WO2012026559A1 - フッ素ゴム成形品 - Google Patents

フッ素ゴム成形品 Download PDF

Info

Publication number
WO2012026559A1
WO2012026559A1 PCT/JP2011/069236 JP2011069236W WO2012026559A1 WO 2012026559 A1 WO2012026559 A1 WO 2012026559A1 JP 2011069236 W JP2011069236 W JP 2011069236W WO 2012026559 A1 WO2012026559 A1 WO 2012026559A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororubber
mol
mass
carbon black
kpa
Prior art date
Application number
PCT/JP2011/069236
Other languages
English (en)
French (fr)
Inventor
太田 大助
純平 寺田
北市 雅紀
植田 豊
滋 守田
一良 川崎
達也 森川
昌二 福岡
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to ES11820021.1T priority Critical patent/ES2620370T3/es
Priority to JP2012530726A priority patent/JP6120572B2/ja
Priority to EP11820021.1A priority patent/EP2568009B1/en
Priority to CN2011800407900A priority patent/CN103080220A/zh
Publication of WO2012026559A1 publication Critical patent/WO2012026559A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon

Definitions

  • the present invention relates to a fluororubber molded article having excellent mechanical properties at high temperatures.
  • Fluorororubber is known to have excellent chemical resistance, oil resistance, heat resistance, and good compression set resistance at high temperatures, but mechanical properties at high temperatures such as hot strength and hot elongation In recent years, for example, when a fluororubber crosslinked product is used in a high temperature environment exceeding 100 ° C., it is required to have excellent durability not only in heat resistance but also in mechanical properties at high temperature. .
  • Patent Document 1 For example, from the viewpoint of improving compression set, a composition as shown in Patent Document 1 has been proposed, but since room temperature elongation is small, it is expected that thermal elongation will be further reduced. Further, Patent Document 2 discloses an improvement in hot elongation, but it is not a physical property that can withstand even in a severer use environment. As an example of improving strength at high temperature, as shown in Patent Document 3, a combination of fluororubber and fluorine-containing thermoplastic elastomer is exemplified, but since room temperature elongation is small, thermal elongation is further reduced. It is expected to be.
  • the object of the present invention is to provide a fluororubber molded article that is excellent not only in heat resistance but also in mechanical properties at high temperatures.
  • the present invention has a fluororubber crosslinked product obtained by crosslinking a fluororubber composition containing fluororubber (A) and carbon black (B),
  • the fluororubber (A) contains 48 to 88 mol% of structural units derived from vinylidene fluoride with respect to 100 mol% of the total amount of structural units derived from all monomer components, and is a structural unit derived from tetrafluoroethylene Is a vinylidene fluoride fluororubber containing 0 to 10 mol%,
  • the present invention also includes fluororubber (A) and carbon black (B),
  • the fluororubber (A) contains 48 to 88 mol% of structural units derived from vinylidene fluoride with respect to 100 mol% of the total amount of structural units derived from all monomer components, and is a structural unit derived from tetrafluoroethylene Is a vinylidene fluoride fluororubber containing 0 to 10 mol%, In a dynamic viscoelasticity test (measurement frequency: 1 Hz, measurement temperature: 100 ° C.) using a rubber process analyzer (RPA), the shear elastic modulus G ′ (1%) and dynamic strain at a dynamic strain of 1% when uncrosslinked
  • the present invention also relates to a fluororubber composition having a difference in shear modulus G ′ (100%) at 100% ⁇ G ′ (G ′ (1%) ⁇ G ′ (100%)) of 120 kPa or more and 3,000 kPa or less.
  • the molded article of the present invention has a fluororubber crosslinked product obtained by crosslinking a fluororubber composition containing fluororubber (A) and carbon black (B),
  • the fluororubber (A) contains 48 to 88 mol% of structural units derived from vinylidene fluoride with respect to 100 mol% of the total amount of structural units derived from all monomer components, and is a structural unit derived from tetrafluoroethylene Is a vinylidene fluoride fluororubber containing 0 to 10 mol%
  • the fluororubber crosslinked product has a dynamic viscoelasticity test (measurement temperature: 160 ° C., tensile strain: 1%, initial load: 157 cN, frequency: 10 Hz)
  • the loss elastic modulus E ′′ is 400 kPa or more and 6000 kPa or less.
  • Fluorororubber Fluorororubber (A) in the present invention is vinylidene fluoride (VdF) with respect to 100 mol% of the total amount of structural units derived from all monomer components used to form the fluororubber (A).
  • VdF-based fluororubber (VdF-based rubber) containing 48 to 88 mol% of structural units (VdF units), and 10 mol when including structural units derived from tetrafluoroethylene (TFE units) % Or less vinylidene fluoride fluororubber (VdF rubber).
  • the content of VdF units is preferably 70 to 85 mol%, more preferably 75 to 85 mol%.
  • the content of TFE units is preferably 0 to 3 mol%.
  • the fluorororubber (A) may contain other structural units other than the VdF unit and the TFE unit.
  • the content of other structural units other than VdF units and TFE units is 2 to 52 mol with respect to 100 mol% of the total amount of structural units derived from all monomer components used to form the fluororubber (A). % Is preferred.
  • the fluororubber (A) When the fluorororubber (A) has the above composition, it has easy kneading properties, and as described later, it is kneaded with carbon black or the like at a relatively low average shear rate to obtain a fluororubber composition, and desired normal physical properties. Moreover, a fluororubber crosslinked product having mechanical properties at high temperatures can be obtained.
  • the VdF rubber is composed of 48 to 88 mol% of structural units derived from VdF, based on 100 mol% of the total amount of structural units derived from all monomer components used to form the fluororubber (A).
  • the structural unit derived from fluoroethylene may be 10 mol% or less, and the comonomer is not particularly limited as long as it is copolymerizable with VdF.
  • HFP hexafluoropropylene
  • PAVE perfluoro (alkyl vinyl ether)
  • CTFE chlorotrifluoroethylene
  • trifluoroethylene trifluoropropylene, tetrafluoropropylene, pentafluoropropylene, trifluorobutene, tetrafluoroisobutene, hexafluoroisobutene, vinyl fluoride, iodine-containing fluorinated vinyl ether
  • CH 2 CFR f
  • R f is a linear or branched fluoroalkyl group having 1 to 12 carbon atoms
  • a fluorine-containing monomer such as a fluorine-containing monomer (1)
  • ethylene (Et) propylene (Pr )
  • Fluorine-free monomers such as alkyl vinyl ethers, monomers that give crosslinkable groups (cure sites), and reactive emulsifiers.
  • alkyl vinyl ethers monomers that give
  • PMVE perfluoro (methyl vinyl ether)
  • PPVE perfluoro (propyl vinyl ether)
  • CF 2 CFOCF 2 OR f 1 (2)
  • R f 1 is a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, a cyclic perfluoroalkyl group having 5 to 6 carbon atoms, 1 to 3 carbon atoms containing 1 to 3 oxygen atoms, and 6 linear or branched perfluorooxyalkyl groups
  • CF 2 CFOCF 2 OCF 3
  • CF 2 CFOCF 2 OCF 2 CF 3
  • monomer R f is a fluoroalkyl group having a straight chain is preferably a perfluoroalkyl group R f is a linear single A monomer is more preferable.
  • R f preferably has 1 to 6 carbon atoms.
  • the VdF rubber is preferably a VdF / HFP copolymer, a VdF / copolymer of fluorine-containing monomer (1) represented by the formula (1), or a VdF / PAVE copolymer.
  • the VdF / HFP copolymer preferably has a VdF / HFP molar% ratio of 48/52 to 85/15, more preferably 50/50 to 78/22, and 55/45 to 77 / More preferred is 23.
  • the molar ratio of VdF / PAVE is preferably 88/12 to 48/52, more preferably 85/15 to 70/30, and particularly preferably 85/15 to 75/25. preferable.
  • the molar percentage ratio of VdF / fluorine-containing monomer (1) unit is 88/12 to 48/52.
  • the other monomer units other than VdF and the fluorine-containing monomer (1) are preferably those having 0 to 10 mol% of the total monomer units.
  • the molar ratio of VdF / fluorinated monomer (1) unit is more preferably 85/15 to 70/30, and particularly preferably 85/15 to 75/25.
  • TFE As monomers other than VdF and fluorine-containing monomer (1), TFE, HFP, PMVE, perfluoroethyl vinyl ether (PEVE), PPVE, CTFE, trifluoroethylene, hexafluoroisobutene, vinyl fluoride, Monomers exemplified as the above-mentioned VdF comonomer such as ethylene (Et), propylene (Pr), alkyl vinyl ether, a monomer giving a crosslinkable group, and a reactive emulsifier are preferable, and among them, PMVE, CTFE, More preferred are HFP and TFE (however, the content of TFE is 0 to 10 mol%, preferably 0 to 3 mol%). These monomers and compounds can be used alone or in combination of two or more.
  • the fluororubber (A) preferably has a number average molecular weight Mn of 5,000 to 500,000, more preferably 10,000 to 500,000, particularly preferably 20,000 to 500,000.
  • the fluorororubber (A) described above can be produced by conventional methods such as emulsion polymerization, suspension polymerization, and solution polymerization.
  • a fluororubber having a narrow molecular weight distribution can be produced according to a polymerization method using an iodine (bromine) compound known as iodine (bromine) transfer polymerization.
  • fluororubber when it is desired to lower the viscosity of the fluororubber composition, other fluororubber may be blended with the fluororubber (A).
  • fluororubbers include low molecular weight liquid fluororubber (number average molecular weight of 1000 or more), low molecular weight fluororubber having a number average molecular weight of about 10,000, and fluororubber having a number average molecular weight of about 100,000 to 200,000.
  • the fluororubber is a constitution of a main monomer, and a copolymer obtained by copolymerizing a monomer giving a crosslinkable group can also be suitably used.
  • the monomer that gives a crosslinkable group may be any monomer that can introduce an appropriate crosslinkable group depending on the production method and the crosslinking system.
  • an iodine atom, a bromine atom, a carbon-carbon double bond, a cyano group examples include known polymerizable compounds containing a carboxyl group, a hydroxyl group, an amino group, an ester group, and a chain transfer agent.
  • CY 1 2 CY 2 R f 2 X 1 (3)
  • R f 2 may have one or more ether-bonded oxygen atoms, A linear or branched fluorine-containing alkylene group in which some or all of the hydrogen atoms may be substituted with fluorine atoms
  • X 1 is an iodine atom or a bromine atom
  • Linear or branched fluorine-containing alkylene group that is, a linear or branched fluorine-containing alkylene group in which some or all of the hydrogen atoms are substituted with fluorine atoms, and part or all of the hydrogen atoms are fluorine a linear or branched fluorine-containing oxyalkylene group substituted with atoms or a fluorine-containing polyoxyalkylene group partially or entirely a linear or branched substituted with fluorine atoms of the hydrogen atom,;
  • R 1 is Hydrogen atom or methyl group
  • CY 4 2 CY 4 (CF 2 ) n -X 1 (5)
  • Y 4 is the same or different and is a hydrogen atom or a fluorine atom, and n is an integer of 1 to 8.
  • iodine-containing monomer or bromine-containing monomer represented by the formula (4) the general formula (23): (In the formula, m is an integer of 1 to 5, and n is an integer of 0 to 3) Preferred examples include iodine-containing fluorinated vinyl ethers represented by: Among them, ICH 2 CF 2 CF 2 OCF ⁇ CF 2 is preferable among these.
  • the iodine-containing monomer or bromine-containing monomer represented by the formula (5) is preferably ICF 2 CF 2 CF ⁇ CH 2 or I (CF 2 CF 2 ) 2 CF ⁇ CH 2 .
  • the iodine-containing monomer or bromine-containing monomer represented by the formula (9) is preferably I (CF 2 CF 2 ) 2 OCF ⁇ CF 2 .
  • preferred examples of the iodine-containing monomer or bromine-containing monomer represented by the formula (22) include CH 2 ⁇ CHCF 2 CF 2 I and I (CF 2 CF 2 ) 2 CH ⁇ CH 2 .
  • “(per) fluoropolyoxyalkylene group” means “fluoropolyoxyalkylene group or perfluoropolyoxyalkylene group”.
  • Z is preferably a (per) fluoroalkylene group having 4 to 12 carbon atoms, and R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are preferably hydrogen atoms.
  • Z is a (per) fluoropolyoxyalkylene group, - (Q) p -CF 2 O- (CF 2 CF 2 O) m - (CF 2 O) n -CF 2 - (Q) p - (In the formula, Q is an alkylene group having 1 to 10 carbon atoms or an oxyalkylene group having 2 to 10 carbon atoms, p is 0 or 1, and m and n have an m / n ratio of 0.2 to 5.
  • the (per) fluoropolyoxyalkylene group is preferably an integer such that the molecular weight of the (per) fluoropolyoxyalkylene group is in the range of 500 to 10,000, preferably 1000 to 4000. .
  • Preferred bisolefins are CH 2 ⁇ CH— (CF 2 ) 4 —CH ⁇ CH 2 , CH 2 ⁇ CH— (CF 2 ) 6 —CH ⁇ CH 2 , Formula: CH 2 ⁇ CH—Z 1 —CH ⁇ CH 2 (Wherein Z 1 is —CH 2 OCH 2 —CF 2 O— (CF 2 CF 2 O) m — (CF 2 O) n —CF 2 —CH 2 OCH 2 — (m / n is 0.5)) ) Etc.
  • the fluororubber (A) preferably has a Mooney viscosity at 100 ° C. of 20 to 200, more preferably 30 to 180. Mooney viscosity is measured in accordance with ASTM-D1646 and JIS K6300.
  • the carbon black (B) is not particularly limited as long as it is a carbon black giving a loss elastic modulus E ′′ in the above range, more preferably a storage elastic modulus E ′ in the range described later.
  • Examples of such carbon black include furnace black, acetylene black, thermal black, channel black, and graphite.
  • SAF-HS SAF-HS (N 2 SA: 142 m 2 / g, DBP: 130 ml / 100 g), SAF (N 2 SA: 142 m 2 / g, DBP: 115 ml / 100 g), N234 (N 2 SA: 126 m 2 / g, DBP: 125 ml / 100 g), ISAF (N 2 SA: 119 m 2 / g, DBP: 114 ml) / 100 g), ISAF-LS (N 2 SA: 106 m 2 / g, DBP: 75 ml / 100 g), ISAF-HS (N 2 SA: 99 m 2 / g, DBP: 129 ml / 100 g), N339 (N 2 SA: 93 m 2 / g, DBP: 119 ml / 100
  • carbon black preferably has a nitrogen adsorption specific surface area (N 2 SA) of 5 to 180 m 2 / g and a dibutyl phthalate (DBP) oil absorption of 40 to 180 ml / 100 g. It is done.
  • N 2 SA nitrogen adsorption specific surface area
  • DBP dibutyl phthalate
  • the nitrogen adsorption specific surface area (N 2 SA) is smaller than 5 m 2 / g, mechanical properties when blended with rubber tend to be reduced. From this viewpoint, the nitrogen adsorption specific surface area (N 2 SA) is 10 m 2. / G or more is preferable, 20 m 2 / g or more is more preferable, and 25 m 2 / g or more is particularly preferable.
  • the upper limit is preferably 180 m 2 / g from the viewpoint of easy availability.
  • the mechanical properties when blended with rubber tend to decrease.
  • 50 ml / 100 g or more, further 60 ml / 100 g or more, particularly 80 ml. / 100g or more is preferable.
  • the upper limit is preferably 175 ml / 100 g, more preferably 170 ml / 100 g.
  • the blending amount of carbon black (B) is preferably 5 to 65 parts by mass with respect to 100 parts by mass of the fluororubber (A). If the carbon black (B) is too much, the mechanical properties of the cross-linked product tend to be lowered, and if it is too small, the mechanical properties of the cross-linked product tend to be lowered.
  • a more preferable blending amount is preferably 6 parts by mass or more, more preferably 10 parts by mass or more with respect to 100 parts by mass of the fluororubber (A) from the viewpoint of good physical property balance, and 55 parts by mass from a point of good physical property balance. Or less, more preferably 50 parts by mass or less, still more preferably 49 parts by mass or less, and particularly preferably 45 parts by mass or less.
  • a dynamic strain 1 in a dynamic viscoelasticity test (measurement temperature: 100 ° C., measurement frequency: 1 Hz) with a rubber process analyzer (RPA) as an uncrosslinked rubber is used as a fluororubber composition.
  • the difference ⁇ G ′ (G ′ (1%) ⁇ G ′ (100%)) between the shear modulus G ′ (1%) at% and the shear modulus G ′ (100%) at 100% dynamic strain is What is 120 kPa or more and 3,000 kPa or less can be used suitably.
  • the difference ⁇ G ′ is used as an index for evaluating the reinforcing property of the rubber composition, and is measured and calculated by a dynamic viscoelasticity test using a rubber process analyzer.
  • a fluororubber composition having a difference ⁇ G ′ in the range of 120 kPa to 3,000 kPa is advantageous in terms of normal physical properties and mechanical properties at high temperatures.
  • the difference ⁇ G ′ is preferably 150 kPa or more, more preferably 160 kPa or more, from the viewpoint of good normal physical properties and mechanical properties at high temperatures, and the normal physical properties, hardness, viscosity during extrusion molding, and mechanical physical properties at high temperatures. From a favorable point, Preferably it is 2,800 kPa or less, Furthermore, it is 2,500 kPa or less.
  • a fluorororubber composition having a difference ⁇ G ′ of 120 kPa or more and 3,000 kPa or less can be prepared using, for example, a kneader or a roll kneader.
  • a predetermined amount of fluororubber (A) and carbon black (B), if necessary, an organic amine compound and / or an acid acceptor described later is charged into a closed kneader, and the average shear rate of the rotor is 20 to 1000 ( 1 / second), preferably 50 to 1000 (1 / second), more preferably 100 to 1000 (1 / second), and even more preferably 200 to 1000 (1 / second).
  • Examples of the closed kneader include a pressure kneader, a Banbury mixer, a uniaxial kneader, and a biaxial kneader.
  • a predetermined amount of fluororubber (A) and carbon black (B) and, if necessary, an organic amine compound and / or acid acceptor described later are charged into a roll kneader, and the average shear rate of the rotor is 20 (1 / second).
  • the average shear rate of the rotor is 20 (1 / second).
  • the maximum kneading temperature Tm is 80 to 220 ° C. (preferably 120 to 200 ° C.).
  • the fluororubber composition obtained by the above methods (1) and (2) does not contain a crosslinking agent (C) or a crosslinking accelerator (D). Moreover, you may perform kneading
  • the second and subsequent kneading conditions may be the same as the methods (1) and (2) except that the maximum kneading temperature Tm is 140 ° C. or lower.
  • One of the methods for preparing the crosslinkable fluororubber composition used in the present invention is, for example, obtained by the above method (1) or (2), or the above methods (1) and (2). This is a method of further blending and kneading the crosslinking agent (C) and / or the crosslinking accelerator (D) with the fluororubber composition obtained repeatedly.
  • the crosslinking agent (C) and the crosslinking accelerator (D) may be blended and kneaded at the same time, or the crosslinking accelerator (D) may be blended and kneaded first, and then the crosslinking agent (C) may be blended and kneaded.
  • the kneading conditions for the crosslinking agent (C) and the crosslinking accelerator (D) may be the same as the methods (1) and (2) except that the maximum temperature Tm for kneading is 130 ° C. or less.
  • crosslinkable fluororubber composition for example, a roll kneader containing fluorororubber (A) and carbon black (B), crosslinker (C) and / or crosslink accelerator (D) in an appropriate order.
  • a predetermined amount is added, and the average shear rate of the rotor is 20 (1 / second) or more, preferably 50 (1 / second) or more, and the kneading is performed at a maximum kneading temperature Tm of 130 ° C. or less.
  • a uniform dispersion may be used by previously mixing the fluorororubber (A), the cross-linking agent (C), and the cross-linking accelerator (D).
  • the fluororubber (A), polyol-based crosslinking agent and crosslinking accelerator are first kneaded, then carbon black and an organic amine compound described later are blended and kneaded, and the maximum temperature Tm for kneading is 80 to 220 ° C.
  • an acid acceptor is blended and kneaded so that the maximum kneading temperature Tm is 130 ° C. or lower.
  • the range of the difference ⁇ G ′ is preferably satisfied in the fluororubber composition before blending the crosslinking agent (C) and / or the crosslinking accelerator (D). Moreover, it is preferable that the difference ⁇ G ′ is within the above range even in the fluororubber composition containing the crosslinking agent (C) and / or the crosslinking accelerator (D).
  • the average shear rate is preferably 20 (1 / second) or more, and 50 (1 / second) or more. More preferably, by setting the average shear rate to 20 (1 / second) or more, desired normal physical properties and high-temperature mechanical properties can be obtained.
  • the cross-linking agent (C) and / or the cross-linking accelerator (D) are specific to the cross-linking system, the type of the fluororubber (A) to be cross-linked (for example, the copolymer composition, the presence / absence or type of cross-linkable group, etc.) It can be appropriately selected according to the purpose of use, usage form, and other kneading conditions.
  • crosslinking system for example, a peroxide crosslinking system, a polyol crosslinking system, a polyamine crosslinking system, an oxazole crosslinking system, a thiazole crosslinking system, an imidazole crosslinking system, a triazine crosslinking system, and the like can be employed.
  • Peroxide crosslinking system In the case of crosslinking by a peroxide crosslinking system, since it has a carbon-carbon bond at the crosslinking point, a polyol crosslinking system having a carbon-oxygen bond at the crosslinking point and a polyamine crosslinking system having a carbon-nitrogen double bond are used. Compared with it, it is characterized by excellent chemical resistance and steam resistance.
  • the peroxide crosslinking agent may be any peroxide that can easily generate a peroxy radical in the presence of heat or a redox system.
  • 2,5-dimethyl-2,5-di (t-butylperoxy) hexane or 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne-3 is preferable.
  • crosslinking accelerators for peroxide crosslinking agents particularly organic peroxide crosslinking agents include triallyl cyanurate, triallyl isocyanurate (TAIC), triacryl formal, triallyl trimellitate, N, N '-M-phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthalate amide, triallyl phosphate, bismaleimide, fluorinated triallyl isocyanurate (1,3,5-tris (2,3,3-trifluoro -2-propenyl) -1,3,5-triazine-2,4,6-trione), tris (diallylamine) -S-triazine, triallyl phosphite, N, N-diallylacrylamide, 1,6-divinyldodeca Fluorohexane,
  • the fluorororubber (A) suitable for the peroxide crosslinking system is preferably a fluororubber containing iodine atoms and / or bromine atoms as crosslinking points.
  • the content of iodine atom and / or bromine atom is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, and particularly preferably 0.1 to 3% by mass from the viewpoint of a good balance of physical properties. .
  • the compounding amount of the peroxide crosslinking agent is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 9 parts by mass, particularly preferably 100 parts by mass of the fluororubber (A). 0.2 to 8 parts by mass.
  • the peroxide crosslinking agent is less than 0.01 parts by mass, the crosslinking of the fluororubber (A) tends not to proceed sufficiently, and when it exceeds 10 parts by mass, the balance of physical properties tends to decrease.
  • the blending amount of the crosslinking accelerator is usually 0.01 to 10 parts by mass, preferably 0.1 to 9 parts by mass with respect to 100 parts by mass of the fluororubber (A).
  • the amount of the crosslinking accelerator is less than 0.01 parts by mass, undercuring tends to be caused.
  • the amount exceeds 10 parts by mass the crosslinking property tends to be shortened and the physical property balance tends to be lowered.
  • Polyol crosslinking system Crosslinking by a polyol crosslinking system is preferable in that it has a carbon-oxygen bond at the crosslinking point, has a small compression set, and is excellent in moldability.
  • polyol crosslinking agent a compound conventionally known as a fluororubber crosslinking agent can be used.
  • a polyhydroxy compound particularly, a polyhydroxy aromatic compound is preferably used from the viewpoint of excellent heat resistance.
  • the polyhydroxy aromatic compound is not particularly limited.
  • 2,2-bis (4-hydroxyphenyl) propane hereinafter referred to as bisphenol A
  • 2,2-bis (4-hydroxyphenyl) perfluoropropane (Hereinafter referred to as bisphenol AF)
  • resorcin 1,3-dihydroxybenzene, 1,7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 4,4′-dihydroxydiphenyl, 4,4 ′ -Dihydroxystilbene, 2,6-dihydroxyanthracene, hydroquinone, catechol, 2,2-bis (4-hydroxyphenyl) butane (hereinafter referred to as bisphenol B), 4,4-bis (4-hydroxyphenyl) valeric acid, , 2-bis (4-hydroxypheny ) Tetrafluorodichloropropane, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxydipheny
  • a polyhydroxy compound is preferable from the viewpoint of small compression set such as a molded article to be obtained and excellent moldability, a polyhydroxy aromatic compound is more preferable because of excellent heat resistance, and bisphenol AF is preferable. Further preferred.
  • the crosslinking reaction can be promoted by promoting the formation of intramolecular double bonds in the dehydrofluorination reaction of the fluororubber main chain and the addition of polyhydroxy compounds to the generated double bonds. it can.
  • An onium compound is generally used as a crosslinking accelerator for polyol crosslinking.
  • the onium compound is not particularly limited, and examples thereof include ammonium compounds such as quaternary ammonium salts, phosphonium compounds such as quaternary phosphonium salts, oxonium compounds, sulfonium compounds, cyclic amines, and monofunctional amine compounds. Of these, quaternary ammonium salts and quaternary phosphonium salts are preferred.
  • the quaternary ammonium salt is not particularly limited.
  • the quaternary phosphonium salt is not particularly limited.
  • tetrabutylphosphonium chloride benzyltriphenylphosphonium chloride (hereinafter referred to as BTPPC), benzyltrimethylphosphonium chloride, benzyltributylphosphonium chloride, tributylallylphosphonium chloride, tributyl.
  • BTPPC benzyltriphenylphosphonium chloride
  • BTPPC benzyltriphenylphosphonium chloride
  • BTPPC benzyltriphenylphosphonium chloride
  • crosslinking accelerator a quaternary ammonium salt, a solid solution of a quaternary phosphonium salt and bisphenol AF, or a chlorine-free crosslinking accelerator disclosed in JP-A-11-147891 can be used.
  • the blending amount of the polyol crosslinking agent is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 7 parts by mass with respect to 100 parts by mass of the fluororubber (A).
  • the polyol crosslinking agent is less than 0.01 part by mass, the crosslinking of the fluororubber (A) tends not to proceed sufficiently, and when it exceeds 10 parts by mass, the balance of physical properties tends to be lowered.
  • the blending amount of the crosslinking accelerator is preferably 0.01 to 8 parts by mass, more preferably 0.02 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (A).
  • the crosslinking accelerator is less than 0.01 parts by mass, the crosslinking of the fluororubber (A) tends not to proceed sufficiently, and when it exceeds 8 parts by mass, the balance of physical properties tends to decrease.
  • Polyamine crosslinking system When crosslinked by polyamine crosslinking, it has a carbon-nitrogen double bond at the crosslinking point and is characterized by excellent dynamic mechanical properties. However, the compression set tends to be larger than when crosslinking is performed using a polyol crosslinking system or a peroxide crosslinking system.
  • polyamine-based crosslinking agent examples include polyamine compounds such as hexamethylenediamine carbamate, N, N′-dicinnamylidene-1,6-hexamethylenediamine, and 4,4′-bis (aminocyclohexyl) methanecarbamate. Among these, N, N′-dicinnamylidene-1,6-hexamethylenediamine is preferable.
  • the compounding amount of the polyamine-based crosslinking agent is preferably 0.01 to 10 parts by mass, more preferably 0.2 to 7 parts by mass with respect to 100 parts by mass of the fluororubber (A).
  • the polyamine crosslinking agent is less than 0.01 parts by mass, the crosslinking of the fluororubber (A) tends not to proceed sufficiently.
  • the polyamine crosslinking agent exceeds 10 parts by mass, the balance of physical properties tends to decrease.
  • a peroxide crosslinking system or a polyol crosslinking system is preferable as the crosslinking system, and it is preferable to use a crosslinking agent (C) suitable for each crosslinking system.
  • a crosslinking agent (C) suitable for each crosslinking system.
  • an ordinary rubber compound for example, a filler, a processing aid, a plasticizer, a colorant, a tackifier, an adhesion aid, an acid acceptor, a pigment, a flame retardant, is used as necessary.
  • metal oxides such as calcium oxide, titanium oxide, aluminum oxide, magnesium oxide
  • metal hydroxides such as magnesium hydroxide, aluminum hydroxide, calcium hydroxide
  • magnesium carbonate, aluminum carbonate, calcium carbonate, carbonic acid Carbonates such as barium
  • silicates such as magnesium silicate, calcium silicate, sodium silicate, and aluminum silicate
  • sulfates such as aluminum sulfate, calcium sulfate, and barium sulfate
  • synthetic hydrotalcite molybdenum disulfide, sulfide
  • Metal sulfides such as iron and copper sulfide; diatomaceous earth, asbestos, lithopone (zinc sulfide / barium sulfide), graphite, carbon fluoride, calcium fluoride, coke, quartz fine powder, talc, mica powder, wollastonite, Carbon fiber, aramid fiber, various Isuka, glass fibers, organic reinforcing agents, organic fillers, polytetrafluoro
  • Examples of the acid acceptor include calcium oxide, magnesium oxide, lead oxide, zinc oxide, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, and hydrotalcite. These may be used alone or in combination of two or more. May be. In these kneading methods, these may be added in any step, but may be added when the fluororubber (A) and the carbon black (B) are kneaded with a closed kneader or a roll kneader. preferable.
  • higher fatty acids such as stearic acid, oleic acid, palmitic acid and lauric acid; higher fatty acid salts such as sodium stearate and zinc stearate; higher fatty acid amides such as stearic acid amide and oleic acid amide; oleic acid Higher fatty acid esters such as ethyl; Petroleum waxes such as carnauba wax and ceresin wax; Polyglycols such as ethylene glycol, glycerin and diethylene glycol; Aliphatic hydrocarbons such as petrolatum and paraffin; Silicone oils, silicone polymers, low molecular weight polyethylene Phthalic acid esters, phosphoric acid esters, rosin, (halogenated) dialkylamines, surfactants, sulfone compounds, fluorine-based auxiliaries, organic amine compounds, and the like.
  • higher fatty acids such as stearic acid, oleic acid, palmitic acid and lauric acid
  • the organic amine compound and the acid acceptor are preferably blended from the viewpoint that the reinforcing property is improved by coexisting the fluororubber (A) and the carbon black (B) in a closed kneader or a roll kneader. It is an agent.
  • the kneading is preferably performed so that the maximum temperature Tm is 80 ° C. to 220 ° C.
  • Preferred examples of the organic amine compound include a primary amine represented by R 1 NH 2 , a secondary amine represented by R 1 R 2 NH, and a tertiary amine represented by R 1 R 2 R 3 N.
  • R 1 , R 2 and R 3 are the same or different, and all are preferably an alkyl group having 1 to 50 carbon atoms, and the alkyl group may contain a benzene ring as a functional group, a double bond, a conjugated double Bonds may be included.
  • the alkyl group may be linear or branched.
  • Examples of primary amines include coconut amine, octylamine, laurylamine, stearylamine, oleylamine, beef tallow amine, 17-phenyl-heptadecylamine, octadec-7,11-dienylamine, octadec-7,9-dienylamine, octadec- 9-enylamine, 7-methyl-octadec-7-enylamine and the like.
  • Examples of the secondary amine include distearylamine, and examples of the tertiary amine include dimethyloctylamine, dimethyldecylamine, dimethyllaurylamine, Examples include dimethyl myristyl amine, dimethyl palmityl amine, dimethyl stearyl amine, and dimethyl behenyl amine. Of these, amines having about 20 carbon atoms, particularly primary amines, are preferred from the standpoint of easy availability and reinforcement.
  • the compounding amount of the organic amine compound is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (A).
  • a more preferable blending amount is 0.1 parts by mass or more with respect to 100 parts by mass of the fluororubber (A) from the viewpoint of reinforcement, and 4 parts by mass or less from the viewpoint of reinforcement and ease of kneading. .
  • metal hydroxides such as calcium hydroxide
  • metal oxides such as magnesium oxide and zinc oxide, and hydrotalcite are preferable from the viewpoint of reinforcement, and particularly zinc oxide. Is preferred.
  • the compounding amount of the acid acceptor is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the fluororubber (A). If the acid acceptor is too much, the physical properties tend to be lowered, and if it is too little, the reinforcing property tends to be lowered.
  • a more preferable blending amount is 0.1 parts by mass or more with respect to 100 parts by mass of the fluororubber (A) from the viewpoint of reinforcement, and is preferably 8 parts by mass or less from the viewpoint of physical properties and ease of kneading. 5 parts by mass or less is more preferable.
  • the cross-linking method of the fluororubber composition may be selected as appropriate.
  • a normal cross-linking method such as a molding method such as extrusion molding or steaming molding or a cross-linking method using a cross-linking can is employed. If secondary crosslinking is required depending on the purpose of use of the crosslinked product, oven crosslinking may be further performed.
  • the obtained cross-linked fluororubber also has a dynamic viscoelasticity test (measurement mode: tensile, distance between chucks: 20 mm, tensile strain: 1%, measurement frequency: 10 Hz, initial load: 157 cN, measurement temperature: 160 ° C.)
  • the loss elastic modulus E ′′ is 400 kPa or more and 6000 kPa or less, the normal physical properties and the mechanical properties at high temperatures are particularly excellent.
  • the lower limit is preferably 420 kPa, more preferably 430 kPa, and the upper limit is preferably 5900 kPa, more preferably 5800 kPa.
  • the obtained fluororubber crosslinked product has a dynamic viscoelasticity test (measurement mode: tension, distance between chucks: 20 mm, measurement temperature: 160 ° C., tensile strain: 1%, initial load: 157 cN, frequency: 10 Hz).
  • the storage elastic modulus E ′ is more preferably 1500 kPa or more and 20000 kPa or less from the viewpoint of improvement in mechanical properties at high temperatures.
  • the lower limit is preferably 1600 kPa, more preferably 1800 kPa, and the upper limit is preferably 19000 kPa, more preferably 18000 kPa.
  • the crosslinked fluororubber has a tensile elongation at break of 100 to 700%, further 110% or more, particularly 120% or more, and 680% or less, particularly 650% or less at 160 ° C. This is preferable because it is suitable for use in an environment.
  • the cross-linked fluororubber has a tensile breaking strength at 160 ° C. of 1 MPa or more, more preferably 1.5 MPa or more, particularly 2 MPa or more, and 30 MPa or less, particularly 28 MPa or less. This is preferable because it is suitable for use.
  • the tensile strength at break and tensile elongation at break are measured using a No. 6 dumbbell according to JIS-K6251.
  • the cross-linked fluororubber has a tear strength at 160 ° C. of 3 to 30 kN / m, further 4 kN / m or more, particularly 5 kN / m or more, 29 kN / m or less, particularly 28 kN / m or less. Is preferable because it is suitable for use in a high-temperature environment.
  • the cross-linked fluororubber has a tensile elongation at break of 100 to 700%, further 110% or more, particularly 120% or more, and 680% or less, particularly 650% or less at 200 ° C. This is preferable because it is suitable for use in an environment.
  • the cross-linked fluororubber has a tensile strength at 200 ° C. of 1 to 30 MPa, more preferably 1.5 MPa or more, particularly 2 MPa or more, and 29 MPa or less, particularly 28 MPa or less. It is preferable because it is suitable for use in the above.
  • the cross-linked fluororubber has a tear strength at 200 ° C. of 3 to 30 kN / m, further 4 kN / m or more, particularly 5 kN / m or more, 29 kN / m or less, particularly 28 kN / m or less. Is preferable because it is suitable for use in a high-temperature environment.
  • the cross-linked fluororubber of the present invention can be used for various applications, and in particular, for example, can be suitably used for the following various applications.
  • Hose As the hose, a hose having a single-layer structure composed only of a cross-linked fluororubber obtained by cross-linking the fluororubber composition of the present invention may be used, or a multi-layer hose having a laminated structure with other layers It may be.
  • Examples of the single-layered hose include an exhaust gas hose, an EGR hose, a turbocharger hose, a fuel hose, a brake hose, and an oil hose.
  • Examples of the multi-layered hose include an exhaust gas hose, an EGR hose, a turbocharger hose, a fuel hose, a brake hose, and an oil hose.
  • a turbo system is often installed in a diesel engine. By sending exhaust gas from the engine to the turbine and rotating it, the compressor connected to the turbine is moved to increase the compression ratio of the air supplied to the engine and improve the output. It is.
  • This turbo system that uses the exhaust gas of the engine and obtains a high output leads to a reduction in the size of the engine, a reduction in fuel consumption of the automobile, and a cleaner exhaust gas.
  • the turbocharger hose is used in the turbo system as a hose for sending compressed air to the engine.
  • a rubber hose with excellent flexibility and flexibility is advantageous, and typically rubber with excellent heat aging resistance and oil resistance (especially fluororubber) )
  • a hose having a multilayer structure in which the layer is an inner layer and silicone rubber or acrylic rubber is an outer layer is employed.
  • the engine surroundings such as the engine room are exposed to high temperatures and are in a harsh environment where vibration is also applied, and not only heat aging resistance but also excellent mechanical properties at high temperatures are required.
  • the hose satisfies these required characteristics at a high level by using a cross-linked fluororubber layer obtained by cross-linking the fluororubber composition of the present invention as a single layer and a multi-layer rubber layer.
  • a turbocharger hose having characteristics can be provided.
  • examples of the layer made of other materials include a layer made of other rubber, a layer made of a thermoplastic resin, various fiber reinforcing layers, a metal foil layer, and the like.
  • acrylonitrile-butadiene rubber or its hydrogenated rubber blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, fluorine rubber, epichlorohydrin rubber
  • a rubber comprising at least one selected from the group consisting of EPDM and acrylic rubber is preferred, and acrylonitrile-butadiene rubber or hydrogenated rubber thereof, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, fluorine rubber, epichlorohydrin rubber More preferably, it is made of at least one rubber selected from the group consisting of:
  • the thermoplastic resin is a heat composed of at least one selected from the group consisting of fluororesins, polyamide resins, polyolefin resins, polyester resins, polyvinyl alcohol resins, polyvinyl chloride resins, and polyphenylene sulfide resins.
  • a plastic resin is preferable, and a thermoplastic resin made of at least one selected from the group consisting of a fluororesin, a polyamide resin, a polyvinyl alcohol resin, and a polyphenylene sulfide resin is more preferable.
  • surface treatment may be performed as necessary.
  • the type of the surface treatment is not particularly limited as long as it is a treatment method that enables adhesion.
  • discharge treatment such as plasma discharge treatment or corona discharge treatment, wet metal sodium / naphthalene liquid treatment Etc.
  • a primer treatment is also suitable as the surface treatment.
  • Primer treatment can be performed according to a conventional method. When the primer treatment is applied, the surface of the fluororubber that has not been surface-treated can be treated, but if the primer treatment is further performed after plasma discharge treatment, corona discharge treatment, metal sodium / naphthalene liquid treatment, etc. are performed in advance. Is more effective.
  • the hose using the crosslinked product of the present invention can be suitably used in the following fields.
  • hoses such as an apparatus, an oxidation diffusion apparatus, a sputtering apparatus, an ashing apparatus, a cleaning apparatus, an ion implantation apparatus, and an exhaust apparatus.
  • the automotive field it can be used as a peripheral device for engines and automatic transmissions, and can be used as a turbocharger hose, EGR hose, exhaust gas hose, fuel hose, oil hose, brake hose, and the like.
  • sealing material can be suitably used in the following fields.
  • engine body main motion system, valve system, lubricant / cooling system, fuel system, intake / exhaust system; drive system transmission system; chassis steering system; brake system; Gaskets that require heat resistance, oil resistance, fuel oil resistance, engine cooling antifreeze resistance, steam resistance, non-contact type and contact type packing (self-sealing packing) , Piston rings, split ring packings, mechanical seals, oil seals, etc.).
  • the sealing material used for the engine body of the automobile engine is not particularly limited.
  • a sealing material such as a cylinder head gasket, a cylinder head cover gasket, an oil pan packing, a general gasket, an O-ring, a packing, a timing belt cover gasket, etc. Is mentioned.
  • the seal material used in the main motion system of the automobile engine is not particularly limited, and examples thereof include a shaft seal such as a crankshaft seal and a camshaft seal.
  • the seal material used in the valve system of an automobile engine is not particularly limited, and examples thereof include a valve stem oil seal for an engine valve and a valve seat for a butterfly valve.
  • the sealant used in the lubricant / cooling system for automobile engines is not particularly limited, and examples thereof include engine oil cooler seal gaskets.
  • the sealing material used in the engine fuel system for automobiles is not particularly limited.
  • fuel injection such as an oil seal of a fuel pump, a filler seal of a fuel tank, a tank packing, a connector O link of a fuel tube, etc.
  • EGR sealing materials such as an injector cushion ring, an injector seal ring, an injector O-ring, and a carburetor flange gasket.
  • the sealing material used for the intake / exhaust system of the automobile engine is not particularly limited.
  • the intake manifold packing of the manifold, the exhaust manifold packing, the throttle body packing of the throttle, the turbine shaft seal of the turbo charge, etc. is not particularly limited.
  • the intake manifold packing of the manifold, the exhaust manifold packing, the throttle body packing of the throttle, the turbine shaft seal of the turbo charge, etc. is mentioned.
  • the seal material used in the transmission system for automobiles is not particularly limited, and examples thereof include bearing seals, oil seals, O-rings and packings for transmissions, and O-rings and packings for automatic transmissions. It is done.
  • the sealing material used in the brake system for automobiles is not particularly limited.
  • oil seals, O-rings, packing, etc. master cylinder piston cups (rubber cups), caliper seals, boots, etc. Is mentioned.
  • the sealing material used for the electrical equipment for automobiles is not particularly limited, and examples thereof include an O-ring and packing of a car air conditioner.
  • the sealing material it is particularly suitable for a sensor sealing material (bush), and further suitable for an oxygen sensor sealing material, a nitrogen oxide sensor sealing material, a sulfur oxide sensor sealing material, and the like.
  • the O-ring may be a square ring.
  • Applications other than the automotive field are not particularly limited, and include aircraft field, rocket field, ship field, oil field drilling field (for example, packer seals, MWD seals, LWD seals, etc.), chemicals such as plants, pharmaceuticals, etc.
  • oil-resistant, chemical-resistant, heat-resistant, steam- or weather-resistant packings, O-rings, and other sealing materials in transportation such as ships and aircraft; similar packing, O-rings, sealing materials in oilfield drilling; Packing, O-rings, sealing materials for food plants, and similar packings, O-rings, sealing materials for food plant equipment (including household products); similar packings, O-rings, sealing materials for nuclear plant equipment; The same packing, O-ring, sealing material and the like can be mentioned.
  • belt material for power transmission belts (including flat belts, V-belts, V-ribbed belts, toothed belts, etc.) and conveyor belts (conveyor belts).
  • semiconductor manufacturing related fields such as semiconductor manufacturing equipment, liquid crystal panel manufacturing equipment, plasma panel manufacturing equipment, plasma addressed liquid crystal panels, field emission display panels, solar cell substrates, CVD equipment, dry etching equipment exposed to high temperature environments, It can be used for belt materials such as a wet etching apparatus, an oxidation diffusion apparatus, a sputtering apparatus, an ashing apparatus, a cleaning apparatus, an ion implantation apparatus, and an exhaust apparatus.
  • Examples of the flat belt include flat belts used for various high temperature parts such as around an engine of an agricultural machine, a machine tool, an industrial machine, and the like.
  • conveyor belts for example, conveyor belts for conveying loose and granular materials such as coal, crushed stone, earth and sand, ore, and wood chips in a high temperature environment
  • conveyor belts used in steelworks such as blast furnaces
  • precision Examples include conveyor belts in applications exposed to high-temperature environments in equipment assembly factories, food factories, and the like.
  • Examples of the V belt and V ribbed belt include agricultural machinery, general equipment (OA equipment, printing machines, commercial dryers, etc.), automobile V belts, and V ribbed belts.
  • the toothed belt examples include a toothed belt such as a power transmission belt of a transfer robot, a food machine, and a power transmission belt of a machine tool. Can be mentioned. In particular, a timing belt is mentioned as a toothed belt for automobiles.
  • examples of the layer made of another material include a layer made of other rubber, a layer made of a thermoplastic resin, various fiber reinforcement layers, a canvas, and a metal foil layer.
  • acrylonitrile-butadiene rubber or its hydrogenated rubber blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, fluorine rubber, epichlorohydrin rubber
  • a rubber comprising at least one selected from the group consisting of EPDM and acrylic rubber is preferred, and acrylonitrile-butadiene rubber or hydrogenated rubber thereof, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, fluorine rubber, epichlorohydrin rubber More preferably, it is made of at least one rubber selected from the group consisting of:
  • the thermoplastic resin is a heat composed of at least one selected from the group consisting of fluororesins, polyamide resins, polyolefin resins, polyester resins, polyvinyl alcohol resins, polyvinyl chloride resins, and polyphenylene sulfide resins.
  • a plastic resin is preferable, and a thermoplastic resin made of at least one selected from the group consisting of a fluororesin, a polyamide resin, a polyvinyl alcohol resin, and a polyphenylene sulfide resin is more preferable.
  • surface treatment may be performed as necessary.
  • the type of the surface treatment is not particularly limited as long as it is a treatment method that enables adhesion.
  • discharge treatment such as plasma discharge treatment or corona discharge treatment, wet metal sodium / naphthalene liquid treatment Etc.
  • a primer treatment is also suitable as the surface treatment.
  • Primer treatment can be performed according to a conventional method. When the primer treatment is applied, the surface of the fluororubber that has not been surface-treated can be treated, but if the primer treatment is further performed after plasma discharge treatment, corona discharge treatment, metal sodium / naphthalene liquid treatment, etc. are performed in advance. Is more effective.
  • the fluorororubber molded product of the present invention satisfies the required characteristics for anti-vibration rubber at a high level by using it as a rubber layer of a single layer and a multilayer structure in anti-vibration rubber, and is excellent.
  • An anti-vibration rubber for automobiles having characteristics can be provided.
  • examples of the layer made of other materials include a layer made of other rubber, a layer made of thermoplastic resin, various fiber reinforced layers, a metal foil layer, and the like. .
  • acrylonitrile-butadiene rubber or its hydrogenated rubber blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, fluorine rubber, epichlorohydrin rubber
  • a rubber comprising at least one selected from the group consisting of EPDM and acrylic rubber is preferred, and acrylonitrile-butadiene rubber or hydrogenated rubber thereof, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, fluorine rubber, epichlorohydrin rubber More preferably, it is made of at least one rubber selected from the group consisting of:
  • the thermoplastic resin is a heat composed of at least one selected from the group consisting of fluororesins, polyamide resins, polyolefin resins, polyester resins, polyvinyl alcohol resins, polyvinyl chloride resins, and polyphenylene sulfide resins.
  • a plastic resin is preferable, and a thermoplastic resin made of at least one selected from the group consisting of a fluororesin, a polyamide resin, a polyvinyl alcohol resin, and a polyphenylene sulfide resin is more preferable.
  • surface treatment may be performed as necessary.
  • the type of the surface treatment is not particularly limited as long as it is a treatment method that enables adhesion.
  • discharge treatment such as plasma discharge treatment or corona discharge treatment, wet metal sodium / naphthalene liquid treatment Etc.
  • a primer treatment is also suitable as the surface treatment.
  • Primer treatment can be performed according to a conventional method. When the primer treatment is applied, the surface of the fluororubber that has not been surface-treated can be treated, but if the primer treatment is further performed after plasma discharge treatment, corona discharge treatment, metal sodium / naphthalene liquid treatment, etc. are performed in advance. Is more effective.
  • Diaphragm The fluororubber molded product of the present invention can be suitably used for the following diaphragms.
  • automobile engines include diaphragms such as fuel systems, exhaust systems, brake systems, drive systems, and ignition systems that require heat resistance, oxidation resistance, fuel resistance, low gas permeability, and the like.
  • Examples of the diaphragm used in the fuel system of the automobile engine include a fuel pump diaphragm, a carburetor diaphragm, a pressure regulator diaphragm, a pulsation damper diaphragm, an ORVR diaphragm, a canister diaphragm, an auto fuel cock diaphragm, and the like. .
  • Examples of the diaphragm used in the exhaust system of the automobile engine include a waste gate diaphragm, an actuator diaphragm, an EGR diaphragm, and the like.
  • Examples of the diaphragm used for the brake system of the automobile engine include an air brake diaphragm.
  • Examples of the diaphragm used in the drive system of the automobile engine include an oil pressure diaphragm.
  • Examples of the diaphragm used in the ignition system of the automobile engine include a distributor diaphragm.
  • Dynamic viscoelasticity test (A) Dynamic viscoelasticity measurement at the time of non-crosslinking (shear elastic modulus G ′) Difference ⁇ G ′ (G ′ (1%) ⁇ G ′ (100%) between the shear modulus G ′ (1%) at a dynamic strain of 1% and the shear modulus G ′ (100%) at a dynamic strain of 100% )) Measuring method Using a rubber process analyzer (model: RPA2000) manufactured by Alpha Technologies, the dynamic viscoelasticity is measured at 100 ° C. and 1 Hz.
  • Tensile breaking strength, tensile breaking elongation RTA-1T manufactured by Orientec Co., Ltd. and AG-I manufactured by Shimadzu Corporation are used as test machines.
  • the tensile breaking strength and tensile breaking elongation are measured using a dumbbell of No. 6 with a tensile speed of 500 mm / min set to 50 mm between chucks. Measurement temperature shall be 25 degreeC and 160 degreeC.
  • Mooney viscosity (ML 1 + 10 (100 ° C.)) Mooney viscosity is measured in accordance with ASTM-D1646 and JIS K6300. The measurement temperature is 100 ° C.
  • the polymerization time was 7.5 hours.
  • VdF / HFP 76/24 (mol%), and the Mooney viscosity (ML 1 + 10 (100 ° C.)) was 89.
  • This fluororubber is designated as fluororubber A2.
  • the polymerization time was 7.4 hours.
  • VdF / HFP 84/16 (mol%), and the Mooney viscosity (ML 1 + 10 (100 ° C.)) was 93.
  • This fluororubber is referred to as fluororubber A3.
  • a polymerization initiator solution in which 30 mg of APS was dissolved in 5 ml of pure water was injected with nitrogen gas to initiate the reaction.
  • an additional mixed monomer of VdF / PMVE 67/33 mol% was injected until the internal pressure became 1.52 MPa.
  • 2.72 g of diiodine compound I (CF 2 ) 4 I was injected.
  • an aqueous solution of 30 mg of APS / 5 ml of pure water was injected with nitrogen gas every 3 hours to continue the polymerization reaction.
  • the polymerization time was 6.5 hours.
  • VdF / PMVE 79/21 (mol%) and the Mooney viscosity (ML 1 + 10 (100 ° C.)) was 60.
  • This fluororubber is designated as fluororubber A5.
  • the polymerization time was 8.1 hours.
  • VdF / PMVE 85/15 (mol%), and the Mooney viscosity (ML 1 + 10 (100 ° C.)) was 72.
  • This fluororubber is referred to as fluororubber A6.
  • Zinc oxide kind (manufactured by Sakai Chemical Industry Co., Ltd.)
  • Example 1 Using a kneading machine (MixLabo 0.5L manufactured by Moriyama Co., Ltd., rotor diameter: 6.6 cm, tip clearance: 0.05 cm), the front rotor rotation speed: 60 rpm, the back rotor rotation speed: 50 rpm, and fluorine 20 parts by mass of carbon black, 0.5 part by mass of stearylamine, and 1.0 part by mass of zinc oxide were kneaded with 100 parts by mass of rubber (A1) to prepare each fluororubber pre-compound (B1). The maximum temperature of the discharged kneaded material was 165 ° C.
  • the obtained fluororubber pre-compound (B1) was subjected to a dynamic viscoelasticity test (1)-(A) to obtain ⁇ G ′.
  • the results are shown in Table 1.
  • fluororubber pre-compound (B1) 12 inch parts of fluororubber pre-compound (B1), an 8-inch open roll (manufactured by Kansai Roll Co., Ltd.), front roll rotation speed 21 rpm, back roll rotation speed 19 rpm, roll gap 0.1 cm
  • 1.0 part by mass of a cross-linking agent, 0.5 part by mass of a cross-linking accelerator (TAIC) and 0.5 part by mass of stearylamine are kneaded for 30 minutes to obtain a fluororubber full compound (C1).
  • the maximum temperature of the discharged kneaded material was 70 ° C.
  • Example 2 Except that the fluororubber (A1) was changed to the fluororubber (A2), a kneaded and cross-linked sheet was prepared under the same conditions as in Example 1, and various physical properties were measured. The results are shown in Table 1.
  • Example 3 Except that the fluororubber (A1) was changed to the fluororubber (A3), a kneaded and crosslinked sheet was prepared under the same conditions as in Example 1, and various physical properties were measured. The results are shown in Table 1.
  • Example 4 Except for changing the fluororubber (A1) to a fluororubber (A4), a kneaded and cross-linked sheet was prepared under the same conditions as in Example 1, and various physical properties were measured. The results are shown in Table 1.
  • Example 5 Except for changing the fluororubber (A1) to a fluororubber (A5), a kneaded and crosslinked sheet was prepared under the same conditions as in Example 1, and various physical properties were measured. The results are shown in Table 1.
  • Example 6 Except that the fluororubber (A1) was changed to the fluororubber (A6), a kneaded and cross-linked sheet was prepared under the same conditions as in Example 1, and various physical properties were measured. The results are shown in Table 1.
  • Example 7 Except that the fluororubber (A1) was changed to a fluororubber (A7), a kneaded and cross-linked sheet was prepared under the same conditions as in Example 1, and various physical properties were measured. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

耐熱性だけではなく、高温時の機械物性にも優れたフッ素ゴム成形品を提供する。フッ素ゴム(A)およびカーボンブラック(B)を含むフッ素ゴム組成物を架橋して得られるフッ素ゴム架橋物を有し、フッ素ゴム(A)は、全単量体成分に由来する構造単位の総量100モル%に対し、フッ化ビニリデンに由来する構造単位を48~88モル%含み、かつテトラフルオロエチレンに由来する構造単位を0~10モル%含むフッ化ビニリデン系フッ素ゴムであり、フッ素ゴム架橋物が、動的粘弾性試験(測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、損失弾性率E"が、400kPa以上6000kPa以下である成形品。

Description

フッ素ゴム成形品
(関連出願への相互参照)
本願は、本明細書において全体にわたって参照として組み込まれた2010年8月25日出願の米国仮特許出願第61/376,990号の35U.S.C.§119(e)に基づく利益を請求する。
 本発明は、高温時の機械物性に優れたフッ素ゴム成形品に関する。
 フッ素ゴムは耐薬品性、耐油性、耐熱性に優れて、高温において良好な耐圧縮永久歪み性を有することが知られているが、高温時の機械物性、たとえば熱時強度、熱時伸びなどの向上が近年望まれており、たとえば100℃を超える高温環境下でフッ素ゴム架橋物を使用する場合、耐熱性だけではなく、高温時の機械特性にも優れた耐久性に富むことが求められる。
 たとえば、圧縮永久歪み改善の観点からは、特許文献1に示されるような組成物が提案されているが、室温伸びが小さいので、熱時伸びについては更に小さくなると予想される。また、熱時伸びの改善としては、特許文献2に示されているが、更に苛酷な使用環境下では耐えうるような物性ではない。高温時強度の改善例としては、特許文献3に示されているように、フッ素ゴムと含フッ素熱可塑性エラストマーの組合せが例示されているが、室温伸びが小さいので、熱時伸びについては更に小さくなると予想される。
特開昭60-55050号公報 特開2008-184496公報 特開平06-25500号公報
 本発明は、耐熱性だけではなく、高温時の機械物性にも優れたフッ素ゴム成形品を提供することを目的とする。
 本発明は、フッ素ゴム(A)およびカーボンブラック(B)を含むフッ素ゴム組成物を架橋して得られるフッ素ゴム架橋物を有し、
フッ素ゴム(A)は、全単量体成分に由来する構造単位の総量100モル%に対し、フッ化ビニリデンに由来する構造単位を48~88モル%含み、かつテトラフルオロエチレンに由来する構造単位を0~10モル%含むフッ化ビニリデン系フッ素ゴムであり、
フッ素ゴム架橋物が、動的粘弾性試験(測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、損失弾性率E”が、400kPa以上6000kPa以下である成形品に関する。
 また本発明は、フッ素ゴム(A)およびカーボンブラック(B)を含み、
フッ素ゴム(A)は、全単量体成分に由来する構造単位の総量100モル%に対し、フッ化ビニリデンに由来する構造単位を48~88モル%含み、かつテトラフルオロエチレンに由来する構造単位を0~10モル%含むフッ化ビニリデン系フッ素ゴムであり、
ラバープロセスアナライザ(RPA)による動的粘弾性試験(測定周波数:1Hz、測定温度:100℃)において、未架橋時の動的歪み1%時の剪断弾性率G’(1%)および動的歪み100%時の剪断弾性率G’(100%)の差δG’(G’(1%)-G’(100%))が、120kPa以上3,000kPa以下であるフッ素ゴム組成物にも関する。
 本発明によれば、耐熱性だけではなく、高温時の機械物性にも優れたフッ素ゴム成形品を提供することができる。
 本発明の成形品は、フッ素ゴム(A)およびカーボンブラック(B)を含むフッ素ゴム組成物を架橋して得られるフッ素ゴム架橋物を有し、
フッ素ゴム(A)は、全単量体成分に由来する構造単位の総量100モル%に対し、フッ化ビニリデンに由来する構造単位を48~88モル%含み、かつテトラフルオロエチレンに由来する構造単位を0~10モル%含むフッ化ビニリデン系フッ素ゴムであり、
フッ素ゴム架橋物が、動的粘弾性試験(測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、損失弾性率E”が、400kPa以上6000kPa以下である。
 以下、各要件について説明する。
(A)フッ素ゴム
 本発明におけるフッ素ゴム(A)は、フッ素ゴム(A)を形成するために用いられる全単量体成分に由来する構造単位の総量100モル%に対し、フッ化ビニリデン(VdF)に由来する構造単位(VdF単位)を48~88モル%含むフッ化ビニリデン系フッ素ゴム(VdF系ゴム)であって、テトラフルオロエチレンに由来する構造単位(TFE単位)を含む場合は10モル%以下であるフッ化ビニリデン系フッ素ゴム(VdF系ゴム)である。VdF単位の含有量は70~85モル%が好ましく、75~85モル%がより好ましい。またTFE単位の含有量は0~3モル%が好ましい。なお、フッ素ゴム(A)は、VdF単位及びTFE単位以外のその他の構造単位を含んでいてもよい。VdF単位及びTFE単位以外のその他の構造単位の含有量は、フッ素ゴム(A)を形成するために用いられる全単量体成分に由来する構造単位の総量100モル%に対し、2~52モル%であることが好ましい。
 フッ素ゴム(A)が上記組成を有することにより、易混練性を有し、後述するように比較的低い平均剪断速度でカーボンブラック等と混練してフッ素ゴム組成物を得て、所望の常態物性および高温時の機械物性を備えるフッ素ゴム架橋物を得ることができる。
 上記VdF系ゴムは、フッ素ゴム(A)を形成するために用いられる全単量体成分に由来する構造単位の総量100モル%に対し、VdFに由来する構造単位が48~88モル%、テトラフルオロエチレンに由来する構造単位が10モル%以下であればよく、共単量体としてはVdFと共重合可能であれば特に限定されず、たとえば、ヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、トリフルオロプロピレン、テトラフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、ヘキサフルオロイソブテン、フッ化ビニル、ヨウ素含有フッ素化ビニルエーテル、一般式(1):
CH=CFR   (1)
(式中、Rは炭素数1~12の直鎖または分岐したフルオロアルキル基)で表される含フッ素単量体(1)などのフッ素含有単量体;エチレン(Et)、プロピレン(Pr)、アルキルビニルエーテル等のフッ素非含有単量体、架橋性基(キュアサイト)を与える単量体、および反応性乳化剤などが挙げられ、これらの単量体や化合物のなかから1種または2種以上を組み合わせて用いることができる。
 前記PAVEとしては、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)が好ましく、特にPMVEが好ましい。
 また、前記PAVEとして、式(2):CF=CFOCFOR   (2)
(式中、R は炭素数1~6の直鎖または分岐状パーフルオロアルキル基、炭素数5~6の環式パーフルオロアルキル基、1~3個の酸素原子を含む炭素数2~6の直鎖または分岐状パーフルオロオキシアルキル基である)で表されるパーフルオロビニルエーテルを用いてもよく、CF=CFOCFOCF、CF=CFOCFOCFCF、または、CF=CFOCFOCFCFOCFを用いることが好ましい。 
 上記式(1)で表される含フッ素単量体(1)としては、Rが直鎖のフルオロアルキル基である単量体が好ましく、Rが直鎖のパーフルオロアルキル基である単量体がより好ましい。Rの炭素数は1~6であることが好ましい。上記式(1)で表される含フッ素単量体(1)としては、CH=CFCF、CH=CFCFCF、CH=CFCFCFCF、CH=CFCFCFCFCFなどが挙げられ、なかでも、CH=CFCFで示される2,3,3,3-テトラフルオロプロピレンが好ましい。
 上記VdF系ゴムとしては、VdF/HFP共重合体、VdF/式(1)で表される含フッ素単量体(1)の共重合体またはVdF/PAVE共重合体が好ましい。
VdF/HFP共重合体としては、VdF/HFPのモル%比が48/52~85/15であるものが好ましく、50/50~78/22であるものがより好ましく、55/45~77/23であるものが更に好ましい。
 VdF/PAVE共重合体としては、VdF/PAVEのモル%比が88/12~48/52が好ましく、85/15~70/30がより好ましく、85/15~75/25であることが特に好ましい。
 VdF/式(1)で表される含フッ素単量体(1)系共重合体としては、VdF/含フッ素単量体(1)単位のモル%比が88/12~48/52であるものが好ましく、また、VdFおよび含フッ素単量体(1)以外の他の単量体単位が全単量体単位の0~10モル%のものが好ましい。VdF/含フッ素単量体(1)単位のモル%比は、85/15~70/30であることがより好ましく、85/15~75/25であることが特に好ましい。VdFおよび含フッ素単量体(1)以外の他の単量体としては、TFE、HFP、PMVE、パーフルオロエチルビニルエーテル(PEVE)、PPVE、CTFE、トリフルオロエチレン、ヘキサフルオロイソブテン、フッ化ビニル、エチレン(Et)、プロピレン(Pr)、アルキルビニルエーテル、架橋性基を与える単量体、および反応性乳化剤などの上記VdFの共単量体として例示した単量体が好ましく、なかでもPMVE、CTFE、HFP、TFEであることがより好ましい(ただし、TFEの含有量は0~10モル%、好ましくは0~3モル%である)。これらの単量体や化合物は、1種または2種以上を組み合わせて用いることができる。
 また、フッ素ゴム(A)は数平均分子量Mn5000~500000のものが好ましく、10000~500000のものが更に好ましく、特に20000~500000のものが好ましい。
 以上説明したフッ素ゴム(A)は、乳化重合、懸濁重合、溶液重合などの常法により製造することができる。特にヨウ素(臭素)移動重合として知られるヨウ素(臭素)化合物を使用した重合法によれば、分子量分布が狭いフッ素ゴムを製造できる。
 また、たとえばフッ素ゴム組成物の粘度を低くしたい場合などでは、上記のフッ素ゴム(A)に他のフッ素ゴムをブレンドしてもよい。他のフッ素ゴムとしては、低分子量液状フッ素ゴム(数平均分子量1000以上)、数平均分子量が10000程度の低分子量フッ素ゴム、更には数平均分子量が100000~200000程度のフッ素ゴムなどが挙げられる。
 また、フッ素ゴムとして例示したものは主単量体の構成であり、架橋性基を与える単量体を共重合したものも好適に用いることができる。架橋性基を与える単量体としては、製造法や架橋系に応じて適切な架橋性基を導入できるものであればよく、たとえばヨウ素原子、臭素原子、炭素-炭素二重結合、シアノ基、カルボキシル基、水酸基、アミノ基、エステル基などを含む公知の重合性化合物、連鎖移動剤などが挙げられる。
 好ましい架橋性基を与える単量体としては、
式(3):
CY =CY                (3)
(式中、Y、Yは、同一又は異なって、フッ素原子、水素原子または-CH;R は1個以上のエーテル結合性酸素原子を有していてもよく、芳香環を有していてもよい、水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐状の含フッ素アルキレン基;X1はヨウ素原子または臭素原子)
で示される化合物が挙げられる。具体的には、たとえば、式(4):
CY =CY CHR-X          (4)
(式中、Y、Y、Xは前記同様であり、R は1個以上のエーテル結合性酸素原子を有していてもよく水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐状の含フッ素アルキレン基、すなわち水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐状の含フッ素アルキレン基、水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐状の含フッ素オキシアルキレン基、または水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐状の含フッ素ポリオキシアルキレン基;R1は水素原子またはメチル基)
で示されるヨウ素含有モノマー、臭素含有モノマー、一般式(5)~(22):
CY =CY(CF-X           (5)
(式中、Y4は、同一又は異なって、水素原子またはフッ素原子、nは1~8の整数)
CF=CFCF -X             (6)
(式中、
Figure JPOXMLDOC01-appb-C000001
であり、nは0~5の整数)
CF=CFCF(OCF(CF)CF
              (OCHCFCFOCHCF-X (7)
(式中、mは0~5の整数、nは0~5の整数)
CF=CFCF(OCHCFCF
            (OCF(CF)CFOCF(CF)-X (8)
(式中、mは0~5の整数、nは0~5の整数)
CF=CF(OCFCF(CF))O(CF-X    (9)
(式中、mは0~5の整数、nは1~8の整数)
CF=CF(OCFCF(CF))-X          (10)
(式中、mは1~5の整数)
CF=CFOCF(CF(CF)OCFCF(-X)CF
(11)
(式中、nは1~4の整数)
CF=CFO(CFOCF(CF)-X         (12)
(式中、nは2~5の整数)
CF=CFO(CF-(C)-X          (13)
(式中、nは1~6の整数)
CF=CF(OCFCF(CF))OCFCF(CF)-X
(14)
(式中、nは1~2の整数)
CH=CFCFO(CF(CF)CFO)CF(CF)-X
(15)
(式中、nは0~5の整数)、
CF=CFO(CFCF(CF)O)(CF-X   (16)
(式中、mは0~5の整数、nは1~3の整数)
CH=CFCFOCF(CF)OCF(CF)-X     (17)
CH=CFCFOCHCF-X              (18)
CF=CFO(CFCF(CF)O)CFCF(CF)-X
(19)
(式中、mは0以上の整数)
CF=CFOCF(CF)CFO(CF-X      (20)
(式中、nは1以上の整数)
CF=CFOCFOCFCF(CF)OCF-X     (21)
CH=CH-(CF                 (22)
(式中、nは2~8の整数)
(一般式(5)~(22)中、X1は前記と同様)
で表されるヨウ素含有モノマー、臭素含有モノマーなどが挙げられ、これらをそれぞれ単独で、または任意に組合わせて用いることができる。
 式(4)で示されるヨウ素含有モノマーまたは臭素含有モノマーとしては、一般式(23):
Figure JPOXMLDOC01-appb-C000002
(式中、mは1~5の整数であり、nは0~3の整数)
で表されるヨウ素含有フッ素化ビニルエーテルが好ましく挙げられ、より具体的には、
Figure JPOXMLDOC01-appb-C000003
などが挙げられるが、これらの中でも、ICHCFCFOCF=CFが好ましい。
 式(5)で示されるヨウ素含有モノマーまたは臭素含有モノマーとしてより具体的には、ICFCFCF=CH、I(CFCFCF=CHが好ましく挙げられる。
 式(9)で示されるヨウ素含有モノマーまたは臭素含有モノマーとしてより具体的には、I(CFCFOCF=CFが好ましく挙げられる。
 式(22)で示されるヨウ素含有モノマーまたは臭素含有モノマーとしてより具体的には、CH=CHCFCFI、I(CFCFCH=CHが好ましく挙げられる。
また、RC=CR-Z-CR=CR  
(式中、R、R、R、R、RおよびRは同じかまたは異なり、いずれもH、または炭素数1~5のアルキル基;Zは、直鎖もしくは分岐状の、酸素原子を含んでいてもよい、好ましくは少なくとも部分的にフッ素化された炭素数1~18のアルキレンもしくはシクロアルキレン基、または(パー)フルオロポリオキシアルキレン基)で示されるビスオレフィン化合物も架橋性基を与える単量体として好ましい。なお、本明細書において、「(パー)フルオロポリオキシアルキレン基」とは、「フルオロポリオキシアルキレン基又はパーフルオロポリオキシアルキレン基」を意味する。
 Zは好ましくは炭素数4~12の(パー)フルオロアルキレン基であり、R、R、R、R、RおよびRは好ましくは水素原子である。
 Zが(パー)フルオロポリオキシアルキレン基である場合、
-(Q)-CFO-(CFCFO)-(CFO)-CF-(Q)
(式中、Qは炭素数1~10のアルキレン基または炭素数2~10のオキシアルキレン基であり、pは0または1であり、m及びnはm/n比が0.2~5となり且つ該(パー)フルオロポリオキシアルキレン基の分子量が500~10000、好ましくは1000~4000の範囲となるような整数である。)で表される(パー)フルオロポリオキシアルキレン基であることが好ましい。この式において、Qは好ましくは、-CHOCH-及び-CHO(CHCHO)CH-(s=1~3)の中から選ばれる。
 好ましいビスオレフィンは、
CH=CH-(CF-CH=CH
CH=CH-(CF-CH=CH
式:CH=CH-Z-CH=CH    
(式中、Zは-CHOCH-CFO-(CFCFO)-(CFO)-CF-CHOCH-(m/nは0.5))
などが挙げられる。
 なかでも、CH=CH-(CF-CH=CHで示される3,3,4,4,5,5,6,6,7,7,8,8-ドデカフルオロ-1,9-デカジエンが好ましい。
 また、加工性の観点から、フッ素ゴム(A)は100℃におけるムーニー粘度が20~200、更には30~180の範囲にあることが好ましい。ムーニー粘度は、ASTM-D1646およびJIS K6300に準拠して測定する。
(B)カーボンブラック
 本発明において、カーボンブラック(B)として、上記範囲の損失弾性率E”、更に好ましくは後述する範囲の貯蔵弾性率E’を与えるカーボンブラックであれば特に制限されない。
 そうしたカーボンブラックとしては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどが挙げられ、具体的にはたとえば、SAF-HS(NSA:142m/g、DBP:130ml/100g)、SAF(NSA:142m/g、DBP:115ml/100g)、N234(NSA:126m/g、DBP:125ml/100g)、ISAF(NSA:119m/g、DBP:114ml/100g)、ISAF-LS(NSA:106m/g、DBP:75ml/100g)、ISAF-HS(NSA:99m/g、DBP:129ml/100g)、N339(NSA:93m/g、DBP:119ml/100g)、HAF-LS(NSA:84m/g、DBP:75ml/100g)、HAS-HS(NSA:82m/g、DBP:126ml/100g)、HAF(NSA:79m/g、DBP:101ml/100g)、N351(NSA:74m/g、DBP:127ml/100g)、LI-HAF(NSA:74m/g、DBP:101ml/100g)、MAF-HS(NSA:56m/g、DBP:158ml/100g)、MAF(NSA:49m/g、DBP:133ml/100g)、FEF-HS(NSA:42m/g、DBP:160ml/100g)、FEF(NSA:42m/g、DBP:115ml/100g)、SRF-HS(NSA:32m/g、DBP:140ml/100g)、SRF-HS(NSA:29m/g、DBP:152ml/100g)、GPF(NSA:27m/g、DBP:87ml/100g)、SRF(NSA:27m/g、DBP:68ml/100g)、SRF-LS(NSA:23m/g、DBP:51ml/100g)、FT(NSA:19m/g、DBP:42ml/100g)、MT(NSA:8m/g、DBP:43ml/100g)などが挙げられる。これらのカーボンブラックは単独で使用してもよいし、また2種以上を併用してもよい。
 なかでも、カーボンブラックの好ましいものとしては、窒素吸着比表面積(NSA)が5~180m/gであって、ジブチルフタレート(DBP)吸油量が40~180ml/100gであるカーボンブラックが挙げられる。なお、カーボンブラックとして、NSAやDBPの値の高いものを用いるときは、前述した損失弾性率E”や貯蔵弾性率E’の値が高くなる。
 窒素吸着比表面積(NSA)が5m/gよりも小さくなると、ゴムに配合した場合の機械物性が低下する傾向にあり、この観点から、窒素吸着比表面積(NSA)は10m/g以上が好ましく、20m/g以上がより好ましく、25m/g以上が特に好ましい。上限は、一般的に入手しやすい観点から180m/gが好ましい。
 ジブチルフタレート(DBP)吸油量が40ml/100gよりも小さくなると、ゴムに配合した場合の機械物性が低下する傾向にあり、この観点から、50ml/100g以上、更には60ml/100g以上、特には80ml/100g以上が好ましい。上限は一般的に入手しやすい観点から、175ml/100g、更には170ml/100gが好ましい。
 カーボンブラック(B)の配合量は、フッ素ゴム(A)100質量部に対して5~65質量部が好ましい。カーボンブラック(B)が多くなりすぎると架橋物の機械物性が低下する傾向にあり、また、少なくなりすぎると架橋物の機械物性が低下する傾向にある。更に好ましい配合量は、物性バランスが良好な点から、フッ素ゴム(A)100質量部に対して6質量部以上が好ましく、10質量部以上がより好ましく、物性バランスが良好な点から55質量部以下が好ましく、50質量部以下がより好ましく、49質量部以下が更に好ましく、45質量部以下が特に好ましい。
 本発明における成形品を得るには、フッ素ゴム組成物として、ラバープロセスアナライザ(RPA)による未架橋ゴムでの動的粘弾性試験(測定温度:100℃、測定周波数:1Hz)における動的歪み1%時のせん断弾性率G’(1%)および動的歪み100%時のせん断弾性率G’(100%)の差δG’(G’(1%)-G’(100%))が、120kPa以上3,000kPa以下であるものを好適に用いることができる。
 差δG’は、ゴム組成物の補強性という性質を評価する指標として用い、ラバープロセスアナライザによる動的粘弾性試験で測定算出される。
 差δG’が120kPa以上3,000kPa以下の範囲にあるフッ素ゴム組成物は、常態物性および高温時の機械物性などの点で有利である。
 差δG’は、常態物性および高温時の機械物性などが良好な点から、好ましくは150kPa以上、更には160kPa以上であり、常態物性、硬度、押出成形時の粘度および高温時の機械物性などが良好な点から、好ましくは2,800kPa以下、更には2,500kPa以下である。
 差δG’が120kPa以上3,000kPa以下のフッ素ゴム組成物は、たとえば混練機やロール練り機などを用いて調製できる。
 より具体的には、つぎの各方法が挙げられるが、これらの方法に限定されるものではない。
(1)密閉式混練機にフッ素ゴム(A)とカーボンブラック(B)、要すれば後述する有機アミン化合物および/または受酸剤を所定量投入し、ローターの平均剪断速度を20~1000(1/秒)、好ましくは50~1000(1/秒)、より好ましくは100~1000(1/秒)、更に好ましくは200~1000(1/秒)に調整して、混練の最高温度Tmが80~220℃(好ましくは120~200℃)となる条件で混練する方法(つまり、混練時の混練物の最高温度Tm80℃~220℃とし、その温度で排出する条件にて混練することが好ましい。以下同様)。なお、密閉式混練機としては、加圧ニーダーやバンバリーミキサー、一軸混練機、二軸混練機などが挙げられる。
(2)ロール練り機にフッ素ゴム(A)とカーボンブラック(B)、要すれば後述する有機アミン化合物および/または受酸剤を所定量投入し、ローターの平均剪断速度を20(1/秒)以上、好ましくは50(1/秒)以上、混練の最高温度Tmが80~220℃(好ましくは120~200℃)となる条件で混練する方法。
 上記(1)、(2)の方法で得られるフッ素ゴム組成物は架橋剤(C)や架橋促進剤(D)などを含んでいない。また、上記(1)、(2)の方法の混練を複数回行ってもよい。複数回行う場合、2回目以降の混練条件は、混練の最高温度Tmを140℃以下とする以外は上記(1)、(2)の方法と同じ条件でよい。
 本発明で用いる架橋性のフッ素ゴム組成物の調製法の1つは、たとえば、上記(1)、(2)の方法で得られた、あるいは上記(1)、(2)の方法を複数回繰り返して得られたフッ素ゴム組成物に、更に架橋剤(C)および/または架橋促進剤(D)を配合し混練する方法である。
 架橋剤(C)と架橋促進剤(D)は同時に配合し混練してもよいし、まず架橋促進剤(D)を配合混練し、ついで架橋剤(C)を配合混練してもよい。架橋剤(C)と架橋促進剤(D)の混練条件は、混練の最高温度Tmが130℃以下であるほかは、上記(1)、(2)の方法と同じ条件でよい。
 架橋性のフッ素ゴム組成物の別の調製法は、たとえばロール練り機にフッ素ゴム(A)とカーボンブラック(B)、架橋剤(C)および/または架橋促進剤(D)を適切な順序で所定量投入し、ローターの平均剪断速度を20(1/秒)以上、好ましくは50(1/秒)以上、混練の最高温度Tmが130℃以下の条件で混練する方法が挙げられる。
 また、ポリオール架橋系の場合は、予めフッ素ゴム(A)と架橋剤(C)と架橋促進剤(D)を混合し、均一分散体にしたものを使用してもよい。たとえば、フッ素ゴム(A)とポリオール系架橋剤と架橋促進剤をまず混練し、ついでカーボンブラックと後述する有機アミン化合物を配合して混練し、混練の最高温度Tmを80~220℃とする。そして、最後に受酸剤を配合して混練し、混練の最高温度Tm130℃以下とする方法が挙げられる。なお混練するにあたっては、平均剪断速度20(1/秒)以上(好ましくは50(1/秒)以上)で混練する方法を採用するのがより好ましい。
上記差δG’の範囲は、架橋剤(C)および/または架橋促進剤(D)を配合する前のフッ素ゴム組成物において満たされていることが好ましい。また、架橋剤(C)および/または架橋促進剤(D)を配合したフッ素ゴム組成物でも、上記差δG’は上記の範囲に入っていることが好ましい。
 上述した特定の損失弾性率E”や貯蔵弾性率E’を備えたフッ素ゴム架橋物を得る観点からは、平均剪断速度は20(1/秒)以上が好ましく、50(1/秒)以上がより好ましい。平均剪断速度を20(1/秒)以上にすることで、所望の常態物性および高温時の機械物性を得ることができる。
 平均剪断速度(1/秒)は、つぎの式により算出される。
平均剪断速度(1/秒)=(π×D×R)/(60(秒)×c)
(式中、
D:ローター径またはロール径(cm)
R:回転速度(rpm)
c:チップクリアランス(cm。ローターとケーシングとの間隙の距離、またはロール同士の間隙の距離)
 架橋剤(C)および/または架橋促進剤(D)は、架橋系、架橋するフッ素ゴム(A)の種類(たとえば共重合組成、架橋性基の有無や種類など)、得られる架橋物の具体的用途や使用形態、そのほか混練条件などに応じて、適宜選択することができる。
 架橋系としては、たとえば過酸化物架橋系、ポリオール架橋系、ポリアミン架橋系、オキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系、トリアジン架橋系などが採用できる。
(過酸化物架橋系)
 過酸化物架橋系により架橋する場合は、架橋点に炭素-炭素結合を有しているので、架橋点に炭素-酸素結合を有するポリオール架橋系および炭素-窒素二重結合を有するポリアミン架橋系に比べて、耐薬品性および耐スチーム性に優れているという特徴がある。
 過酸化物架橋系の架橋剤としては、熱や酸化還元系の存在下で容易にパーオキシラジカルを発生し得る過酸化物であればよく、具体的には、たとえば1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α,α-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、α,α-ビス(t-ブチルパーオキシ)-m-ジイソプロピルベンゼン、α,α-ビス(t-ブチルパーオキシ)-m-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキシン-3、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゼン、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシイソプロピルカーボネートなどの有機過酸化物を挙げることができる。これらの中でも、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン又は2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキシン-3が好ましい。
 また、過酸化物架橋系では、通常、架橋促進剤を含むことが好ましい。過酸化物系架橋剤、特に有機過酸化物系架橋剤の架橋促進剤としては、たとえば、トリアリルシアヌレート、トリアリルイソシアヌレート(TAIC)、トリアクリルホルマール、トリアリルトリメリテート、N,N’-m-フェニレンビスマレイミド、ジプロパルギルテレフタレート、ジアリルフタレート、テトラアリルテレフタレートアミド、トリアリルホスフェート、ビスマレイミド、フッ素化トリアリルイソシアヌレート(1,3,5-トリス(2,3,3-トリフルオロ-2-プロペニル)-1,3,5-トリアジン-2,4,6-トリオン)、トリス(ジアリルアミン)-S-トリアジン、亜リン酸トリアリル、N,N-ジアリルアクリルアミド、1,6-ジビニルドデカフルオロヘキサン、ヘキサアリルホスホルアミド、N,N,N’,N’-テトラアリルフタルアミド、N,N,N’,N’-テトラアリルマロンアミド、トリビニルイソシアヌレート、2,4,6-トリビニルメチルトリシロキサン、トリ(5-ノルボルネン-2-メチレン)シアヌレート、トリアリルホスファイトなどが挙げられる。これらの中でも、架橋性、架橋物の物性の点から、トリアリルイソシアヌレート(TAIC)が好ましい。
 また、架橋性の観点から、過酸化物架橋系に好適なフッ素ゴム(A)としては、架橋点としてヨウ素原子および/または臭素原子を含むフッ素ゴムが好ましい。ヨウ素原子および/または臭素原子の含有量としては、0.001~10質量%、更には0.01~5質量%、特に0.1~3質量%が、物性のバランスが良好な点から好ましい。
 過酸化物架橋剤の配合量としては、フッ素ゴム(A)100質量部に対して、0.01~10質量部であることが好ましく、より好ましくは0.1~9質量部、特に好ましくは0.2~8質量部である。過酸化物架橋剤が、0.01質量部未満であると、フッ素ゴム(A)の架橋が充分に進行しない傾向があり、10質量部を超えると、物性のバランスが低下する傾向がある。
 また、架橋促進剤の配合量は、通常、フッ素ゴム(A)100質量部に対して、0.01~10質量部であり、好ましくは0.1~9質量部である。架橋促進剤が、0.01質量部より少ないと、アンダーキュアとなる傾向があり、10質量部を超えると、架橋時間が短くなり過ぎることに加え、物性バランスが低下する傾向がある。
(ポリオール架橋系)
 ポリオール架橋系により架橋する場合は、架橋点に炭素-酸素結合を有しており、圧縮永久歪みが小さく、成形性に優れているという特徴がある点で好適である。
 ポリオール架橋剤としては、従来、フッ素ゴムの架橋剤として知られている化合物を用いることができ、たとえば、ポリヒドロキシ化合物、特に、耐熱性に優れる点からポリヒドロキシ芳香族化合物が好適に用いられる。
 上記ポリヒドロキシ芳香族化合物としては、特に限定されず、たとえば、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、ビスフェノールAという)、2,2-ビス(4-ヒドロキシフェニル)パーフルオロプロパン(以下、ビスフェノールAFという)、レゾルシン、1,3-ジヒドロキシベンゼン、1,7-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシスチルベン、2,6-ジヒドロキシアントラセン、ヒドロキノン、カテコール、2,2-ビス(4-ヒドロキシフェニル)ブタン(以下、ビスフェノールBという)、4,4-ビス(4-ヒドロキシフェニル)吉草酸、2,2-ビス(4-ヒドロキシフェニル)テトラフルオロジクロロプロパン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルケトン、トリ(4-ヒドロキシフェニル)メタン、3,3’,5,5’-テトラクロロビスフェノールA、3,3’,5,5’-テトラブロモビスフェノールAなどが挙げられる。これらのポリヒドロキシ芳香族化合物は、アルカリ金属塩、アルカリ土類金属塩などであってもよいが、酸を用いて共重合体を凝析する場合は、上記金属塩は用いないことが好ましい。
 これらの中でも、得られる成形品などの圧縮永久歪みが小さく、成形性も優れているという点から、ポリヒドロキシ化合物が好ましく、耐熱性が優れることからポリヒドロキシ芳香族化合物がより好ましく、ビスフェノールAFが更に好ましい。
 また、ポリオール架橋系では、通常、架橋促進剤を含むことが好ましい。架橋促進剤を用いると、フッ素ゴム主鎖の脱フッ酸反応における分子内二重結合の生成と、生成した二重結合へのポリヒドロキシ化合物の付加を促進することにより架橋反応を促進することができる。
 ポリオール架橋系の架橋促進剤としては、一般にオニウム化合物が用いられる。オニウム化合物としては特に限定されず、たとえば、第4級アンモニウム塩等のアンモニウム化合物、第4級ホスホニウム塩等のホスホニウム化合物、オキソニウム化合物、スルホニウム化合物、環状アミン、1官能性アミン化合物などが挙げられ、これらの中でも第4級アンモニウム塩、第4級ホスホニウム塩が好ましい。
 第4級アンモニウム塩としては特に限定されず、たとえば、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムアイオダイド、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムハイドロキサイド、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムメチルスルフェート、8-エチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムブロミド、8-プロピル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムブロミド、8-ドデシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-ドデシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムハイドロキサイド、8-エイコシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-テトラコシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-ベンジル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド(以下、DBU-Bとする)、8-ベンジル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムハイドロキサイド、8-フェネチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-(3-フェニルプロピル)-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリドなどが挙げられる。これらの中でも、架橋性、架橋物の物性の点から、DBU-Bが好ましい。
 また、第4級ホスホニウム塩としては特に限定されず、たとえば、テトラブチルホスホニウムクロリド、ベンジルトリフェニルホスホニウムクロリド(以下、BTPPCとする)、ベンジルトリメチルホスホニウムクロリド、ベンジルトリブチルホスホニウムクロリド、トリブチルアリルホスホニウムクロリド、トリブチル-2-メトキシプロピルホスホニウムクロリド、ベンジルフェニル(ジメチルアミノ)ホスホニウムクロリドなどを挙げることができ、これらの中でも、架橋性、架橋物の物性の点から、ベンジルトリフェニルホスホニウムクロリド(BTPPC)が好ましい。
 また、架橋促進剤として、第4級アンモニウム塩、第4級ホスホニウム塩とビスフェノールAFの固溶体、特開平11-147891号公報に開示されている塩素フリー架橋促進剤を用いることもできる。
 ポリオール架橋剤の配合量としては、フッ素ゴム(A)100質量部に対して、0.01~10質量部であることが好ましく、より好ましくは0.1~7質量部である。ポリオール架橋剤が、0.01質量部未満であると、フッ素ゴム(A)の架橋が充分に進行しない傾向があり、10質量部を超えると、物性のバランスが低下する傾向がある。
 また、架橋促進剤の配合量は、フッ素ゴム(A)100質量部に対して、0.01~8質量部であることが好ましく、より好ましくは0.02~5質量部である。架橋促進剤が、0.01質量部未満であると、フッ素ゴム(A)の架橋が充分に進行しない傾向があり、8質量部を超えると、物性のバランスが低下する傾向がある。
(ポリアミン架橋系)
 ポリアミン架橋により架橋してなる場合は、架橋点に炭素-窒素二重結合を有しているものであり、動的機械特性に優れているという特徴がある。しかし、ポリオール架橋系または過酸化物架橋系架橋剤を用いて架橋する場合に比べて、圧縮永久歪みが大きくなる傾向がある。
 ポリアミン系架橋剤としては、たとえば、ヘキサメチレンジアミンカーバメート、N,N’-ジシンナミリデン-1,6-ヘキサメチレンジアミン、4,4’-ビス(アミノシクロヘキシル)メタンカルバメートなどのポリアミン化合物が挙げられる。これらの中でも、N,N’-ジシンナミリデン-1,6-ヘキサメチレンジアミンが好ましい。
 ポリアミン系架橋剤の配合量としては、フッ素ゴム(A)100質量部に対して、0.01~10質量部であることが好ましく、より好ましくは0.2~7質量部である。ポリアミン系架橋剤が、0.01質量部未満であると、フッ素ゴム(A)の架橋が充分に進行しない傾向があり、10質量部を超えると、物性のバランスが低下する傾向がある。
 本発明においては、架橋系として過酸化物架橋系、またはポリオール架橋系が好ましく、それぞれの架橋系に適した架橋剤(C)を用いることが好ましい。なかでも、過酸化物架橋系の架橋剤を用いることがより好ましい。
 本発明のフッ素ゴム組成物には、必要に応じて通常のゴム配合物、たとえば充填材、加工助剤、可塑剤、着色剤、粘着付与剤、接着助剤、受酸剤、顔料、難燃剤、滑剤、光安定剤、耐候安定剤、帯電防止剤、紫外線吸収剤、酸化防止剤、離型剤、発泡剤、香料、オイル、柔軟化剤のほか、ポリエチレン、ポリプロピレン、ポリアミド、ポリエステル、ポリウレタンなどの他の重合体などを本発明の効果を損なわない範囲で配合してもよい。
 充填材としては、酸化カルシウム、酸化チタン、酸化アルミニウム、酸化マグネシウムなどの金属酸化物;水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウムなどの金属水酸化物;炭酸マグネシウム、炭酸アルミニウム、炭酸カルシウム、炭酸バリウムなどの炭酸塩;ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸ナトリウム、ケイ酸アルミニウムなどのケイ酸塩;硫酸アルミニウム、硫酸カルシウム、硫酸バリウムなどの硫酸塩;合成ハイドロタルサイト;二硫化モリブデン、硫化鉄、硫化銅などの金属硫化物;ケイ藻土、アスベスト、リトポン(硫化亜鉛/硫化バリウム)、グラファイト、フッ化カーボン、フッ化カルシウム、コークス、石英微粉末、タルク、雲母粉末、ワラストナイト、炭素繊維、アラミド繊維、各種ウィスカー、ガラス繊維、有機補強剤、有機充填材、ポリテトラフルオロエチレン、マイカ、シリカ、セライト、クレーなどが例示できる。また、受酸剤として、酸化カルシウム、酸化マグネシウム、酸化鉛、酸化亜鉛、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、ハイドロタルサイトなどが挙げられ、これらの単独または2種以上を適宜配合してもよい。これらは、先述した混練方法で、どの工程で添加するかは任意であるが、密閉式混練機やロール練り機でフッ素ゴム(A)とカーボンブラック(B)を混練する際に添加するのが好ましい。
 加工助剤としては、ステアリン酸、オレイン酸、パルミチン酸、ラウリン酸などの高級脂肪酸;ステアリン酸ナトリウム、ステアリン酸亜鉛などの高級脂肪酸塩;ステアリン酸アミド、オレイン酸アミドなどの高級脂肪酸アミド;オレイン酸エチルなどの高級脂肪酸エステル;カルナバワックス、セレシンワックスなどの石油系ワックス;エチレングリコール、グリセリン、ジエチレングリコールなどのポリグリコール;ワセリン、パラフィンなどの脂肪族炭化水素;シリコーン系オイル、シリコーン系ポリマー、低分子量ポリエチレン、フタル酸エステル類、リン酸エステル類、ロジン、(ハロゲン化)ジアルキルアミン、界面活性剤、スルホン化合物、フッ素系助剤、有機アミン化合物などが例示できる。
 なかでも有機アミン化合物や受酸剤は、フッ素ゴム(A)とカーボンブラック(B)を密閉式混練機やロール練り機で混練する際に共存させることにより、補強性が向上する点から好ましい配合剤である。混練は、最高温度Tmが80℃~220℃となるように行うことが好ましい。
 有機アミン化合物としては、RNHで示される1級アミン、RNHで示される2級アミン、RNで示される3級アミンが好ましく挙げられる。R、R、Rは同じかまたは異なり、いずれも炭素数1~50のアルキル基が好ましく、アルキル基は官能基としてベンゼン環を含んでいてもよいし、二重結合、共役二重結合を含んでいてもよい。尚、アルキル基は直鎖型であってもよいし、分岐型でもあってもよい。
 1級アミンとしては、たとえばココナッツアミン、オクチルアミン、ラウリルアミン、ステアリルアミン、オレイルアミン、牛脂アミン、17-フェニル-ヘプタデシルアミン、オクタデカ-7,11-ジエニルアミン、オクタデカ-7,9-ジエニルアミン、オクタデック-9-エニルアミン、7-メチル-オクタデック-7-エニルアミンなどが挙げられ、2級アミンとしては、たとえばジステアリルアミンなどが、3級アミンとしては、たとえばジメチルオクチルアミン、ジメチルデシルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、ジメチルベヘニルアミンなどが挙げられる。なかでも炭素数が20個程度のアミン、特に1級アミンが入手の容易性や補強性が増大する点から好ましい。
 有機アミン化合物の配合量は、フッ素ゴム(A)100質量部に対して0.01~5質量部が好ましい。有機アミン化合物が多くなりすぎると混練しにくくなる傾向にあり、また、少なくなりすぎると補強性が低下する傾向にある。更に好ましい配合量は、補強性の観点から、フッ素ゴム(A)100質量部に対して0.1質量部以上であり、補強性の観点と混練しやすさの観点から4質量部以下である。
 受酸剤としては、先述したもののうち、たとえば、水酸化カルシウムなどの金属水酸化物;酸化マグネシウム、酸化亜鉛などの金属酸化物、ハイドロタルサイトなどが、補強性の観点から好ましく、特に酸化亜鉛が好ましい。
 受酸剤の配合量は、フッ素ゴム(A)100質量部に対して0.01~10質量部が好ましい。受酸剤が多くなりすぎると物性が低下する傾向にあり、また、少なくなりすぎると補強性が低下する傾向にある。更に好ましい配合量は、補強性の観点から、フッ素ゴム(A)100質量部に対して0.1質量部以上であり、物性の観点と混練しやすさの観点から8質量部以下が好ましく、5質量部以下がより好ましい。
 本発明において、フッ素ゴム組成物の架橋法は、適宜選択すればよいが、たとえば押出成形や巻蒸し成形などの成形方法、架橋缶などを用いた架橋方法といった通常の架橋法が採用される。また、架橋物の使用目的によって二次架橋が必要な場合は、更にオーブン架橋を施してもよい。
 得られるフッ素ゴム架橋物はまた、動的粘弾性試験(測定モード:引張、チャック間距離:20mm、引張歪み:1%、測定周波数:10Hz、初期加重:157cN、測定温度:160℃)において、損失弾性率E”が、400kPa以上6000kPa以下であるとき、常態物性および高温時の機械物性などに特に優れたものとなる。
 下限としては好ましくは420kPa、より好ましくは430kPaであり、上限としては好ましくは5900kPa、より好ましくは5800kPaである。
 また、得られるフッ素ゴム架橋物は、動的粘弾性試験(測定モード:引張、チャック間距離:20mm、測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、貯蔵弾性率E’が1500kPa以上20000kPa以下であることが、高温時の機械物性の向上の点から更に好ましい。下限としては、好ましくは1600kPa、より好ましくは1800kPaであり、上限としては、好ましくは19000kPa、より好ましくは18000kPaである。
 また、フッ素ゴム架橋物は、160℃において、100~700%、更には110%以上、特に120%以上、また680%以下、特に650%以下の引張破断伸びを有していることが、高温環境下での使用などに適したものとなることから好ましい。
 また、フッ素ゴム架橋物は、160℃において、1MPa以上、更には1.5MPa以上、特に2MPa以上、また30MPa以下、特に28MPa以下の引張破断強度を有していることが、高温環境下での使用などに適したものとなることから好ましい。引張破断強度および引張破断伸びは、JIS-K6251に準じて、6号ダンベルを用いて測定する。
 また、フッ素ゴム架橋物は、160℃において、3~30kN/m、更には4kN/m以上、特に5kN/m以上、また29kN/m以下、特に28kN/m以下の引裂き強度を有していることが、高温環境下での使用などに適したものとなることから好ましい。
 また、フッ素ゴム架橋物は、200℃において、100~700%、更には110%以上、特に120%以上、また680%以下、特に650%以下の引張破断伸びを有していることが、高温環境下での使用などに適したものとなることから好ましい。
 また、フッ素ゴム架橋物は、200℃において、1~30MPa、更には1.5MPa以上、特に2MPa以上、また29MPa以下、特に28MPa以下の引張破断強度を有していることが、高温環境下での使用などに適したものとなることから好ましい。
 また、フッ素ゴム架橋物は、200℃において、3~30kN/m、更には4kN/m以上、特に5kN/m以上、また29kN/m以下、特に28kN/m以下の引裂き強度を有していることが、高温環境下での使用などに適したものとなることから好ましい。
 本発明のフッ素ゴム架橋物は、種々の用途に利用できるが、特にたとえばつぎのような各種の用途に好適に使用できる。
(1)ホース
 ホースとしては、本発明のフッ素ゴム組成物を架橋して得られるフッ素ゴム架橋物のみからなる単層構造のホースであってもよいし、他の層との積層構造の多層ホースであってもよい。
 単層構造のホースとしては、たとえば排気ガスホース、EGRホース、ターボチャージャーホース、燃料ホース、ブレーキホース、オイルホースなどが例示できる。
 多層構造のホースとしても、たとえば排気ガスホース、EGRホース、ターボチャージャーホース、燃料ホース、ブレーキホース、オイルホースなどが例示できる。
 ターボシステムはディーゼルエンジンに多く装備され、エンジンからの排気ガスをタービンに送って回転させることによりタービンに連結されているコンプレッサーを動かし、エンジンに供給する空気の圧縮比を高め、出力を向上させるシステムである。エンジンの排気ガスを利用し、かつ高出力を得るこのターボシステムは、エンジンの小型化、自動車の低燃費化および排気ガスのクリーン化にも繋がる。
 ターボチャージャーホースは、圧縮空気をエンジンに送り込むためのホースとしてターボシステムに用いられている。狭いエンジンルームの空間を有効活用するためには、可撓性や柔軟性に優れたゴム製のホースが有利であり、典型的には、耐熱老化性や耐油性に優れたゴム(特にフッ素ゴム)層を内層とし、シリコーンゴムやアクリルゴムを外層とする多層構造のホースが採用されている。しかし、エンジンルームなどのエンジン周りは高温に曝されており、しかも振動も加えられる過酷な環境にあり、耐熱老化性だけでなく、高温時の機械特性が優れたものが必要になっている。
 ホースは、単層および多層構造のゴム層として、本発明のフッ素ゴム組成物を架橋して得られる架橋フッ素ゴム層を用いることにより、これらの要求特性を高い水準で満たすものであり、優れた特性を有するターボチャージャーホースを提供することができる。
 ターボチャージャーホース以外の多層構造のホースにおいて、他の材料からなる層としては、他のゴムからなる層や熱可塑性樹脂からなる層、各種繊維補強層、金属箔層などが挙げられる。
 他のゴムとしては、耐薬品性や柔軟性が特に要求される場合は、アクリロニトリル-ブタジエンゴムまたはその水素添加ゴム、アクリロニトリル-ブタジエンゴムとポリ塩化ビニルとのブレンドゴム、フッ素ゴム、エピクロロヒドリンゴム、EPDMおよびアクリルゴムからなる群より選ばれる少なくとも1種からなるゴムが好ましく、アクリロニトリル-ブタジエンゴムまたはその水素添加ゴム、アクリロニトリル-ブタジエンゴムとポリ塩化ビニルとのブレンドゴム、フッ素ゴム、エピクロロヒドリンゴムからなる群より選ばれる少なくとも1種のゴムからなることがより好ましい。
 また、熱可塑性樹脂としては、フッ素樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、ポリフェニレンスルフィド系樹脂からなる群より選ばれる少なくとも1種からなる熱可塑性樹脂が好ましく、フッ素樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリフェニレンスルフィド系樹脂からなる群より選ばれる少なくとも1種からなる熱可塑性樹脂がより好ましい。
 また、多層構造のホースを作製する場合、必要に応じて表面処理を行ってもよい。この表面処理としては、接着を可能とする処理方法であれば、その種類は特に制限されるものではなく、例えばプラズマ放電処理やコロナ放電処理等の放電処理、湿式法の金属ナトリウム/ナフタレン液処理などが挙げられる。また、表面処理としてプライマー処理も好適である。プライマー処理は常法に準じて行うことができる。プライマー処理を施す場合、表面処理を行っていないフッ素ゴムの表面を処理することもできるが、プラズマ放電処理、コロナ放電処理、金属ナトリウム/ナフタレン液処理などを予め施したうえで、更にプライマー処理すると、より効果的である。
 本発明の架橋物を用いるホースは、そのほか以下に示す分野で好適に用いることができる。
 半導体製造装置、液晶パネル製造装置、プラズマパネル製造装置、プラズマアドレス液晶パネル、フィールドエミッションディスプレイパネル、太陽電池基板等の半導体製造関連分野では、高温環境に曝されるCVD装置、ドライエッチング装置、ウェットエッチング装置、酸化拡散装置、スパッタリング装置、アッシング装置、洗浄装置、イオン注入装置、排気装置などのホースに用いることができる。
 自動車分野では、エンジンならびに自動変速機の周辺装置に用いることができ、ターボチャージャーホースのほか、EGRホース、排気ガスホース、燃料ホース、オイルホース、ブレーキホースなどとして用いることができる。
 そのほか、航空機分野、ロケット分野および船舶分野、化学プラント分野、分析・理化学機分野、食品プラント機器分野、原子力プラント機器分野などのホースにも用いることができる。
(2)シール材
 シール材としては、以下に示す分野で好適に用いることができる。
 たとえば、自動車用エンジンのエンジン本体、主運動系、動弁系、滑剤・冷却系、燃料系、吸気・排気系;駆動系のトランスミッション系;シャーシのステアリング系;ブレーキ系;電装品の基本電装部品、制御系電装部品、装備電装部品などの、耐熱性・耐油性・燃料油耐性・エンジン冷却用不凍液耐性・耐スチーム性が要求されるガスケットや非接触型および接触型のパッキン類(セルフシールパッキン、ピストンリング、割リング形パッキン、メカニカルシール、オイルシールなど)などのシール材などが挙げられる。
 自動車用エンジンのエンジン本体に用いられるシール材としては、特に限定されないが、たとえば、シリンダーヘッドガスケット、シリンダーヘッドカバーガスケット、オイルパンパッキン、一般ガスケット、Oリング、パッキン、タイミングベルトカバーガスケットなどのシール材などが挙げられる。
 自動車用エンジンの主運動系に用いられるシール材としては、特に限定されるものではないが、たとえば、クランクシャフトシール、カムシャフトシールなどのシャフトシールなどが挙げられる。
 自動車用エンジンの動弁系に用いられるシール材としては、特に限定されるものではないが、たとえば、エンジンバルブのバルブステムオイルシール、バタフライバルブのバルブシートなどが挙げられる。
 自動車用エンジンの滑剤・冷却系に用いられるシール材としては、特に限定されるものではないが、たとえば、エンジンオイルクーラーのシールガスケットなどが挙げられる。
 自動車用エンジン燃料系に用いられるシール材としては、特に限定されるものではないが、たとえば、燃料ポンプのオイルシール、燃料タンクのフィラーシール、タンクパッキンなど、燃料チューブのコネクターOリンクなど、燃料噴射装置のインジェクタークッションリング、インジェクターシールリング、インジェクターOリングなど、キャブレターのフランジガスケットなど、EGRのシール材などが挙げられる。
 自動車用エンジンの吸気・排気系に用いられるシール材としては、特に限定されるものではないが、たとえば、マニホールドの吸気マニホールドパッキン、排気マニホールドパッキン、スロットルのスロットルボディパッキン、ターボチャージのタービンシャフトシールなどが挙げられる。
 自動車用のトランスミッション系に用いられるシール材としては、特に限定されるものではないが、たとえば、トランスミッション関連のベアリングシール、オイルシール、Oリング、パッキンなど、オートマチックトランスミッションのOリング、パッキン類などが挙げられる。
 自動車用のブレーキ系に用いられるシール材としては、特に限定されるものではないが、たとえば、オイルシール、Oリング、パッキンなど、マスターシリンダーのピストンカップ(ゴムカップ)など、キャリパーシール、ブーツ類などが挙げられる。
 自動車用の装備電装品に用いられるシール材としては、特に限定されるものではないが、たとえば、カーエアコンのOリング、パッキンなどが挙げられる。
 シール材としては、特にセンサー用シール材(ブッシュ)に適し、更には酸素センサー用シール材、酸化窒素センサー用シール材、酸化硫黄センサー用シール材などに適する。Oリングは角リングであってもよい。
 自動車分野以外の用途としては、特に限定されず、航空機分野、ロケット分野、船舶分野、油田掘削分野(たとえばパッカーシール、MWD用シール、LWD用シール等)、プラント等の化学品分野、医薬品等の薬品分野、現像機等の写真分野、印刷機械等の印刷分野、塗装設備等の塗装分野、分析・理化学機分野、食品プラント機器分野、原子力プラント機器分野、鉄板加工設備等の鉄鋼分野、一般工業分野、電気分野、燃料電池分野、電子部品分野、現場施工型の成形などの分野で広く用いることができる。
 たとえば、船舶、航空機などの輸送機関における耐油、耐薬品、耐熱、耐スチームまたは耐候用のパッキン、Oリング、その他のシール材;油田掘削における同様のパッキン、Oリング、シール材;化学プラントにおける同様のパッキン、Oリング、シール材;食品プラント機器および食品機器(家庭用品を含む)における同様のパッキン、Oリング、シール材;原子力プラント機器における同様のパッキン、Oリング、シール材;一般工業部品における同様のパッキン、Oリング、シール材などが挙げられる。
(3)ベルト
 本発明のフッ素ゴム成形品は、以下に示すベルトに好適に用いることができる。
 動力伝達ベルト(平ベルト、Vベルト、Vリブドベルト、歯付きベルトなどを含む)や搬送用ベルト(コンベアベルト)のベルト材に用いることができる。また、半導体製造装置、液晶パネル製造装置、プラズマパネル製造装置、プラズマアドレス液晶パネル、フィールドエミッションディスプレイパネル、太陽電池基板等の半導体製造関連分野では、高温環境に曝されるCVD装置、ドライエッチング装置、ウェットエッチング装置、酸化拡散装置、スパッタリング装置、アッシング装置、洗浄装置、イオン注入装置、排気装置などのベルト材に用いることができる。
 平ベルトとしては、たとえば農業用機械、工作機械、工業用機械などのエンジン周りなど各種高温となる部位に使用される平ベルトが挙げられる。コンベアベルトとしては、たとえば石炭、砕石、土砂、鉱石、木材チップなどのバラ物や粒状物を高温環境下で搬送するためのコンベアベルトや、高炉などの製鉄所などで使用されるコンベヤベルト、精密機器組立工場、食品工場などで、高温環境下に曝される用途におけるコンベアベルトが挙げられる。VベルトおよびVリブドベルトとしては、たとえば農業用機械、一般機器(OA機器、印刷機械、業務用乾燥機など)、自動車用などのVベルト、Vリブドベルトが挙げられる。歯付きベルトとしては、たとえば搬送ロボットの伝動ベルト、食品機械、工作機械の伝動ベルトなどの歯付きベルトが挙げられ、自動車用、OA機器、医療用、印刷機械などで使用される歯付きベルトが挙げられる。特に、自動車用歯付きベルトとしては、タイミングベルトが挙げられる。
 なお、多層構造のベルト材において、他の材料からなる層としては、他のゴムからなる層や熱可塑性樹脂からなる層、各種繊維補強層、帆布、金属箔層などが挙げられる。
 他のゴムとしては、耐薬品性や柔軟性が特に要求される場合は、アクリロニトリル-ブタジエンゴムまたはその水素添加ゴム、アクリロニトリル-ブタジエンゴムとポリ塩化ビニルとのブレンドゴム、フッ素ゴム、エピクロロヒドリンゴム、EPDMおよびアクリルゴムからなる群より選ばれる少なくとも1種からなるゴムが好ましく、アクリロニトリル-ブタジエンゴムまたはその水素添加ゴム、アクリロニトリル-ブタジエンゴムとポリ塩化ビニルとのブレンドゴム、フッ素ゴム、エピクロロヒドリンゴムからなる群より選ばれる少なくとも1種のゴムからなることがより好ましい。
 また、熱可塑性樹脂としては、フッ素樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、ポリフェニレンスルフィド系樹脂からなる群より選ばれる少なくとも1種からなる熱可塑性樹脂が好ましく、フッ素樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリフェニレンスルフィド系樹脂からなる群より選ばれる少なくとも1種からなる熱可塑性樹脂がより好ましい。
 また、多層構造のベルト材を作製する場合、必要に応じて表面処理を行ってもよい。この表面処理としては、接着を可能とする処理方法であれば、その種類は特に制限されるものではなく、例えばプラズマ放電処理やコロナ放電処理等の放電処理、湿式法の金属ナトリウム/ナフタレン液処理などが挙げられる。また、表面処理としてプライマー処理も好適である。プライマー処理は常法に準じて行うことができる。プライマー処理を施す場合、表面処理を行っていないフッ素ゴムの表面を処理することもできるが、プラズマ放電処理、コロナ放電処理、金属ナトリウム/ナフタレン液処理などを予め施したうえで、更にプライマー処理すると、より効果的である。
(4)防振ゴム
 本発明のフッ素ゴム成形品は、防振ゴムにおける単層および多層構造のゴム層として用いることにより、防振ゴムへの要求特性を高い水準で満たすものであり、優れた特性を有する自動車用防振ゴムを提供することができる。
 自動車用防振ゴム以外の多層構造の防振ゴムにおいて、他の材料からなる層としては、他のゴムからなる層や熱可塑性樹脂からなる層、各種繊維補強層、金属箔層などが挙げられる。
 他のゴムとしては、耐薬品性や柔軟性が特に要求される場合は、アクリロニトリル-ブタジエンゴムまたはその水素添加ゴム、アクリロニトリル-ブタジエンゴムとポリ塩化ビニルとのブレンドゴム、フッ素ゴム、エピクロロヒドリンゴム、EPDMおよびアクリルゴムからなる群より選ばれる少なくとも1種からなるゴムが好ましく、アクリロニトリル-ブタジエンゴムまたはその水素添加ゴム、アクリロニトリル-ブタジエンゴムとポリ塩化ビニルとのブレンドゴム、フッ素ゴム、エピクロロヒドリンゴムからなる群より選ばれる少なくとも1種のゴムからなることがより好ましい。
 また、熱可塑性樹脂としては、フッ素樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、ポリフェニレンスルフィド系樹脂からなる群より選ばれる少なくとも1種からなる熱可塑性樹脂が好ましく、フッ素樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリフェニレンスルフィド系樹脂からなる群より選ばれる少なくとも1種からなる熱可塑性樹脂がより好ましい。
 また、多層構造の防振ゴムを作製する場合、必要に応じて表面処理を行ってもよい。この表面処理としては、接着を可能とする処理方法であれば、その種類は特に制限されるものではなく、例えばプラズマ放電処理やコロナ放電処理等の放電処理、湿式法の金属ナトリウム/ナフタレン液処理などが挙げられる。また、表面処理としてプライマー処理も好適である。プライマー処理は常法に準じて行うことができる。プライマー処理を施す場合、表面処理を行っていないフッ素ゴムの表面を処理することもできるが、プラズマ放電処理、コロナ放電処理、金属ナトリウム/ナフタレン液処理などを予め施したうえで、更にプライマー処理すると、より効果的である。
(5)ダイヤフラム
 本発明のフッ素ゴム成形品は、以下に示すダイヤフラムに好適に用いることができる。
 例えば、自動車エンジンの用途としては、耐熱性、耐酸化性、耐燃料性、低ガス透過性などが求められる、燃料系、排気系、ブレーキ系、駆動系、点火系などのダイヤフラムが挙げられる。
 自動車エンジンの燃料系に用いられるダイヤフラムとしては、例えば燃料ポンプ用ダイヤフラム、キャブレター用ダイヤフラム、プレッシャレギュレータ用ダイヤフラム、パルセーションダンパー用ダイヤフラム、ORVR用ダイヤフラム、キャニスター用ダイヤフラム、オートフューエルコック用ダイヤフラムなどが挙げられる。
 自動車エンジンの排気系に用いられるダイヤフラムとしては、例えばウェイストゲート用ダイヤフラム、アクチュエータ用ダイヤフラム、EGR用ダイヤフラムなどが挙げられる。
自動車エンジンのブレーキ系に用いられるダイヤフラムとしては、例えばエアーブレーキ用ダイヤフラムなどが挙げられる。
自動車エンジンの駆動系に用いられるダイヤフラムとしては、例えばオイルプレッシャー用ダイヤフラムなどが挙げられる。
自動車エンジンの点火系に用いられるダイヤフラムとしては、例えばディストリビューター用ダイヤフラムなどが挙げられる。
 自動車エンジン以外の用途としては、耐熱性、耐油性、耐薬品性、耐スチーム性、低ガス透過性などが求められる、一般ポンプ用ダイヤフラム、バルブ用ダイヤフラム、フィルタープレス用ダイヤフラム、ブロワー用ダイヤフラム、空調用機器用ダイヤフラム、制御機器用ダイヤフラム、給水用ダイヤフラム、給湯用の熱水を送液するポンプなどに用いられるダイヤフラム、高温蒸気用ダイヤフラム、半導体装置用ダイヤフラム(例えば製造工程などで使用される薬液移送用ダイヤフラム)、食品加工処理装置用ダイヤフラム、液体貯蔵タンク用ダイヤフラム、圧力スイッチ用ダイヤフラム、石油探索・石油掘削用途で用いられるダイヤフラム(例えば石油掘削ビットなどの潤滑油供給用ダイヤフラム)、ガス瞬間湯沸かし器やガスメーター等のガス器具用ダイヤフラム、アキュムレーター用ダイヤフラム、サスペンションなどの空気ばね用ダイヤフラム、船舶用のスクリューフィダー用ダイヤフラム、医療用の人工心臓用ダイヤフラムなどが挙げられる。
 つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
 本発明で採用した各種の物性の測定方法は、以下のとおりである。
(1)動的粘弾性試験
(A)未架橋時動的粘弾性測定(剪断弾性率G’)
動的歪み1%時の剪断弾性率G’(1%)及び動的歪み100%時の剪断弾性率G’(100%)の差δG’(G’(1%)-G’(100%))の測定方法 
アルファテクノロジーズ社製のラバープロセスアナライザ(型式:RPA2000)を用いて、100℃、1Hzで動的粘弾性を測定する。
(B)架橋物の動的粘弾性測定(貯蔵弾性率E’および損失弾性率E”)
   測定装置:アイティー計測制御(株)製の動的粘弾性測定装置DVA-220
測定条件
試験片: 幅3mm×厚さ2mmサイズの長方体の架橋済みゴム
測定モード:引張
チャック間距離:20mm
測定温度:160℃
引張歪み:1%
初期加重:157cN
周波数:10Hz
(2)引張破断強度、引張破断伸び
 試験機は、オリエンテック社製のRTA-1T、(株)島津製作所製のAG-Iを用いる。JIS-K6251に準じ、チャック間50mmに設定、引張速度500mm/min、6号ダンベルを用いて引張破断強度、引張破断伸びを測定する。測定温度は、25℃、160℃とする。
(3)ムーニー粘度(ML1+10(100℃))
 ムーニー粘度は、ASTM-D1646およびJIS K6300に準拠して測定する。測定温度は100℃である。
 実施例では、つぎのフッ素ゴム、カーボンブラック、架橋剤、架橋促進剤、加工助剤及び受酸剤を使用した。
(フッ素ゴムA1)
 3Lのステンレススチール製のオートクレーブに純水1.7L、CH=CFCFOCF(CF)CFOCF(CF)COONHの50%水溶液を0.17g、F(CFCOONHの50%水溶液6.8gを仕込み、系内を窒素ガスで充分に置換した。600rpmで攪拌しながら80℃に昇温した後、初期槽内モノマー組成をVdF/HFP=34/66モル%、1.52MPaとなるようにモノマーを圧入した。ついでAPS60mgを5mlの純水に溶解した重合開始剤溶液を窒素ガスで圧入し、反応を開始した。重合の進行に伴い内圧が1.42MPaに降下した時点でVdF/HFP=68/32モル%の追加混合モノマーを内圧が1.52MPaとなるまで圧入した。このとき、ジヨウ素化合物I(CFIの1.96gを圧入した。昇圧、降圧を繰り返しつつ、3時間ごとにAPSの60mg/純水5ml水溶液を窒素ガスで圧入して、重合反応を継続した。混合モノマーを600g追加した時点で、未反応モノマーを放出し、オートクレーブを冷却して、固形分濃度26.3質量%のフッ素ゴムのディスパージョンを617g得た。重合時間は7.9時間であった。このフッ素ゴムをNMR分析により共重合組成を調べたところ、VdF/HFP=68/32(モル%)であり、ムーニー粘度(ML1+10(100℃))は69であった。このフッ素ゴムをフッ素ゴムA1とする。
(フッ素ゴムA2)
 3Lのステンレススチール製のオートクレーブに純水1.7L、CH=CFCFOCF(CF)CFOCF(CF)COONHの50%水溶液を0.17g、F(CFCOONHの50%水溶液6.8gを仕込み、系内を窒素ガスで充分に置換した。600rpmで攪拌しながら80℃に昇温した後、初期槽内モノマー組成をVdF/HFP=45/55モル%、1.52MPaとなるようにモノマーを圧入した。ついでAPS60mgを5mlの純水に溶解した重合開始剤溶液を窒素ガスで圧入し、反応を開始した。重合の進行に伴い内圧が1.42MPaに降下した時点でVdF/HFP=76/24モル%の追加混合モノマーを内圧が1.52MPaとなるまで圧入した。このとき、ジヨウ素化合物I(CFIの1.96gを圧入した。昇圧、降圧を繰り返しつつ、3時間ごとにAPSの60mg/純水5ml水溶液を窒素ガスで圧入して、重合反応を継続した。混合モノマーを600g追加した時点で、未反応モノマーを放出し、オートクレーブを冷却して、固形分濃度26.6質量%のフッ素ゴムのディスパージョンを628g得た。重合時間は7.5時間であった。このフッ素ゴムをNMR分析により共重合組成を調べたところ、VdF/HFP=76/24(モル%)であり、ムーニー粘度(ML1+10(100℃))は89であった。このフッ素ゴムをフッ素ゴムA2とする。
(フッ素ゴムA3)
 3Lのステンレススチール製のオートクレーブに純水1.7L、CH=CFCFOCF(CF)CFOCF(CF)COONHの50%水溶液を0.17g、F(CFCOONHの50%水溶液6.8gを仕込み、系内を窒素ガスで充分に置換した。600rpmで攪拌しながら80℃に昇温した後、初期槽内モノマー組成をVdF/HFP=59/41モル%、1.52MPaとなるようにモノマーを圧入した。ついでAPS60mgを5mlの純水に溶解した重合開始剤溶液を窒素ガスで圧入し、反応を開始した。重合の進行に伴い内圧が1.42MPaに降下した時点でVdF/HFP=84/16モル%の追加混合モノマーを内圧が1.52MPaとなるまで圧入した。このとき、ジヨウ素化合物I(CFIの1.96gを圧入した。昇圧、降圧を繰り返しつつ、3時間ごとにAPSの60mg/純水5ml水溶液を窒素ガスで圧入して、重合反応を継続した。混合モノマーを600g追加した時点で、未反応モノマーを放出し、オートクレーブを冷却して、固形分濃度26.7質量%のフッ素ゴムのディスパージョンを628g得た。重合時間は7.4時間であった。このフッ素ゴムをNMR分析により共重合組成を調べたところ、VdF/HFP=84/16(モル%)であり、ムーニー粘度(ML1+10(100℃))は93であった。このフッ素ゴムをフッ素ゴムA3とする。
(フッ素ゴムA4)
 3Lのステンレススチール製のオートクレーブに純水1.7L、CH=CFCFOCF(CF)CFOCF(CF)COONHの50%水溶液を0.17g、F(CFCOONHの50%水溶液6.8gを仕込み、系内を窒素ガスで充分に置換した。600rpmで攪拌しながら80℃に昇温した後、初期槽内モノマー組成をVdF/PMVE=68/32モル%、1.52MPaとなるようにモノマーを圧入した。ついでAPS30mgを5mlの純水に溶解した重合開始剤溶液を窒素ガスで圧入し、反応を開始した。重合の進行に伴い内圧が1.42MPaに降下した時点でVdF/PMVE=67/33モル%の追加混合モノマーを内圧が1.52MPaとなるまで圧入した。このとき、ジヨウ素化合物I(CFIの2.72gを圧入した。昇圧、降圧を繰り返しつつ、3時間ごとにAPSの30mg/純水5ml水溶液を窒素ガスで圧入して、重合反応を継続した。混合モノマーを600g追加した時点で、未反応モノマーを放出し、オートクレーブを冷却して、固形分濃度27.0質量%のフッ素ゴムのディスパージョンを610g得た。重合時間は6.4時間であった。このフッ素ゴムをNMR分析により共重合組成を調べたところ、VdF/PMVE=71/29(モル%)であり、ムーニー粘度(ML1+10(100℃))は45であった。このフッ素ゴムをフッ素ゴムA4とする。
(フッ素ゴムA5)
 3Lのステンレススチール製のオートクレーブに純水1.7L、CH=CFCFOCF(CF)CFOCF(CF)COONHの50%水溶液を0.17g、F(CFCOONHの50%水溶液6.8gを仕込み、系内を窒素ガスで充分に置換した。600rpmで攪拌しながら80℃に昇温した後、初期槽内モノマー組成をVdF/PMVE=77/23モル%、1.52MPaとなるようにモノマーを圧入した。ついでAPS30mgを5mlの純水に溶解した重合開始剤溶液を窒素ガスで圧入し、反応を開始した。重合の進行に伴い内圧が1.42MPaに降下した時点でVdF/PMVE=76/24モル%の追加混合モノマーを内圧が1.52MPaとなるまで圧入した。このとき、ジヨウ素化合物I(CFIの2.72gを圧入した。昇圧、降圧を繰り返しつつ、3時間ごとにAPSの30mg/純水5ml水溶液を窒素ガスで圧入して、重合反応を継続した。混合モノマーを600g追加した時点で、未反応モノマーを放出し、オートクレーブを冷却して、固形分濃度26.3質量%のフッ素ゴムのディスパージョンを618g得た。重合時間は6.5時間であった。このフッ素ゴムをNMR分析により共重合組成を調べたところ、VdF/PMVE=79/21(モル%)であり、ムーニー粘度(ML1+10(100℃))は60であった。このフッ素ゴムをフッ素ゴムA5とする。
(フッ素ゴムA6)
 3Lのステンレススチール製のオートクレーブに純水1.7L、CH=CFCFOCF(CF)CFOCF(CF)COONHの50%水溶液を0.17g、F(CFCOONHの50%水溶液6.8gを仕込み、系内を窒素ガスで充分に置換した。600rpmで攪拌しながら80℃に昇温した後、初期槽内モノマー組成をVdF/PMVE=84/16モル%、1.52MPaとなるようにモノマーを圧入した。ついでAPS30mgを5mlの純水に溶解した重合開始剤溶液を窒素ガスで圧入し、反応を開始した。重合の進行に伴い内圧が1.42MPaに降下した時点でVdF/PMVE=84/16モル%の追加混合モノマーを内圧が1.52MPaとなるまで圧入した。このとき、ジヨウ素化合物I(CFIの2.72gを圧入した。昇圧、降圧を繰り返しつつ、3時間ごとにAPSの30mg/純水5ml水溶液を窒素ガスで圧入して、重合反応を継続した。混合モノマーを600g追加した時点で、未反応モノマーを放出し、オートクレーブを冷却して、固形分濃度26.3質量%のフッ素ゴムのディスパージョンを614g得た。重合時間は8.1時間であった。このフッ素ゴムをNMR分析により共重合組成を調べたところ、VdF/PMVE=85/15(モル%)であり、ムーニー粘度(ML1+10(100℃))は72であった。このフッ素ゴムをフッ素ゴムA6とする。
(フッ素ゴムA7)
 3Lのステンレススチール製のオートクレーブに純水1.7L、CH=CFCFOCF(CF)CFOCF(CF)COONHの50%水溶液を0.17g、F(CFCOONHの50%水溶液6.8gを仕込み、系内を窒素ガスで充分に置換した。600rpmで攪拌しながら80℃に昇温した後、初期槽内モノマー組成をVdF/HFP/TFE=59/35/6モル%、1.52MPaとなるようにモノマーを圧入した。ついでAPS60mgを5mlの純水に溶解した重合開始剤溶液を窒素ガスで圧入し、反応を開始した。重合の進行に伴い内圧が1.42MPaに降下した時点でVdF/HFP/TFE=72/21/7モル%の追加混合モノマーを内圧が1.52MPaとなるまで圧入した。このとき、ジヨウ素化合物I(CFIを1.95g圧入した。昇圧、降圧を繰り返しつつ、3時間ごとにAPSの60mg/純水5ml水溶液を窒素ガスで圧入して、重合反応を継続した。混合モノマーを600g追加した時点で、未反応モノマーを放出し、オートクレーブを冷却して、固形分濃度26.7質量%のフッ素ゴムのディスパージョンを623g得た。重合時間は6.2時間であった。このフッ素ゴムをNMR分析により共重合組成を調べたところ、VdF/HFP/TFE=72/21/7(モル%)であり、ムーニー粘度(ML1+10(100℃))は63であった。このフッ素ゴムをフッ素ゴムA7とする。
(カーボンブラック)
 ISAF(NSA=119m/g、DBP吸油量=114ml/100g)。東海カーボン(株)製の「シースト6」(商品名)
(架橋剤)
 2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン。日油(株)製の「パーヘキサ25B」(商品名)
(架橋促進剤)
 トリアリルイソシアヌレート(TAIC)。日本化成(株)製の「タイク」(商品名)
(加工助剤)
 ステアリルアミン(ファーミン86T)(花王(株)製)
(受酸剤)
 酸化亜鉛(一種)(堺化学工業(株)製)
実施例1
 混練機((株)モリヤマ製のMixLabo0.5L、ローター直径:6.6cm、チップクリアランス:0.05cm)を用いて、フロントローター回転数:60rpm、バックローター回転数:50rpmの混練条件で、フッ素ゴム(A1)100質量部にカーボンブラック20質量部、ステアリルアミン0.5質量部、酸化亜鉛1.0質量部を混練し、各フッ素ゴムプレコンパウンド(B1)を調製した。なお、排出された混練物の最高温度は165℃であった。
 得られたフッ素ゴムプレコンパウンド(B1)に動的粘弾性試験(1)-(A)を実施し、δG’を求めた。結果を表1に示す。
 次に、フッ素ゴムプレコンパウンド(B1)121.5質量部に、8インチオープンロール(関西ロール(株)製)を用いて、フロントロール回転数21rpm、バックロール回転数19rpm、ロール間隙0.1cmの混練条件で、架橋剤質量部1.0質量部、架橋促進剤(TAIC)を0.5質量部、ステアリルアミン0.5質量部を30分間かけて混練し、フッ素ゴムフルコンパウンド(C1)を調製した。なお、排出された混練物の最高温度は70℃であった。
 次に、得られたフッ素ゴムフルコンパウンド(C1)を160℃で30分間プレスして架橋を行い、厚さ2mmのシート状試験片を作製した。このシートより試験片を作製し、引張破断強度および引張破断伸びを測定した。結果を表1に示す。
 更に、この得られた架橋フッ素ゴムに動的粘弾性試験(1)-(B)を実施し、損失弾性率E”および貯蔵弾性率E’を求めた。結果を表1に示す。
実施例2
 フッ素ゴム(A1)をフッ素ゴム(A2)にした以外は、実施例1と同様な条件で混練、架橋シートを作製し、各種物性を測定した。結果を表1に示す。
実施例3
 フッ素ゴム(A1)をフッ素ゴム(A3)にした以外は、実施例1と同様な条件で混練、架橋シートを作製し、各種物性を測定した。結果を表1に示す。
実施例4
 フッ素ゴム(A1)をフッ素ゴム(A4)にした以外は、実施例1と同様な条件で混練、架橋シートを作製し、各種物性を測定した。結果を表1に示す。
実施例5
 フッ素ゴム(A1)をフッ素ゴム(A5)にした以外は、実施例1と同様な条件で混練、架橋シートを作製し、各種物性を測定した。結果を表1に示す。
実施例6
 フッ素ゴム(A1)をフッ素ゴム(A6)にした以外は、実施例1と同様な条件で混練、架橋シートを作製し、各種物性を測定した。結果を表1に示す。
実施例7
 フッ素ゴム(A1)をフッ素ゴム(A7)にした以外は、実施例1と同様な条件で混練、架橋シートを作製し、各種物性を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004

Claims (9)

  1. フッ素ゴム(A)およびカーボンブラック(B)を含むフッ素ゴム組成物を架橋して得られるフッ素ゴム架橋物を有し、
    フッ素ゴム(A)は、全単量体成分に由来する構造単位の総量100モル%に対し、フッ化ビニリデンに由来する構造単位を48~88モル%含み、かつテトラフルオロエチレンに由来する構造単位を0~10モル%含むフッ化ビニリデン系フッ素ゴムであり、
    フッ素ゴム架橋物が、動的粘弾性試験(測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、損失弾性率E”が、400kPa以上6000kPa以下である成形品。
  2. フッ素ゴム架橋物が、動的粘弾性試験(測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、貯蔵弾性率E’が1500kPa以上20000kPa以下である請求項1記載の成形品。
  3. フッ素ゴム組成物は、フッ素ゴム(A)100質量部に対してカーボンブラック(B)を5~65質量部含む請求項1または2記載の成形品。
  4. カーボンブラック(B)が、窒素吸着比表面積(NSA)が5~180m/gであって、ジブチルフタレート(DBP)吸油量が40~180ml/100gであるカーボンブラックである請求項1~3のいずれか1項に記載の成形品。
  5. 前記フッ素ゴム組成物が、架橋剤(C)を含む請求項1~4のいずれか1項に記載の成形品。
  6. フッ素ゴム(A)およびカーボンブラック(B)を含み、
    フッ素ゴム(A)は、全単量体成分に由来する構造単位の総量100モル%に対し、フッ化ビニリデンに由来する構造単位を48~88モル%含み、かつテトラフルオロエチレンに由来する構造単位を0~10モル%含むフッ化ビニリデン系フッ素ゴムであり、
    ラバープロセスアナライザ(RPA)による動的粘弾性試験(測定周波数:1Hz、測定温度:100℃)において、未架橋時の動的歪み1%時の剪断弾性率G’(1%)および動的歪み100%時の剪断弾性率G’(100%)の差δG’(G’(1%)-G’(100%))が、120kPa以上3,000kPa以下であるフッ素ゴム組成物。
  7. フッ素ゴム(A)100質量部に対してカーボンブラック(B)を5~65質量部含む請求項6記載のフッ素ゴム組成物。
  8. カーボンブラック(B)が、窒素吸着比表面積(NSA)が5~180m/gであって、ジブチルフタレート(DBP)吸油量が40~180ml/100gであるカーボンブラックである請求項6または7記載のフッ素ゴム組成物。
  9. 前記フッ素ゴム組成物が、架橋剤(C)を含む請求項6~8のいずれか1項に記載のフッ素ゴム組成物。
PCT/JP2011/069236 2010-08-25 2011-08-25 フッ素ゴム成形品 WO2012026559A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES11820021.1T ES2620370T3 (es) 2010-08-25 2011-08-25 Artículo moldeado de fluorocaucho
JP2012530726A JP6120572B2 (ja) 2010-08-25 2011-08-25 フッ素ゴム成形品
EP11820021.1A EP2568009B1 (en) 2010-08-25 2011-08-25 Fluororubber molded article
CN2011800407900A CN103080220A (zh) 2010-08-25 2011-08-25 氟橡胶成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37699010P 2010-08-25 2010-08-25
US61/376,990 2010-08-25

Publications (1)

Publication Number Publication Date
WO2012026559A1 true WO2012026559A1 (ja) 2012-03-01

Family

ID=45723550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069236 WO2012026559A1 (ja) 2010-08-25 2011-08-25 フッ素ゴム成形品

Country Status (6)

Country Link
US (1) US20120077939A1 (ja)
EP (1) EP2568009B1 (ja)
JP (1) JP6120572B2 (ja)
CN (1) CN103080220A (ja)
ES (1) ES2620370T3 (ja)
WO (1) WO2012026559A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108935A1 (en) * 2012-01-20 2013-07-25 Daikin Industries, Ltd. Fluororubber composition and method for producing same
WO2013108936A1 (en) * 2012-01-20 2013-07-25 Daikin Industries, Ltd. Fluororubber composition and method for producing same
WO2013125735A1 (en) * 2012-02-24 2013-08-29 Daikin Industries, Ltd. Fluororubber composition
JP6132552B2 (ja) * 2010-08-25 2017-05-24 ダイキン工業株式会社 ベルト材
US9976016B2 (en) 2012-02-24 2018-05-22 Daikin Industries, Ltd. Fluororubber composition
JPWO2020080523A1 (ja) * 2018-10-18 2021-09-02 ダイキン工業株式会社 含フッ素エラストマー、架橋性組成物および成形品
US11898661B2 (en) 2012-02-24 2024-02-13 Daikin Industries, Ltd. Fluororubber composition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6120571B2 (ja) * 2010-08-25 2017-04-26 ダイキン工業株式会社 フッ素ゴム成形品
WO2012026556A1 (ja) 2010-08-25 2012-03-01 ダイキン工業株式会社 複雑形状フッ素ゴム成形体
WO2012026557A1 (ja) 2010-08-25 2012-03-01 ダイキン工業株式会社 シール材
JP5720689B2 (ja) 2010-08-25 2015-05-20 ダイキン工業株式会社 フッ素ゴム組成物
WO2012026549A1 (ja) 2010-08-25 2012-03-01 ダイキン工業株式会社 ホース
CN103080217B (zh) 2010-08-25 2015-10-14 大金工业株式会社 氟橡胶组合物
WO2012049093A1 (en) * 2010-10-15 2012-04-19 Solvay Specialty Polymers Italy S.P.A. Fluoroelastomers
US10000619B2 (en) * 2011-08-25 2018-06-19 Daikin Industries, Ltd. Diaphragm
US9107737B2 (en) 2011-11-21 2015-08-18 Alan Schwartz Goggles with facial conforming eyepieces
US10251770B2 (en) * 2014-01-03 2019-04-09 Hollister Incorporated Lubricated valve for ostomy pouch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055050A (ja) 1983-08-15 1985-03-29 イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー 過酸化物加硫可能なフッ素ゴム組成物
JPH03122153A (ja) * 1989-10-05 1991-05-24 Asahi Chem Ind Co Ltd 高い引張強度を有するフッ素ゴム加硫組成物
JPH0625500A (ja) 1992-07-09 1994-02-01 Daikin Ind Ltd 新規なフッ素ゴム組成物
JP2003013041A (ja) * 2001-06-28 2003-01-15 Mitsubishi Cable Ind Ltd シール用ゴム組成物およびそれを用いた耐二酸化炭素用シール
JP2008184496A (ja) 2007-01-29 2008-08-14 Yunimatekku Kk 含フッ素エラストマーおよびその組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69322157T2 (de) * 1992-04-03 1999-06-10 E.I. Du Pont De Nemours And Co., Wilmington, Del. Vulkanisierbare fluorelastomerzusammensetzung
JP3327016B2 (ja) * 1994-12-06 2002-09-24 ダイキン工業株式会社 低温シール性に優れたフッ素ゴム共重合体及びその硬化用組成物
US7521509B2 (en) * 2002-12-05 2009-04-21 Daikin Industries, Ltd. Fluorine-containing polymer composition and cured body
JP4610856B2 (ja) * 2003-02-06 2011-01-12 Nok株式会社 フッ素ゴム系シール材用組成物及びフッ素ゴム系シール材
WO2006057333A1 (ja) * 2004-11-26 2006-06-01 Daikin Industries, Ltd. 熱可塑性重合体組成物および熱可塑性重合体組成物の製造方法
ITMI20061292A1 (it) * 2006-07-03 2008-01-04 Solvay Solexis Spa Composizioni (per) fluoroelastomeriche
US7705085B2 (en) * 2007-04-06 2010-04-27 3M Innovative Properties Company Fluoroelastomer composition for cold shrink articles
JP6120571B2 (ja) * 2010-08-25 2017-04-26 ダイキン工業株式会社 フッ素ゴム成形品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055050A (ja) 1983-08-15 1985-03-29 イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー 過酸化物加硫可能なフッ素ゴム組成物
JPH03122153A (ja) * 1989-10-05 1991-05-24 Asahi Chem Ind Co Ltd 高い引張強度を有するフッ素ゴム加硫組成物
JPH0625500A (ja) 1992-07-09 1994-02-01 Daikin Ind Ltd 新規なフッ素ゴム組成物
JP2003013041A (ja) * 2001-06-28 2003-01-15 Mitsubishi Cable Ind Ltd シール用ゴム組成物およびそれを用いた耐二酸化炭素用シール
JP2008184496A (ja) 2007-01-29 2008-08-14 Yunimatekku Kk 含フッ素エラストマーおよびその組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2568009A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132552B2 (ja) * 2010-08-25 2017-05-24 ダイキン工業株式会社 ベルト材
WO2013108935A1 (en) * 2012-01-20 2013-07-25 Daikin Industries, Ltd. Fluororubber composition and method for producing same
WO2013108936A1 (en) * 2012-01-20 2013-07-25 Daikin Industries, Ltd. Fluororubber composition and method for producing same
JP2014521755A (ja) * 2012-01-20 2014-08-28 ダイキン工業株式会社 フッ素ゴム組成物、及び、その製造方法
JP2014527088A (ja) * 2012-01-20 2014-10-09 ダイキン工業株式会社 フッ素ゴム組成物、及び、その製造方法
US9403954B2 (en) 2012-01-20 2016-08-02 Daikin Industries, Ltd. Fluororubber composition and method for producing same
US9499678B2 (en) 2012-02-24 2016-11-22 Daikin Industries, Ltd. Fluororubber composition
WO2013125735A1 (en) * 2012-02-24 2013-08-29 Daikin Industries, Ltd. Fluororubber composition
US9976016B2 (en) 2012-02-24 2018-05-22 Daikin Industries, Ltd. Fluororubber composition
US11898661B2 (en) 2012-02-24 2024-02-13 Daikin Industries, Ltd. Fluororubber composition
JPWO2020080523A1 (ja) * 2018-10-18 2021-09-02 ダイキン工業株式会社 含フッ素エラストマー、架橋性組成物および成形品
CN115449008A (zh) * 2018-10-18 2022-12-09 大金工业株式会社 含氟弹性体、交联性组合物和成型品
JP7235989B2 (ja) 2018-10-18 2023-03-09 ダイキン工業株式会社 含フッ素エラストマー、架橋性組成物および成形品
CN115449008B (zh) * 2018-10-18 2023-10-24 大金工业株式会社 含氟弹性体、交联性组合物和成型品

Also Published As

Publication number Publication date
EP2568009A4 (en) 2014-03-12
JPWO2012026559A1 (ja) 2013-10-28
ES2620370T3 (es) 2017-06-28
JP6120572B2 (ja) 2017-04-26
US20120077939A1 (en) 2012-03-29
EP2568009A1 (en) 2013-03-13
CN103080220A (zh) 2013-05-01
EP2568009B1 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6120572B2 (ja) フッ素ゴム成形品
JP5686137B2 (ja) フッ素ゴム組成物の製造方法
JP5790655B2 (ja) フッ素ゴム組成物
JP6120571B2 (ja) フッ素ゴム成形品
JP5720689B2 (ja) フッ素ゴム組成物
JP5939306B2 (ja) フッ素ゴム組成物
JP5862787B2 (ja) フッ素ゴム組成物
JP5776840B2 (ja) フッ素ゴム組成物、及び、その製造方法
JP5862762B2 (ja) フッ素ゴム組成物、及び、その製造方法
WO2012026556A1 (ja) 複雑形状フッ素ゴム成形体
JP5907276B2 (ja) フッ素ゴム組成物
WO2012026557A1 (ja) シール材
US10000619B2 (en) Diaphragm

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040790.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11820021

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012530726

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011820021

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011820021

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE