. Al., Nat Nanotechnol., 2; 399, 2007).
  • nucleic acids as constituents for the implementation of logic gates at the molecular level have attracted attention due to their structural simplicity, hybridization with complementary strands, and the ability to specifically capture specific target substances.
  • the present inventors have made intensive efforts to develop a logic gate for use in molecular computer construction that does not require expensive RNA and complex system design.
  • abnormal nucleic acids are formed by forming non-complementary thymine-Hg 2+ -thymine base pair or cytosine-Ag + -cytosine base pair base pairs.
  • By inducing the activity of the polymerase and measuring the abnormal activity of the nucleic acid polymerase it is possible to determine the presence or absence of mercury ions or silver ions, it is possible to implement a logic gate capable of logical output signal control It confirmed and completed this invention.
  • An object of the present invention is to provide a method for detecting metal ions using the activity of abnormal nucleic acid polymerase that does not require expensive equipment and complicated systems.
  • Another object of the present invention is to provide a molecular level logic gate capable of regulating logical output signals using abnormal nucleic acid polymerase activity.
  • the present invention comprises the steps of (a) amplifying the template DNA with a DNA polymerase using a primer designed to form thymine-thymine base pairs; And (b) detecting the presence or absence of mercury ions with or without the amplification product.
  • the present invention also includes the steps of: (a) amplifying template DNA with a DNA polymerase using primers designed to form cytosine-cytosine base pairs; And (b) detecting the presence or absence of silver ions with or without the amplification product.
  • the present invention also provides a method for amplifying a template DNA with (a) a DNA polymerase using a pair of primers designed to form thymine-thymine base pairs and primers designed to form cytosine-cytosine base pairs; And (b) detecting the presence or absence of mercury ions and silver ions with or without the amplification product.
  • the present invention also provides a method for amplifying a template DNA using (a) a pair of primers designed to form thymine-thymine base pairs and a pair of primers designed to form cytosine-cytosine base pairs; And (b) detecting the presence or absence of mercury ions or silver ions with or without the amplification product.
  • the present invention also amplifies the template DNA with a DNA polymerase using a primer designed to form a thymine-thymine base pair in a Yes logic gate, and " 1 " and a mercury ion when mercury ions are present as input signals. If not specified, it is set as “0", and as the output signal, "1" if an amplification product is present and “0" if an amplification product is not present are provided.
  • the present invention also amplifies the template DNA with a DNA polymerase using a primer designed to form a cytosine-cytosine base pair in a Yes logic gate, and "1" and silver ions are present when silver ions are present as input signals. If not specified, it is set as “0", and as the output signal, "1” if an amplification product is present and “0” if an amplification product is not present are provided.
  • the present invention also amplifies the template DNA with a DNA polymerase by using a forward primer designed to form a thymine-thymine base pair and an reverse primer designed to form a cytosine-cytosine base pair in an AND logic gate, "1” if mercury ions and silver ions are present, and "0” if mercury ions and silver ions are not present.
  • the output signal is "1” if amplification products are present and "if no amplification products are present.” It provides an AND logic gate of 0 ".
  • the present invention also amplifies template DNA with a DNA polymerase using a pair of primers designed to form thymine-thymine base pairs and a pair of primers designed to form cytosine-cytosine base pairs in an OR logic gate. , If the mercury ion or silver ion is present as an input signal, it is designated as “1” and if the mercury ion and silver ion are not present, the output signal is designated as "1". If not present, the OR logic gate is specified as "0".
  • Figure 1 shows a schematic diagram of a method of inducing the activity of abnormal nucleic acid polymerase by mercury or silver ions.
  • Figure 2 is a result confirmed by the electrophoretic analysis of the PCR results according to the presence or absence of mercury ions or silver ions.
  • Figure 3 is a result confirmed by the electrophoretic analysis of the PCR product treated with metal ions other than mercury ions or silver ions.
  • FIG. 4 is a schematic diagram (a) of a yes logic gate implemented using the method of Example 1, a gel band photograph (b) as an output signal of a YES logic gate, and a fluorescence signal as an output signal of a quantitative YES logic gate. (c) and the truth table (d) of the YES logic gate.
  • FIG. 5 is a schematic diagram (a) of an AND logic gate implemented using the method of Example 1, a gel band photograph (b) as an output signal of an AND logic gate, and a fluorescence signal as an output signal of a quantitative AND logic gate. (c) and the truth table (d) of the AND logic gate.
  • FIG. 6 is a schematic diagram (a) of an OR logic gate implemented using the method of Example 1, a gel band photograph (b) as an output signal of an OR logic gate, and a fluorescence signal as an output signal of a quantitative OR logic gate. (c) and the truth table (d) of the OR logic gate.
  • the present invention in one aspect, the method comprising the steps of: (a) amplifying the template DNA with a DNA polymerase using a primer designed to form thymine-thymine base pairs; And (b) detecting the presence or absence of mercury ions with or without the amplification product.
  • the amplification product when the amplification product is generated, it may be characterized in that the presence of mercury ions, the amplification can be performed by PCR, the amplification product using an electrophoretic analysis or a fluorescent die It may be characterized by checking through a fluorescent signal.
  • the presence or absence of the mercury ion can be detected using a logic gate, wherein the logic gate is "1" when mercury ions are present as an input signal and "if no mercury ions are present". It can be characterized in that the logic gates "Y”, and specify “1” if the amplification product is present as the output signal, and "0” if the amplification product is not present.
  • the present invention provides a method for preparing a cytoplasmic cell comprising (a) amplifying template DNA with a DNA polymerase using a primer designed to form cytosine-cytosine base pairs; And (b) detecting the presence or absence of silver ions with or without the amplification product.
  • the amplification product when the amplification product is generated, it may be characterized in that the silver ions are present, the amplification can be performed by PCR, the amplification product is electrophoretic analysis or using a fluorescent die It may be characterized by checking through a fluorescent signal.
  • the presence or absence of the detection of the silver ions may be characterized in that the detection using a logic gate, the logic gate is “1" in the presence of silver ions as the input signal and "in the absence of silver ions” It can be characterized in that the logic gates "Y”, and specify “1” if the amplification product is present as the output signal, and "0” if the amplification product is not present.
  • the present invention provides a method for preparing a thymine-thymine base pair, comprising: (a) amplifying template DNA with a DNA polymerase using a forward primer designed to form a thymine-thymine base pair and a reverse primer designed to form a cytosine-cytosine base pair; And (b) detecting the presence or absence of mercury ions and silver ions with or without the amplification product.
  • the amplification product when the amplification product is generated, it may be characterized in that the mercury ions and silver ions are read, the amplification may be carried out by PCR, the amplification products are electrophoretic analysis or fluorescence It may be characterized by checking through a fluorescent signal using a die.
  • the presence or absence of the mercury ions and silver ions can be detected by using a logic gate, the logic gate is “1" and the mercury ion and the mercury ion and silver ions when the presence of the input signal and It may be characterized in that it is an AND logic gate that is designated as "0" when no ions are present, and "1" when an amplification product is present as an output signal and "0" when no amplification product is present.
  • the present invention provides a method for amplifying template DNA with a DNA polymerase using (a) a pair of primers designed to form thymine-thymine base pairs and a pair of primers designed to form cytosine-cytosine base pairs. step; And (b) detecting mercury ions or silver ions with or without the amplification product.
  • the amplification product when the amplification product is generated, it may be characterized in that the presence of mercury ions or silver ions, the amplification can be carried out by PCR, the amplification products are electrophoretic analysis or fluorescence It may be characterized by checking through a fluorescent signal using a die.
  • the presence or absence of the mercury ions or silver ions can be detected by using a logic gate, the logic gate is “1” and the mercury ion and the mercury ion and the mercury ion,
  • the silver ions may be designated as “0” when no ions are present, and as “1” when an amplification product is present as an output signal, and "0" when no amplification product is present.
  • the present invention provides amplification of template DNA with a DNA polymerase using a primer designed to form a thymine-thymine base pair in a Yes logic gate, and "1" and mercury when mercury ions are present as an input signal. If the ion is not present, it is designated as “0”, and the output signal relates to the logic logic gate of Yes, which is designated as "1” if an amplification product is present and "0" if no amplification product is present.
  • the logic gate according to the present invention can perform a role similar to that of an electronic logic gate of a computer microprocessor.
  • the logic gate is inexpensive because it does not require expensive RNA or chimeric DNA, and is easily and simply logically combined by a combination of metal ions.
  • the advantage is that the output signal can be adjusted.
  • the present invention provides amplification of template DNA with a DNA polymerase using a primer designed to form a cytosine-cytosine base pair in a Yes logic gate, and “1” and silver when silver ions are present as an input signal. If the ion is not present, it is designated as "0", and the output signal relates to the logic logic gate of Yes, which is designated as "1” if an amplification product is present and "0" if no amplification product is present.
  • the present invention provides amplification of template DNA with a DNA polymerase using a forward primer designed to form a thymine-thymine base pair and a reverse primer designed to form a cytosine-cytosine base pair in an AND logic gate, "1" if mercury ions and silver ions are present as input signals, and "0” if mercury ions and silver ions are not present. If amplification products are present, “1” and amplification products are not present. Otherwise, the AND logic gate is set to "0".
  • the present invention provides a template DNA with a DNA polymerase by using a pair of primers designed to form thymine-thymine base pairs and a pair of primers designed to form cytosine-cytosine base pairs in an OR logic gate. Amplify and designate "1” if mercury ions or silver ions are present as an input signal, and "0” if mercury ions and silver ions are not present, and "1" and amplified amplification products as output signals. If no amplification product is present, the OR logic gate is set to "0".
  • the nucleic acid polymerase inactivated using a mismatched base pair was treated with metal ions to induce abnormal nucleic acid polymerase activity (FIG. 1).
  • FOG. 1 abnormal nucleic acid polymerase activity
  • a pair of forward and reverse primers designed to include thymine-thymine base pairs mismatched with the template DNA by including thymine base at the 3 'end, and cytosine base at the 3' end with silver ions PCR and amplification of 600bp
  • mismatched thymine-thymine base pairs only form stable base pairs through coordination bonds with mercury ions only when mercury ions are present, leading to abnormal nucleic acid polymerase activity, resulting in PCR amplification products.
  • mismatched cytosine-cytosine base pairs only form stable base pairs through coordination bonds with silver ions to induce abnormal nucleic acid polymerase activity, resulting in PCR amplification products. It was. On the other hand, it was confirmed that PCR amplification products are not formed when other metal ions are present. This means that mercury ions or silver ions act on specifically mismatched base pairs and induce abnormal polymerase activity.
  • the presence or absence of mercury ions is set as an input signal according to the truth table of the YES logic gate and '1' if mercury ions are present. '0', and the PCR amplification product is formed as an output signal, and the gel band formation and fluorescence signal increase are '1', and when the PCR amplification product is not formed, '0'.
  • the presence or absence of mercury ions and silver ions are respectively set as input signals according to the truth table of the AND logic gate and '1' if mercury ions or silver ions are present in each input signal, and '0' if none.
  • the PCR amplification product is formed as an output signal, and the gel band formation and fluorescence signal increase are set to '1', and when the PCR amplification product is not formed, '0' is implemented. It was.
  • the presence or absence of mercury ions and silver ions are respectively set as input signals according to the truth table of the OR logic gate and '1' if mercury ions or silver ions are present in each input signal, and '0' if none.
  • the PCR amplification product is formed as an output signal, and the gel band formation and fluorescence signal increase are set to '1', and when the PCR amplification product is not formed, '0' is implemented. It was.
  • a pair of forward and reverse primers designed to include thymine base pairs at the 3 'end to form mismatched thymine-thymine base pairs, and cytosine base at the 3' end if the metal ion is a silver ion. Specificity of induction of nucleic acid polymerase activity was tested using forward and reverse primers designed to form mismatched cytosine-cytosine base pairs and template DNA of 600 bp, 10 7 copies.
  • the cycle was repeated 30 times for 20 seconds at 94 ° C, 42 seconds at 53 ° C, 40 seconds at 72 ° C, and then lasted for 5 minutes at 72 ° C.
  • the nucleic acid amplification process was completed.
  • the metal ion is 10 ⁇ M of Zn 2+ , Ca 2+ , Pb 2+ , Mn 2+ , Fe 3+ , Cu 2+ , K + , Ni 2+ , Co 2 in addition to mercury or silver ions.
  • thymine-thymine base pairs that are mismatched only when mercury ions are present form stable base pairs through coordination bonds with mercury ions, leading to abnormal nucleic acid polymerase activity, resulting in PCR. It was confirmed that an amplification product was obtained (FIG. 3A).
  • mismatched cytosine-cytosine base pairs only form stable base pairs through coordination bonds with silver ions to induce abnormal nucleic acid polymerase activity, resulting in PCR amplification products. ( Figure 3b).
  • PCR amplification products are not formed when other metal ions are present. This means that mercury ions or silver ions act on base pairs that are specifically mismatched, leading to abnormal polymerase activity.
  • a YES logic gate was implemented based on the method of inducing abnormal nucleic acid polymerization activity by the metal ion of Example 1. According to the truth table of the YES logic gate, the presence or absence of mercury ions was set as an input signal and '1' if mercury ions were present, and '0' if no mercury ions were present. Formation and increase in fluorescence signal were designated as '1' and '0' when no PCR amplification product was formed.
  • amplification products were generated using a forward primer, a pair of reverse primers, and a Taq polymerase designed to form thymine-thymine base pairs mismatched with template DNA by including thymine base at the 3 ′ end.
  • the PCR amplification product which is an output signal of the YES logic gate, is real-time using a gel band photograph by electrophoresis analysis (FIG. 4B) and an Evagreen fluorescent dye specific to double-stranded DNA for obtaining a quantitative logic gate output signal. Fluorescence signals were measured in a PCR machine (FIG. 4C).
  • AND logic gate was implemented based on the method of inducing abnormal nucleic acid polymerization activity by the metal ion of Example 1. According to the truth table of the AND logic gate, the presence or absence of mercury ions and silver ions were set as input signals, and '1' if mercury ions or silver ions were present in each input signal, and '0' if none was present. The formation of the amplified product is an output signal, the gel band formation and the increase in the fluorescence signal is set to '1', if the PCR amplification product is not formed as '0'.
  • Taq polymerase was used for the implementation of the AND gate, and the forward primer and the silver ion were designed to form thymine-thymine base pairs mismatched with the template DNA, including thymine base at the 3 'end for specific reaction with the mercury ion.
  • PCR amplification was performed only in the presence of both mercury and silver ions using simultaneous reverse primers designed to form mismatched cytosine-cytosine base pairs with template DNA, including cytosine bases at the 3 'end for the specific reaction of It was designed to form.
  • PCR amplification products were generated only when both mercury ions and silver ions were present according to the AND logic gate truth table definition, and the AND logic gate could be implemented.
  • the PCR amplification product which is an output signal of the AND logic gate, is real-time using a gel band photograph by electrophoresis analysis (FIG. 5B) and an Evagreen fluorescent dye specific to double-stranded DNA for obtaining a quantitative logic gate output signal. Fluorescence signals were measured in a PCR machine (FIG. 5C).
  • An OR logic gate was implemented based on the method of inducing abnormal nucleic acid polymerization activity by the metal ion of Example 1. According to the truth table of the OR logic gate, the presence or absence of mercury ions and silver ions was set as input signals, respectively, and '1' if mercury ions or silver ions were present in each input signal, and '0' if none was present. The formation of the amplified product is an output signal, the gel band formation and the increase in the fluorescence signal is set to '1', if the PCR amplification product is not formed as '0'.
  • Taq nucleic acid polymerase was used for the implementation of the OR logic gate, and a pair of forward primers and reverse primers and silver ions designed to form thymine-thymine base pairs, including thymine base at the 3 'end, mismatched with template DNA
  • both mercury and silver ions may be present, or both, using a pair of forward and reverse primers designed to form cytosine-cytosine base pairs mismatched with template DNA, including cytosine bases at the 3 'end.
  • the PCR amplification was designed to form an amplification product.
  • PCR amplification products were generated except that neither mercury ions nor silver ions exist, and an OR logic gate could be implemented.
  • the PCR amplification product which is an output signal of the OR logic gate, is real-time using a gel band photograph by electrophoresis analysis (FIG. 6B) and an Evagreen fluorescent dye specific to double-stranded DNA for obtaining a quantitative logic gate output signal. Fluorescence signals were measured in a PCR machine (FIG. 6C).
  • the method of detecting metal ions using the activity of the abnormal nucleic acid polymerase according to the present invention is inexpensive and easily detects metal ions, and requires expensive RNA or chimeric DNA, which is expensive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)

Abstract

본 발명은 비정상적인 핵산 중합 효소의 활성을 이용한 금속이온의 검출방법 및 논리게이트에 관한 것으로, 보다 구체적으로, 티민-티민 염기쌍과 수은 이온의 특이적인 결합 또는 시토신-시토신 염기쌍과 은 이온의 특이적인 결합을 통해 형성되는 비상보적인 티민-수은-티민 또는 시토신-은-시토신 염기쌍에 의해 유도되는 비정상적인 핵산 중합 효소의 활성을 이용한 수은 또는 은의 검출방법 및 이를 이용한 논리게이트에 관한 것이다. 본 발명에 따른 비정상적인 핵산 중합 효소의 활성을 이용한 금속이온의 검출방법은 비용이 저렴하고 손쉽게 금속이온을 검출할 수 있으며, 값비싼 RNA 또는 키메릭 DNA가 필요하여 비용이 많이 들고, 시스템 디자인 및 작동의 어려움을 가져 실질적인 적용이 힘들었던 종래 핵산 기반의 논리게이트와 비교하여 비용이 저렴하고, 논리적인 출력 신호 조절이 가능한 분자 수준의 논리게이트로의 실질적인 적용이 용이하다.

Description

비정상적인 핵산 중합 효소의 활성을 이용한 금속이온의 검출방법 및 이를 이용한 논리게이트
본 발명은 비정상적인 핵산 중합 효소의 활성을 이용한 금속이온의 검출방법 및 논리게이트에 관한 것으로, 보다 구체적으로, 티민-티민 염기쌍과 수은 이온의 특이적인 결합 또는 시토신-시토신 염기쌍과 은 이온의 특이적인 결합을 통해 형성되는 비상보적인 티민-수은-티민 또는 시토신-은-시토신 염기쌍에 의해 유도되는 비정상적인 핵산 중합 효소의 활성을 이용한 수은 또는 은의 검출방법 및 이를 이용한 논리게이트에 관한 것이다.
금속이온을 검출하기 위한 방법으로 최근, 금속이온과 핵산과의 특이적인 상호작용과 관련된 많은 연구가 수행되어 오고 있으며, 이와 같은 특이적 상호작용의 예로는 특정 금속이온과 결합하는 압타머(aptamer) 및 효소 촉매 활성을 위한 조효소로서 특정 금속이온과의 결합을 필요로 하는 디엔에이자임(DNAzyme) 등이 보고되어져 있다 (Liu et. al., Chem. Rev., 109;1948, 2009). 이 외에도 핵산의 뉴클레오베이스(nucleobase) 혹은 합성된 뉴클레오베이스와 금속이온이 특이적인 배위 결합을 통해 안정화 된 염기쌍을 형성 할 수 있다는 것이 보고되어 있다 (Clever et. al., Angew. Chem. Int. Ed., 46;6226, 2007).
이러한 핵산과 금속이온의 특이적인 상호작용은 값싸고 손쉽게 금속이온을 검출하기 위한 방법의 기본 이론을 제공하였으며, 검출 신호 방법(형광, 전기화학 및 발색 신호)과의 결합을 통해 다양한 금속이온을 검출하는 방법들이 개발되어지고 있다. 예를 들면, 칼륨 이온에 특이적으로 결합하는 압타머를 이용하여 칼륨 이온을 검출하는 방법(Ueyama et. al., J. Am. Chem. Soc., 124;14286, 2002), 효소촉매 활성을 위한 조효소로 구리 이온, 납 이온 및 우라늄 이온을 필요로 하는 디엔에이자임을 이용한 금속이온 검출 방법(Santoro et. al., J. Am. Chem. Soc., 122;2433, 2000), 그리고 잘못 짝지어진 염기쌍(티민-티민 혹은 시토신-시토신)의 특이적인 금속이온과의 친화성을 기반으로 수은 및 은 이온의 검출 방법들이 개발되어오고 있다 (Miyake et. al., J. Am. Chem. Soc., 128;2172, 2006; Xue et. al., J. Am. Chem. Soc., 130;3244. 2008; Ono et. al., Chem. Commun., 4825, 2008).
상기 언급한 금속이온과 핵산의 특이적인 상호작용은 한 걸음 더 나아가 분자 수준의 논리게이트 구현으로 응용되어지고 있다 (Freeman et. al., Angew. Chem. Int. Ed., 48;7818, 2009). 이 분자 논리게이트는 기본적인 논리 AND, NOT 및 OR 혹은 그들의 조합을 수행할 수 있는 장치를 의미하며, 컴퓨터 마이크로프로세서(microprocessor)의 전자 논리게이트와 유사한 역할을 수행한다 (de silva et. al., Nat. Nanotechnol., 2;399, 2007). 특히, 분자 수준의 논리게이트 구현을 위한 구성 요소로 핵산은 구조적 단순함 및 상보적인 가닥과의 혼성화 그리고 특정 목적 물질을 특이적으로 잡을 수 있는 특성으로 인하여 주목을 받고 있다. 하지만 기존의 핵산 기반의 논리게이트는 각각의 입력 분자에 상응하여 게이트를 작동시키기 위한 복잡한 디자인을 요구하며, 값비싼 RNA 혹은 키메릭(chimeric) DNA(적어도 하나의 리보뉴클레오타이드 염기를 포함하는 올리고뉴클레오타이드)를 필요로 한다 (Moshe et al., Nano Lett., 9;1196, 2009). 이러한 문제점들은 논리게이트 구현을 위한 비용 상승, 시스템 디자인 및 작동의 어려움을 유발시키며, 이로 인하여 실제적인 적용이 힘들다는 단점을 가지고 있다.
이에. 본 발명자들은 값비싼 RNA 및 복잡한 시스템 설계를 요구하지 않는 분자수준의 컴퓨터 제작에 사용되는 논리게이트를 개발하고자 예의 노력한 결과, 티민-티민 또는 시토신-시토신 염기쌍에 의해 활성이 억제된 핵산 중합 효소에 수은 이온 또는 은 이온을 처리할 경우, 비 상보적인 티민-수은-티민 (thymine-Hg2+-thymine base pair) 또는 시토신-은-시토신(cytosine-Ag+-cytosine base pair) 염기쌍을 형성시켜 비정상적인 핵산 중합 (polymerase) 효소의 활성을 유도시키고, 상기 핵산 중합 효소의 비정상적인 활성을 측정함으로써, 수은 이온 또는 은 이온의 존재 유무 판별이 가능하고, 논리적인 출력 신호 조절이 가능한 논리게이트의 구현이 가능하다는 것을 확인하고 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은, 값비싼 장비 및 복잡한 시스템이 필요 없는 비정상적인 핵산 중합 효소의 활성을 이용한 금속 이온의 검출방법을 제공하는데 있다.
본 발명의 다른 목적은, 비정상적인 핵산 중합 효소의 활성을 이용한 논리적인 출력 신호 조절이 가능한 분자 수준의 논리게이트를 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (a) 티민-티민 염기쌍을 형성하도록 디자인된 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭하는 단계; 및 (b) 상기 증폭산물의 유무로 수은 이온의 유무를 검출하는 단계를 포함하는 수은 이온의 검출방법을 제공한다.
본 발명은 또한, (a) 시토신-시토신 염기쌍을 형성하도록 디자인된 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭하는 단계; 및 (b) 상기 증폭산물의 유무로 은 이온의 유무를 검출하는 단계를 포함하는 은 이온의 검출방법을 제공한다.
본 발명은 또한, (a) 티민-티민 염기쌍을 형성하도록 디자인된 프라이머 및 시토신-시토신 염기쌍을 형성하도록 디자인된 프라이머의 쌍을 이용하여 DNA 중합효소로 주형 DNA를 증폭하는 단계; 및 (b) 상기 증폭산물의 유무로 수은 이온 및 은 이온의 유무를 검출하는 단계를 포함하는 수은 이온 및 은 이온의 검출방법을 제공한다.
본 발명은 또한, (a) 티민-티민 염기쌍을 형성하도록 디자인된 한 쌍의 프라이머 및 시토신-시토신 염기쌍을 형성하도록 디자인된 한 쌍의 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭하는 단계; 및 (b) 상기 증폭산물의 유무로 수은 이온 또는 은 이온의 유무를 검출하는 단계를 포함하는 수은 이온 또는 은 이온의 검출방법을 제공한다.
본 발명은 또한, Yes 논리게이트에 있어서, 티민-티민 염기쌍을 형성하도록 디자인된 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭시키고, 입력신호로 수은 이온이 존재할 경우 "1" 및 수은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로는 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 Yes 논리게이트를 제공한다.
본 발명은 또한, Yes 논리게이트에 있어서, 시토신-시토신 염기쌍을 형성하도록 디자인된 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭시키고, 입력신호로 은 이온이 존재할 경우 "1" 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로는 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 Yes 논리게이트를 제공한다.
본 발명은 또한, AND 논리게이트에 있어서, 티민-티민 염기쌍을 형성하도록 디자인된 순방향 프라이머 및 시토신-시토신 염기쌍을 형성하도록 디자인된 역방향 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭시키고, 입력신호로 수은 이온 및 은 이온이 존재할 경우 "1" 및 수은 이온 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로는 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 AND 논리게이트를 제공한다.
본 발명은 또한, OR 논리게이트에 있어서, 티민-티민 염기쌍을 형성하도록 디자인된 한 쌍의 프라이머 및 시토신-시토신 염기쌍을 형성하도록 디자인된 한 쌍의 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭시키고, 입력신호로 수은 이온 또는 은 이온이 존재할 경우 "1" 및 수은 이온 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로는 증폭 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 OR 논리게이트를 제공한다.
본 발명의 다른 특징 및 구현예는 다음의 상세한 설명 및 첨부된 특허청구범위로부터 더욱 명백해 질 것이다.
도 1은 수은 또는 은 이온에 의한 비정상적인 핵산 중합 효소의 활성 유도방법에 대한 모식도를 나타낸 것이다.
도 2는 수은 이온 또는 은 이온의 존재 유무 결과에 따른 PCR 결과물을 전기영동 분석을 통하여 확인한 결과이다.
도 3은 수은 이온 또는 은 이온 이외의 다른 금속이온들을 처리한 PCR 결과물을 전기영동 분석을 통하여 확인한 결과이다.
도 4는 실시예 1의 방법을 이용하여 구현된 예스(Yes) 논리게이트의 모식도(a), YES 논리게이트의 출력 신호인 젤 밴드 사진(b), 정량적인 YES 논리게이트의 출력 신호인 형광 신호(c) 및 YES 논리게이트의 진리표(d)를 나타낸 것이다.
도 5는 실시예 1의 방법을 이용하여 구현된 앤드(AND) 논리게이트의 모식도(a), AND 논리게이트의 출력 신호인 젤 밴드 사진(b), 정량적인 AND 논리게이트의 출력 신호인 형광 신호(c) 및 AND 논리게이트의 진리표(d)를 나타낸 것이다.
도 6은 실시예 1의 방법을 이용하여 구현된 오알(OR) 논리게이트의 모식도(a), OR 논리게이트의 출력 신호인 젤 밴드 사진(b), 정량적인 OR 논리게이트의 출력 신호인 형광 신호(c) 및 OR 논리게이트의 진리표(d)를 나타낸 것이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 일 관점에서, (a) 티민-티민 염기쌍을 형성하도록 디자인된 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭하는 단계; 및 (b) 상기 증폭산물의 유무로 수은 이온의 유무를 검출하는 단계를 포함하는 수은 이온의 검출방법에 관한 것이다.
본 발명에 있어서, 증폭산물이 생성된 경우, 수은 이온이 존재하는 것으로 판독하는 것을 특징으로 할 수 있으며, 상기 증폭은 PCR에 의하여 수행될 수 있고, 상기 증폭산물은 전기영동 분석 또는 형광 다이를 이용한 형광신호를 통해 확인하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 수은 이온의 유무 검출은 논리게이트를 사용하여 검출하는 것을 특징으로 할 수 있으며, 상기 논리게이트는 입력신호로 수은 이온이 존재할 경우 "1" 및 수은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 Yes 논리게이트인 것을 특징으로 할 수 있다.
본 발명은 다른 관점에서, (a) 시토신-시토신 염기쌍을 형성하도록 디자인된 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭하는 단계; 및 (b) 상기 증폭산물의 유무로 은 이온의 유무를 검출하는 단계를 포함하는 은 이온의 검출방법에 관한 것이다.
본 발명에 있어서, 증폭산물이 생성된 경우, 은 이온이 존재하는 것으로 판독하는 것을 특징으로 할 수 있으며, 상기 증폭은 PCR에 의하여 수행될 수 있고, 상기 증폭산물은 전기영동 분석 또는 형광 다이를 이용한 형광신호를 통해 확인하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 은 이온의 유무 검출은 논리게이트를 사용하여 검출하는 것을 특징으로 할 수 있으며, 상기 논리게이트는 입력신호로 은 이온이 존재할 경우 "1" 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 Yes 논리게이트인 것을 특징으로 할 수 있다.
본 발명은 또 다른 관점에서, (a) 티민-티민 염기쌍을 형성하도록 디자인된 순방향 프라이머 및 시토신-시토신 염기쌍을 형성하도록 디자인된 역방향 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭하는 단계; 및 (b) 상기 증폭산물의 유무로 수은 이온 및 은 이온의 유무를 검출하는 단계를 포함하는 수은 이온 및 은 이온의 검출방법에 관한 것이다.
본 발명에 있어서, 증폭산물이 생성된 경우, 수은 이온 및 은 이온이 존재하는 것으로 판독하는 것을 특징으로 할 수 있으며, 상기 증폭은 PCR에 의하여 수행될 수 있고, 상기 증폭산물은 전기영동 분석 또는 형광 다이를 이용한 형광신호를 통해 확인하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 수은 이온 및 은 이온의 유무 검출은 논리게이트를 사용하여 검출하는 것을 특징으로 할 수 있으며, 논리게이트는 입력신호로 수은 이온 및 은 이온이 존재할 경우 "1" 및 수은 이온 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 AND 논리게이트인 것을 특징으로 할 수 있다.
본 발명은 또 다른 관점에서, (a) 티민-티민 염기쌍을 형성하도록 디자인된 한 쌍의 프라이머 및 시토신-시토신 염기쌍을 형성하도록 디자인된 한 쌍의 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭하는 단계; 및 (b) 상기 증폭산물의 유무로 수은 이온 또는 은 이온의 유무를 검출하는 단계를 포함하는 수은 이온 또는 은 이온의 검출방법에 관한 것이다.
본 발명에 있어서, 증폭산물이 생성된 경우, 수은 이온 또는 은 이온이 존재하는 것으로 판독하는 것을 특징으로 할 수 있으며, 상기 증폭은 PCR에 의하여 수행될 수 있고, 상기 증폭산물은 전기영동 분석 또는 형광 다이를 이용한 형광신호를 통해 확인하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 수은 이온 또는 은 이온의 유무 검출은 논리게이트를 사용하여 검출하는 것을 특징으로 할 수 있으며, 논리게이트는 입력신호로 수은 이온 또는 은 이온이 존재할 경우 "1" 및 수은 이온 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 OR 논리게이트인 것을 특징으로 할 수 있다.
본 발명은 또 다른 관점에서, Yes 논리게이트에 있어서, 티민-티민 염기쌍을 형성하도록 디자인된 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭시키고, 입력신호로 수은 이온이 존재할 경우 "1" 및 수은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로는 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 Yes 논리게이트에 관한 것이다.
본 발명에 따른 논리게이트는 컴퓨터 마이크로프로세서의 전자 논리게이트와 유사한 역할을 수행할 수 있으며, 값비싼 RNA 또는 키메릭 DNA를 필요로 하지 않아 비용이 저렴하고, 금속 이온의 조합에 의해 손쉽고 간편하게 논리적인 출력 신호의 조절이 가능하다는 장점이 있다.
본 발명은 또 다른 관점에서, Yes 논리게이트에 있어서, 시토신-시토신 염기쌍을 형성하도록 디자인된 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭시키고, 입력신호로 은 이온이 존재할 경우 "1" 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로는 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 Yes 논리게이트에 관한 것이다.
본 발명은 또 다른 관점에서, AND 논리게이트에 있어서, 티민-티민 염기쌍을 형성하도록 디자인된 순방향 프라이머 및 시토신-시토신 염기쌍을 형성하도록 디자인된 역방향 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭시키고, 입력신호로 수은 이온 및 은 이온이 존재할 경우 "1" 및 수은 이온 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로는 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 AND 논리게이트에 관한 것이다.
본 발명은 또 다른 관점에서, OR 논리게이트에 있어서, 티민-티민 염기쌍을 형성하도록 디자인된 한 쌍의 프라이머 및 시토신-시토신 염기쌍을 형성하도록 디자인된 한 쌍의 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭시키고, 입력신호로 수은 이온 또는 은 이온이 존재할 경우 "1" 및 수은 이온 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로는 증폭 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 OR 논리게이트에 관한 것이다.
본 발명의 일 양태에서는, 잘못 짝지어진 염기쌍을 이용하여 비활성화시킨 핵산 중합 효소에 금속이온을 처리하여 비정상적인 핵산 중합 효소의 활성을 유도하였다 (도 1). 수은 이온의 경우 3’말단에 티민 염기를 포함시켜 주형 DNA와 잘못 짝지어진 티민-티민 염기쌍을 형성하도록 설계된 순방향 프라이머와 역방향 프라이머 한 쌍, 은 이온의 경우 3’말단에 시토신 염기를 포함시켜 주형 DNA 와 잘못 짝지어진 시토신-시토신 염기쌍을 형성하도록 설계된 순방향 프라이머와 역방향 프라이머 한 쌍을 이용하여 600bp, 107 복제 수의 주형 DNA를 PCR을 수행하여 증폭시키고, PCR 증폭산물을 확인하여 핵산 중합 효소(polymerase)의 활성 유도 여부를 확인하였다. 그 결과, 수은 이온이 존재할 경우에만 잘못 짝지어진 티민-티민 염기쌍이 수은 이온과의 배위결합을 통해 안정한 염기쌍을 형성하게 되어 비정상적인 핵산 중합 효소 활성을 유도하고, 이로 인해 PCR 증폭산물이 얻어지는 것을 확인하였다. 또한, 은 이온이 존재할 경우에만 잘못 짝지어진 시토신-시토신 염기쌍이 은 이온과의 배위결합을 통해 안정함 염기쌍을 형성하게 되어 비정상적인 핵산 중합 효소의 활성을 유도하고, 이로 인해 PCR 증폭산물이 얻어지는 것을 확인하였다. 반면, 다른 금속이온들이 존재할 경우에는 PCR 증폭산물이 형성되지 않는 것을 확인하였다. 이는, 수은 이온 또는 은 이온이 특이적으로 잘못 짝지어진 염기쌍에 작용하고, 비정상적인 중합 효소 활성을 유도한다는 것을 의미한다.
본 발명의 다른 양태에서는, 금속이온에 의한 비정상적인 핵산 중합 활성 유도방법을 기반으로 하여 YES 논리게이트의 진리표에 따라 수은 이온의 존재 유무를 입력 신호로 설정하고 수은 이온이 존재할 경우 '1', 없을 경우 '0'으로 지정하였으며, 이에 따른 PCR 증폭산물의 형성은 출력신호로써, 젤 밴드 형성 및 형광 신호의 증가는 '1', PCR 증폭산물이 형성되지 않은 경우는 '0'으로 지정하여 YES 논리게이트를 구현하였다.
본 발명의 또 다른 양태에서는, AND 논리게이트의 진리표에 따라 수은 이온과 은 이온의 존재 유무를 각각 입력 신호로 설정하고 각 입력신호에서 수은 이온 또는 은 이온이 존재할 경우 '1', 없을 경우 '0'으로 지정하였으며, 이에 따른 PCR 증폭산물의 형성은 출력신호로써, 젤 밴드 형성 및 형광 신호의 증가는 '1', PCR 증폭산물이 형성되지 않은 경우는 '0'으로 지정하여 AND 논리게이트를 구현하였다.
본 발명의 또 다른 양태에서는, OR 논리게이트의 진리표에 따라 수은 이온과 은 이온의 존재 유무를 각각 입력 신호로 설정하고 각 입력신호에서 수은 이온 또는 은 이온이 존재할 경우 '1', 없을 경우 '0'으로 지정하였으며, 이에 따른 PCR 증폭산물의 형성은 출력신호로써, 젤 밴드 형성 및 형광 신호의 증가는 '1', PCR 증폭산물이 형성되지 않은 경우는 '0'으로 지정하여 OR 논리게이트를 구현하였다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 금속이온에 의한 비정상적인 핵산 중합 효소의 활성 유도
(1) 수은 이온 또는 은 이온 존재 여부에 따른 PCR 증폭산물의 확인수은 이온의 경우 3’말단에 티민 염기를 포함시켜 주형 DNA 와 잘못 짝지어진 티민-티민 염기쌍을 형성하도록 설계된 순방향 프라이머와 역방향 프라이머 한 쌍, 은 이온의 경우 3’말단에 시토신 염기를 포함시켜 주형 DNA 와 잘못 짝지어진 시토신-시토신 염기쌍을 형성하도록 설계된 순방향 프라이머와 역방향 프라이머 한 쌍 및 600bp, 107 복제 수의 주형 DNA를 사용하여 핵산 중합 효소(polymerase) 활성 유도 여부를 실험하였다. 600bp, 107복제 수의 주형 DNA, 0.5μM의 프라이머 한 쌍, 1XPCR reaction buffer(30mM Tris-HCl, 30mM KCl and 30mM (NH4)2SO4 and 2mM MgCl2), 0.2mM dNTPs, and 1.5U i-Taq DNA polymerase(Intronbio, Korea), 10μM 금속이온(수은 이온 또는 은 이온)으로 이루어진 반응 혼합물을 Perkin-Elmer 9200 thermo-cycler(Perkin-Elmer, Norwalk, CT)를 사용하여 증폭시켰다. 94℃에서 3분간 heating하여 이중가닥 DNA를 denaturation 시킨 뒤, 94℃에서 20초, 53℃에서 42초, 72℃에서 40초간의 사이클을 30번 반복한 뒤, 72℃에서 5분간의 마지막 extension 과정을 거쳐 핵산 증폭 과정을 마쳤다. PCR 산물의 생성 여부는 아가로오스 전기영동(agarose gel electrophoresis)을 이용하여 젤 밴드 형성을 확인하였다.
그 결과, 도 2에 나타난 바와 같이, 수은 이온 또는 은 이온이 존재하는 경우에만 비정상적으로 핵산 중합 효소의 활성이 유도되어 PCR 증폭산물이 생성된 것을 확인하였다. 반면, 수은 이온 또는 은 이온이 존재하지 않은 경우에는 프라이머와 주형 DNA 사이의 잘못 짝지어진 염기쌍의 존재로 인해 핵산 중합 효소의 진행 경로를 방해하게 되어 PCR 증폭산물이 형성되지 않는 것을 확인하였다.
또한, 완벽하게 짝지어지는 프라이머(PM)를 사용하여 수은 이온 또는 은 이온의 존재 여부에 따른 PCR 증폭 과정을 수행한 결과, 수은 이온 또는 은 이온의 존재 여부에 상관없이 PCR 증폭산물이 형성된 것을 전기영동을 이용한 젤 밴드를 통해 확인하였고, 젤 밴드의 세기(Intensity) 또한, 차이가 없다는 것을 확인하였다. 이는 수은 이온 또는 은 이온이 사용되는 농도 범위에서 수은 이온 또는 은 이온이 핵산 중합 효소의 활성을 저해하지 않음을 의미한다.
(2) 비정상적인 핵산 중합 효소의 활성을 유도하는 금속이온의 특이성 판별
3’말단에 티민 염기를 포함시켜 주형 DNA 와 잘못 짝지어진 티민-티민 염기쌍을 형성하도록 설계된 순방향 프라이머와 역방향 프라이머 한 쌍, 금속이온이 은 이온인 경우 3’말단에 시토신 염기를 포함시켜 주형 DNA 와 잘못 짝지어진 시토신-시토신 염기쌍을 형성하도록 설계된 순방향 프라이머와 역방향 프라이머 한 쌍 및 600bp, 107 복제 수의 주형 DNA를 이용하여 핵산 중합 효소(polymerase) 활성 유도의 특이성을 실험하였다. 600bp, 107복제 수의 주형 DNA, 0.5μM의 프라이머 한 쌍, 1X PCR reaction buffer(30mM Tris-HCl, 30mM KCl and 30mM (NH4)2SO4 and 2mM MgCl2), 0.2mM dNTPs, and 1.5U i-Taq DNA polymerase(Intronbio, Korea), 10μM 금속이온으로 이루어진 반응 혼합물을 Perkin-Elmer 9200 thermo-cycler(Perkin-Elmer, Norwalk, CT)를 사용하여 증폭시켰다. 94℃에서 3분간 heating하여 이중가닥 DNA를 denaturation 시킨 뒤, 94℃에서 20초, 53℃에서 42초, 72℃에서 40초간의 사이클을 30번 반복한 뒤, 72℃에서 5분간의 마지막 extension 과정을 거쳐 핵산 증폭 과정을 마쳤다. 특이성 여부 판별을 위해 상기 금속이온은 수은 이온 또는 은 이온 외에 10μM의 Zn2+, Ca2+, Pb2+, Mn2+, Fe3+, Cu2+, K+, Ni2+, Co2+, Mg2+ 및 Cd2+ 이온을 각각 첨가하여 PCR 산물의 생성 여부를 아가로오스 전기영동 (agarose gel electrophoresis) 을 통하여 분석하였다.
그 결과, 도 3에 나타난 바와 같이, 수은 이온이 존재할 경우에만 잘못 짝지어진 티민-티민 염기쌍이 수은 이온과의 배위결합을 통해 안정한 염기쌍을 형성하게 되어 비정상적인 핵산 중합 효소 활성을 유도하고, 이로 인해 PCR 증폭산물이 얻어지는 것을 확인하였다 (도 3a). 또한, 은 이온이 존재할 경우에만 잘못 짝지어진 시토신-시토신 염기쌍이 은 이온과의 배위결합을 통해 안정함 염기쌍을 형성하게 되어 비정상적인 핵산 중합 효소의 활성을 유도하고, 이로 인해 PCR 증폭산물이 얻어지는 것을 확인하였다 (도 3b). 반면, 다른 금속이온들이 존재할 경우에는 PCR 증폭산물이 형성되지 않는 것을 확인하였다. 이는, 수은 이온 또는 은 이온이 특이적으로 잘못 짝지어진 염기쌍에 작용하고, 비정상적인 중합 효소 활성을 유도한다는 것을 의미한다.
실시예 2: 비정상적인 핵산 중합 효소의 활성을 이용한 분자 수준의 논리게이트
(1) YES 논리게이트
실시예 1의 금속이온에 의한 비정상적인 핵산 중합 활성 유도방법을 기반으로 하여 YES 논리게이트(logic gate)를 구현하였다. YES 논리게이트의 진리표에 따라 수은 이온의 존재 유무를 입력 신호로 설정하고 수은 이온이 존재할 경우 '1', 없을 경우 '0'으로 지정하였으며, 이에 따른 PCR 증폭산물의 형성은 출력신호로써, 젤 밴드 형성 및 형광 신호의 증가는 '1', PCR 증폭산물이 형성되지 않은 경우는 '0'으로 지정하였다. 논리게이트의 구현을 위해 3’말단에 티민 염기를 포함시켜 주형 DNA와 잘못 짝지어진 티민-티민 염기쌍을 형성하도록 설계된 순방향 프라이머와 역방향 프라이머 한 쌍 및 Taq 중합효소를 이용하여 증폭산물을 생성하였다.
그 결과, 도 4에 나타난 바와 같이, 수은 이온의 첨가 시에만 PCR 증폭산물이 형성됨을 확인할 수 있었으며, YES 논리게이트를 구현할 수 있었다. 상기 YES 논리게이트의 출력신호인 PCR 증폭산물은 전기영동 분석에 의한 젤 밴드 사진(도 4b) 및 정량적인 논리게이트 출력 신호의 획득을 위해 이중가닥 DNA 에 특이적인 Evagreen 형광 염료를 사용하여 real-time PCR 기계에서 형광 신호를 측정하였다 (도 4c).
(2) AND 논리게이트
실시예 1의 금속이온에 의한 비정상적인 핵산 중합 활성 유도방법을 기반으로 하여 AND 논리게이트를 구현하였다. AND 논리게이트의 진리표에 따라 수은 이온과 은 이온의 존재 유무를 각각 입력 신호로 설정하고 각 입력신호에서 수은 이온 또는 은 이온이 존재할 경우 '1', 없을 경우 '0'으로 지정하였으며, 이에 따른 PCR 증폭산물의 형성은 출력신호로써, 젤 밴드 형성 및 형광 신호의 증가는 '1', PCR 증폭산물이 형성되지 않은 경우는 '0'으로 지정하였다.
AND 게이트의 구현을 위해 Taq 중합효소를 이용하였으며, 수은 이온과 특이적인 반응을 위해 3’말단에 티민 염기를 포함하여 주형 DNA 와 잘못 짝지어진 티민-티민 염기쌍을 형성하도록 설계된 순방향 프라이머 및 은 이온과의 특이적인 반응을 위해 3’말단에 시토신 염기를 포함하여 주형 DNA 와 잘못 짝지어진 시토신-시토신 염기쌍을 형성하도록 설계된 역방향 프라이머를 동시에 사용하여 수은과 은 이온이 모두 존재 시에만 PCR 증폭이 이루어져 증폭산물이 형성되도록 디자인하였다.
그 결과, 도 5에 나타난 바와 같이, AND 논리게이트 진리표 정의에 따라 수은 이온과 은 이온이 모두 존재할 경우에만 PCR 증폭산물이 생성되는 것을 확인하였고, AND 논리게이트를 구현할 수 있었다. 상기 AND 논리게이트의 출력신호인 PCR 증폭산물은 전기영동 분석에 의한 젤 밴드 사진(도 5b) 및 정량적인 논리게이트 출력 신호의 획득을 위해 이중가닥 DNA 에 특이적인 Evagreen 형광 염료를 사용하여 real-time PCR 기계에서 형광 신호를 측정하였다 (도 5c).
(3) OR 논리게이트
실시예 1의 금속이온에 의한 비정상적인 핵산 중합 활성 유도방법을 기반으로 하여 OR 논리게이트를 구현하였다. OR 논리게이트의 진리표에 따라 수은 이온과 은 이온의 존재 유무를 각각 입력 신호로 설정하고 각 입력신호에서 수은 이온 또는 은 이온이 존재할 경우 '1', 없을 경우 '0'으로 지정하였으며, 이에 따른 PCR 증폭산물의 형성은 출력신호로써, 젤 밴드 형성 및 형광 신호의 증가는 '1', PCR 증폭산물이 형성되지 않은 경우는 '0'으로 지정하였다.
OR 논리게이트의 구현을 위해 Taq 핵산 중합효소를 이용하였으며, 3’말단에 티민 염기를 포함하여 주형 DNA 와 잘못 짝지어진 티민-티민 염기쌍을 형성하도록 설계된 순방향 프라이머와 역방향 프라이머 한 쌍 및 은 이온과의 특이적인 반응을 위해 3’말단에 시토신 염기를 포함하여 주형 DNA 와 잘못 짝지어진 시토신-시토신 염기쌍을 형성하도록 설계된 순방향 프라이머와 역방향 프라이머 한 쌍을 동시에 사용하여 수은과 은 이온이 모두 존재하거나 둘 중에 하나의 이온만이 존재할 경우에 PCR 증폭이 이루어져 증폭산물이 형성하도록 디자인하였다. 진리표의 정의에 따라 수은 이온과 은 이온이 모두 존재하지 않을 경우를 제외하고는 PCR 증폭산물이 생성되는 것을 확인할 수 있었으며, OR 논리게이트를 구현할 수 있었다. 상기 OR 논리게이트의 출력신호인 PCR 증폭산물은 전기영동 분석에 의한 젤 밴드 사진(도 6b) 및 정량적인 논리게이트 출력 신호의 획득을 위해 이중가닥 DNA 에 특이적인 Evagreen 형광 염료를 사용하여 real-time PCR 기계에서 형광 신호를 측정하였다 (도 6c).
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
이상 설명한 바와 같이, 본 발명에 따른 비정상적인 핵산 중합 효소의 활성을 이용한 금속이온의 검출방법은 비용이 저렴하고 손쉽게 금속이온을 검출할 수 있으며, 값비싼 RNA 또는 키메릭 DNA가 필요하여 비용이 많이 들고, 시스템 디자인 및 작동의 어려움을 가져 실질적인 적용이 힘들었던 종래 핵산 기반의 논리게이트와 비교하여 비용이 저렴하고, 논리적인 출력 신호 조절이 가능한 분자 수준의 논리게이트로의 실질적인 적용이 용이하다.

Claims (28)

  1. 다음 단계를 포함하는 수은 이온의 검출방법:
    (a) 티민-티민 염기쌍을 형성하도록 디자인된 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭하는 단계; 및
    (b) 상기 증폭산물의 유무로 수은 이온의 유무를 검출하는 단계.
  2. 제1항에 있어서, 증폭산물이 생성된 경우, 수은 이온이 존재하는 것으로 판독하는 것을 특징으로 하는 수은 이온의 검출방법.
  3. 제1항에 있어서, 상기 증폭은 PCR로 수행하는 것을 특징으로 하는 수은 이온의 검출방법.
  4. 제1항에 있어서, 상기 증폭산물은 전기영동 분석 또는 형광다이를 이용한 형광신호를 통해 확인하는 것을 특징으로 하는 수은 이온의 검출방법.
  5. 제1항에 있어서, 상기 수은 이온의 유무 검출은 논리게이트를 사용하여 검출하는 것을 특징으로 하는 수은 이온의 검출방법.
  6. 제5항에 있어서, 논리게이트는 입력신호로 수은 이온이 존재할 경우 "1" 및 수은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 Yes 논리게이트인 것을 특징으로 하는 검출방법.
  7. 다음 단계를 포함하는 은 이온의 검출방법:
    (a) 시토신-시토신 염기쌍을 형성하도록 디자인된 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭하는 단계; 및
    (b) 상기 증폭산물의 유무로 은 이온의 유무를 검출하는 단계.
  8. 제7항에 있어서, 증폭산물이 생성된 경우, 은 이온이 존재하는 것으로 판독하는 것을 특징으로 하는 은 이온의 검출방법.
  9. 제7항에 있어서, 상기 증폭은 PCR로 수행하는 것을 특징으로 하는 은 이온의 검출방법.
  10. 제7항에 있어서, 상기 증폭산물은 전기영동 분석 또는 형광다이를 이용한 형광신호를 통해 확인하는 것을 특징으로 하는 은 이온의 검출방법.
  11. 제7항에 있어서, 상기 수은 이온의 유무 검출은 논리게이트를 사용하여 검출하는 것을 특징으로 하는 은 이온의 검출방법.
  12. 제11항에 있어서, 논리게이트는 입력신호로 은 이온이 존재할 경우 "1" 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 Yes 논리게이트인 것을 특징으로 하는 검출방법.
  13. 다음 단계를 포함하는 수은 이온 및 은 이온의 검출방법:
    (a) 티민-티민 염기쌍을 형성하도록 디자인된 프라이머 및 시토신-시토신 염기쌍을 형성하도록 디자인된 프라이머의 쌍을 이용하여 DNA 중합효소로 주형 DNA를 증폭하는 단계; 및
    (b) 상기 증폭산물의 유무로 수은 이온 및 은 이온의 유무를 검출하는 단계.
  14. 제13항에 있어서, 증폭산물이 생성된 경우, 수은 이온 및 은 이온이 존재하는 것으로 판독하는 것을 특징으로 하는 수은 이온 및 은 이온의 검출방법.
  15. 제13항에 있어서, 상기 증폭은 PCR로 수행하는 것을 특징으로 하는 수은 이온 및 은 이온의 검출방법.
  16. 제13항에 있어서, 상기 증폭산물은 전기영동 분석 또는 형광다이를 이용한 형광신호를 통해 확인하는 것을 특징으로 하는 수은 이온 및 은 이온의 검출방법.
  17. 제13항에 있어서, 상기 수은 이온 및 은 이온의 유무 검출은 논리게이트를 사용하여 검출하는 것을 특징으로 하는 수은 이온 및 은 이온의 검출방법.
  18. 제17항에 있어서, 논리게이트는 입력신호로 수은 이온 및 은 이온이 존재할 경우 "1" 및 수은 이온 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 AND 논리게이트인 것을 특징으로 하는 검출방법.
  19. 다음 단계를 포함하는 수은 이온 또는 은 이온의 검출방법:
    (a) 티민-티민 염기쌍을 형성하도록 디자인된 한 쌍의 프라이머 및 시토신-시토신 염기쌍을 형성하도록 디자인된 한 쌍의 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭하는 단계; 및
    (b) 상기 증폭산물의 유무로 수은 이온 또는 은 이온의 유무를 검출하는 단계.
  20. 제19항에 있어서, 증폭산물이 생성된 경우, 수은 이온 또는 은 이온이 존재하는 것으로 판독하는 것을 특징으로 하는 수은 이온 또는 은 이온의 검출방법.
  21. 제19항에 있어서, 상기 증폭은 PCR로 수행하는 것을 특징으로 하는 수은 이온 또는 은 이온의 검출방법.
  22. 제19항에 있어서, 상기 증폭산물은 전기영동 분석 또는 형광다이를 이용한 형광신호를 통해 확인하는 것을 특징으로 하는 수은 이온 또는 은 이온의 검출방법.
  23. 제19항에 있어서, 상기 수은 이온 또는 은 이온의 유무 검출은 논리게이트를 사용하여 검출하는 것을 특징으로 하는 수은 이온 또는 은 이온의 검출방법.
  24. 제23항에 있어서, 논리게이트는 입력신호로 수은 이온 또는 은 이온이 존재할 경우 "1" 및 수은 이온 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 OR 논리게이트인 것을 특징으로 하는 검출방법.
  25. Yes 논리게이트에 있어서, 티민-티민 염기쌍을 형성하도록 디자인된 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭시키고, 입력신호로 수은 이온이 존재할 경우 "1" 및 수은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로는 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 Yes 논리게이트.
  26. Yes 논리게이트에 있어서, 시토신-시토신 염기쌍을 형성하도록 디자인된 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭시키고, 입력신호로 은 이온이 존재할 경우 "1" 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로는 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 Yes 논리게이트.
  27. AND 논리게이트에 있어서, 티민-티민 염기쌍을 형성하도록 디자인된 순방향 프라이머 및 시토신-시토신 염기쌍을 형성하도록 디자인된 역방향 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭시키고, 입력신호로 수은 이온 및 은 이온이 존재할 경우 "1" 및 수은 이온 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로는 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 AND 논리게이트.
  28. OR 논리게이트에 있어서, 티민-티민 염기쌍을 형성하도록 디자인된 한 쌍의 프라이머 및 시토신-시토신 염기쌍을 형성하도록 디자인된 한 쌍의 프라이머를 이용하여 DNA 중합효소로 주형 DNA를 증폭시키고, 입력신호로 수은 이온 또는 은 이온이 존재할 경우 "1" 및 수은 이온 및 은 이온이 존재하지 않을 경우 "0"으로 지정하고, 출력신호로는 증폭 증폭산물이 존재할 경우 "1" 및 증폭산물이 존재하지 않을 경우 "0"으로 지정하는 OR 논리게이트.
PCT/KR2011/006182 2010-08-23 2011-08-22 비정상적인 핵산 중합 효소의 활성을 이용한 금속이온의 검출방법 및 이를 이용한 논리게이트 WO2012026723A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0081466 2010-08-23
KR1020100081466A KR101185973B1 (ko) 2010-08-23 2010-08-23 비정상적인 핵산 중합 효소의 활성을 이용한 금속이온의 검출방법 및 이를 이용한 논리게이트

Publications (3)

Publication Number Publication Date
WO2012026723A2 WO2012026723A2 (ko) 2012-03-01
WO2012026723A3 WO2012026723A3 (ko) 2012-05-10
WO2012026723A9 true WO2012026723A9 (ko) 2012-06-28

Family

ID=45723911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006182 WO2012026723A2 (ko) 2010-08-23 2011-08-22 비정상적인 핵산 중합 효소의 활성을 이용한 금속이온의 검출방법 및 이를 이용한 논리게이트

Country Status (2)

Country Link
KR (1) KR101185973B1 (ko)
WO (1) WO2012026723A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505014A (zh) * 2021-02-01 2021-03-16 中国农业大学 一种基于镧系配位聚合物构建的银离子可视化发光比率传感器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345054B (zh) * 2014-10-23 2017-09-01 湖南大学 一种甲基汞离子的检测方法
CN104849247B (zh) * 2015-04-15 2016-06-15 刘骁勇 基于dna与重金属离子错配原理检测重金属离子的方法
KR20190079301A (ko) * 2017-12-27 2019-07-05 한국식품연구원 수은의 신속 간편 육안 현장 진단을 위한 페이퍼 기반 비색 센서 키트 및 이를 이용한 수은의 신속 간편 육안 현장 검출 방법
CN110426519B (zh) * 2019-08-08 2020-06-05 江南大学 基于卵巢癌标志物和逻辑门运算筛查卵巢癌的方法
CN112620295B (zh) * 2019-10-08 2022-07-12 中国科学院过程工程研究所 一种粉煤灰脱汞方法
KR102190393B1 (ko) * 2019-11-29 2020-12-11 한국식품연구원 수은의 신속 간편 육안 현장 진단을 위한 페이퍼 기반 비색 센서 키트 및 이를 이용한 수은의 신속 간편 육안 현장 검출 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505014A (zh) * 2021-02-01 2021-03-16 中国农业大学 一种基于镧系配位聚合物构建的银离子可视化发光比率传感器

Also Published As

Publication number Publication date
WO2012026723A2 (ko) 2012-03-01
WO2012026723A3 (ko) 2012-05-10
KR20120018549A (ko) 2012-03-05
KR101185973B1 (ko) 2012-09-25

Similar Documents

Publication Publication Date Title
WO2012026723A2 (ko) 비정상적인 핵산 중합 효소의 활성을 이용한 금속이온의 검출방법 및 이를 이용한 논리게이트
Vaisvila et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA
Kint et al. Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR
Bailey et al. MS-qFRET: a quantum dot-based method for analysis of DNA methylation
Booth et al. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine
Tost et al. DNA methylation analysis by pyrosequencing
Varley et al. Dynamic DNA methylation across diverse human cell lines and tissues
Kriukienė et al. DNA unmethylome profiling by covalent capture of CpG sites
Liu et al. A direct isothermal amplification system adapted for rapid SNP genotyping of multifarious sample types
JP4481491B2 (ja) 核酸の検出方法
CN110964826A (zh) 一种结直肠癌抑癌基因甲基化高通量检测试剂盒及其应用
Wu et al. Base-resolution profiling of active DNA demethylation using MAB-seq and caMAB-seq
CN105358709A (zh) 用于检测基因组拷贝数变化的系统和方法
JPWO2017039002A1 (ja) 5−ヒドロキシメチルシトシン酸化剤及び5−ヒドロキシメチルシトシン解析方法
Liu et al. Methylation-sensitive enrichment of minor DNA alleles using a double-strand DNA-specific nuclease
Alghanim et al. Development of DNA methylation markers for sperm, saliva and blood identification using pyrosequencing and qPCR/HRM
Thierry et al. A multiplex bead-based suspension array assay for interrogation of phylogenetically informative single nucleotide polymorphisms for Bacillus anthracis
WO2013122319A1 (ko) 리가제 반응과 절단효소 증폭반응을 이용한 표적 유전자 또는 이의 돌연변이 검출방법
Liu et al. A novel DNA methylation biosensor by combination of isothermal amplification and lateral flow device
WO2021091239A1 (ko) 대장암 검출 방법
Wang et al. Next-generation CRISPR-based diagnostic tools for human diseases
An et al. HpaII-assisted and linear amplification-enhanced isothermal exponential amplification fluorescent strategy for rapid and sensitive detection of DNA methyltransferase activity
De Borre et al. Oxidative bisulfite sequencing: an experimental and computational protocol
WO2018194437A2 (ko) 표적 점 돌연변이 유전자 검출을 위한 핵산 분자 템플레이트 및 이를 이용한 유전자 검사방법
Yang et al. Sensitive GlaI digestion and terminal transferase PCR for DNA methylation detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11820150

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11820150

Country of ref document: EP

Kind code of ref document: A2